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Zusammenfassung

Diese Arbeit untersucht Modelle und numerische Strategien für das Verhalten von schmalen
Objekten, die in Spinnprozessen durch große äußere Kräfte verformt werden. Wir beschäfti-
gen uns mit einem inkompressiblen, hochviskosen und dreidimensionalen Jet (engl. Strahl),
der durch ein eindimensionales Modell, bestehend aus partiellen differential-algebraischen
Gleichungen, beschrieben wird. Dieses Modell wird wiederum mit Hilfe der Mittellinie
des Jets und der dazugehörigen, gerichteten Querschnitte ausgedrückt und besteht aus der
Kinematik und Dynamik des Jets. Es wird mit einem Geometrie- und Materialmodell ver-
vollständigt. Für die Kinematik und die Parametrisierung des Jets sind unterschiedliche
Formulierungen möglich, welche zu unterschiedlichen Varianten des Modells führt. Um den
Wechsel zwischen den Formulierungen und des Material- sowie Geometriemodells zu verein-
fachen, benutzen wir eine vielseitig verwendbare Modellbeschreibung mit einem passenden
numerischen Framework (engl. Programmiergerüst).

Unser Ziel ist es, eine robuste Basis für die Simulation von Spinnprozessen zur Verfü-
gung zu stellen. Insbesondere solche Prozesse, die eine zeitabhängige Betrachtung erfordern
und dadurch jede sinnvolle Vereinfachung des Modells verhindern. Das generell als zeitab-
hängig angenommene räumliche Gebiet muss passend in die Diskretisierung übertragen
werden. Zu diesem Zweck benutzen wir eine Finite Volumen Methode für beliebige Raum-
Zeit-Gebiete und führen eine neue Formulierung der Jet-Kinematik ein, die dem Modell
zugrunde liegenden differential-algebraischen Eigenschaften berücksichtigt. Das Modell
und die Diskretisierung werden durch numerische Konvergenzaussagen (im Raum, in der
Zeit und kombiniert) validiert.

Als Beispiele für die industrielle Anwendung betrachten wir Produktionsprozesse von
Dämmstoffen mit Rotationsspinnverfahren und von Vliesstoffen mit Melt-Blowing-Verfah-
ren (engl. Schmelzblasverfahren). In beiden Prozessen treten große Dehnungen auf, welche
sich in stark variierenden Komponenten der Lösung widerspiegelt. Diese können wiederum
numerische Schwierigkeiten verursachen. Hierfür untersuchen wir Möglichkeiten zur adap-
tiven Gitterverfeinerung, insbesondere der r-Verfeinerung (Moving Mesh, engl. bewegtes
Gitter), die direkt mit dem Jet-Modell in einer allgemeinen Parametrisierung verwen-
det werden kann. Ohne die Ergebnisse solcher Moving-Mesh-Strategien vorwegzunehmen,
stellen wir zusätzlich Anpassungen der Randbedingungen des Modells vor, die die Simu-
lationen der beiden Produktionsprozesse in den industriell relevanten Parameterbereichen
ermöglichen.
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Abstract

This work investigates models and numerical strategies for the behavior of a slender ob-
ject deformed by large external forces in spinning processes. Our main consideration is
an incompressible, highly viscous and three-dimensional jet that is described by a one-
dimensional model of partial differential-algebraic equations with the help of the jet’s cen-
terline and oriented cross-sections. The model consists of the kinematics and dynamics
for the jet and is completed with geometric and material models. Considering the jet’s
kinematics and parameterization, different formulations are possible which lead to differ-
ent model variants. A versatile model description and numerical framework are provided
that facilitate the exchange of the kinematics’ formulation, geometric and material model.

We furthermore aim to provide a robust basis for the simulation of production processes
that require transient treatment and prevent any meaningful simplification of the model
equations. The spatial domain is generally considered time-dependent and requires proper
handling by the discrete scheme. For that purpose, a Finite Volume method for an arbitrary
space-time domain is proposed in combination with a new kinematics formulation that takes
the underlying differential-algebraic character of the model into account. The performance
of the model and discrete scheme is validated through numerical convergence order results
(in space, time and combined).

As examples for industrial applications, we consider production processes of insulation
with the rotational spinning process and nonwoven materials with the melt-blowing pro-
cess. Both exhibit large elongations that manifest in strongly varying solution components,
possibly causing numerical difficulties. We explore the possibilities of adaptive mesh re-
finement, in particular we use r-refinement (moving mesh) that is easily included through
a general parameterization of the jet model. Without anticipating the performance of
such moving mesh strategies, we introduce alterations of the model’s boundary conditions
that enable us to conduct simulation of both production processes in industrially relevant
parameter ranges.
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1 Introduction

The spinning of jets and fibers provides the core of various industrial manufacturing pro-
cesses. Examples are the production of nonwoven fabrics, insulating and light-weight ma-
terials, and technical, specialized textures. There exist broad application realms, ranging
from highly absorbent fabrics (diapers) to high-tech products like microporous synthetics
(battery separators). The wording jet and fiber are distinguishably used here. Both mean
a slender object, whereas a jet is fluid-like, governed by a viscous material behavior, and
a fiber is solid-like, governed by elastic material behavior. The exemplary area of applica-
tions in this work is textile manufacturing, in particular highly dynamic spinning processes
for nonwovens, e.g., the rotational spinning, spunbound and melt-blowing processes. The
common core is that some hot, viscous material (for example a molten polymer or glass) is
extruded through small nozzles, forming jets that are influenced by viscous strains, surface
tension and strong external forces (e.g. turbulent aerodynamic forces). The polymer is
vigorously deformed and stretched and solidifies during the cooldown and is subsequently
collected by a conveyor belt for further processing. The quality of this lay-down web and
the resulting material depends essentially on the dynamics of the jets.

Of particular interest for industrial applications is the behavior close to the nozzle and
achievable thickness of the jet. The thickness of the jet can become several orders of
magnitude smaller than the initial thickness at the nozzle, e.g., up to order 106 in melt-
blowing. Thinking of a realization of such processes in order to estimate material properties
requires a robust simulation. This task is especially challenging as the jet is growing over
time (and therewith the spatial domain to be considered) and the large stretching of the
jet manifests in unknowns that vary greatly in their scale and possibly large gradients.
Hence, to enable the simulation of highly dynamic spinning processes an appropriate jet
model combined with a robust numerical approach for the growing domain and appearing
computational challenges has to be provided.

The following literature overview makes no attempt to offer a complete historical por-
trayal. Instead, we try to sketch a cohesive overview from our point of view. The analysis
on spinning processes dates back as early as to the 1960s to the works of Kase and Matsuo
[63], and Pearson and Matovich [81, 76] who investigated steady, isothermal and viscous
dominated Stokes’ flow on a reduced slender, straight (uniaxial) and axisymmetric jet.
Entov and Yarin [39] derived an instationary, quasi-one-dimensional model that considers
angular momentum to investigate viscous jets moving in air. In [35, 36] a perturbation
expansion of the full Stokes’ flow problem is investigated and leading-order equations for
the extensional flow from the three-dimensional Navier-Stokes equations are derived, which
is the first systematic derivation of an one-dimensional model, that has subsequently been
extended in [55] to non-axisymmetric models and more complex geometries, also account-
ing for surface tension [31]. The restriction to nearly straight bodies was alleviated to
curved and coiled ones by Descent et al. [33] and [85] and their following studies. An
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1 Introduction

asymptotic model without any restriction on the jet motion and shape is developed by
Panda, Marheineke and Wegener [80] and extended in [74], which is also the basis of this
work.

The slender-body theory can be seperated in two classes of one-dimensional models. On
the one hand there are the string models, e.g. [63, 81, 76, 31, 35, 36, 74] and on the other
hand the rod models, e.g. [39, 111, 85]. For the derivation of those models the slenderness
ratio is of key importance. Said ratio is the relation between length and diameter of the
jet, which is of course very small for long and thin jets. The string models are asymptotic
systems of leading order that result from a strict systematic derivation using expansions in
the slenderness ratio from three-dimensional free boundary value problems of Newtonian
fluid flows. They consist of balance laws for mass and linear momentum. The rod models
are considered more sophisticated and also include an angular momentum balance law. The
derivation of the rod models builds on cross-sectional averaging of the underlying three-
dimensional balance equations under certain assumptions. The constitutive elements of
the special Cosserat theory of rods [3] are a curve (center-line, not necessarily center of
mass) and director triad specifying the position and the orientation of the cross-sections,
the model is completed with heuristically motivated material and geometrical laws. The
Cosserat rod model contains the slenderness ratio explicitly in the angular momentum
balance, but it is not an asymptotic system of leading order. Nevertheless it reduces to a
string model as the slenderness ratio goes to zero, thus it can be considered as a regularized
string. The string model has restrictions in their applicability concerning parameter ranges,
in particular when dealing with transient cases, which can be overcome by the rod model
[44, 54, 6, 9].

In contrast to most of the literature, that either focuses on stationary or uniaxial be-
havior, we seek to provide a versatile model for the transient dynamics of a slender object
without any restriction on the position or shape. This is due to our particular interest
in highly dynamic nonwoven production processes. They are influenced by large external
forces, e.g. turbulent aerodynamic forces [73, 60] and fictitious ones (Coriolis and centrifu-
gal) for rotational processes [5], which hinders any meaningful simplification of the used
models (e.g. a dimensional reduction of the physical space). Due to the restriction in the
parameter ranges of the string model we will solely be using the Cosserat rod model with
a new stabilized, index-reduced formulation for its kinematics, that is non-dimensionalized
in a way that facilitates the exchange of the underlying material behavior (viscous, elastic
and viscoelastic). A robust discrete scheme is proposed that is applicable to arbitrary
space-time domains.

The main scope of this work is incompressible, viscous material behavior. We want to lay
out the origins and numerical progress of said the corresponding model shortly: A viscous
string model is presented in [79, 80]. Based on the work of Ribe [85] a rod model was pro-
posed and numerically investigated by Arne et al. in [6, 9]. The transient behavior of the
rod model was considered in [7] in an Eulerian framework. Numerical challenges lie in the
stiffness (through the slenderness parameter) and the general differential-algebraic charac-
ter of the model, as well as the preservation of the rotation group (director triad). The
Eulerian framework allows a time-independent domain, whereas in a Lagrangian framework
the enlarging flow-domain also requires proper numerical treatment. Two numerical meth-
ods for general viscous rods in a Lagrangian framework can be found in literature: The
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first one is a discrete geometric Lagrangian approach by Audoly et al. [12], which utilizes
the center-line-spin formulation of the jet and is applied to the viscous fluid-mechanical
“sewing machine” [28]. The second method originated from [4], was published in [5] and
laid out the groundwork for this work. In [5], we used a Finite Volume semi-discretization
in space combined with a stiffly-accurate Runge-Kutta method suitable for the resulting
differential-algebraic equations (DAEs). That discrete growing process has flaws that are
present independently of the chosen formulation of the jet kinematics [87]. Both approaches
lack in robustness when it comes to scenarios with large deformations, which is where we
pick up and continue in this work.

We aim to provide a versatile model description and numerical framework with this
thesis that facilitate the exchange of the kinematics’ formulation, geometric and material
model, and that embody a robust basis for the simulation of production processes with time-
dependent spatial domains. The considered processes generally require transient treatment
and exhibit large elongations that manifest in strongly varying solution components that
have to be handled properly by the numerics.

This thesis starts with an introduction to Cosserat rod models in Chapter 2. Focusing
on the viscous jet model we introduce its dimensionless formulation in a general param-
eterization (special cases of the parameterization are the Lagrangian and the Eulerian
parameterization) and introduce a stabilized, index-reduced formulation for the kinemat-
ics. Possible set-ups in terms of the underlying space-time domain and initial and boundary
conditions are investigated subsequently in great detail. The advantage of the general pa-
rameterization is that it enables the use of moving meshes, or r-refinement. In a continuous
setting it would be a re-parameterization of the model that is more suitable for a numer-
ical approximation. In Chapter 3 we propose a general moving mesh framework that is
based on three parameterization layers and discuss different adaption strategies. In con-
trast to the many existing strategies in literature we use time-dependent spatial domains.
In Chapter 4 we propose a Finite Volume method for a general partial differential-algebraic
equation (PDAE) with a proper approximation of the space-time domain and a staggered
approach that allows a simple central approximation of spatial fluxes and a fully implicit
one for the temporal fluxes. The performance and convergence properties of the discrete
scheme and the jet model are validated in Chapter 5. The moving mesh approaches are
promising and show comparable performance on simple benchmark models from literature
(cf. Appendix C), yet our discrete scheme with simple, central spatial flux approximations
appears to be unsuitable for the jet model. Restricting to a Lagrangian parameterization
we investigate the robustness of our scheme with two production processes in Chapter 6,
the rotational spinning process and the melt-blowing process. In the following Appendix A
we show simulations of viscoelastic material behavior to demonstrate the versatility of our
model core formulation and discrete scheme. Following that, we highlight in Appendix B an
alternative modeling possibility for a stabilized, index-reduced formulation of the jet kine-
matics that follows more closely the ideas from literature and introduce the two-dimensional
and uniaxial reduction of the jet model for completeness. As already stated above, we inves-
tigate the moving mesh strategies combined with our discrete scheme and model problems
taken form literature in Appendix C. In particular, we use the Burger’s equation, which is
a common benchmark model for such refinement strategies. In Appendix D we present de-
tails on the derivation of our space-time Finite Volume method and give some explanatory
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1 Introduction

details on the application of the discrete scheme to the jet model. This thesis is concluded
with the used notational conventions and symbols and the bibliography.

All research that was published in the course of this work is listed below.

Published works within the scope of this thesis

• W. Arne, N. Marheineke, A. Meister, S. Schiessl, and R. Wegener, Finite
Volume approach for the instationary Cosserat rod model describing the spinning of
viscous jets, Journal of Computational Physics, 294 (2015), pp. 20–37. [5]

• S. Schiessl, W. Arne, N. Marheineke, and R. Wegener, DAE-index mon-
itoring for semidiscretized viscous Cosserat rod models, in Proceedings in Applied
Mathematics and Mechanics (PAMM), Wiley, 2013, pp. 501–502. [87]

• S. Schiessl, N. Marheineke, W. Arne, and R. Wegener, An adaptive moving
mesh approach for hyperbolic conservation laws on time-dependent domains, in Pro-
ceedings in Applied Mathematics and Mechanics (PAMM), Wiley, 2014, pp. 957–958.
. [88]

• S. Schiessl, N. Marheineke, W. Arne, and R. Wegener, A Finite Volume
method with staggered grid on time-dependent domains for viscous fiber spinning, in
Progress in Industrial Mathematics at ECMI 2016, Springer, 2017, to appear. [89]

• S. Schiessl, N. Marheineke, and R. Wegener, A moving mesh framework
based on three parametrization layers for 1d PDEs, in Progress in Industrial Mathe-
matics at ECMI 2014, Springer, 2017, pp. 945–952. [90]
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2 Modeling the behavior of jets and
fibers

The focus of this work are one-dimensional models that can be used to describe the behavior
of slender objects. A slender object is essentially a very long and thin body, therefore its
3d-dynamics can be reduced with the idea of averaging over its cross-sections, e.g. [81, 35]
and more recently [74]. We use models that are based on the Special Cosserat Theory
of Rods (see [3]) consisting of two constitutive elements, namely a curve specifying the
position, and an orthonormal triad for the oriented cross-sections. In its core it uses
balance laws for mass, linear and angular momentum and is applicable to all materials and
physical set-ups. The rod model is completed with geometrical relations and material laws
and can be formulated in various ways with respect to the used basis (invariant, director
and outer), parameterization (Lagrangian, Eulerian, general), set-up (time-dependent and
time-independent domain) and dimensions (with or without units). We are specifically
interested in formulations of the model that allow the simple exchange of geometric relations
and material laws. We will focus on one particular choice in the course of this work, which
is incompressible, viscous behavior. We call a viscous rod a jet, whereas an elastic one is
a fiber. We start with the invariant formulation in Lagrangian parameterization and give
an overview over the formulations and parameterizations that are relevant for this work.
We stick to a great extent to the outline in [107, 5].

This section is structured as follows. First we introduce the core of the rod model
which is applicable to arbitrary geometric and material models. The focus in this work
is on incompressible viscous behavior, nevertheless we introduce three possible geometric
relations, namely inertia-free, compressible and incompressible behavior, and three material
laws, namely viscous, elastic and visoelastic. Then the possible parameterizations are
discussed and the model is made dimensionless without affecting the versatility of the core.
We summarize the model equations for the incompressible viscous case in Section 2.2.5
and introduce subsequently the initial and boundary conditions that will be relevant for
our later numerical studies.

2.1 Theory of rods

According to the Special Cosserat Theory of Rods a three-dimensional rod in the Euclidean
space E3, equipped with the Euclidean norm ‖·‖, consists of two constitutive elements.
The curve ~r : Q̂ → E3 that describes the midpoints of the cross-sections of the rod – we
furthermore choose ~r as mass-associated center-line – and the orientation of the cross-
sections that is described with the orthonormal directors ~d1, ~d2 : Q̂ → E3. We define
an orthonormal director triad { ~d1, ~d2, ~d3} for every point of the curve by introducing
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2 Modeling the behavior of jets and fibers

E3

~e3

~e1

~e2

~d3

~d2

~d1

σa(t)

σb(t)

~r

Figure 2.1: The constitutive elements of a Cosserat rod: Jet curve and orientation, denoted
by ~r and { ~d1, ~d2, ~d3}.

~d3 = ~d1 × ~d2. The space-time domain is

Q̂ = {(σ, t) ∈ R2|σ ∈ Ω̂(t), t ∈ [0, T ]}

with the spatial domain Ω̂(t) = [σa(t), σb(t)], where each material cross-section (material
point) of the rod is identified with its coordinate σ, and t is the time. The interval borders
are σa, σb : [0, T ] → R with σa(t) < σb(t) for all t ∈ [0, T ]. We call σa(t) the left and σb(t)
the right side of the domain. An illustration is given in Figure 2.1.

All following quantities are assumed to be in Lagrangian parameterization and thus are
dependent on Q̂. Said parameterization is determined up to a constant that gives the
initial orientation and the material arrangement in the time-independent reference state.

2.1.1 Kinematics and dynamics

The kinematics of the rod are now introduced. The velocity ~v and the tangent field ~τ are
obtained by taking the derivatives of the curve ~r,

∂t~r = ~v, (2.1a)
∂σ~r = ~τ . (2.1b)

Assuming sufficient regularity, (2.1a) and (2.1b) together imply the compatibility condition
for ~r

∂t~τ = ∂σ~v. (2.1c)

The director triad is orthonormal, therefore there exist vector-valued functions for the
angular velocity ~ω and the generalized curvature ~κ. They satisfy

∂t ~dk = ~ω × ~dk, (2.2a)

∂σ ~dk = ~κ× ~dk, (k = 1, 2, 3). (2.2b)

14



2.1 Theory of rods

Assuming sufficient regularity, (2.2a) and (2.2b) together imply the compatibility condition

∂t~κ = ∂σ~ω + ~ω × ~κ. (2.2c)

The dynamics of the rod

∂tσM = 0, (2.3a)

∂t~p = ∂σ~n+ ~f , (2.3b)

∂t~h = ∂σ ~m+ ~τ × ~n+ ~l (2.3c)

consist of a conservation law for the mass line density σM and balance laws for the linear and
angular momentum line density, respectively given by ~p = σM~v and ~h = JM · ~ω. Notice
that σM only depends on the reference state and is constant in time in the Lagrangian
parameterization. A geometric model is required for the inertia tensor JM ∈ E3 ⊗ E3

of the cross-sections, as well as the specification of the stress-strain response through a
material law that involves the contact force ~n and couple ~m. External loads can be
modeled within ~f and ~l.
The full invariant formulation of a rod [3] consists of the kinematics together with the

dynamics, we call that the core. In general, for the kinematics any two of the equations of
(2.1) and also any two of (2.2) can be chosen, thus different formulations of the framework
are possible. We present the core with the original kinematics, an overview of the relevant
combinations is shown in Remark 2.2.

System 2.1 (Invariant core). The full, invariant framework with original kinematics
consists of (2.1a), (2.1b), (2.2a), (2.2b) and (2.3) and reads

∂t~r = ~v,

∂σ~r = ~τ ,

∂t ~dk = ~ω × ~dk,

∂σ ~dk = ~κ× ~dk, (k = 1, 2, 3)

∂tσM = 0,

∂t~p = ∂σ~n+ ~f , ~p = σM~v,

∂t~h = ∂σ ~m+ ~τ × ~n+ ~l, ~h = JM · ~ω.

Remark 2.2 (Addressing different formulations). In this work the formulation of the
kinematics will be important in later discussion. Therefore we introduce a short way to ad-
dress the model equations in different formulations. System 2.1 is stated with original
kinematics, if at some later point in this work we need it with a different formulation (the
dynamics remain untouched) we add a subscript to the system number:

Identifier Kinematics Dynamics Description
System 2.1M (2.1a), (2.1b), (2.2a), (2.2b) (2.3) Mixed (original)
System 2.1T (2.1a), (2.1c), (2.2a), (2.2c) (2.3) Time evolution-biased
System 2.1S (2.1b), (2.1c), (2.2b), (2.2c) (2.3) Space derivative-biased
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2 Modeling the behavior of jets and fibers

We used the M and T formulation already in [87] for viscous jets, the first investigation
for all three formulations was done in [15] for elastic fibers.

For the discussion of closure relations for the geometry and the material we represent the
invariant vector fields in terms of a chosen basis, namely an outer basis and the director
basis. Thus we introduce the necessary notation.

Remark 2.3 (Notation and calculus for director basis and outer basis). Every
invariant vector field ~x ∈ E3 can be decomposed in different bases. Using an outer or-
thonormal basis {~a1, ~a2, ~a3} and the director basis { ~d1, ~d2, ~d3}, the vector ~x reads

~x =
3∑

k=1

x̄k ~ak =
3∑

k=1

xk ~dk.

The corresponding component triples are x̄ = (x̄1, x̄2, x̄3) ∈ R3 and x = (x1, x2, x3) ∈ R3. To
switch between different bases, transformations can be applied. The time-dependent director
basis can be transformed into the outer basis with the help of the tensor-valued rotation R,

R = ~ai ⊗ ~di = Rij ~ai ⊗ ~aj ∈ E3 ⊗ E3

with associated orthogonal matrix R = (Rij) = (~di · ~aj) ∈ SO(3). For the coordinate triples,

x = R · x̄

holds. The component triples of the partial derivatives with respect to t and σ denoted in
director basis are

(R · ∂tx̄) = ∂tx + (ω − ωa)× x, (R · ∂σx̄) = ∂σx + κ× x

with the angular velocity ωa induced by the motion of the outer basis. It follows for the
time and space derivative of R that

∂tR = −(ω − ωa)× R ∂σR = −κ× R.

The cross-product a × A ∈ R3×3 between the vector a ∈ R3 and a matrix A ∈ R3×3 is
defined by (a ×A) · x = a × (A · x) for all x ∈ R3. If not otherwise mentioned, the outer
basis is chosen to be time-independent.

With the help of Remark 2.3 the full invariant system is denoted in director and outer
basis. The curve ~r and the director triad ~di, i = 1, 2, 3, are formulated in the outer basis,
the remaining vectors in director basis. The tangent ~τ and curvature ~κ represented in
director basis with τ and κ are indicators for the distortion of the rod. In particular we
have in material parameterization: τ1, τ2 as shear strains, τ3 as stretching strain and ‖τ‖
as the overall dilatation. Furthermore the measures for bending are κ1, κ2 and κ3 is the
torsion of the rod. Analogously n1, n2 measure the shear stress and n3 the tension, as well
as m1, m2 the bending torque and m3 the twisting torque.
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2.1 Theory of rods

System 2.4 (Core in director basis). The core of the rod model in director and outer
basis reads

∂t̄r = RT · v,
∂σ r̄ = RT · τ ,
∂tR = −ω × R,

∂σR = −κ× R,

∂tσM = 0,

∂tp = p× ω + ∂σn + κ× n + f, p = σMv,

∂th = h× ω + ∂σm + κ×m + τ × n + l, h = JM · ω.

The matrix JM ∈ R3 ⊗ R3 contains the components of the inertia tensor with respect to
the director basis.

Remark 2.5 (Compatibility conditions). The invariant compatibility conditions (2.1c)
and (2.2c) can be expressed in director basis by

∂tτ = ∂σv + κ× v + τ × ω,
∂tκ = ∂σω + κ× ω.

2.1.2 Geometric model

Now the geometric relations of the rod are specified, more precisely the model for JM . We
always assume homogeneous, circular cross-sections. Here, homogeneous means that the
mass density is constant within the cross-section. Then the inertia tensor JM is, contrary
to the mass line density σM , time-dependent because it is linked to the dynamic of the
director triad through

JM = (JM)ij ~di ⊗ ~dj , JM = (JM)ij =
σMσV
‖τ‖ Min, Min = L2. (2.4)

with the volume line density σV , that implies that the area of the cross-section is given by
A = σV / ‖τ‖ and the matrix Lp = diag(1, 1, p)/(4π) for p ∈ R. The matrix Min is specific
to a circular shape of the cross-sections. Other cross-section shapes of the rod give the same
structure, solely the matrix Min is changed. A remark on the choice of the director basis:
Note the link between JM and JM: the inertia matrix JM contains the components of JM
in director basis, thus using the director basis is a great simplification here. Now we need
an ansatz how the three-dimensional geometry changes with respect to the deformations
of the Cosserat rod. There are three possibilities considered, namely

JM = 0, (2.5a)
∂tJM = 0, (2.5b)

∂t (‖τ‖ JM) = 0. (2.5c)
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2 Modeling the behavior of jets and fibers

representing inertia free behavior, immutable cross-sectional area (compressible, standard
interpretation [3]) and immutable volume (shape-preserving, incompressible [6]), respec-
tively. For (2.5a) the actual shape of the cross-section has no influence, thus ~h = 0.
Equations (2.5b) and (2.5c) are fulfilled if the two equations

∂tA = 0, (2.6a)
∂tσV = 0. (2.6b)

are fulfilled, respectively. This can be seen by using (2.4) in (2.5) and applying (2.3a).

Remark 2.6 (Line densities). From the embedding in the 3d-continuum mechanics the
mass line density σM is the integral of the mass density over the cross-section of the jet
in the reference state and thus time-independent [3]. If the cross-sections with referential
area Ao have homogeneous mass distribution with referential density ρo and referential
elongation τ o, then the mass line density is σM = ρoAoτ o. It can be feasible to introduce ρ
as the density, then we have

• ρ = ρo/ ‖τ‖, σV = Ao ‖τ‖ for the compressible geometry model and

• ρ = ρo/τ o, σV = Aoτ o for the incompressible one.

2.1.3 Material laws

In the theory of rods a material law specifies the relationship between the contact force
~n and couple ~m, and the change of shape of the rod represented with ~τ and ~κ. Such
a relationship is also called a constitutive relation and it must distinguish the material
response of e.g. a rubber band to that of a stream of honey. The material laws have to
follow the Principle of Frame-Indifference [3] that states that the material response should
be unaffected by rigid body-motions and time translations. Invariance to time translations
is easily achieved by avoiding direct dependence on time. The invariance towards rigid-body
motion is ensured by formulating the material law in director basis as a relation between
the stresses n, m and the distortion measures τ , κ [3].We present material laws for elastic
and viscous behavior and point out one possibility to combine them both for viscoelastic
behavior. We do this to give a deeper insight into the diversity of the constitutive relations.
After this section we will focus on viscous behavior.

Elastic fiber There exist numerous elastic variants suitable for the Cosserat rod theory,
whereas the Bernoulli-Euler model is the one mainly used for fiber applications and also
in [107]. A modified Kirchhoff-constraint that enforces a unstretchable and shear free rod
is used

τ = τ oe3 (2.7a)

and furthermore equipped with a affine linear relation for the contact couple (cf. [3, 15])

κ = JE
−1 ·m + κo. (2.7b)
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2.1 Theory of rods

Here ei, i = 1, 2, 3, is the canonical basis tuple and JE a positive-definite tensor-valued
function. The reference distortion measures κo and τ o denote the stress-free state of the
jet, a popular choice is τ o = 1,κo ≡ 0. That means that the stress-free state of the
rod is unbent and arc-length parameterized. The material properties refer to the time-
independent reference state, thus

∂tJE = 0, ∂tτ
o = 0, ∂tκ

o = 0. (2.8)

With homogeneous, circular cross-sections we have

JE =
EA2

τ o
ME, ME = L1/(1+νP ) (2.9)

with the Poisson number νP that expresses the relation of Young’s modulus E and shear
modulus G, namely E/G = 2(1 + νP ). In the three-dimensional incompressible case the
relation G = E/3 holds as νP = 1/2. The material law is completed with a model for E,
we choose it as a constant as shown in Remark 2.7.

Remark 2.7 (Constant Young’s modulus). Assuming that Young’s modulus is con-
stant implies by using (2.8) with (2.9) inserted that

∂tA = 0 (2.10)

has to hold. Both the incompressible and compressible geometry model ensure that, for the
inertia-free geometry model we can use (2.10) as an additional requirement.

Viscous jet Arne et al. [6] model the viscous material with a constitutive law that corre-
sponds to the proposition of Ribe for an Eulerian framework [85, 86]. There, a generalized
Kirchhoff constraint

τ = τ3e3

is used. Note that the overall dilatation ‖τ‖ = τ3 now only represents the elongation.
The material model specifies the tension n3 and the torques m through a linear ordinary
differential equation (ODE) in terms of the distortion measures. The shear stresses n1 and
n2 become Lagrangian multipliers, overall we have

∂tτ3 = τ3A
−1
µ n3, τ1 = 0, τ2 = 0,

∂tκ = τ3Jµ
−1 ·m.

The material properties Jµ and Aµ refer to the time-independent reference state in terms
of powers of τ3

∂t
(
τ 2

3 Jµ
)

= 0, ∂t (τ3Aµ) = 0. (2.11)

With homogeneous, circular cross-sections it follows that

Aµ = 3µA,

Jµ = 3µA2Mµ, Mµ = L2/3,
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2 Modeling the behavior of jets and fibers

where the unknown dynamic (or shear) viscosity µ appears. The term 3µ is for Newtonian
fluids the elongational viscosity (Trouton’s law). It is understood as the resistance of a
fluid to any elongational flow ([108] and references within). The material law is completed
with a model for µ. If not otherwise mentioned we choose it as a constant as shown in
Remark 2.8.

Remark 2.8 (Constant viscosity). Assuming a constant viscosity (∂tµ = 0) implies by
using (2.11) that

∂tσV = 0 (2.12)

has to hold. The sole geometry model that is compatible with (2.12) is the incompressible
one, (2.5c).

Viscoelastic jet With the industrial application in mind that motivated this work, the
need for a viscoelastic model that unifies the elastic and viscous behavior comes to mind.
Just recently, Arne, Marheineke and Wegener introduced a incompressible viscoelastic
model for the Cosserat rod theory [10] by combining the elastic and viscous models. They
utilize a generalized Kirchhoff constraint and the viscous relation for the tension and a
Maxwell-like relaxation of the viscous constitutive law for the torques. The model contains
the incompressible viscous and elastic rod as asymptotic limits (cf. Appendix A.2) and is
given by

∂tτ3 = τ3A
−1
µ n3, τ1 = 0, τ2 = 0,

∂tκ = τ3Jµ
−1 ·m + JE

−1 · ∂tm.

Following [10], an incompressible geometry model is assumed (giving νP = 1/2 as the
Poisson number), which implies a scalar relaxation time θ = 3µ/E (time scale of the
viscoelastic response [23]) that is derived by calculating Jµ · JE

−1/τ3, i.e. we have

∂tκ = τ3Jµ
−1 · (m + θ∂tm).

The model is completed with further evolution equations for µ and θ. In particular, Arne,
Marheineke and Wegener [10] extend the rod model furthermore by considering an addi-
tional balance law for the temperature T (see the following Section 2.1.4) and prescribe a
temperature-dependent viscosity by applying an Arrhenius law, i.e.

µ(T ) = c1 exp (c2/T ), (2.13)

whereas the Young’s modulus is assumed constant. Note that c1 and c2 are dimensioned
material constants.

Remark 2.9. The temperature-dependent model (2.13) for the viscosity could also be used
in combination with our viscous material law, but intrinsically correct material behavior
requires the above viscoelastic material law. The viscous behavior in the limit µ → ∞
(T → 0) is a rigid body, but the materials considered in our industrial application transition
to elastic solids for decreasing temperature.
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2.2 Formulations for the viscous jet model

2.1.4 Energy balance

The previous introduction of the theory of rods only included mass, linear and angular
momentum balances. To account for industrial spinning processes that are significantly
affected by the cooling of the material we would need to consider temperature dependent
material modeling. For that purpose we follow [107] and introduce a energy balance law.
Consider the specific enthalpy as a function of the temperature T and its associated deriva-
tive with respect to the temperature, that is, the specific heat capacity cp of the rod. Using
the mass conservation law, the energy balance simplifies to

cp∂t(σMT ) = q.

We restrict warming and cooling effects to the thermal exchange with a surrounding air
stream of temperature Tair, which is described using a heat transfer function αair. The
thermal exchange happens across the circumference πd with diameter d = (2/

√
π)
√
A and

cross-sectional area A of the fiber. The source term for convective air cooling of the fiber
then becomes

q = −‖τ‖ πdαair(T − Tair).

The heat transfer function αair uses a heuristic based model that was initially formulated
for a vertical incident flow on a cylinder and then modified for arbitrary incident flow
direction on grounds of experimental data, see [8, 107] and references within. We introduce
the energy balance for completeness, it will solely be used in the appendix, more precisely
in Appendix A.3.

2.1.5 External loads

The model for the behavior of a fiber is driven by external loads f and l. As an example,
consider the gravitational force acting in a specified direction ēg and given by

fg = gσMR · ēg

with the gravitational constant g. Only considering the gravitational force would give
f = fg and l = 0 for the external loads. In our scenarios we will later consider the more
complicated aerodynamic forces for the melt-blowing process and fictitious rotational loads
for the rotational spinning process. Models for both are already available in literature,
e.g. [75, 5]. We will introduce them in non-dimensionalized form in the context of the
application that they are used for, namely in Section 6.1 (rotational spinning process) and
Section 6.2 (melt-blowing process).

2.2 Formulations for the viscous jet model

Up until now the theory was introduced in Lagrange parameterization with dimensioned
quantities. In this section we first introduce a type concept that facilitates the formulation
in any time-dependent parameterization, with the most prominent example of an Eulerian
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2 Modeling the behavior of jets and fibers

model core viscous
type-0-field r̄,R, v,ω,m,n Aµ, Jµ, µ
type-1-field τ ,κ, σM , σV , JM, f, l,p,h

Table 2.1: Type categorization of the quantities appearing in System 2.4 and the viscous
material law.

parameterization (arc-length at all times). The Eulerian parameterization is especially
important since its arc-length constraint allows to facilitate the model equations, which
might not be possible in a general parameterization. We furthermore discuss the non-
dimensionalization of the model and the parameterization of the rotational group as well as
our approach to formulate a set of kinematics that takes the underlying DAE characteristics
of the model into account. We conclude this section with an overview of the finalized viscous
jet model.

2.2.1 General parameterization

Following [107], a type concept for the unknowns is introduced that facilitates the re-
formulation of the model equations in any time-dependent parameterization. A suitable
transformation to a general (time-dependent) parameterization is given with the bijective
function

Ψ(·, t) : Ω(t)→ Ω̂(t)

for t ∈ [0, T ]. The spatial domain Ω̂(t) = [σa(t), σb(t)] represents the material (or referen-
tial) parameterization and Ω(t) = [sa(t), sb(t)] represents the general parameterization. We
call σa, sa the left side, and σb, sb the right side of the domain. The inverse transformation
is denoted with Φ(·, t) := Ψ−1(·, t) for fixed t. It holds that Ψ(Φ(σ, t), t) = σ. We always
assume sufficient regularity of Ψ, in particular for the following Ψ has to be continuously
differentiable in both variables. The unknowns are categorized in type-n-fields (n ∈ Z)
and will be transformed according to their type with the help of

~f (s, t) = χ(s, t)n~̂f(Ψ(s, t), t), χ(s, t) := ∂sΨ(s, t) (2.14)

where ~̂f is an unknown in in Lagrange parameterization and ~f the respective unknown in
general parameterization with its general space-time domain given by

Q = {(s, t) ∈ R2|s ∈ Ω(t), t ∈ [0, T ]}. (2.15)

To distinguish between the unknowns, the Lagrangian ones are from now on denoted with
a hat ˆ (in contrast to the beginning of this chapter) and all unknowns in the general
parameterization receive no special mark. The types of the unknowns of the viscous jet
model are listed in Table 2.1. The type categorization allows that the fields keep their
physical behavior and relations (point-related observables, densities, derivatives, etc.), fur-
thermore the equations will be mostly invariant with respect to re-parameterization. Any
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time-dependent transformation that is applied to the model equations will solely introduce
additional convective terms using the parameter speed u, which is defined as

u(Φ(σ, t), t) := ∂tΦ(σ, t) = −∂tΨ(s, t)

χ(s, t)

∣∣∣
s=Φ(σ,t)

. (2.16)

It represents the rate of change of s = Φ(σ, t) that is identified with the material point σ.
Moreover, with the chain rule it follows for type-n-fields:

∂t~̂f(σ, t) =
1

χ(s, t)n

[
∂t ~f(s, t) + u(s, t)∂s ~f(s, t) + n ~f(s, t)∂su(s, t)

] ∣∣∣
s=Φ(σ,t)

, (2.17a)

∂σ ~̂f(σ, t) =
1

χ(s, t)n+1

(
∂s ~f(s, t)− n∂sχ(s, t)

χ(s, t)
~f(s, t)

) ∣∣∣
s=Φ(σ,t)

. (2.17b)

The parameter speed u is a new unknown in the system and is yet to be determined. The
simple case u ≡ 0 yields a time-independent re-parameterization. If additionally χ ≡ 1
is chosen we obtain the original Lagrangian parameterization. Another very well known
special case is the Eulerian parameterization, which is an arc-length parameterization. It
holds that ‖~τ‖ ≡ 1. This relation is added as a constraint to the model equation making
u the corresponding Lagrangian parameter, and since the dilatation measure is treated as
a type-1-field we have ∥∥∥~̂τ∥∥∥ ≡ 1

χ
.

In this work we aim for a general parameterization that is neither strictly Lagrangian nor
Eulerian – both cases have already been studied e.g. in [7, 5]. Here, the identification
between material points and coordinates s ∈ Ω(t) will be arbitrarily specified, similar
approaches are e.g. studied in [52, 37], they call it arbitrary Lagrangian-Eulerian (ALE)
description. In particular they started with the idea to have a parameterization that is
Lagrangian in some parts and Eulerian in other parts of the domain. We consider in this
work to determine the parameterization by an adaptive mesh refinement strategy (AMR),
in particular by a r-refinement. We will get to this in Section 3.1. Nevertheless we want
to mention already one important property in the moving mesh context that our model
inherently fulfills due to the type definition.

Remark 2.10 (Geometric conservation law). Take the spatial derivative of (2.16) to
obtain

∂tχ+ ∂s(uχ) = 0. (2.18)

Equation (2.18) is known as the geometric conservation law (GCL) [100] and governs vol-
ume conservation under an arbitrary mapping Ψ. Assume now an arbitrary field k̂ that
follows a conservation law in Lagrangian parameterization, for simplicity of the demonstra-
tion we choose ∂tk̂ = 0. If k is chosen to be type-0, we obtain with k(s, t) = k̂(Ψ(s, t), t)
the non-conservative equation

∂tk + u∂sk = 0. (2.19)
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2 Modeling the behavior of jets and fibers

Combining (2.18) and (2.19) yields the conservative form, i.e.

∂t(χk) + ∂s(uχk) = 0. (2.20)

If k is chosen to be type-1, i.e., k(s, t) = χ(s, t)k̂(Ψ(s, t), t), the conservative form is already
implicitly given, its equation then becomes

∂tk + ∂s(uk) = 0.

For numerical conservation the conservative form is inevitable, which in turn means that
the natural choice would be type-1. The choice of the conservative or non-conservative form
can have a significant effect on the accuracy and stability of a numerical scheme. Guillard
and Farhat [45] found that satisfying the discrete GCL is a sufficient condition for ensuring
that the underlying (proper) numerical method is at least first-order time-accurate. In that
sense the GCL ensures that a constant solution is reproduced, independent of the magnitude
of u and the distortion of the mesh. Our viscous jet model inherently fulfills the GCL by its
type definitions of the unknowns. In general this does not have to be the case, e.g. the model
equations could be formulated in non-conservative form (cf. (2.19)). However the general
recommendation is to formulate conservation laws in conservative form (cf. [100, 51, 22]
and more recently [59, 110]), especially in the context of moving mesh methods that we
discuss in Chapter 3, e.g. [27, 13, 49]).

Transforming the domain The transformation Φ(·, t) is bijective for all t ∈ [0, T ] and
we want to identify the left and right side of Ω̂(t) and Ω(t) with each other, thus we assume

Φ(σa(t), t) = sa(t), (2.21a)
Φ(σb(t), t) = sb(t). (2.21b)

This means that ∂σΦ > 0. Applying a time derivative to (2.21) yields

d

dt
sa(t) = ∂tΦ(σa(t), t) + ∂σΦ(σ, t)|σ=σa(t)

d

dt
σa(t), (2.22a)

d

dt
sb(t) = ∂tΦ(σb(t), t) + ∂σΦ(σ, t)|σ=σb(t)

d

dt
σb(t). (2.22b)

We investigate u at the boundaries

u(sa(t), t)
(2.21a)

= u(Φ(σa(t), t), t)
(2.16)
= ∂tΦ(σa(t), t)

(2.22a)
=

d

dt
sa(t)− ∂σΦ(σ, t)|σ=σa(t)

d

dt
σa(t),

(2.23a)

u(sb(t), t)
(2.21b)

= u(Φ(σb(t), t), t)
(2.16)
= ∂tΦ(σb(t), t)

(2.22b)
=

d

dt
sb(t)− ∂σΦ(σ, t)|σ=σb(t)

d

dt
σb(t).

(2.23b)

The choice of the actual domains is linked to the chosen physical set-up and yields different
conditions for u. They will be presented when the set-ups are introduced in Section 2.3.
Nevertheless we show now how we represent the space-time domain in general for our
application.
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2.2 Formulations for the viscous jet model

Notation 2.11 (Time-dependent parameter domains). In this work we denote space-
time domains with time-dependent spatial domains as

Ω̂(t) = [−l(t),−r(t)] and Ω(t) = [−L(t),−R(t)]

and assume without loss of generality r(0) = R(0) = 0. We call them time-dependent
domains (material and general, respectively), which refers to the interval boundaries of the
spatial domains Ω̂ and Ω being time-dependent. The initial parameter interval lengths are
denoted with |Ω̂(0)| = l(0) = l0 ≥ 0 and |Ω(0)| = L(0) = L0 ≥ 0. The sign change of the
boundary functions will give a physical interpretation suitable to our application later in
this work. For a better readability we address l,L as the left side and r,R as the right side
of the domain. We repeat (2.23) and use the relation between the derivatives of a function
and its inverse ∂σΦ(σ, t)|σ=Ψ(s,t) = 1/∂sΨ(s, t) = 1/χ(s, t)

u(−L(t), t) = − d

dt
L(t) +

1

χ(−L(t), t)

d

dt
l(t),

u(−R(t), t) = − d

dt
R(t) +

1

χ(−R(t), t)

d

dt
r(t). (2.24)

Looking at Notation 2.11, the time-independent domains are a special case.

Notation 2.12 (Time-independent parameter domains). Any space-time domains
with |Ω̂| = l0 > 0 and |Ω| = L0 > 0 for all times can be denoted without loss of gen-
erality as

Ω̂ = [−l0, 0] and Ω = [−L0, 0].

We call them time-independent domains (material and general, respectively), which refers
to the interval boundaries of the spatial domains Ω̂ and Ω being time-independent.

Before we get to the transformation of the model equations, we introduce the creation
time. It will be helpful for later explanation and is a function that assigns every (s, t) ∈ Q
the point in time from which on it was continuously within Q.

Definition 2.13 (Creation time). Let a function t? : Q → R+
0 be given by

t?(s, t) = min{t′ | (s, t′′) ∈ Q for all t′′ ∈ [t′, t]}. (2.25)

It assigns every tuple (s, t) the time of entry into the domain and we call it creation time.

The abstract definition of the creation time seems complicated, yet it does not restrict the
shape of the space-time domain in any way. As an example we illustrate a domain that
grows and shrinks on one side, cf. Figure 2.2. In it the exemplary space-time tuples P1

and P2 have the same spatial coordinate, but different creation times.
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2 Modeling the behavior of jets and fibers

sa(T ) sa(0) sb(0) sb(T )

0
t?(P1)

t?(P2)

T

P1

P2

s

t

Q
(s, t?(s, t)) for all (s, t) ∈ Q

Figure 2.2: Illustration of the creation time t?.

Transforming the model equations The transformation introduced in (2.14) is now ap-
plied to the jet model. Since we are solely using viscous material behavior in the remainder
of this work, we give a summary for other material behavior in Appendix A.1.

System 2.14 (Incompressible viscous jet in director basis). The behavior of a vis-
cous jet with homogeneous, circular cross-sections, incompressible geometry and general-
ized Kirchhoff constraint, expressed in outer and director basis and put in general param-
eterization, is given by

∂t̄r = RT · (v − uτ ) ,

∂sr̄ = RT · τ ,
∂tR = −(ω − uκ)× R,

∂sR = −κ× R,

∂tσM + ∂s(uσM) = 0, ∂tσV + ∂s(uσV ) = 0,

∂tp + ∂s(up) = p× ω + ∂sn + κ× n + f, p = σMv,

∂th + ∂s(uh) = h× ω + ∂sm + κ×m + τ × n + l, h = JM · ω,

∂tτ3 + ∂s(uτ3) =
1

3µ

τ 2
3

σV
n3, τ1 = 0, τ2 = 0,

∂tκ+ ∂s(uκ) =
1

3µ

τ 3
3

σV 2
M−1

µ ·m,

∂tµ+ u∂sµ = 0

with JM = (σMσV /τ3)Min. The parameter speed u is still a degree of freedom in the
system.

Remark 2.15 (Compatibility conditions). The invariant compatibility conditions are
expressed in director basis and transformed to general parameterization

∂tτ + ∂s(uτ ) = ∂sv + κ× v + τ × ω, (2.26a)
∂tκ+ ∂s(uκ) = ∂sω + κ× ω. (2.26b)
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2.2 Formulations for the viscous jet model

2.2.2 Non-dimensionalization

We want to remove the physical units from the model equations and reduce the number
of parameters as well as give the possibility to consider certain quantities in the system
with different scales. Any quantity z of the model can be decomposed to z = žz0 with ž as
the dimensionless quantity and z0 as reference value. The model core has various physical
properties involving three physical SI-units, namely length, time and weight. We introduce
three typical constant values for scaling (marked with the subscript ?) representing the
typical length (r? [m]), the typical velocity (v? [m/s]) and typical weight (σM? [kg/m]).
The introduction of an additional typical length for the cross-section diameter (using σV ?
[m2]) creates the dimensionless parameter

ε =

√
σV ?
r?

,

also called slenderness ratio. All quantities were made dimensionless by scaling with the
following reference values

r0 = s0 = r?, v0 = v?, σM 0 = σM?, σV 0 = σV ?,

t0 = r?/v?, κ0 = 1/r?, ω0 = v?/r?, n0 = σM?v
2
?,

m0 = σM?v
2
?r?, u0 = v?, f0 = σM?v

2
?/r?, l0 = σM?v

2
?ε

2. (2.27)

The viscous material law is scaled with an additional reference value by using µ0 = µ?
[kg/(m s)]. This leads to the dimensionless Reynolds number (ratio between inertia and
viscosity)

Re =
σM?v?r?
µ?σV ?

.

System 2.16 (Dimensionless incompressible viscous jet in director basis). -
System 2.14 is now stated in dimensionless form using the above reference values. To
simplify the notation we remove the ·̌ mark of dimensionless unknowns.

∂t̄r = RT · (v − uτ ) ,

∂sr̄ = RT · τ ,
∂tR = −(ω − uκ)× R,

∂sR = −κ× R,

∂tσM + ∂s(uσM) = 0, ∂tσV + ∂s(uσV ) = 0,

∂tp + ∂s(up) = p× ω + ∂sn + κ× n + f, p = σMv,

∂th + ∂s(uh) = h× ω +
1

ε2
(∂sm + κ×m + τ × n) + l h = JM · ω,

∂tτ3 + ∂s(uτ3) =
Re
3µ

τ 2
3

σV
n3, τ1 = 0, τ2 = 0,

∂tκ+ ∂s(uκ) =
Re
ε23µ

τ 3
3

σV
M−1

µ ·m,

∂tµ+ u∂sµ = 0

with JM = (σMσV /τ3)Min. The parameter speed u is a degree of freedom in the system.
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2 Modeling the behavior of jets and fibers

Remark 2.17 (Dimensionless numbers). There exist many possibilities in the choice
of the typical values, in particular the choice of σM? and σV ? can have an impact on the
dimensionless numbers. Assume some given physical parameters of the jet: cross-section
diameter D, length L and velocity U as well as density ρ and viscosity µ. We want to
choose the typical values such that the Reynolds number becomes

Re =
σM?v?r?
µ?σV ?

!
=
ρUL

µ
,

thus r? = L, v? = U , µ? = µ and σM?, σV ? have to be chosen with respect to the same typical
area. We use A0 = (π/4)D2, i.e. σM = ρA0 and σV ? = A0. This has a consequence on the
slenderness parameter ε, it is not directly the ratio between the cross-section diameter and
the typical length, unlike in [5]. The slenderness ratio deviates with a factor of

√
π/2 ≈

0.8862:

ε =

√
σV ?
r?

=

√
π

2

D

L
.

Remark 2.18 (Constant viscosity). Assume that the dynamic viscosity is a constant
in the initial values (meaning it is constant in space). Then its evolution equation ensures
that it is also constant in time and we can omit its equation and simply use it as a global
constant. Furthermore the typical value µ? can be chosen such that the dimensionless
viscosity is µ = 1.

2.2.3 Parameterization of the rotational group

The rotation R introduced in Remark 2.3 allows the transformation between the outer and
director basis. We depict a rotation in R3 with the help of unit quaternions, other choices
would be Euler angles or rotation vectors. We use the calculus for quaternions that is
presented in detail in the same context as we have here in [4], also in a summarized way
in [5].

A quaternion is an element in R4 and defined as q = (q0, qv) = (q0, q1, q2, q3) with scalar
part q0 and vector part qv. The norm is ‖q‖ = q2

0 + q2
1 + q2

2 + q2
3. For a unit quaternion it

holds that ‖q‖ = 1 and the rotation can then be depicted as

R(q) =

q2
1 − q2

2 − q2
3 + q2

0 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) −q2

1 + q2
2 − q2

3 + q2
0 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) −q2
1 − q2

2 + q2
3 + q2

0

 .

The time and space derivative of R

∂tR(q) = −(ω − uκ)× R(q), (2.28a)
∂sR(q) = −κ× R(q), (2.28b)

can be equivalently expressed as evolution equations (time and space) of a unit quaternion

∂tq = A(ω − uκ) · q, (2.29a)
∂sq = A(κ) · q, (2.29b)
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2.2 Formulations for the viscous jet model

with the skew-symmetric matrix A defined as

A(z) =
1

2


0 z1 z2 z3

−z1 0 z3 −z2

−z2 −z3 0 z1

−z3 z2 −z1 0


for all z ∈ R3. The equivalence only holds if q is a unit quaternion in its initial values
for the time evolution and in its boundary values for the space evolution. The ODEs in
(2.29) then ensure analytically that q stays a unit quaternion since A is skew-symmetric
(e.g. [34]). Numerically this can be ensured with an isometric method, a non-isometric
method does not maintain the norm. One way to overcome this issue is to enforce the unit
quaternion by adding the constraint

‖q‖ = 1 (2.30a)

to the system with appropriate penalty quantities λt and λs in (2.29)

∂tq = A(ω − uκ) · q + λtq, (2.30b)
∂sq = A(κ) · q + λsq, (2.30c)

with reference values λt,0 = v?/r?, λs,0 = 1/r? for the dimensionless system. This also
addresses another issue: The system (2.29) for the kinematics is overdetermined (eight
equations for seven unknowns). It is still consistent because the unit quaternion constraint
is inherently enforced by both the temporal and spatial evolution of the quaternion, thus
creating two dependent equations. The adjusted equations (2.30) are balanced, there are
nine equations and nine unknowns (q, κ, λt, λs).

Lemma 2.19 (Penalty quantities vanish). Let some κ,ω, u and initial and boundary
conditions for q be given. If the initial and boundary conditions are unit quaternions, then
(2.29) and (2.30) are equivalent.

Proof. Constraint (2.30a) is rewritten as q · q = 1 and its total time and space derivative
imply

q · ∂tq = 0, q · ∂sq = 0.

Then we insert (2.30b) and (2.30c) to obtain

q · (A(ω − uκ) · q + λtq) = 0, q · (A(κ) · q + λsq) = 0. (2.31)

For all q ∈ R4 and all z ∈ R3 it holds that q · A(z) · q = 0 and thus (2.31) yields
λt ≡ λs ≡ 0.

For the remaining part of this work we always use quaternions to parameterize the rotation
matrix R and use equations (2.30) for the kinematics of a jet in formulation M, T and S
(cf. Remark 2.2). The compatibility conditions are not touched by this adjustment. We
state the system for the sake of proper referencing.
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2 Modeling the behavior of jets and fibers

System 2.20. System 2.16 is given and its rotation group is parameterized with unit
quaternions, more precisely both evolution equations for the rotation matrix are replaced
with

∂tq = A(ω − uκ) · q + λtq,

∂sq = A(κ) · q + λsq,

q · q = 1.

2.2.4 Index analysis and a stabilized reduced index formulation

The jet model (System 2.20) is a non-linear PDAE system and becomes a system of DAEs
after a semi-discretization (in time or space). When thinking about an appropriate numer-
ical scheme we have to take the so-called index of the DAEs into account. It reflects the
grade of how disturbances affect the solution and has been taken as one of the major cri-
teria to classify DAEs. In general, a direct discretization of higher index DAEs may suffer
from significant numerical perturbations, e.g. instabilities and convergence order reductions
[46, 47]. Various definitions of the index exist in literature, we focus on the differentiation
index introduced by Gear in [42], which characterizes DAEs by converting it to ODEs
(basically counting the total number of differentiations needed to obtain an ODE). For a
PDAE – like the viscous jet model – we can think of two different indices: The index in
time after a semi-discretization in space, and the index in space after a semi-discretization
in time.

Remark 2.21. We want to mention another index definition: The perturbation index in-
troduced by Hairer, Lubich and Roche [46], which measures the sensitivity of the solution
with respect to perturbations of the given problem, in particular in dependence of deriva-
tives of the perturbations. It is important for convergence analysis and a much stronger
indicator for the possibly occuring problems, but in general quite difficult to determine. The
differentiation index is equal or less than the perturbation index.

The index concept was introduced as a rule of thumb for the expected numerical diffi-
culties of a DAE, thus it is beneficial to not only choose a proper discretization scheme
but to analyze the DAE in terms of possible equivalent transformations, often called stabi-
lization or regularization techniques. A classical index-reduction is obtained by replacing
the constraint with its derivative, also called the hidden constraint. The downside is that
this introduces the drift-off effect which distorts the solution over time. One approach to
stabilize the system was introduced by Gear, Gupta and Leimkuhler in [43]. It was origi-
nally introduced for mechanical systems with algebraic constraints. If the solution leaves
the constraint manifold due to some arbitrary reason, a projection correction is added to
the time evolution equations that pulls the solution back to the constraint manifold. In
that process uniqueness of the solution has to be ensured which is generally possible due to
specific assumptions and the construction of the so-called Gear-Gupta-Leimkuhler (GGL)
correction, a more detailed description is given in Appendix B.1. The GGL idea can
be transferred to PDAE systems by introducing discrete operators representing a semi-
discretization. If a temporal correction is sought, we replace the spatial derivatives with
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2.2 Formulations for the viscous jet model

temporal index spatial index
M T S
3 2 2

M T S
1 1 1

Table 2.2: Overview of the temporal and spatial index of different formulations (cf. Re-
mark 2.2) of the jet model (cf. System 2.20).

said operator obtaining a DAE. After applying the stabilization we re-interpret the discrete
operator analytically to obtain the stabilized PDAE model.

The jet model formulated with its original kinematics yields index three in time and
one in space (an overview of the indices of the different kinematics formulation introduced
in Remark 2.2 is given in Table 2.2 for completeness). Theoretical results for general
index three system can only be given with higher order integration schemes [46]. If the
index 3 problem is linear in its algebraic variables – which is the case for the jet model
– then linear convergence order for the implicit Euler with constant stepsize is achieved
[71, 46]. For reasons that will be clearer later we seek to reduce the index in time to two
and use stabilization techniques to avoid drift-off effects. Inspired by the index-reduction
and stabilization techniques of [43] we propose a general projection correction for the
kinematics.

Formulation 2.22 (Stabilized kinematics). The index-reduced, stabilized formulation
of the kinematics consists of the original kinematics and the linearly dependent compatibil-
ity condition and the unit quaternion constraint. To avoid an overdetermined system we
incorporate projection corrections by introducing respective type-0 Lagrange multipliers
λs ∈ R, λ̄1 ∈ R3 and λ2 ∈ R4. Whereas λs is required for the spatial evolution of the
quaternion, λ̄1 and λ2 are used in the functionals Λ̄r,1(·), Λr,2(·), Λq,2(·) ∈ R3, Λq,1(·) ∈ R4

in the kinematics. They can also be dependent on other unknowns of the solution and will
be filled subsequently. The sole assumption at this point is that Λ̄r,1, Λr,2 vanish when
λ̄1 vanishes and Λq,1, Λq,2 vanish when λ2 vanishes. Overall the kinematics in material
parameterization consist of the unknowns r̄, τ , q, κ, λs, λ̄1, λ2 – together 21 degrees of
freedom – and 21 equations

∂t̄r = R(q)T · v + Λ̄r,1, ∂tq = A(ω) · q + Λq,1, (2.32a)
0 = ∂sr̄ − R(q)T · τ , 0 = ∂sq −A(κ) · q − λsq, (2.32b)

∂tτ = ∂sv + κ× v + τ × ω + Λr,2, ∂tκ = ∂sω + κ× ω + Λq,2, (2.32c)
0 = q · q − 1. (2.32d)

Remark 2.23 (Minimal change for an index 2 system). Considering only the tem-
poral index of the system it would be sufficient to introduce the compatibility condition for
the kinematics of the jet curve, i.e. the left column in (2.32), to obtain an index 2 system.
The introduction of both compatibility conditions further reduce the index of some variables,
yet the whole system remains index 2. It turns out that the presence of both compatibility
conditions is beneficial for our numerics, see Remark 2.24.
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2 Modeling the behavior of jets and fibers

Remark 2.24 (Necessity of both compatibility conditions). One could argue that,
to avoid drift-off effects, the original high-index formulation should be used. Like expected,
simulations with our discrete approach and time-independent spatial domains have linear
convergence, but for time-dependent simulations this yields highly unstable behavior of the
inner forces of the jet. The investigation of the source of this effect is quite cumbersome,
yet one symptom could be found: The discrete compatibility conditions are violated (very
marginally though) in the proximity of the time-dependent side of the domain, which cor-
rupts the DAE consistency of the initial values. Our proposed kinematics formulation
includes the original spatial constraints and the compatibility conditions and can overcome
said instability while avoiding the drift-off.

The correction terms in Formulation 2.22 are yet to be defined. We want to show for all
possible correction terms that a solution with the original kinematics is equivalent to a
solution with the stabilized kinematics. Assume that kinematics in Formulation 2.22 are
given. We show now an inherent relation that directly results from them. The Lagrangian
multiplier λs can be shown to be zero with the help of the unit quaternion constraint
analogously to Lemma 2.19. The spatial constraints (2.32b) are then stated with the help
of the functionals

gr (̄r, τ , q) := ∂sr̄ − R(q)T · τ = 0,

gq(q,ω) := ∂sq −A(κ) · q = 0

and their Jacobian

Dgr = (Dr̄gr, Dτgr, Dqgr) = (∂s,−R(q)T ,−Dq(R(q)T · τ )),

Dgq = (Dqgq, Dκgq) = (∂s −A(κ),−E(q))

with a matrix E such that A(κ) · q = E(q) · κ holds (such a matrix exists because A is
linear). We take the total time derivative of gr and gq and insert (2.32a)-(2.32c)

0
!

=
d

dt
gr (̄r, τ , q) = Dgr ·

∂t̄r
∂tτ
∂tq

 = Dgr ·

 R(q)T · v
∂sv + κ× v + τ × ω

∂tq


︸ ︷︷ ︸

=:A=0, see Remark 2.25

+Dgr ·

Λ̄r,1

Λr,2

0


= ∂sΛ̄r,1 − R(q)T · Λr,2, (2.33a)

0
!

=
d

dt
gq(q,ω) = Dgq ·

(
∂tq
∂tκ

)
= Dgq ·

(
A(ω) · q

∂sω + κ× ω

)
︸ ︷︷ ︸

=:B=0, see Remark 2.25

+Dgq ·
(

Λq,1

Λq,2

)

= ∂sΛq,1 −A(κ) ·Λq,1 −A(Λq,2) · q. (2.33b)

Remark 2.25. The term A in (2.33a) vanishes because it is merely recreating the compat-
ibility conditions, more precisely after the expansion of A we use Remark 2.3 and reverse
the chain and product rule for the time derivative of τ̄ = R(q)T · τ , i.e.

A =∂s
(
R(q)T · v

)
− R(q)T · (∂sv + κ× v + τ × ω)−Dq(R(q)T · τ ) · ∂tq

=∂sv̄ − R(q)T · (∂sv + κ× v)−
(
R(q)T · (τ × ω) + ∂t(R(q)T ) · τ

)
=∂tτ̄ − R(q)T · ∂tτ − ∂t(R(q)T ) · τ = 0.
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The term B in (2.33b) also vanishes due to the special structure of A, namely 2A(x) ·
A(y) = A(y × x) for all y, x ∈ R3. The expansion of B gives

B = ∂s (A(ω) · q)−A(κ) ·A(ω) · q − E(q) · (∂sω + κ× ω)

= A(∂sω) · q + A(κ× ω) · q − E(q) · (∂sω + κ× ω) = 0.

Both equations (2.33) are inherently enforced if the stabilized formulation 2.22 of the
kinematics is used. We want to use that to show that the correction terms themselves
vanish and formulate beforehand a general lemma for the projection correction.

Lemma 2.26 (Equivalence of the stabilized kinematics). Assume at some time t a
solution of System 2.20M (A), and a solution of System 2.20P (B) with proper inital and
boundary conditions are given. The subscript P – for projection – denotes System 2.20 with
the stabilized formulation 2.22 for the kinematics. Assume furthermore that the correction
terms and inital and boundary conditions are chosen such that for any t the inherently
enforced equations (2.33) have the unique solution that the multipliers λ̄1 and λ2 vanish.
Then the solution of (A) is equivalent to the solution of (B).

Proof. We restrict the scope to the variables r̄, τ , q,κ and λs, λ̄1,λ2 and their equations,
the remaining variables of the solution are untouched. At first, consider a solution of (A).
We expand the solution by adding the corresponding multipliers with value zero. Due
to the assumption in Formulation 2.22 the correction terms are also zero. Then we also
have a solution of (B) since the additional equations (2.32c) reduce to the compatibility
conditions. Second, assume a solution of (B). The system inherently requires (2.33) which
forces the multipliers to vanish due to the assumption. In consequence of Formulation 2.22
the correction terms vanish as well and (2.32c) reduce to the compatibility conditions.
Then the solution of (B) is a solution of (A) with an added linear dependent equation.

After this preparatory work we now get to the actual choice of the correction terms. The
original GGL correction transferred to our PDAE model (System 2.20M) leads to correction
terms only for the temporal evolution of the kinematics, i.e. Λ̄r,2 and Λq,2 vanish (the GGL
correction terms are presented in Appendix B.1). We extend the projection ideas of the
GGL correction and propose a correction term for the compatibility conditions as well.
They are formulated in the material parameterization, but to keep the correction terms
transformation invariant we introduce a fictitious type-1 scalar k that fulfills k ≡ 1.

Formulation 2.27 (Schiessl-Arne-Marheineke-Wegener (SAMW) correction). .
Assume Formulation 2.22 for the kinematics. The correction terms are given by

Λ̄
SAMW
r,1 :=

1

k
∂sλ̄τ , ΛSAMW

q,1 :=
1

k
A(∂sλκ) · q + λtq,

ΛSAMW
r,2 := CkR(q) · λ̄τ , ΛSAMW

q,2 := Ckλκ

with λ̄τ := λ̄1, (λκ, λt) := λ2 as the multipliers and some constant C > 0.

The correction terms are not obvious at first, but they have significant advantages on an
analytical and numerical level compared to the GGL correction, or in that matter any
correction that has Λr,2 ≡ 0, Λq,2 ≡ 0. This is highlighted in the following Remark 2.28
and the later Remark 4.13.
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2 Modeling the behavior of jets and fibers

Remark 2.28 (Linear dependent equation in GGL correction). Assume that the
GGL correction, or in that matter, any correction that uses Λr,2 ≡ 0, Λq,2 ≡ 0, is used for
the stabilized kinematics 2.22. Observe that the constraints (2.32b) have the same dimen-
sion as the temporal evolution equations (2.32a) that contain the correction term. Conse-
quently the additional multipliers have the same dimension as the corrected equations, thus
said equations only determine the multipliers and are linearly dependent in the system.
In consequence the corrected equations as well as the multipliers can be removed from the
system giving the S formulation. Unfortunately, the S formulation is not applicable to our
discrete scheme due to the staggered grid, cf. Remark 4.12.

As the last task it remains to show that the assumptions of Lemma 2.26 hold true.

Lemma 2.29 (Equivalence of the SAMW correction). Assume a solution of System
2.20 with properly given inital and boundary conditions and stabilized kinematics with the
correction terms of Formulation 2.27. Furthermore we assume that for all t ∈ [0, T ] and
s′, s′′ ∈ {−L(t),−R(t)} we have

λ̄τ (s
′, t) = 0, ∂sλ̄τ (s

′′, t) = 0, (2.34a)

for λτ and

λκ(s
′, t) = 0, ∂sλκ(s

′′, t) = 0, (2.34b)

for λκ. Then the assumptions of Lemma 2.26 are fulfilled.

Proof. First we show analogously to Lemma 2.19 that λt ≡ 0 holds. Then the equations
(2.33) become

0 = ∂s

(
1

k
∂sλ̄τ

)
− Ckλ̄τ , (2.35a)

0 = A
(
d

ds

(
1

k
∂sλκ

))
· q + A

(
1

k
∂sλκ

)
·A(κ) · q

−A(κ) ·A
(

1

k
∂sλκ

)
· q −A(Ckλκ) · q

= A
(

1

k
∂ssλκ −

∂sk

k2
∂sλκ + κ× 1

k
∂sλκ − Ckλκ

)
· q. (2.35b)

Since q is a unit quaternion, (2.35b) is only fulfilled if

0 = ∂ssλκ −
∂sk

k
∂sλκ + κ× ∂sλκ − Ck2λκ

= ∂ssλκ +

(
K− ∂sk

k
1

)
· ∂sλκ − Ck2λκ with K =

 0 −κ3 κ2

κ3 0 −κ1

−κ2 κ1 0

 , (2.36)

which is a system of homogeneous, differential equations of second order with variable
coefficients and compact domain for every t. We reformulate (2.36) together with (2.34b) as
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2.2 Formulations for the viscous jet model

a first-order system and initial value problem. This is possible, since the initial assumption
is that a solution exists and is given and either we already have s′ = s′′, or we rewrite
the system with a substitution that puts the Dirichlet condition on the same side as the
Neumann condition, i.e. we introduce λ′κ with λ′κ(s, t) = λk(s, t) − λκ(s′′, t), where s′′
is the position of the Neumann condition. Assuming sufficient regularity, we can apply
common uniqueness results (we refer e.g. to [50]) and derive that λκ ≡ 0 must be the
unique solution. Equation (2.35a) is expanded to

0 = ∂ssλ̄τ −
∂sk

k
∂sλ̄τ − Ck2λ̄τ .

Analogously to λκ we can show with (2.34a) that the unique solution is λ̄τ ≡ 0. The
assumptions of Lemma 2.26 are fulfilled.

We only introduce one set of correction terms, yet there might be other possible choices for
the them that have numerical advantages, one aspect that motivated the SAMW correction
was maintaining the spatial constraint. In this work we always adress the SAMW correc-
tion if we talk about stabilized kinematics. Furthermore there exist other fundamentally
different approaches how a stabilized, index-reduced formulation of the kinematics can be
obtained. We want to mention selected ones in the following remark.

Remark 2.30 (Alternative methods for a stabilized formulation). .
In literature there exist different approaches for the stabilization of higher index DAE sys-
tems. We want to mention some of them.

• Baumgarte stabilization [14]: In the Baumgarte stabilization for index 3 system, the
constraint and both hidden constraints are linearly combined to an parametric and
asymptotically stable differential equation. The choice in the parameter influence the
quality of the solution and has to be fitted to the model.

• Regularization involving the concepts around the strangeness index [69], for example,
the projected-strangeness-free form for quasi-linear DAEs [95]: A strangeness-free
and index-reduced DAE is obtained through algebraic transformations which are suit-
able for the numerical integration with stiffly accurate methods.

• Projected implicit Runge-Kutta method (PIRK): Stiffly-accurate Runge-Kutta meth-
ods have convergence properties for DAEs, nevertheless they are not isometric which
e.g. enforces special handling of the unit quaternion in the jet model (cf. Sec-
tion 2.2.3). Symmetric discretizations that would maintain the unit quaternion may
suffer from instability, oscillation and loss of accuracy. Ascher and Petzold introduce
the PIRK methods to overcome those difficulties and do so by including a projection
correction step within the numerical formula. Their method shows interesting results
regarding the drift-off when applied index 2 systems that were obtained from a index
3 system (similar to our System 2.20T), more precisely the unstabilized index 2 for-
mulation of the mathematical pendulum shows no drift-off (up to machine precision)
due to the quadratic constraint. For details we refer to [11].
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2 Modeling the behavior of jets and fibers

2.2.5 Viscous jet model

The parts presented in the last subsections are now put together. We use the kinematics
in the stabilized formulation together with the incompressible geometry model and the
viscous material law and present the jet model in dimensionless form put in the general
parameterization.

System 2.31. The system of the jet model for the unknowns (̄r, λ̄τ , q, λκ, λs, τ , κ, λt,
σM , σV , k, v, ω, n, m, u) on the domain Q (cf. Notation 2.11) is given by

∂t̄r = R(q)T · (v − uτ ) +
1

k
∂sλ̄τ , (2.37a)

∂sr̄ = R(q)T · τ , (2.37b)

∂tq = A(ω − uκ) · q +
1

k
A(∂sλκ) · q + λtq, (2.37c)

∂sq = A(κ) · q + λsq, (2.37d)
∂tτ + ∂s(uτ ) = ∂sv + κ× v + τ × ω + CkR(q) · λ̄τ , (2.37e)
∂tκ+ ∂s(uκ) = ∂sω + κ× ω + Ckλκ, (2.37f)

q · q = 1, (2.37g)
∂tσM + ∂s(uσM) = 0, ∂tσV + ∂s(uσV ) = 0, ∂tk + ∂s(uk) = 0, (2.37h)

∂tp + ∂s(up) = p× ω + ∂sn + κ× n + f, p = σMv, (2.37i)
ε2(∂th + ∂s(uh)) = ε2h× ω + ∂sm + κ×m + τ × n + ε2l, h = JM · ω, (2.37j)

∂tτ3 + ∂s(uτ3) =
Re
3µ

τ 2
3

σV
n3, τ1 = 0, τ2 = 0, (2.37k)

ε2(∂tκ+ ∂s(uκ)) =
Re
3µ

τ 3
3

σV 2
M−1

µ ·m. (2.37l)

Viscous jet model

Here, the inertia matrix is JM = (σMσV /τ3)Min and the parameter speed u is still a degree
of freedom in the system, but assumed to be globally zero if not otherwise mentioned.

Notation 2.32 (Formulation of the kinematics). Other formulations of the kinemat-
ics of viscous jet model are possible as well and could be addressed analogously to Re-
mark 2.2. For the sake of clarity the following discussions are tailored to the formulation
which is printed in System 2.31 – it contains the stabilized, index-reduced kinematics with
SAMW-correction. Only if we seek to address different formulations we add the respective
subscript.

System 2.31 is not yet complete. We need to define initial and boundary conditions on
an appropriate space-time domain, which we do in the following Section 2.3.

Remark 2.33 (Comparison to Audoly et al. (2013)). The modified Kirchhoff con-
straint relates the tangent of the jet to the director triad which allows to express the angu-
lar velocity with the help of the scalar-valued spin (tangential angular speed). The angular
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2.3 Boundaries and space-time domains for set-ups

momentum balance becomes scalar-valued and the director triad can be computed a pos-
teriori, making its temporal evolution redundant. Audoly et al. use this center-line-spin
formulation (utilizing the compatibility conditions in the kinematics) and propose a discrete
viscous rods method [19, 12] that was based on their experience with the discrete elastic rod
method [20] and focuses on geometrically exact space discretization for the rod model. They
performed instationary simulations for a viscous jet lay-down [25] and also discussed the
effect of inertia in the angular momentum balance and argued that it can be neglected [24].

2.3 Boundaries and space-time domains for set-ups

We use the wording set-up in combination with the jet model when we specify initial and
boundary conditions and give a framework for the determination of appropriate space-
time domains, that both together complete the jet model. Initial conditions will be set
according to the application at hand, for the boundary conditions we consider two different
physical boundaries that can be put on either side of the domain: One gives the position and
orientation of the jet (position boundary), the other the inner tensions (tension boundary).

At first we describe the physical boundaries. We present all conditions in detail to show
where the dependencies are. Note that the following discussion is not meant to give a list
of complete boundary conditions for the jet model. It is merely a list of relations that
hold for the considered boundary. The discussion of the resulting initial and boundary
conditions is done afterwards.

Position boundary At a position boundary all that is needed to formulate the boundary
conditions for our jet model is a prescribed position, orientation and material velocity. The
remaining required unknowns are given by inherent relations, choice of parameterization
and corresponding typical values. By means of the material velocity we can differentiate
the physical meaning of the boundary. If it is zero, the jet is assumed to be fixated at a
wall, whereas a positive / negative value indicates a inflow / outflow at the left side and
vice-versa on the right side. Inflow indicates that the jet is extruded through a nozzle and
outflow that the jet is collected in some way. The following part is formulated exemplarily
for the left side of the domain, thus we mark the given values with the superscript ·L.
Notice that fields in Lagrangian parameterization are marked with a hat ·̂, whereas ones
in general parameterization receive no special mark. The location of the left side of the
boundary is σ = −l(t), and s = −L(t).

Assume a given position r̄L : [0, T ]→ R3 and orientation qL : [0, T ]→ R4, i.e.

r̄(−L(t), t) = r̄L(t), (2.38a)
q(−L(t), t) = qL(t), (2.38b)

and material velocity d
dt
l(t) = vL(t) for all t ∈ [0, T ]. In this work we always call vL(t)

the mass inflow, or extrusion speed. The jet model contains substitutions for the temporal
derivatives of r̄ and q which require consistent boundary conditions enforced by inherent
relations. We take the total time derivative of the jet curve at the boundary in material
parameterization and insert the original kinematics of the jet to obtain a relation between
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2 Modeling the behavior of jets and fibers

the jet velocity, dilatation and material velocity

v(−L(t), t) = R(qL(t))
d

dt
r̄L(t) + τ̂ (−l(t), t)vL(t) (2.38c)

with the type-0 field v(−L(t), t) = v̂(−l(t), t). Analogously an inherent condition can be
derived from the jet orientation, i.e.

A(ω̂(−l(t), t)) · qL(t)−A(κ̂(−l(t), t)) · qL(t)vL(t) =
d

dt
qL(t).

The time-dependent qL induces an angular velocity ωl through d
dt
qL(t) = A(ωL(t)) ·qL(t),

for details see Remark 2.35. Since A is linear the terms can be merged and the equation
is only fulfilled if the argument becomes zero, thus

ω(−L(t), t) = ωL(t) + κ̂(−l(t), t))vL(t) (2.38d)

has to hold, which is the inherent condition for the type-0 field ω̂(−l(t), t) = ω(−L(t), t).
We assume further knowledge of the distortion measures τ̂L, κ̂L : [0, T ]→ R3, i.e. we have

τ (−L(t), t) = χ(−l(t), t)τ̂ (−l(t), t) = χ(−l(t), t)τ̂L(t), (2.38e)

κ(−L(t), t) = χ(−l(t), t)κ̂(−l(t), t) = χ(−l(t), t)κ̂L(t). (2.38f)

In the set-ups that we are considering we assume unstretched and unbent jets, i.e. τ̂L(t) =
e3 and κ̂L(t) = 0. The parameterization is left open at this point.

Remark 2.34 (Application to the stabilized kinematics). Assume now that a posi-
tion boundary fulfilling (2.38) is given and used with the stabilized formulation of the jet
model (cf. Formulation 2.22). Its kinematics induce inherent relations for v and ω –
analogously to (2.38c) and (2.38d) – that involve the correction terms and therewith the
Lagrangian multipliers. More precisely we obtain

v̂(−l(t), t)− τ̂L(t)vL(t) = R(qL(t))

(
d

dt
r̄L(t)− ˆ̄Λr,1(−l(t), t)

)
,

A
(
ω̂(−l(t), t)− κ̂L(t)vL(t)− ωL(t)

)
· qL(t) = λs(−l(t), t)qL(t)vL(t)− Λ̂q,1(−l(t), t).

We plug in (2.38) and conclude that

ˆ̄Λr,1(−l(t), t) = 0,

λs(−l(t), t)qL(t)vL(t)− Λ̂q,1(−l(t), t) = 0

have to hold. With the fact that λs can be shown to be globally zero (cf. Lemma 2.19), we
know that the correction terms vanish at a position boundary.

Remark 2.35 (Induced angular velocity). The rotation matrix is parameterized with
unit quaternions. Its temporal evolution is given in terms of the quaternions by

∂tq = A(ω) · q. (2.39)
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2.3 Boundaries and space-time domains for set-ups

It can be depicted with the quaternion multiplication which is defined as follows: Let q and
p be two arbitrary quaternions, then we have

q ? p = (q0p0 − qv · pv, q0pv + p0qv + qv × pv).

We rewrite (2.39) to

∂tq = −1

2
(0,ω) ? q

and multiply it with the inverse q−1 = (q0,−qv)/ ‖q‖, which is always defined for unit
quaternions. It follows that

ω = 2(qv∂tq0 − q0∂tqv − qv × ∂tqv). (2.40)

With the quaternion q(−L(t), t) = qL(t) given at the boundary for all t we can herewith
obtain ωl(t). Note that ωL(t) is induced by the total derivative of q whereas ω(−L(t), t)
in (2.40) is induced by the partial derivative.

Tension boundary A tension boundary is stipulated with prescribed inner tensions and
possible mass outflow. The following part is formulated exemplarily for the right side of
the domain, thus we mark the values with the superscript ·R. The location of the right
side of the boundary is σ = −r(t), and s = −R(t).
Assume a given contact force nR : [0, T ] → R3 and couple mR : [0, T ] → R3 at the

boundary

n(−R(t), t) = nR(t), (2.41a)
m(−R(t), t) = mR(t), (2.41b)

as well as a non-negative mass outflow velocity d
dt
r(t) = vR(t) ≥ 0. The material law of

the jet model gives a relation of the inner tensions to the distortion measures. We take the
total derivative of τ3 and κ at the boundary (in general parameterization) and plug in the
material law to obtain inherent equations for them:

d

dt
τ3(−R(t), t) =

Re
3µ

τ 2
3 (−R(t), t)

σV (−R(t), t)
nR3 (t)

− ∂s
(
u(s, t)τ3(s, t)

)∣∣
s=−R(t)

− ∂sτ3(s, t)|s=−R(t)
d

dt
R(t), (2.41c)

d

dt
κ(−R(t), t) =

Re
ε23µ

τ 3
3 (−R(t), t)

σV 2(−R(t), t)
M−1

µ ·mR(t)

− ∂s
(
u(s, t)κ(s, t)

)∣∣
s=−R(t)

− ∂sκ(s, t)
∣∣
s=−R(t)(t)

d

dt
R(t). (2.41d)

The shear measures τ1, τ2 can be dealt with the same way, but since they are globally
zero their inherent conditions are trivial and always fulfilled in any case. The special
case that nR and mR vanish (tension-free boundary) significantly simplifies (2.41c) and
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2 Modeling the behavior of jets and fibers

(2.41d). Furthermore, if a time-independent boundary is given, i.e. d
dt
R(t) = 0, we obtain

conservation for the prescribed values, i.e.,

d

dt
τ3(−R(t), t) + ∂s

(
u(s, t)τ3(s, t)

)∣∣
s=−R(t)

= 0,

d

dt
κ(−R(t), t) + ∂s

(
u(s, t)κ(s, t)

)∣∣
s=−R(t)

= 0.

That means that the value at the boundary can be obtained by transforming the initial
values:

τ3(−R(t), t) = χ(−R(t), t)τ3(−R(0), 0),

κ(−R(t), t) = χ(−R(t), t)κ(−R(0), 0).

Remark 2.36 (Application to the stabilized kinematics). Assume a tension bound-
ary fulfilling (2.41) is given. There is no inherent relation when used with the stabilized
kinematics 2.22 that affect the multipliers or correction terms. For the equivalency of the
solutions of the original model and the stabilized model we require the multipliers to vanish
at the boundaries and thus we set

λ̄1(−R(t), t) = 0,

λ2(−R(t), t) = 0.

Combining the boundaries We have introduced two possible boundaries for our viscous
jet model and construct now three set-ups by altering the possible combinations of the
boundaries:

• mixed boundary conditions (Section 2.3.1) that can be generally used for jet extrusion
processes with an out-stream element,

• both tension-free boundaries (Section 2.3.2) for a jet that moves freely in a surround-
ing medium,

• both position boundaries (Section 2.3.3) that could prescribe a jet clamped on both
sides, or extruded on one side and rolled up on the other.

No claim for completeness is made here, of course other set-ups and other forms of bound-
aries are possible as well, but that is outside the scope of this work. Note that the two
latter set-ups are introduced as additional examples, they are not used in the later numer-
ical simulations.
In the following subsections we discuss the impact of the set-ups on the parameterization

domain and state initial and boundary values. The conditions are presented in dimension-
less quantities, thus we assume that the corresponding typical values are appropriately
chosen (e.g. the mass line density at the nozzle of a position boundary is scaled to one).
For the discussion of the set-ups it is not important how the general parameterization is
determined within the domain, only the shape of the space-time domain is. The jet model
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2.3 Boundaries and space-time domains for set-ups

can be given in various kinematic formulations that differ in the usage of the compatibil-
ity conditions (see Remark 2.2). Depending on the formulation, the model may require
different sets of initial and boundary conditions. Our discussion is tailored to the index-
reduced, stabilized formulation with SAMW correction that is stated in Section 2.2.5, other
formulation are analogously.

2.3.1 Position and tension-free boundary

In this set-up with mixed boundaries the jet is extruded through a nozzle on the left side of
the domain with a given extrusion speed. The nozzle has a fixed position and orientation
and the jet leaves the nozzle unstretched in the same direction. Hence the jet at the nozzle
neither has curvature nor angular velocity. On the right side the jet is moving freely in a
surrounding medium – in our case air – and the stresses vanish. Furthermore mass outflow
is possible. If an initial jet exists, it has a given length and is chosen to be straight and
stress-free everywhere, furthermore the initial mass and volume line density are assumed to
be constant in space. The initial parameterization is chosen to coincide with the Lagrangian
one and to be arc-length. This is called the jet extrusion set-up. Note that this includes
the case with zero extrusion speed – meaning that the jet is simply fixated at a wall – but
we do not differentiate in our wording.

Assume given functions r̄A, qA, vA and initial length l0 = L0 =
∫ 0

−L0
d
ds

r̄A(s′) ds′ ≥ 0.
Initial conditions for all s ∈ [−L0, 0] are required for r̄, q, τ , κ, σM , σV , k, σMv, JM · ω.
We set the initial conditions by using

r̄(s, 0) = r̄A(s), q(s, 0) = qA(s),

v(s, 0) = e3v
A(s), ω(s, 0) = 0,

τ (s, 0) = e3χ(s, 0), κ(s, 0) = 0,

σM(s, 0) = σV (s, 0) = k(s, 0) = χ(s, 0). (2.42)

The initial parameterization fulfills χ(s, 0) = 1 since it is chosen to be arc-length. In the
case of a time-dependent domain we need auxiliary conditions for the temporal fluxes at
t ∈ (0, T ], s = −L(t) and set them analogously to t = 0, knowledge of χ is assumed. Note
that κ is a type-1 field and would also need to be transformed with χ in a non-vanishing
case.
On the left side a position boundary with given time-independent values r̄L, qL and

vL ≤ 0 is imposed, furthermore we have the parameter speed uL : [0, T ] → R and the
Jacobian of the transformation χL : [0, T ] → R. On this side we set boundary conditions
for the spatial fluxes of r̄, q and v, ω and due to the general parameterization as well
for the artificial fluxes uτ , uκ, uσM , uσV , uk, uσMv, uJM · ω. The initial conditions
have to be compatible to the boundary conditions, consequently we require r̄A(−L0) = r̄L,
qA(−L0) = qL and vA(−L0) = vL. On the right side a tension-free boundary with outflow
is imposed. Here we set boundary conditions for the spatial fluxes of n, m and λ̄τ , λκ. We
set the boundary conditions according to (2.38) and (2.41) by using (2.43).
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2 Modeling the behavior of jets and fibers

For material fluxes:

r̄(−L(t), t) = r̄L, q(−L(t), t) = qL,

v(−L(t), t) = e3v
L, ω(−L(t), t) = 0,

m(−R(t), t) = 0, n(−R(t), t) = 0,

λ̄τ (−R(t), t) = 0, λκ(−R(t), t) = 0. (2.43a)

For artificial fluxes:

τ (−L(t), t) = e3χ
L(t), κ(−L(t), t) = 0,

σM(−L(t), t) = χL(t), σV (−L(t), t) = χL(t),

k(−L(t), t) = χL(t), u(−L(t), t) = uL(t). (2.43b)

Position and tension-free boundary

Remark 2.37 (Conditions for the artificial fluxes). The boundary conditions for the
artifical spatial fluxes are chosen to be located on the left side, but the right side would be
possible as well. We do this since we have initial values from the nozzle on the left side
that can be re-used. In the trivial case uL ≡ 0, all artificial fluxes are determined by this
single condition.

The boundary conditions (2.43) are complete if both uL and χL are given or can be de-
termined implicitly, which requires more knowledge of the actual parameterization and/or
space-time domain. If uL or χL is given, we have a relation given by (2.24) that allows the
determination of the respective other and can be used in almost all cases, namely

uL(t) =
1

χL(t)
vL − d

dt
L(t). (2.44a)

In the case that d
dt
L(t) + uL(t) = 0, the above relation is no longer applicable (cannot be

solved for χL(t)). Then we can utilize the definition of u, i.e.

uL(t) =
∂tΨ(−L(t), t)

χL(t)
(2.44b)

to determine χL(t).
Let us look at some examples that illustrate how to properly complete the boundary

conditions. We present different inflow-approaches that can be handled, and connect them
to existing literature.

Example 2.38 (Inflow-Outflow with Lagrangian boundaries). We set the general
parameterization to be Lagrangian at the boundaries, thus we assume

uL ≡ 0

and also u(−R(t), t) = 0. Furthermore we have a given, positive extrusion speed vL > 0
and some outflow vR(t) ≥ 0 for all t ∈ [0, T ]. We decide to keep the material point
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−L(T ) 0
0

T

s

t

Q

(a) Space-time domain Q with initial values at s =
−L(t) (red line) and boundary conditions at s =
−L(t) and s = 0 (green lines). The material do-
main is equal to the general one.

s = 0

s = −L(t)

~e1

~e3

~e2

~r

~d2 ~d1

~d3

(b) Jet illustrated for an arbitrary outer force
at some time t > 0.

Figure 2.3: Illustration of a space-time domain and the jet curve of Example 2.38 with no
outflow.

density unchanged under the re-parameterization and assume therewith L(t) = l(t) and
R(t) = r(t). This leads with (2.44a) to

χL ≡ 1.

The parameter speed u is yet to be determined in the inside of the domain, e.g. it vanishes
for a globally Lagrangian parameterization. The no-outflow case (vr ≡ 0) with its space-
time domain is illustrated in Figure 2.3, it has also been studied in [5, Set-up A]. This
case has an inevitable boundary layer that is built-in the system through the inherent
condition of τ3 at the tension-free boundary. The jet will be stretched through external
forces within the domain, but τ3 remains at the initial value (cf. Equation (2.41c)). To
avoid that boundary layer we consider an outflow (vr > 0) case. An illustration is given in
Figure 2.4.

Example 2.39 (Inflow-Outflow with Eulerian boundaries). The initial material do-
main and general domain are set to be [−l(0),−r(0)] = [−L(t),−R(t)] = [−1, 0], further-
more a positive extrusion speed vL is given, i.e. l(t) = −tvL − 1. Imposing the arc-length
constraint τ ≡ e3 at both sides gives Eulerian boundaries. This constraint could also be
enforced globally to obtain a Eulerian parameterization. The position boundary at the left
side implies at all times that the Jacobian of the transformation is equal to one. Together
with (2.44a) we have

χL ≡ 1, uL ≡ vL.

The jet starts out unstretched and undergoes some external loads that cause elongation
to build up. To compensate for the elongation we allow mass outflow vL at the free end,
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−L(T ) −R(T ) 0
0

T

s

t

Q

(a) Space-time domain Q with initial values at s =
−L(t) (red line) and boundary conditions at s =
−L(t) and s = −R(t) (green lines). The material
domain is equal to the general one.

s = −R(t)

s = −L(t)

~e1

~e3

~e2

~r

~d2 ~d1

~d3

(b) Jet illustrated for an arbitrary
outer force at some time t > 0.

Figure 2.4: Illustration of a space-time domain and the jet curve of Example 2.38 with
some given outflow.

which becomes a degree of freedom and is indirectly determined. The jet enters a steady-
state after sufficient time has passed (assuming deterministic external loads). The resulting
material and general domain and an illustration of the steady-state behavior is shown in
Figure 2.5. Arne et al. [5, Set-up B] designed that case to obtain a time-independent
general domain.

Example 2.40 (Inflow with growing Eulerian parameterization). A positive extru-
sion speed vL is given, the outflow is set to zero. The arc-length constraint τ ≡ e3 is globally
enforced to obtain an Eulerian parameterization, implying

χL ≡ 1.

The length of the general spatial domain |Ω(t)| = |L(t)−R(t)| becomes a degree of freedom
and thus the system is a free-boundary value problem for which special consideration
is necessary. The time-dependency is collected on one side either giving: a) L(t) = 0,
R(t) = |Ω(t)| or b) L(t) = |Ω(t)|, R(t) = 0. This example has the same boundary layer as
described and depicted in the no outflow case of Example 2.38.

a) We have with (2.44a)

uL ≡ vL.

This case has been studied by Panda [79] with the jet model reduced to be uniaxial,
under certain assumptions. We have summarized the uniaxial model in our notation
in Appendix B.3. In particular, Panda employs a Finite Volume method and utilizes
a specific inherent condition of the system. The mass-line density in Eulerian pa-
rameterization remains constant at a tension-free boundary. Since the mass outflow
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(a) Material Q̂ and general space-time domain
Q.

0 T

1

t

|Ω̂
(t

)|

(b) Visualization of |Ω̂(t)| representing the mass.
For increasing t the jet takes on a steady-state
which is manifesting in a constant mass.

Figure 2.5: Illustration of the space-time domains and total mass of the jet of Example 2.39.

is zero, this condition allows to determine R(t). The free-boundary value problem is
avoided by using a variable cell size for the last cell that is then split up in between
time steps. Panda mentions that the method has problems in the discrete growing
process, more precisely simulations with large elongations require very small time
steps.

b) In this case the boundary relation (2.44a) becomes

uL(t) = vL − d

dt
L(t),

with d
dt
L(t) representing the change in the arc-length of the jet. We study this case

in Appendix C.3. To eliminate the free-boundary value problem we use a purely
Lagrangian parameterized sub-problem for each time step to calculate the arc-length
of the jet beforehand and use that information to advance the Eulerian simulation.
The computational time is very high, even for small jet lengths. Even worse, errors
in the arc-length L(t) due to the Lagrangian sub-problem can significantly alter the
result.

Example 2.41 (Inflow-Outflow with growing Eulerian parameterization). This
example is designed similarly to Example 2.40 b) with the arc-length constraint τ ≡ e3

globally enforced to obtain an Eulerian parameterization. Yet, here we seek to completely
avoid the problematic of a free-boundary value problem. For that purpose we allow mass
outflow on the free end and prescribe the general space-time domain with the help of
d
dt
L(t) = vL, R(t) = 0 and L(0) = 0, with a given positive extrusion speed vL. The outflow

will be a degree of freedom similar to Example 2.39, the resulting space-time domains are
illustrated in Figure 2.6. With (2.44a) we have

χL ≡ 1, uL ≡ 0.
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Figure 2.6: Illustration of the material Q̂ and general space-time domain Q of Exam-
ple 2.41.

This example is expected to behave similarly to the outflow case of Example 2.38, Fig-
ure 2.4b.

The following Example 2.42 can be seen as a jet that is attached to a wall on the left
side and is then undergoing the external forces. No mass enters or leaves the domain.

Example 2.42 (No inflow, no outflow). The material domain is assumed to be time-
independent. We set [−l(t),−r(t)] = [−1, 0] for all t ∈ [0, T ]. The general domain is not
restricted at this point, thus we utilize (2.44) to implicitly determine uL and χL. If we set
[−L(t),−R(t)] = [−1, 0] as well (illustrated in Figure 2.7), then we can simplify uL ≡ 0.
In an elastic context this set-up is a cantilever, a long projecting beam fixed at only one
end. Undergoing solely gravitational forces in normal direction to the initial beam, it will
continuously bounce up and down (without any numerical dampening). In the viscous
context the jet is expected to fall down while the viscosity keeps some cohesion to the wall
creating high elongation in its proximity.
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(a) Space-time domain Q with initial values at
t = 0 (red line) and boundary conditions at
s = L(t) = −1, s = 0 (green lines). The
material domain coincides.

~e3

~e2

~e1

~d2
~d1

~d3

~rs = −1 s = 0

(b) Initial values for jet curve and director triad.

Figure 2.7: Illustration of the space-time domain and initial values of Example 2.42. Initial
values are ri(s) = (s, 0, 0), qA(s) = (0.5,−0.5,−0.5,−0.5).

2.3.2 Both tension-free boundaries

In this set-up we assume an initially straight and tension-free jet with some given length,
furthermore the initial mass and volume line density are assumed to be constants in space.
The jet is not fixed on either side and moves completely free in the surrounding medium.
The initial parameterization is chosen to coincide with the Lagrangian one and to be arc-
length.

Assume given functions r̄A, qA, the initial length is l0 = L0 > 0. Initial conditions are
required analogously to Section 2.3.1 and set by using

r̄(s, 0) = r̄A(s), q(s, 0) = qA(s),

v(s, 0) = 0, ω(s, 0) = 0,

τ (s, 0) = e3χ(s, 0), κ(s, 0) = 0,

σM(s, 0) = σV (s, 0) = k(s, 0) = χ(s, 0). (2.45)

On both sides a tension-free boundary is imposed. We require boundary conditions for
the fluxes of r̄, q, v, ω, n, m, λ̄τ , λκ and use therefor Dirichlet conditions for n, m, λ̄τ ,
λκ on both sides. To handle the artificial fluxes we restrict ourselves to the case where u
vanishes at one side, w.l.o.g. we choose uL ≡ 0. We set the boundary conditions by using
(2.46):
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Figure 2.8: Illustration of the material Q̂ and general space-time domain Q of Exam-
ple 2.44.

m(−L(t), t) = 0, n(−L(t), t) = 0,

λ̄τ (−L(t), t) = 0, λκ(−L(t), t) = 0,

m(−R(t), t) = 0, n(−R(t), t) = 0,

λ̄τ (−R(t), t) = 0, λκ(−R(t), t) = 0,

u(−L(t), t) = uL(t) = 0. (2.46)

Both tension-free boundaries

Two examples come to mind:

Example 2.43 (No inflow, no outflow). We assume a time-independent space-time do-
main [−L(t),−R(t)] = [−l(t),−r(t)] = [−1, 0], implying that u is zero on both sides.
Boundary layers in τ3 will develop on both sides due the tension-free boundary analo-
gously to Example 2.38.

Example 2.44 (Outflow with Eulerian parameterization). We assume a time-inde-
pendent space-time domain [−L(t),−R(t)] = [−1, 0] and furthermore l(t) = −1, i.e. uL =
0. By imposing the arc-length constraint globally we obtain an Eulerian description. Since
the jet will undergo stretching there will be mass outflow on the right side to compensate
for it, more precisely we have vR(t) = χ(0, t)u(0, t). An illustration is shown in Figure 2.8.

2.3.3 Both position boundaries

The third and last possibility to combine the boundaries is to have two position boundaries.
On both sides we have a fixed position and orientation, whereas we assume to have mass
inflow on one side and mass outflow on the other side. We assume that a jet with some
initial length is given that is straight and tension-free everywhere, furthermore the initial
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2.3 Boundaries and space-time domains for set-ups

mass and volume line density are assumed to be constants in space. The jet is fixed on
both ends and the initial parameterization is chosen to coincide with the Lagrangian one
and to be arc-length.

Assume given functions r̄A, qA, vA, the initial length is l0 = L0 > 0. Initial conditions
are required analogously to Section 2.3.1 and set by using

r̄(s, 0) = r̄A(s), q(s, 0) = qA(s),

v(s, 0) = e3v
A(s), ω(s, 0) = 0,

τ (s, 0) = e3χ(s, 0), κ(s, 0) = 0, (2.47)
σM(s, 0) = σV (s, 0) = k(s, 0) = χ(s, 0). (2.48)

Position boundaries are put on both sides using r̄L = r̄A(−L0), qL = qA(−L0), vL =
vA(−L0) and r̄R = r̄A(0), qR = qA(0), vR = vA(0). We require boundary conditions for
the fluxes of r̄, q, v, ω, n, m, λ̄τ , λκ and use therefor Dirichlet conditions for r̄, q, v, ω
on both sides. The artificial fluxes are handled w.l.o.g. analogously to Section 2.3.1 on the
left side. Overall we set the boundary conditions by using (2.49):

For material fluxes:

r̄(−L(t), t) = r̄L, q(−L(t), t) = qL,

v(−L(t), t) = e3v
L, ω(−L(t), t) = 0,

r̄(−R(t), t) = r̄R, q(−R(t), t) = qR,

v(−R(t), t) = τ (−R(t), t)vR(t)/χ(−R(t), t), ω(−R(t), t) = 0. (2.49a)

For artificial fluxes:

τ (−L(t), t) = e3χ
L(t), κ(−L(t), t) = 0,

σM(−L(t), t) = χL(t), σV (−L(t), t) = χL(t), (2.49b)
k(−L(t), t) = χL(t), u(−L(t), t) = uL(t). (2.49c)

Both position boundaries

Note that the conditions for v require knowledge of the elongation. At the left side it is
prescribed through the initially unstretched assumption of the jet, whereas it is a degree of
freedom at the right side. Here, an extrapolation seems feasible since we are dealing with
mass outflow.

As an example one could think of a jet that is clamped on both sides, or a jet drawing
process with roll-up, meaning the jet is extruded on one side and rolled up much quicker
on the other side to stretch it in between (see Example 2.46).

Example 2.45 (Clamped jet with Lagrangian boundaries). The space-time domains
are time-independent and set to [−L(t),−R(t)] = [−l(t),−r(t)] =

[
−
∥∥̄rR − r̄L

∥∥ , 0], thus
we have no mass inflow or outflow (analogous to Example 2.42) and furthermore

uL ≡ uR ≡ 0.
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2 Modeling the behavior of jets and fibers

Example 2.46 (Jet drawing process). The domains are set to [−L(t),−R(t)] =
[−l(0),−r(0)] =

[
−
∥∥̄rR − r̄L

∥∥ , 0]. A positive extrusion speed vL as well as a positive roll
up speed v(−R(t), t) = e3v

roll is assumed. The initial arc-length of the jet is
∥∥̄rR − r̄L

∥∥, but
the jet length does not have to be constant in simulations when external forces are applied,
thus hindering the use of an Eulerian parameterization. One could think of a scaled Eule-
rian parameterization by prescibing that the elongation is not one, but a constant over the
whole jet. The relation (2.44a) holds on both sides of the boundary. For the roll up speed
it holds that vroll = vR(t)τ 3(−R(t), t)/χ(−R(t), t), which implicitly determines the mass
outflow. An attempt with a Lagrangian parameterization is consequently a free boundary
value problem, which we want to avoid. The domain situation is similar to Figure 2.5a.

To conclude this chapter we give an overview over the presented examples.

Mixed boundaries
Q̂

Example inflow/outflow Q Parameterization Details
2.38 yes/yes time-dep. Lagrangian boundaries
2.39 yes/yes time-indep. Eulerian boundaries Outflow implicitly

determinedg
2.40 yes/no time-dep. Eulerian Free-boundary value

problem
2.41 yes/yes time-dep. Eulerian Outflow implicitly

determinedg
2.42 no/no time-indep. Eulerian/Lagrangian

Both tension-free
Q̂

Example inflow/outflow Q Parameterization Details
2.43 no/no time-indep. Lagrangian boundaries
2.44 no/yes time-indep. Eulerian Outflow implicitly

determined

Both position
Q̂

Example inflow/outflow Q Parameterization Details
2.45 no/no time-indep. Lagrangian boundaries
2.46 yes/yes time-indep. Scaled Eulerian Outflow implicitly

determined

Table 2.4: Overview of the illustrative examples of the set-ups.
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3 Adaptive meshes: r-refinement

The viscous jet model (Section 2.2.5) is formulated in a general parameterization with the
help of the artificial parameter speed. In general, said parameter speed has to determined to
be suitable for the underlying physical scenario. The most prominent special cases would
be the Lagrangian (material) and Eulerian (arc-length) parameterization. Another one,
that is designed for fluid-structure-interaction problems, is called the arbitrary Lagrangian-
Eulerian (ALE) parameterization, which is attributed to the flexibility of the method that
allows it to be Lagrangian within the structure and to be Eulerian in the fluid with a sharp
tracking of the boundary layer [53]. In our case there is no sharp interface or other features
of the geometry that can be tracked, our parameterization has to be chosen appropriately
for the underlying partial differential equations that can involve large solution variations
over small parts of the material domain – e.g. boundary layers or oscillations. A purely
Lagrangian parameterization, or in discrete terms, an equidistant mesh whose grid points
track the material points, might not be able to resolve such variations properly. The idea is
to improve the approximation quality – while keeping the computational effort – by finding
a suitable parameterization. In this, the term suitable is the key challenge. In literature
this can be ascribed to so-called r-refinement (r for relocation) strategies. Those strategies
relocate the given mesh points towards areas of the domain where they are needed, i.e.
areas of large solution variations. Certainly, classical h-refinement that inserts additional
mesh points in said areas, or even an overall finer mesh, could be used as well, but the
improved approximation quality comes hence with the price of increased computational
costs and requires interpolation of the solution. Such interpolation strategies suitable for
partial differential equations (PDEs) with hyperbolic/parabolic character and conservation
laws are found e.g. [18, 16, 17, 62]. In this work we investigate the r-refinement, i.e. we
decide to stick to the idea of finding a suitable re-parameterization.

The need for mesh adaptivity in the various areas of science is omnipresent, thus nu-
merous strategies have been developed in literature. Huang and Russell [59] give a great
summary of a variety of methods. We quote:

”Given the ubiquitous need for (. . .) [such strategies] in the various areas of
science and engineering, a proliferation of methods have been developed in the
past . . . [It is] a daunting task for the potential user of adaptive mesh techniques
to know where to begin looking for a method suitable for his or her particular
needs.” [59, p. vii].

We focus on strategies that interpret the adaptivity as time-dependent coordinate trans-
formations and that continuously move the mesh utilizing the mesh velocity. The resulting
moving mesh method can be formulated in numerous ways (see [57]). At some point they
all are based on or linked to the so-called equidistribution principle, even though the final
moving mesh equations appear to be quite different. Said principle was first introduced by
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3 Adaptive meshes: r-refinement

referential σ ∈ Ω̂

computational s ∈ Ω

desired p ∈ Ω̃α

Ψ
ν

Figure 3.1: Illustration of the three parameterization layers.

de Boor [32] for solving boundary value problems for ODEs and involves selecting mesh
points such that some measure of the solution error is equalized over each subinterval. To
name prominent moving mesh methods we list the moving finite element method (MFE) of
Miller, which computes the solution and the mesh simultaneously by minimizing the resid-
ual of the PDEs written in a finite element form, and the moving finite difference method
of Dorfi and Drury [38]. The latter was directly obtained from a discrete representation of
the equidistribution principle and is used to solve one-dimensional conservation laws. We
select the moving mesh PDE strategies of Huang, Ren and Russel [57], which was also ap-
plied in the context of Finite Volume methods in [96]. In the process of obtaining a deeper
understanding of such strategies we developed a general moving mesh framework, that is
based on three parameterization layers for time-dependent domains. We do not claim its
superiority, but it opens interesting approaches for the formulation of such strategies.

This section is ordered as follows: In Section 3.1 we present our frame for moving meshes.
It basically has two parts: An abstract design of three parameterization layers to help
interpret the adaption strategies, and some measure of the solution that indicates where
to refine the mesh. In Section 3.2 we discuss different adaption strategies for a suitable
re-parameterization based on our preliminary works [88, 90]. In particular, we establish
the link back to the moving mesh strategies from Huang et al. [57] and introduce new
strategies. Subsequently we discuss in Section 3.3 an approach to formulate refinement
measures and their implications.

3.1 Three parameterization layers

The general idea of moving mesh strategies is to improve the approximation quality by re-
distributing a fixed number of mesh points within the domain while keeping the computa-
tional effort. In a continuous setting the idea corresponds to applying a re-parameterization
to the given model equations that is determined in some way by the moving mesh strat-
egy. We restrict to 1d parameterized problems and consider three parameterization layers:
referential σ ∈ Ω̂(t), computational s ∈ Ω(t) and desired p ∈ Ω̃(t) parameterizations, see
Figure 3.1. We denote Ω̂(t) = [σa(t), σb(t)], Ω(t) = [sa(t), sb(t)] according to Section 2.2.1
and Ω̃(t) = [pa(t), pb(t)]. If not otherwise mentioned we assume that pa, pb coincide with
σa, σb. The model equations for an arbitrary application are originally formulated in a
depicted parameterization (e.g. Lagrangian or Eulerian description) to which we refer to
as the referential parameters. The desired parameters should now reflect some kind of
optimal parameterization for the given problem, e.g. the absolute value of a gradient of a
solution component becomes constant. The direct use of the desired parameterization may
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3.1 Three parameterization layers

not be numerically beneficial (see Remark 3.1), therefore the computational parameters are
additionally introduced. Consequently we formalize three parameterization layers whereas
two are normally used in literature (see Remark 3.2). The core of the framework are the
time-dependent parameter transformations Ξ ∈ {Ψ, α, ν} with Ξ(·, t) being a one-to-one
mapping for t ∈ [0, T ], their relations are listed in Fig. 3.1. We assume that the trans-
formations are at least continuously differentiable in both variables, we denote the spatial
derivative as fΞ = ∂xΞ. In accordance with (2.21) we want to identify the left and right
side of the domains respectively with each other, thus fΞ > 0. We call the transformations
parameter distribution functions and their space derivatives parameter densities (formu-
lated in Definition 3.5 and 3.6) because of their analogy when fixed domains are used (see
Remark 3.3).

Remark 3.1 (Justification to modify the desired parameterization). In literature
extensive studies have been done on moving mesh strategies that consider only the referen-
tial and desired parameters, e.g. [29, 84] and for an overview [57]. They all exhibit some
kind of stability problem, mostly because the discrete mesh tends not to reflect the wanted
desired parameters. For example, consider the perturbation analysis of the moving mesh
strategy (MMPDE1) in [57]. This strategy is a third order partial differential equation that
enforces the relation between the referential and desired parameterization. If there is a
perturbation in the desired parameters, it is not guaranteed that this deviation disappears
over time, in fact it might even be worsened, producing an asymptotically unstable mesh.

Remark 3.2 (Three parameterization layers). Huang et al. [57] formalize only the
referential and computational parameterization, the desired parameterization is implicitly
incorporated in the computational parameters. They define what is deemed optimal for the
given problem and then modify that definition in some way to obtain the computational
parameterization without formally introducing a third parameterization layer, as we do.

Remark 3.3 (Time-independent domains). In literature there exist various moving
mesh strategies on time-independent domains, e.g. [57, 58]. Following that confinement, the
assumption Ω̂(t) = Ω(t) = Ω̃(t) = [0, 1] could be made w.l.o.g.. Then, the transformations
Ξ can be interpreted as probability distribution functions for the parameters. Supposing
sufficient regularity Ξ ∈ C1([0, 1]× [0, T ], [0, 1]), the derivatives fΞ describe the probability
densities for the parameters, i.e.

∫ 1

0
fΞ(x, t) dx = 1.

To allow for moving meshes, the original equations are transformed into the computa-
tional parameters by using

Ψ(·, t) : Ω(t)→ Ω̂(t)

with

Ψ(sa(t), t) = σa(t), Ψ(sb(t), t) = σb(t) (3.1)

for t ∈ [0, T ] (cf. the general parameterization in Section 2.2.1). The computational param-
eters are not identical to the desired ones, but should approach them, i.e. α(·, t) : Ω(t) →
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3 Adaptive meshes: r-refinement

Ω̃(t) should be pulled towards identity id. Consequently, the r-refinement aims at an adap-
tion strategy (see Section 3.2, equation for the unknown Ψ) and a description of a desired
re-parameterization (see Section 3.3, choice for α).
The existing moving mesh approaches regard only two parameterizations as the desired

layer is implicitly incorporated in the computational layer (cf. Remark 3.2). The advantage
of our proposed framework is a clear separation of all three layers. This aims to provide
more flexibility in the modeling as we will see in the following. Approaches for time-
dependent computational domains also exist, see Remark 3.4.

Remark 3.4 (Hybrid hr-refinement). In literature there exists the so-called hybrid hr-
refinement [78], whose key feature is its ability to add or remove mesh nodes in a smooth
manner through the boundaries of the domain. This is certainly also reflected by our frame-
work with the general space-time domains by choosing a time-independent referential do-
main in combination with a time-dependent computational domain. The time-dependency
allows to smoothly add or remove mesh nodes.

3.2 Adaption strategy

The adaption strategy aims to provide an equation for the transformation Ψ, or the pa-
rameter density fΨ. Proceeding from a given desired parameter distribution in terms of
ν, fν , the idea behind the adaption of the computational parameters is a temporal relax-
ation. In that sense Ψ, fΨ fulfills at a later time what is currently deemed optimal with
ν, fν . In the following we present two different types of strategies: Distribution relaxation
(DELAX) and moving mesh partial differential equations (MMPDE). Thereby, the second
one was originally proposed and explored in [57]. We choose these strategies to exemplify
the embedding in our general framework and because they have been also employed in [96]
in the context of Finite Volume methods.

The parameter densities play an important role for the moving mesh strategies. We now
state a general definition for a parameter distribution and density.

Definition 3.5 (Parameter distribution Ξ). Let a function Ξ(·, t) : [A(t), B(t)] →
[a(t), b(t)] with sufficient regularity be given, the interval boundaries are given with some
A,B, a, b : [0, T ] → R such that A(t) < B(t) and a(t) < b(t) for all t ∈ [0, T ]. If Ξ(·, t) is
bijective for all t ∈ [0, T ] and if it holds that Ξ(A(t), t) = a(t) and Ξ(B(t), t) = b(t), then
Ξ is called a parameter distribution function.

The parameter distribution are all related to each other, e.g. Ψ(s, t) = ν(α(s, t), t) for all
(s, t) ∈ Q. We write in short Ψ = ν ◦ α.

Definition 3.6 (Parameter density fΞ). Let a continuous function fΞ(·, t) : [A(t), B(t)]
→ R be given for all t ∈ [0, T ], the interval boundaries are given with some A,B : [0, T ]→ R

such that A(t) < B(t). If fΞ satisfies∫ B(t)

A(t)

fΞ(x, t) dx = b(t)− a(t) (3.2)
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3.2 Adaption strategy

for all t ∈ [0, T ] with a, b : [0, T ]→ R+ and

fΞ > 0,

then it is called a parameter density.

If a parameter density fΞ is given, we can construct the corresponding parameter distribu-
tion by setting

Ξ(s, t) =

∫ s

A(t)

fΞ(x, t) dx+ a(t).

It can easily be seen that Ξ(A(t), t) = a(t) and Ξ(B(t), t) = b(t) holds for all t ∈ [0, T ].
Thus Ξ is the corresponding parameter distribution to fΞ.

Example 3.7 (Parameter density fα). We want to exemplify Definition 3.6. Assume
that a parameter density fα is given. It involves the parameter domains Ω and Ω̃ (cf.
Figure 3.1). We restate (3.2)∫ sb(t)

sa(t)

fα(s, t) ds = pb(t)− pa(t).

The corresponding parameter distribution α is

α(s, t) =

∫ s

sa(t)

fα(s′, t) ds′ + pa(t).

We now want to embed a chosen MMPDE strategy of Huang and Russell [57] in our
framework. They utilize a monitor function to describe the desired re-parameterization,
we point out the link to the parameter density fα afterwards. There exist many MMPDE
approaches, we choose a variant that was also used in [96] for conservation laws. Before
we get to that we introduce the monitor function.

Definition 3.8 (Monitor function). Let a function M̂ : Q̂ → R+, t ∈ [0, T ] be given
and assume that M̂(·, t) ∈ C0(Ω̂(t),R+) and

0 < α0 ≤ M̂(σ, t) ≤ α1 <∞ (3.3)

holds for all σ ∈ Ω̂(t) and t ∈ [0, T ] with α0, α1 > 0. Then M̂ is called a monitor
function. On the computational domain Q the monitor function is denoted by M(s, t) :=
M̂(Ψ(s, t), t).

Strategy 3.9 (Moving Mesh PDE 1 (MMPDE1)). Let a monitor function M be
given, satisfying M(·, t) ∈ C1(Ω(t),R+). Assume that Ψ(·, t) ∈ C2(Ω(t), Ω̂(t)), then Ψ
is determined by the PDE

∂s(M ∂tfΨ) = −1

τ
∂s(M fΨ), t ∈ (0, T ], s ∈ Ω(t), (3.4)

with appropriate initial conditions and boundary conditions taken from (3.1), and temporal
relaxation parameter τ > 0.
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3 Adaptive meshes: r-refinement

MMPDE proceeds from the relaxation ansatz fΨ(s, t + τ) = fν(α(s, t), t) for the density.
By the chain rule fν ◦ α = (fν−1 ◦ Ψ)−1 = fΨ/fα particularly holds. The desired param-
eterization is modeled in terms of M with M(t) =

∫
Ω̂(t)

M̂(σ, t) dσ =
∫

Ω(t)
fΨM(s, t) ds,

i.e.

fν−1 =
M̂ |Ω(t)|
M , implying fν ◦ α =

M
M |Ω(t)| , fα =

fΨM |Ω(t)|
M . (3.5)

After doing a Taylor expansion of first order of the relaxation ansatz, we obtain ∂tfΨ =
−(fΨ − M/(M |Ω|))/τ . Multiplying this with M and taking the space derivative, the
integral of the monitor function and the length of the domain Ω disappear and the second
order MMPDE (3.4) with mixed partial derivatives is obtained. Moreover, in the limit
τ → 0, fα ≡ 1 is enforced which implies α ≡ id. By dealing with the parameter density
fΨ, this strategy brings diffusion to the problem. In contrast to the DELAX strategies, the
MMPDE1 strategy cannot be formulated directly on the level of the distribution function
Ψ.
We introduce a further MMPDE strategy of [57] that is designed to create a spatially

balanced mesh [56]. It is based on the idea of attraction and repulsion pseudo forces in
between mesh nodes and was first stated in a slight variation in [2]. We choose it due to
its simplicity and will show the link to our framework after we introduce it.

Strategy 3.10 (Moving Mesh PDE 2 (MMPDE2)). Let a monitor function M be gi-
ven, satisfying M(·, t) ∈ C1(Ω(t),R+). Assume that Ψ(·, t) ∈ C2(Ω(t), Ω̂(t)), then Ψ is
determined by the PDE

∂tΨ = − 1

τM
∂s(MfΨ), t ∈ (0, T ], s ∈ Ω(t), (3.6)

with appropriate initial and boundary conditions taken from (3.1), and temporal relaxation
parameter τ > 0. In Section 2.2.1 the artificial parameter speed u has been introduced. It
was defined in (2.16) as

u(s, t) = ∂tΨ
−1(σ, t)|σ=Ψ(s,t) = −∂tΨ(s, t)

∂sΨ(s, t)
.

We split the second derivative on the right side of Equation (3.6), reorder it and plug in
in the definition of u to obtain

−τu =
∂sM

M
+
∂sfΨ

fΨ

=
∂s(MfΨ)

MfΨ

. (3.7)

In (3.7) the term MfΨ appears. Expressed in terms of our parameter densities it is
fαM/ |Ω(t)|. MMPDE2’s equation then becomes

−τu =
∂sfα
fα

.

Our ansatz with the three parameterization layers allows a more obvious way to for-
mulate adaption strategies, namely through temporal relaxation of the transformation. In
particular, we now present two strategies involving Ψ.

56



3.2 Adaption strategy

Strategy 3.11 (Distribution relaxation with Ψ (DELAX1)). Let a parameter density
fα with corresponding parameter distribution α be given. Then Ψ is determined by the
evolution equation

∂tΨ = −1

τ

(
Ψ−Ψ ◦ α−1

∣∣
p=s

)
, t ∈ (0, T ], s ∈ Ω(t) (3.8)

with appropriate initial conditions and temporal relaxation parameter τ > 0.

DELAX1 proceeds from the relaxation ansatz Ψ(s, t + τ) = ν(s, t) = Ψ(α−1(s, t), t) for
the distribution. Moreover, in the limit τ → 0, (3.8) enforces that α ≡ id. The strategy
requires the computation of the inverse of α in (3.8) and the interpolation between the
parameterizations. The costs are relatively cheap as the domains are one-dimensional,
but the use of the inverse transformation needs special consideration (cf. Remark 3.12).
Alternatively, one might also think of an respective evolution equation for fΨ

∂tfΨ = −1

τ

(
fΨ − (fΨ ◦ α−1)fα−1

∣∣
p=s

)
.

Remark 3.12. The transformation α can have steep gradients in the region where the
monitor function is large. Obtaining a reasonably accurate numerical inverse thus requires
a priori an adaptive mesh that resolves said steep gradient appropriately (which is what
we want to compute in the first place). Huang and Russell [59] come across a similar
issue when the inverse transformation Ψ−1 appears in one of their moving mesh strategies
(more precisely, in a strategy they call MMPDE5xi) and recommend the use of an alternate
solution procedure in that case (the model equation and mesh equation are decoupled in
some way and solved separately). We focus on a simultaneous solution procedure (model
and mesh equations are solved together) and will therefore not use DELAX1 in the later
numerics of this work.

Instead of Ψ its inverse Ψ−1 can be considered for the ansatz.

Strategy 3.13 (Distribution relaxation with Ψ−1 (DELAX2)). Let a parameter den-
sity fα with corresponding parameter distribution α be given. Then Ψ is determined by
the transport equation

∂tΨ−
1

τ
(s− α) ∂sΨ = 0, t ∈ (0, T ], s ∈ Ω(t) (3.9)

with appropriate initial conditions and and boundary conditions taken from (3.1), and
temporal relaxation parameter τ > 0. Similar to Strategy 3.10 we can express (3.9) in
terms of u, i.e.

u = −1

τ
(s− α) , t ∈ (0, T ], s ∈ Ω(t). (3.10)

DELAX2 proceeds from the relaxation ansatz Ψ−1(σ, t + τ) = ν−1(σ, t) = α(Ψ−1(σ, t), t)
for the distribution and uses σ = Ψ(s, t). Moreover, in the limit τ → 0, (3.9) enforces that
α ≡ id. Alternatively, one might also think of an respective evolution equation for fΨ−1

∂su = −1

τ
(1− fα) .

57



3 Adaptive meshes: r-refinement

We presented four different strategies to determine Ψ. They were constructed by as-
suming that a parameter density fα, or a monitor function M̂ , was given. It is not clear
whether Ψ that was determined by either of those strategies is a parameter distribution
function. In the following part we show that this is in fact the case. Before that we give a
remark on analogous terminology that is used in literature.

Remark 3.14. In the context of [58, 59] Huang et al. introduce the so called no node cross-
ing condition. It states that the transformation Ψ has a strictly positive spatial derivative.
In our wording that means that Ψ is a parameter distribution according to Definition 3.5.
Furthermore, (MMPDE1) is called (MMPDE4) by Huang et al. and (MMPDE2) is called
(modified MMPDE5).

Theorem 3.15. Let Ψ be determined by MMPDE1 (Strategy 3.9). Additionally assume
that the initial transformation satisfies

0 < ∂sΨ(s, t?(s)) (3.11)

with the creation time t? from (2.25). Then Ψ is a parameter distribution according to
Definition 3.5 for small enough τ .

The proof of theorem 3.15 is analogous to the ideas for the time-independent domain stated
in [58]. However, the time-dependent boundaries introduce extra terms that need to be
estimated.

Proof. First we take the indefinite integral of MMPDE (3.4) with respect to s, the inte-
gration constant c(t) appears:

∂tsΨ(s, t) +
1

τ
∂sΨ(s, t) =

1

M(s, t)
c(t). (3.12)

Then one more time with a definite integral with respect to s[
∂tΨ(s, t)

]sb(t)
sa(t)

+
1

τ

[
Ψ(s, t)

]sb(t)
sa(t)

= c(t)

∫ sb(t)

sa(t)

1

M(s, t)
ds.

The boundary conditions of Ψ together with the strictly positive monitor function yield

c(t) =

(
1

τ

(
σb(t)− σa(t)

)
+ ∂tΨ(sb(t), t)− ∂tΨ(sa(t), t)

)(∫ sb(t)

sa(t)

1

M(s, t)
ds

)−1

> 0

(3.13)

for all t ∈ (0, T ] and a sufficiently small enough τ . Equation (3.12) can be seen as an ODE
for ∂sΨ, therefore one can obtain for s ∈ [sa(t), sb(t)], t ≥ t?(s) the solution

∂sΨ(s, t) = e−t/τ
(
∂sΨ(s, t?(s)) +

∫ t

t?(s)

1

M(s, t̃)
c(t̃)et̃/τ dt̃︸ ︷︷ ︸

>0 (3.3)&(3.13)

)
. (3.14)

and consequently we estimate

∂sΨ(s, t) > e−t/τ∂sΨ(s, t?(s))
(3.11)
> 0 (3.15)

for all (s, t) ∈ Q.
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3.2 Adaption strategy

Theorem 3.16. Let Ψ be determined by MMPDE2 (Strategy 3.10). Additionally assume
that the transformation satisfies

0 < ∂sΨ(sa(t), t) (3.16)

for all t ∈ [0, T ]. Then Ψ is a parameter distribution according to Definition 3.5.

Proof. Equation (3.7) is an ODE in space for M∂sΨ(s, t), therefore we obtain for every
t ∈ [0, T ]

∂sΨ(s, t) =
1

M
e−τusM(sa(t), t)∂sΨ(sa(t), t).

With (3.16) one immediately sees that ∂sΨ(s, t) is always strictly positive because M is
strictly positive.

Theorem 3.17. Let a function Ψ be determined by DELAX1 (Strategy 3.11). Then Ψ is
a parameter distribution according to Definition 3.5.

Proof. All properties of α are carried over to Ψ for all t ∈ [0, T ] due to the structure of the
equation. Since α is a parameter distribution, it is strictly monotone increasing, and then
Ψ is also strictly monotone increasing. Thus Ψ is also a parameter distribution.

Theorem 3.18. Let Ψ be determined by DELAX2 (Strategy 3.13). Then Ψ is a parameter
distribution according to Definition 3.5.

Proof. Strategy 3.13 is an initial-boundary value problem with a linear PDE (3.9) given
by

∂tΨ(s, t)− ∂sΨ(s, t)
1

τ
(s− α(s, t)) = 0, (s, t) ∈ Q,

Ψ(sa(t), t) = σa(t),

Ψ(sb(t), t) = σb(t),

Ψ(s, 0) = σ0(s). (3.17)

Instead of directly solving this transport equation the method of characteristics can be used
to set-up an equivalent problem. We define the family of functions Ψ̄k(t) := Ψ(s̄k(t), t)
with a suitable coordinate transformation. We have

d

dt
Ψ̄k(t) =

d

dt
Ψ(s̄k(t), t) =

(
∂tΨ(s̄k(t), t) + ∂sΨ(s, t)

∣∣
s=s̄k(t)

d

dt
s̄k(t)

)
= 0

and it follows that

d

dt
s̄k(t) = −1

τ
(s̄k(t)− α(s̄k(t), t)) . (3.18)
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3 Adaptive meshes: r-refinement

Here, s̄k denotes the characteristic with creation time tk. We assumed that α is continuous
in space and time, thus s̄k is continuously differentiable. The original problem (3.17) is
equivalent to the family of problems involving a system of ODEs

d

dt
Ψ̄k(t) = 0, Ψ̄k(tk) = Ψ(s̄k(tk), tk) = σk,

d

dt
s̄k(t) = −1

τ
(s̄k(t)− α(s̄k(t), t)) , s̄k(tk) =

{
sa/b(tk), tk > 0,

sk, tk = 0
(3.19)

for all t such that σk ∈ Ω̂(t) and sk ∈ Ω(0). The notation sa/b(tk) indicates that the
characteristic can have its origin either on the left or the right side of the domain.
We want to show that Ψ is a parameter distribution and we do that by showing that Ψ
has strictly positive space derivative. For a solution of (3.19) this is equivalent to

a) s̄i(t′) > s̄j(t
′),

b) Ψ̄i(t
′) > Ψ̄j(t

′)

for all tj > ti and t′ ∈ [tj, T ] with s̄i(ti) > s̄j(tj) and Ψ̄i(ti) > Ψ̄j(tj). This can easily be
seen by looking at

∂sΨ(s, t) = lim
h→0

Ψ̄k(t)− Ψ̄l(t)

s̄k(t)− s̄l(t)

where tk and tl are chosen such that s̄k(t) = s and h = |s̄k(t)− s̄l(t)|.

ad a) Consider a characteristic s̄i with its origin at the left boundary – the right boundary
is analogous. According to the assumption α(sa(t), t) = sa(t) we have d

dt
s̄i(t)|t=ti = 0,

additionally we assumed d
dt
sa(t) < 0. Thus there exists ε > 0 such that sa(t) < s̄i(t)

for all t ∈ (ti, ti + ε]. Now consider the characteristic s̄j with tj = ti + ε. It holds that

s̄j(tj) = sa(t) < s̄i(tj).

Assume that there exists a t̆ ∈ [tj, T ] such that{
s̄j(t) < s̄i(t), t ∈ [tj, t̆),

s̄j(t) = s̄i(t), t = t̆.

Define w(t) := (s̄i − s̄j)(t) for all t ≥ tj. With the above assumption the relation
w(t̆) = 0 must be fulfilled. With (3.18) we have

d

dt
w(t) = −1

τ
(w − (α(s̄i(t), t)− α(s̄j(t), t))) , w(tj) =: δ > 0. (3.20)

Since α is assumed to be strictly positive increasing, α(s̄i(t), t)−α(s̄j(t), t) > 0 holds
and we can estimate for all t ∈ [tj, t̆] that

d

dt
w(t) > −1

τ
w.
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3.3 Desired re-parameterization

It follows for the solution of (3.20) that

w(t) > δ exp

(
−1

τ
(t− tj)

)
We use continuous extension to infer that

w(t̆) ≥ δ exp

(
−1

τ
(t̆− tj)

)
must also hold. This is a contradiction to the assumption that w(t̆) = 0.

ad b) The solution of the initial value problem (3.19) for Ψ̄k is Ψ̄k(t) = σk. Thus the
assertion holds since Ψ̄i(ti) > Ψ̄j(tj) was true.

3.3 Desired re-parameterization

The redistribution of the parameters is performed with respect to the chosen density func-
tion fα (or monitor function M̂ in MMPDE, respectively), thus we want to discuss the
possibilities and restrictions in its modeling in the following part. We call both fα and
M from now on mesh control functions. In general, fα is a model-dependent arbitrarily
complicated functional on the solution that should approach fα ≡ 1 by moving the mesh.
We will introduce a special form of the parameter density and show how the parameter
density can be constructed following the ideas of the monitor function.

A monitor function can be easily modeled, the only restriction according to Definition 3.8
is continuity and strict positivity. There already exists a vast spectrum of possibilities in
literature [59]. When a parameter density is modeled, it needs to be ensured that it fulfills
the requirements given in Definition 3.6. We already have a link between the monitor
function and the parameter density with (3.5) and suggest the following general structure:
Let a continuous and strictly positive function z : Q → R+ be given (analogously to a
monitor function). Then we assume that the parameter density fα has the form

fα(s, t) =
z(s, t) |Ω(t)|

Z(t)
, Z(t) :=

∫
Ω(t)

z(s′, t) ds′ (3.21)

and the modeling of a parameter density reduces to the modeling of the function z. This
allows to adopt all ideas from already existing monitor functions straightforwardly to the
parameter densities. We present two approaches how to remodel the function z from a
given monitor function.

Strategy 3.19 (Implicated parameter density). Let an arbitrary monitor function
M̂ be given. Then this monitor function implicates a parameter density fα in the form
(3.21) through (3.5) by using

z(s, t) = fΨ(s, t)M̂(Ψ(s, t), t).

We call this fα the implicated parameter density of M̂ .
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3 Adaptive meshes: r-refinement

Another idea how to remodel the function z from a given monitor function is to define a
comparable measure solely on the computational coordinates. This seems reasonable since
the computational parameterization is the one that the actual computation is carried out
on.

Strategy 3.20 (Transferred parameter density). Let an arbitrary monitor function
M̂ be given that involves the solution component ŷ and spatial derivatives of it in referential
parameterization, i.e. M̂ = M̂(σ, t, ŷ, ∂σŷ, . . .). Then the idea of this monitor function is
transferred to a parameter density fα in the form (3.21) by using

z(s, t, y, ∂sy, . . .) := M̂(s, t, y, ∂sy, . . .)

with the solution component in computational parameterization y. This means that z
uses the expression of the monitor function and puts it in the context of the computational
parameterization. One can say, the rule is to replace σ with s and ŷ with y in the expression
of the monitor function.

The following example illustrates the implicated and transfered parameter density and
shows similarities.

Example 3.21. Consider a solution ŷ : Q̂ → R with large, strictly positive derivative
in the referential parameterization. To obtain a moderate (constant) derivative in the
computational parameterization, we model the monitor function as

M̂(σ, t) = ∂σŷ(σ, t). (3.22)

The implicated and transferred parameter density fα then is obtained by using

zimp(s, t) = fΨ(s, t)∂σŷ(σ, t)
∣∣
σ=Ψ(s,t)

, (3.23)

ztra(s, t) = ∂sy(s, t) (3.24)

in (3.21) for z. Remember the type categorization of the unknowns in Section 2.2.1. If ŷ is
a type-0 field, then we have y(s, t) = ŷ(Ψ(s, t), t) and ∂σŷ(σ, t)

∣∣
σ=Ψ(s,t)

= ∂sy(s, t)/fΨ(s, t)

with (2.14) and (2.17b). In consequence the implicated and transferred parameter density
coincide. But this is only a special case, in general they are fundamentally different.
Consider e.g.

M̂(σ, t) =

√
1 + |∂σy(σ, t)|2, (3.25)

which is called the arc-length monitor function [59]. We state z for the implicated and
transferred parameter density

zimp(s, t) = fΨ(s, t)

√
1 +

∣∣∣∂σŷ(σ, t)
∣∣
σ=Ψ(s,t)

∣∣∣2,
ztra(s, t) =

√
1 + |∂sy(s, t)|2.
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3.3 Desired re-parameterization

We emphasize again that both fα and M̂ are arbitrary functions that have to be modeled
to be suitable for the given physical problem. It is possible that very large peaks appear in
the mesh control function, e.g. when steep gradients are present, or that the mesh control
function becomes non-smooth for approximations of high order derivatives. This lack of
smoothness can create rapid changes in cell sizes between adjacent cells that translate into
larger truncation errors which may effect the convergence of the mesh movment [82]. In
[59] this effect is avoided by employing spatial smoothing to the mesh control function.
More precisely, the direct smoothing of the mesh control function is based on the use of an
elliptic smoothing operator (the Laplacian).

Lemma 3.22 (Spatial smoothing operator G). [58, Lemma 3.1]. Let a continuous
function f : I → R be given, where I is a closed interval. We denote the interior with

◦
I

and the boundary with ∂I. Assume 0 < α < f(s) ≤ β < ∞ for all s ∈ I with α, β > 0.
Then the solution v : I → R of

Gv ≡ (Id− λ−2
0 4)v = f s ∈

◦
I

∂sv(s) = 0 s ∈ ∂I (3.26)

exists and is unique for constant λ0 > 0. Furthermore, for v = G−1f holds

i) v ∈ C2(
◦
I) ∩ C1(∂I),

ii) 0 < α < v(s) ≤ β <∞ s ∈ I,
iii) |∂sv/v| ≤ λ0, s ∈ I.

In the following we will apply the smoothing operator to arbitrary functions. We use the
superscript G to indicate that, i.e. for any function f : I → R with arbitrary bounded
domain I the usage of the smoothing operator is indicated by fG = G−1f . With its help
we introduce the smoothed monitor function M smo and parameter density f smoα .

Lemma 3.23 (Smoothed monitor function). Let a monitor functionM and a smooth-
ing operator G be given. Then M smo(·, t) := MG(·, t), t ∈ [0, T ] is also a monitor function
with the same upper and lower bound and it follows that

i) M smo(·, t) ∈ C1(Ω(t),R+) for t ∈ [0, T ],

ii)
∣∣∂sM smo(s, t)/M smo(s, t)

∣∣ ≤ λ0, s ∈ Ω(t), t ∈ [0, T ] with λ0 from Lemma 3.22.

Proof. Both i) and ii) follow with Lemma 3.22. Since M is continuous it follows for the
solution of the Poisson problem (3.26) thatM smo(·, t) ∈ C1(Ω(t),R+) for all t ∈ [0, T ]. The
lower and upper bound of M still hold for M s, thus it is also strictly positive and therefore
a monitor function.

Lemma 3.24 (Smoothed parameter density). Let a parameter density fα in the form
(3.21) and a smoothing operator G be given. We define

f smoα (s, t) :=
zG(s, t)

∣∣∣Ω̃(t)
∣∣∣∫

Ω(t)
zG(s′, t) ds′

.

Then f smoα is also a parameter density for the distribution α.
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3 Adaptive meshes: r-refinement

Proof. Analogous to Lemma 3.23, the function zG is also strictly positive and continuous,
which carries over to f smoα . Furthermore we have∫

Ω(t)

f smoα (s′, t) ds′ =
∣∣∣Ω̃(t)

∣∣∣ .
This agrees with Definition 3.6, thus f smoα is a parameter density for the distribution α.

The aim is to use the smoothed mesh control functions in the moving mesh strategies
to obtain a transformation that produces a spatially smooth mesh. If the mesh, or more
precisely the transformation Ψ, is locally quasi-uniform (see Definition 3.25), then the
spatial smoothness is guaranteed and such meshes normally lead to an approximation
error of the same (asymptotic) order as uniform ones, e.g. see [64, 65, 58]. In the discrete
case, the local quasi-uniformity translates to a restriction of the cell size variation of direct
neighbors in space.

Definition 3.25 (Local quasi-uniformity (LQU)). Assume a transformation Ψ with
sufficient regularity, in this case at least Ψ(·, t) ∈ C2(Ω(t), Ω̂(t)) for all t ∈ [0, T ]. If∣∣∣∣∂ssΨ(s, t)

∂sΨ(s, t)

∣∣∣∣ ≤ λ (3.27)

holds for a constant λ > 0 and for all (s, t) ∈ Q, then the transformation is called local
quasi-uniform.

In Section 3.2 we presented MMPDE strategies taken from literature and adjusted them
to our time-dependent domains. The usage of a smoothed mesh control function creates lo-
cally quasi-uniform transformations Ψ. This has already been proven for time-independent
domains in [58], we now extend the proofs for time-dependent domains.

Theorem 3.26 (LQU with MMPDE1). Let Ψ be determined by MMPDE1 (Strategy
3.9). Let the assumption of Theorem 3.15 be true. Assume additionally that the inequalities∣∣∣∣∂sM(s, t)

M(s, t)

∣∣∣∣ ≤ λ0 (3.28)

(also called smoothness condition) and∣∣∣∣∂ssΨ(s, t?(s))

∂sΨ(s, t?(s))

∣∣∣∣ ≤ λ1 (3.29)

are satisfied for all s ∈ Ω(t), t ∈ [0, T ] with some constants λ0, λ1 > 0. Then∣∣∣∣∂ssΨ(s, t)

∂sΨ(s, t)

∣∣∣∣ ≤ λ0 + λ1 +
α1

α0

C(s)

holds for all s ∈ Ω(t), t ∈ (0, T ] with some positive and bounded function C.
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3.3 Desired re-parameterization

Proof. Remember the equation for ∂sΨ(s, t) from (3.14). We separate the integral, take
the s derivative and apply the absolute value to obtain

H :=
∣∣∣∂ssΨ(s, t)− e−t/τ

[
∂ssΨ(s, t?(s)) + ∂tsΨ(s, t)

∣∣
t=t?(s)

d

ds
t?(s)

]∣∣∣
=

∣∣∣∣∣e−t/τ dds
∫ t

t?(s)

c(t̃)et̃/τ

M(s, t̃)
dt̃

∣∣∣∣∣
=

∣∣∣∣e−t/τ [∫ t

t?(s)

∂sM(s, t̃)

M(s, t̃)2
c(t̃)et̃/τ dt̃− c(t?(s))e

t?(s)/τ

M(s, t?(s))

d

ds
t?(s)

]∣∣∣∣ .
The absolute value can be split up due to the strict positivity of c, cf. (3.13). The monitor
function M in the right term is estimated with its lower bound (3.3) and the smoothness
condition of M , cf. (3.28), is used:

H ≤e−t/τ
[
λ0

∫ t

t?(s)

1

M(s, t̃)
c(t̃)et̃/τ dt̃+

1

α0

∣∣∣∣ ddst?(s)
∣∣∣∣ c(t?(s))et?(s)/τ

]
.

Equation (3.14) is now plugged in again to replace the integral giving

H ≤ λ0

(
∂sΨ(s, t)− e−t/τ∂sΨ(s, t?(s))

)
+

1

α0

∣∣∣∣ ddst?(s)
∣∣∣∣ e−t/τc(t?(s))et?(s)/τ

(3.11)
≤ λ0∂sΨ(s, t) +

1

α0

∣∣∣∣ ddst?(s)
∣∣∣∣ e−t/τc(t?(s))et?(s)/τ .

The whole inequality is now divided by the positive ∂sΨ(s, t) and the lower bound for
∂sΨ(s, t), cf. (3.15), is inserted on all but the first occurrence∣∣∣∣∣∂ssΨ(s, t)

∂sΨ(s, t)
− 1

∂sΨ(s, t?(s))

[
∂ssΨ(s, t?(s)) +

d

ds
t?(s)∂tsΨ(s, t)

∣∣
t=t?(s)

]∣∣∣∣∣
≤ λ0 +

1

α0

∣∣ d
ds
t?(s)

∣∣
∂sΨ(s, t?(s))

et?(s)/τc(t?(s)).

The absolute value on the left side is now estimated with |a|− |b| ≤ |a− b| and assumption
(3.29) is used:∣∣∣∣∂ssΨ(s, t)

∂sΨ(s, t)

∣∣∣∣ ≤ λ0 + λ1 +

∣∣ d
ds
t?(s)

∣∣
∂sΨ(s, t?(s))

(
1

α0

et?(s)/τc(t?(s)) +
∣∣∣∂tsΨ(s, t)

∣∣
t=t?(s)

∣∣∣) .
We further estimate with the help of (3.12) and the lower bound of M , cf. (3.3), the
mixed-derivative term of Ψ yielding

|∂tsΨ(s, t)| = 1

M(s, t)
c(t)− 1

τ
∂sΨ(s, t)︸ ︷︷ ︸

>0

≤ 1

α0

c(t).
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3 Adaptive meshes: r-refinement

We insert this result in the inequality and use the total space derivative of the boundary
Ψ(s, t?(s)) = σa/b(t?(s)) to replace d

ds
t?(s) on the right side:∣∣∣∣∂ssΨ(s, t)

∂sΨ(s, t)

∣∣∣∣ ≤λ0 + λ1 +
1

α0

c(t?(s))

∣∣ d
ds
t?(s)

∣∣
∂sΨ(s, t?(s))

(
et?(s)/τ + 1

)
.

The integral constant c(t?(s)), cf. (3.13), is bounded by α1/τ∗ with (3.3) and a constant
0 < τ∗ < τ that is chosen small enough such that

1

τ∗
≥ 1

τ

(
σb(t)− σa(t)

)
+ ∂tΨ(sb(t), t)− ∂tΨ(sa(t), t)

∣∣∣
t=t?(s)

holds.We conclude the complete estimation for t ∈ (0, T ], s ∈ Ω(t) with∣∣∣∣∂ssΨ(s, t)

∂sΨ(s, t)

∣∣∣∣ ≤λ0 + λ1 +
α1

α0

C(s)

that incorporates a factor C that is dependent on the space-time domain and the initial
transformation,

C(s) :=
1

τ∗

∣∣ d
ds
t?(s)

∣∣
∂sΨ(s, t?(s))

(
et?(s)/τ + 1

)
.

Theorem 3.27 (LQU with MMPDE2). Let Ψ be determined by MMPDE2 (Strategy
3.10). Let the assumption of Theorem 3.15 be true. Assume additionally that the inequality∣∣∣∣∂sM(s, t)

M(s, t)

∣∣∣∣ ≤ λ0 (3.30)

is satisfied for all s ∈ Ω(t), t ∈ [0, T ] with some constant λ0 > 0. Then∣∣∣∣∂ssΨ(s, t)

∂sΨ(s, t)

∣∣∣∣ ≤ λ0 + λ1

holds for all s ∈ Ω(t), t ∈ (0, T ] with some constant λ1.

Proof. Let us restate MMPDE2 from (3.7) and apply the absolute value to obtain with
assumption (3.30) ∣∣∣∣∂ssΨ∂sΨ

∣∣∣∣ =

∣∣∣∣∂sMM
∣∣∣∣+ τ |u|

≤ λ0 + τ |u| .

Since u is a part of the assumed existing solution we now know that the left term does not
explode, i.e. there exists some constant λ1 such that τ |u| < λ1.
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3.3 Desired re-parameterization

The necessary assumptions in Theorem 3.26 and Theorem 3.27 are not critical and can
be easily fulfilled. If a smoothed monitor function M smo is used, the additional regularity
assumption and smoothness condition to obtain LQU are already fulfilled and the constant
λ0 becomes the parameter from the spatial smoothing operator from Lemma 3.22. The
only remaining restrictions to choose M are the upper and lower bound and continuity,
and that the transformation is locally quasi-uniform in its initial values for Theorem 3.26.
(cf. (3.29)).

Remark 3.28. The MMPDE2 and DELAX2 strategy seem preferable for actual compu-
tations because they can be formulated in terms of the parameter speed u, which directly
couples them to the applied model equations. The MMPDE1 is a PDE of third order, which
might increase the computation time, but the higher regularity could help create a smoother
mesh. The DELAX1 strategy is not considered for the numerical investigations later in
this work, nevertheless it might be viable when an alternate solution procedure [59] is used,
cf. Remark 3.12.

We have presented the general mechanisms that are needed for the moving mesh strate-
gies with our way of formalizing three parameterization layers. We presented two strate-
gies already existing in literature, MMPDE1, MMPDE2, and proposed two new moving
mesh strategies, namely DELAX1, DELAX2. All four strategies determine a valid re-
parameterization for the underlying model equations. Unfortunately, we could not show
up to this point that the DELAX strategies produce a transformation that is LQU, in con-
trast to the MMPDE strategies. Nevertheless, this does not mean that it is not possible,
or that the produced meshes are of lower quality. The remaining question is now: How
do you choose a suitable mesh control function? By suitable we mean that it has to be
tailored to the physical equations that are being solved. Therefore we will discuss options
together with the studies that we are conducting later in Section 5.4.2.
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4 Numerical scheme

This chapter is dealing with the numerical scheme that we develop for the jet model. The
jet model (cf. Chapter 2) can be rewritten as a first-order system of PDAEs on a space-time
domain with time-dependent spatial boundaries. We propose a Finite Volume method on
a staggered grid with flux approximation suitable for the underlying differential-algebraic
character (cf. Section 2.2.4) and a proper geometric handling of the space-time domain.

The Finite Volume method is introduced in Section 4.1, which is partly already published
in [89]. More precisely, in Section 4.1.1 we state the discrete scheme together with a
truncation error analysis. In Section 4.1.2 we then discuss details of the incorporation of
initial and boundary conditions. After stating a step-by-step algorithm in Section 4.1.3
we show in Section 4.1.4 the reconstruction of a discrete solution, in particular for the
comparison of solutions with different spatial grids. Finally we give details about the
application to the jet model in Section 4.2 and motivate the necessity of our new formulation
of the jet kinematics from Section 2.2.4.

4.1 Finite Volume method

The most common numerical methods for PDEs are the Finite Difference, Finite Volume
and Finite Element method. In this work we deal with equations resulting from conser-
vation and balance laws. Conservation properties of the scheme play an important role,
we thus favor the Finite Volume method with its natural conservation for cell averages:
The given domain is partitioned in small finite volumes (cells) and the underlying equa-
tions are solved on them in a weak sense in integral form. After integration over the cells,
proper quadrature rules are required for the fluxes and source terms. Whereas the source
terms need more difficult approximations on the whole cell, the application of the Gauss
integral theorem leads to surface integrals for the fluxes giving natural flux conservation.
Every unknown can be evaluated at the cell midpoints or the cell edges. If said unknown
mostly appears in the fluxes of the system the edge location is often beneficial because the
surface integral can therewith be easily evaluated. When both node and edge location is
used for different unknowns, such an approach is known as staggered grid. For a general
introduction to Finite Volume schemes we refer to [70, 105].

In our case the space-time domain is looked upon as a two-dimensional domain with
t and s axis (cf. Figure 2.7a). We have temporal fluxes for derivatives in t and spatial
fluxes for the ones in s. We use quadrilateral finite volumes, or more precisely space-time
cells, that are rectangular within the domain and possibly trapezoidal at the boundary for
a proper approximation of the space-time boundaries. We do this to allow decoupling of
the time levels for iterative solving. Further on we employ a central approximation for the
spatial fluxes and a fully implicit approximation of the temporal fluxes. The staggered grid
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4 Numerical scheme

approach allows here the use of a narrow, direct-neighbor stencils. The approximations are
tailored for the underlying DAE character of the jet model (see Remark 4.1)

Remark 4.1 (Applicability of the scheme). Our discrete scheme is clearly motivated
by the needs of the jet model which is a PDAE system and not strictly classifiable as parabol-
ic/hyperbolic system. The underlying DAE character of the jet model (cf. Section 2.2.4) is
taken into account, thus our scheme is suitable for PDAE with similar character (namely
index one or less in space and two or less in time). If we were to interpret our discrete
approach as a method of lines we would employ a shifted Gauss’s method in space and
an implicit Euler’s method in time. Considering each direction by itself, we have general
theoretical statements for the convergence order of implicit Euler’s method when applied to
index 2 or less DAEs (also for index 3 when the algebraic, index 3 unknowns only appear
in linear or quadratic terms), and ones for the Gauss’s method when applied to index 1
DAEs [46]. Nevertheless this is not a hard restriction, since convergence of higher index
DAEs is not ruled out, it is simply not guaranteed by the theory. The scheme is designed
to be applicable to any system that has similar requirements than the jet model and that fits
in the form (4.1). As an example, the index 3 formulation of the jet model, cf. Table 2.2,
shows linear convergence order for time-independent domains.

4.1.1 Scheme and truncation error

Assume a system of partial differential equations on the domain Q from (2.15) that is given
in the form

∂ta(y(s, t)) + ∂sf(y(s, t)) + g(y(s, t)) = 0 (4.1)

with the vector of unknowns y : Q → RM , and the vector-valued functions a,f , g : RM →
RM , M ∈ N for the time evolution, spatial fluxes and source terms, respectively. The
latter three are explicitly allowed to be zero component-wise.
The following parts are technical and introduce necessary notation and formalizations

at length, as for the result: the discrete version of (4.1) is given by (4.3) and its truncation
error by (4.5).
The components of the functions in (4.1) will be addressed with a lower index ·j, j =

1, . . . ,M . We assume that the unknowns and equations are already ordered and uniquely
assign the unknowns yj, j = 1, . . . ,M to the corresponding j-th equation of system (4.1)

∂taj(y(s, t)) + ∂sfj(y(s, t)) + gj(y(s, t)) = 0.

We seek a consistent numbering of the discrete grid points throughout the whole simulation
and thus put a fixed numbering onto the axes – independent from the actual domain. We
do this because the spatial domain is time-dependent and we do not want to re-number
when the domain is changing. For this purpose we introduce the equidistant spatial grid
si+1/2, i ∈ Z with si+1/2 < si+3/2 and s1/2 = 0 as the reference, the grid spacing is ∆s.
Additionally we set si = (si+1/2+si−1/2)/2, thus the entire spatial grid comprises all sk with
k ∈ K := {. . . ,−3/2,−1,−1/2, 0, 1/2, 1, 3/2, . . .}. The temporal grid is given by tn, n ∈ N
with tn < tn+1 and t0 = 0 as reference, the grid spacing is ∆tn := tn− tn−1 (see Figure 4.1).
Throughout this section the usage of the indices i, n, k and j will be consistent, meaning i
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Figure 4.1: Consistent numbering of the s − t plane with s1/2 = 0 as the reference. The
three exemplary tuples indicate where nodes (circles, e.g. (s−1, t3)) and edges
(bars, e.g. (s−3/2, t3), (s−1/2, t3)) will be located.

will be integers, n natural numbers (zero excluded), k ∈ K and j = 1, . . . ,M . All discrete
space-time tuples enclosed by Q are collected in the set

Qh = {(sk, tn) ∈ Q | sa(tn) ≤ sk ≤ sb(tn), tn ≤ T, k ∈ K, n ∈ N}.

We call those tuples with k ∈ Z nodes and those with k /∈ Z edges and formalize this
choice by

T (k) =

{
1, if k ∈ Z, (node)

0, if k /∈ Z. (edge)

An illustration of Q and Qh for a fixed domain is shown in Figure 4.2a. Aiming for
natural narrow stencils of the spatial fluxes (see Remark 4.5), we decide for every unknown
whether it should be of node type or of edge type, which means in agreement with the
space-time tuples that their discrete counterpart will be located either on nodes or edges.
The associated model equation receives the same type and we formalize this decision with

D = (D1, . . . ,DM) ∈ {0, 1}M .

To obtain the discrete version of (4.1) we construct the finite volume cells with the help
of the nodes and edges. More precisely we use a subset of the space-time tuples that we
denote by Qh,A ⊂ Qh and call it the set of active tuples, or active domain. It is defined by

Qh,A =
{

(sk,tn) ∈ Qh
∣∣[((sk−1/2, tn) ∈ Qh ∧ T (k − 1/2) = pl

)
∨ (sk−1, tn) ∈ Qh

]
∧
[(

(sk+1/2, tn) ∈ Qh ∧ T (k + 1/2) = pr
)
∨ (sk+1, tn) ∈ Qh

]
, k ∈ K, n ∈ N

}
(4.2)

and utilizes pl, pr ∈ {0, 1} that have to be chosen appropriately for the model equations
(see Remark 4.2). We call pl the type of the left boundary and pr the type of the right
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Figure 4.2: Illustration of Qh and Qh,A for an example of a time-independent spatial do-
main.
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Figure 4.3: Illustration of Qh,A for an example of a time-dependent spatial domain.
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4.1 Finite Volume method

boundary. The set Qh,A can be explained the following way: If the left boundary has the
type pl, then for every time level the tuple in Qh,A, that is closest to this boundary, has the
opposite type. The right boundary is handled analogously with pr. The elements of Qh,A
are called active nodes or edges, exemplarily indicated in blue in Figure 4.2b and Figure 4.3
for a time-independent and time-dependent domain, respectively. As an abbreviation, and
to indicate the actual choice of the boundary types, we use Qpl−pr for the active domain
Qh,A with boundary types pl and pr.

Remark 4.2 (Choice of active domain). Note that Qh,A, or more precisely, pl, pr for
the boundaries has to be chosen appropriately with respect to the model problem. In the
numerical approach we need to ensure that all boundary conditions can be coupled naturally
through interpolation within the discrete fluxes of (4.1). A carelessly chosen set of active
tuples can decouple the boundary conditions from the system due to the staggered grid,
creating an unsolvable system in the process. As the most general active domain we could
consider all tuples with t > t0 and whose left and right neighbor is also within the domain.
In this work we always assume that the active domain has the form (4.2).

We construct a finite volume cell for every active node and edge in Qh,A according to
Strategy 4.3, examples of the resulting domain partitioning are illustrated in Figure 4.5.

Strategy 4.3 (Construction of finite volume cells). Let one of the active tuples
(sk, tn) ∈ Qh,A be given. We construct its corresponding cell specifically to allow iter-
ative time solving and use four space-time points as the corners. We say that this cell is
assigned to time level tn and of the same type as the original tuple. The two top corners
of the cell are always (sk−1/2, tn), (sk+1/2, tn) and there are two cases for the two bottom
corners (as illustrated in Figure 4.4):

1) (sk, tn−1) ∈ Qh,A: A rectangular cell is constructed with the top corners and
(sk+1/2, tn−1), (sk−1/2, tn−1) as the bottom corners.

2) Otherwise: A trapezoidal cell is constructed with the top corners and the bottom
ones (sk+1/2, t?(sk+1/2, tn)), (sk−1/2, t?(sk−1/2, tn)) with the help of the creation time
t?, cf. Definition 2.13.

We apply Gauss’ Theorem to express the integral of the fluxes over the cells through an
integral over the faces and use a fully implicit approximation (with box quadrature rule)
for the temporal fluxes and a central approximation (with midpoint quadrature rule) for
the spatial fluxes and analogous approximations for the source integral. The incorporation
of the time-dependent boundary is facilitated with the help of the creation time t?. Overall
our approach yields component-wise for j = 1, . . . ,M and every (sk, tn) ∈ Qh,A with
Dj = T (k) the discrete equation

∆s
[
aj(Yk(tn))− aj(Yk(tkn−1))

]
+ ∆tkn

[
fj(Yk+1/2(tn))− fj(Yk−1/2(tn))

]
+ ∆s∆tkngj(Yk(tn)) = 0 (4.3)
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(a) Rectangular cell.
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(b) Trapezoidal cell at the boundary.

Figure 4.4: Illustration of a slanted space-time cell. The crosses exemplify the space-time
tuples used for the construction of the cell and can be either nodes or edges,
depending on k. The function t? is the creation time, cf. Definition 2.13.
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boundary conditions.
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at the boundary over multiple time levels. For
example, the edge at (s−5/2, t2) is not active.
It is within the domain, but its left-adjacent
node is not. Very small cells are avoided this
way.

Figure 4.5: Illustration of the domain partitioning with cells built around all active nodes
(blue circles) used for node type equations (analogously for edge type).
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4.1 Finite Volume method

where the adjusted time step is given by ∆tkn = tn − tkn−1 with

tkn−1 =

{
tn−1, if (sk, tn−1) ∈ Qh,A,
t?(sk, tn), otherwise.

The approximations Yk = (Yk,1, . . . , Yk,M) : [0, T ]→ RM in (4.3) are given for all (sk, tn) ∈
Qh,A by the recursive description

Yk,j(tn) =

{
Y n
k,j, if Dj = T (k),

1
2

(
Yk−1/2,j(tn) + Yk+1/2,j(tn)

)
, otherwise

(4.4)

with the spatial averages

Y n
k,j =

1

∆s

∫ sk+1/2

sk−1/2

yj(s, tn) ds.

That means that Y n
k,j agrees with the value of yj at the midpoint of the interval to O(∆s2)

and that we use linear interpolation for Yk in (4.4). Higher order interpolation is certainly
possible here, but only feasible if numerically beneficial, cf. Section 5.2. For all other
(sk, t) ∈ Q \ Qh,A (non-active) that are required in (4.3) or (4.4), we set the corrsponding
Yk(t) with help of the initial and boundary conditions. Initial values can be set directly
due to the adjusted time step, whereas boundary conditions need to be interpolated to
reflect the actual distances. We use a first-order interpolation here and formalize it in the
following Section 4.1.2. Overall, the resulting non-linear system for the unknowns Y n

k,j is
solved successively for every time level tn starting with t1 and using Newton’s method.
To show consistency we need the local truncation error of our proposed scheme, which

directly follows from its derivation that is presented in Appendix D.1. It was obtained
with simple quadrature rules and Taylor expansions for the approximation of the integrals.
We do a first order approximation for temporal fluxes and a second order approximation
for spatial ones for cells away from the boundary. Cells adjacent to the boundary are
first order due to the applied linear interpolation. Source terms are approximated with a
one-point quadrature rule of the two-dimensional cell integral. One noteworthy step in the
derivation of the method is the handling of the slanted, south face of the trapezoidal cells,
cf. Figure 4.5b. Its integral requires the evaluation of the temporal and spatial flux. With
the help of another Taylor expansion we obtain a fully implicit evaluation of the spatial
flux on the edges of the north face. Assuming that no interpolation in (4.4) is necessary,
the local truncation error of the discrete scheme (4.3) is

Erec = O
(
∆t2max + ∆s3 + ∆s∆t2max + ∆s3∆tmax

)
(4.5a)

for rectangular cells with ∆tmax := max{∆tn | tn ≤ T, n ∈ N} and

Esla = O(∆t2sla + ∆s2
sla∆s+ ∆s∆t2sla + ∆s2

sla∆tsla) (4.5b)

for slanted cells at the boundary. Note that the last two terms in (4.5a) result solely
from the source terms whereas in (4.5b) the last term is also shaped through the spatial
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4 Numerical scheme

flux approximation in the south, slanted face. In the case that interpolation in (4.4) is
necessary, the error ∆s2∆tmax additionally appears in Erec (and analogously in Esla, but
the error is not worsened there). The error Esla is dependent on the space-time domain
through the worst-case time step

∆tsla = max{∆tkn | (sk, tn) ∈ Qh,A},

that reflects the maximum time that a node or edge stays non-active but is inside of Q,
and the worst-case spatial step

∆ssla = max ({|skl − sa(tn)| |n ∈ N} ∪ {|sb(tn)− skr | |n ∈ N})

that reflects the maximum distance of the sampling points for the linear interpolation. In
the definition of ∆ssla the indices of the first and last active tuple of the time level tn
appear, they are explained in Notation 4.4. Due to the construction of Qh,A the worst-case
spatial step has the upper bound of 2∆s, the worst-case time step is proportional to ∆t
with a constant dependent on the space-time domain. In general it is feasible to assume
that the number of slanted cells is much smaller than the number of rectangular cells, thus
the error is expected to be dominated by Erec in the global error.

Notation 4.4 (First and last active tuple). Consider all space-time tuples of an ar-
bitrary time level tn in Qh,A. There exists knl ∈ K such that (sknl , tn) ∈ Qh,A and
(sknl −1/2, tn) /∈ Qh,A holds, and there exists knr ∈ K such that (sknr , tn) ∈ Qh,A and
(sknr +1/2, tn) /∈ Qh,A holds. The indices knl , knr will always appear in a way that the context
allows to read at which time level they are adressed, thus we omit the superscript argument
and call (skl , tn) the first active tuple and (skr , tn) the last active tuple for the time level
tn.

To conclude this section we give some further remarks on our discrete approach.

Remark 4.5 (Motivation for the staggered approach). So far the structure of the
numerical formula and truncation error of a node and edge equation are analogously, the
assignment of node and edge type seems random. The full potential of this staggered ap-
proach unfolds due to the fact that for the jet model (and most likely many others) the
node/edge assignment of the unknowns and equations can be done in such a way that aj, gj
solely depends on unknowns of type Dj and fj solely depends unknowns of the opposite type.
We call the assignment then ideally staggered. The consequence is that no interpolation
in (4.4) is necessary and the approximation of the spatial flux is central using only direct
neighboring values (interpreted as finite differences we obtain a narrow, central stencil).

Remark 4.6 (Higher order methods). Note that there exist ideas in literature for hi-
gher order implicit time integrations with special consideration of hyperbolic conservation
laws and stiff systems, e.g. [30] study schemes that are strong stability preserving (SSP) and
therefore total variation diminishing (TVD). A scheme that is TVD enables sharper shock
predictions without creating spurious oscillations [48]. The implicit Euler method is always
SSP, but higher order methods have restrictions on the applicable time step. The upper
bound for the time step is defined with the help of the radius of absolute monotonicity [68],
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Figure 4.6: Illustration of the zig-zag approximation of the space-time domain.

which is finite for all higher order Runge Kutta methods [66]. The presented Finite Volume
scheme has second order flux approximations in space, thus a method that is at least second
order in time seems suitable. The Radau IIA method with stage s = 2 comes to mind,
yet the above restriction on the time step requires investigation. Numerically optimal in
terms of the time step restriction are the singly diagonally implicit Runge-Kutta (SDIRK)
methods of second and third order, which are presented in [66] and based on [41] and the
diagonally implicit Runge-Kutta (DIRK) methods [1]. Nevertheless, we stick to the implicit
Euler’s method in this work.

Remark 4.7 (Comparison to Arne et al. (2015)). In contrast to the approach in this
work, we use a first-order Finite Volume scheme in space on a non-staggered grid with
upwinding flux approximations in [5]. After the semi-discretization in space, the resulting
DAE system is integrated in time with the stiffly accurate Radau IIA method. Another
difference is in handling of time-dependent domains, more precisely in the approximation
of the slanted boundary. If we interpret the approach in [5] with our space-time cells in
Figure 4.5, the boundary is approximated by a zig-zag line that solely moves in the t or
s direction (cf. Figure 4.6). That results in ”jumping” boundary values, which imposes
additional difficulties onto the numerical solution. Furthermore, the approach in [5] is
restricted to L(t) = t, R(t) = 0 for the space-time domain.
In [5] a study was made to examine the temporal convergence order. The expected orders
could only be achieved for very small ∆t, higher order time integration methods showed
similar behavior (in particular, the Radau IIA method with stage one and two is used in
[5]). The new approach in this work does not suffer from such a convergence order reduction
effect, as we will see in Section 5.2.

Remark 4.8 (Alternative cell shapes). The sole restriction in the modeling of the cells
being adjacent to a slanted boundary of the domain (introduced as trapezoidal cells) is our
wish to decouple the time integration for iterative solving. Geometrically speaking that
means that every cell has to have the north face aligned with one of the horizontal tn lines.
The idea of fan-shaped cells becomes apparent because it gives a better distribution of the
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Figure 4.7: Illustration of cells in fan shape.

cell volumina when compared to the trapezoidal shape, this is illustrated in Figure 4.7.
The disadvantage of this approach is that in case of multiple fan-shaped cells for one time
level all those cells would undergo the same discrete time step. That creates physically
unrealistic behavior in the jet, because their actual dynamics influence the system over
different timespan. This effect is corrected with our trapezoidal-shaped cells, yet we do not
claim that this choice is the only possible one.

4.1.2 Initial and boundary conditions

The model equations are given together with a set of initial and boundary conditions to
build a well-defined system. In this section we want to present how they are incorporated
in the discrete formula (4.3) and highlight the impact of the choice of the active domain.
We state our abstract structure followed by an example and present a hands-on algorithm
in Section 4.1.3.

Initial conditions Like already mentioned in Section 4.1.1 we can incorporate the initial
conditions directly due to the adjusted time step in (4.3). We assume that initial conditions
are given for all (s, t0) ∈ Q in the form

yj(s, t0) = Aj′(s, t0)

with A : Ω(t0)× t0 → RM? and M? ≤M . The indices j′ ∈ {1, . . . ,M?} in A are uniquely
assigned to one index j in y. In the case of time-dependent boundaries sa(t) and sb(t)
we require initial conditions at the left side for all (s, t) ∈ {(sa(t), t) ∈ Q | ddtsa(t) < 0, t ∈
(0, T ]} =: Il in the form

yj(sa(t), t) = AL,j′(sa(t), t),

with AL : Il → RM? and at the right side for all (s, t) ∈ {(sb(t), t) ∈ Q | ddtsb(t) > 0, t ∈
(0, T ]} =: Ir in the form

yj(sb(t), t) = AR,j′(sb(t), t),

with AR : Ir → RM? . Assume that we want to solve (4.3) at some time level tn. We set the
required non-active Yk(tkn−1) that have (sk, t

k
n−1) ∈ Q\Qh,A with the help of the respective

A,AL,AR.
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Remark 4.9. The initial conditions that are required for the continuous model equations
to be well-defined may not cover all unknowns, thus we introduce M? ≤ M . To facilitate
the notation we decide to extend the image of the initial value functions A,AL,AR to RM

and put the unknowns at their respective index j consistent with the order in Yk and use a
dummy value for the remaining components, i.e., they are set to some constant Cun � 1,
the value is chosen for technical reasons within the implementation.

Boundary conditions The boundary conditions need more careful examination, in par-
ticular there are two effects to be considered: The boundary conditions are only coupled
naturally into the system through the fluxes in (4.3) if the active domain is chosen prop-
erly, and the staggered grid can require knowledge of the unknowns at the boundary even
without corresponding fluxes in the model equation. Before we discuss the first issue in
Example 4.11 we address the second one. Examine the numerical formula (4.3), and more
importantly, the actual dependence of aj and qj on the unknowns in the model equations.
If aj,qj depend on unknowns of type not equal to Dj, then we will require interpolation in
(4.4) for the evaluation. If said evaluation now takes place on the first or last active tuple,
then information of said unknown at the boundary is required for a well-defined discrete
system. We call those artificial boundary conditions.
We assume that boundary conditions for all t ∈ [0, T ] are given in the form

L(sa(t), t,y(sa(t), t)) = 0

on the left side of the domain and

R(sb(t), t,y(sb(t), t)) = 0

on the right side with L,R : R× [0, T ]×RM → RM . They have three ingredients:

i) The set of boundary conditions that are necessary for the continuous model equations
to be well-defined.

ii) All required artificial boundary conditions. If possible, such values are derived ana-
lytically with the help of the given model equations and conditions from i), otherwise
an extrapolation boundary condition can ultimately be used – as needed on the left
or right side

yj(sa(tn), tn) =
1

∆skl+1/2

[
(skl+1 − sa(tn))Ykl,j(tn)− (skl − sa(tn))Ykl+1,j(tn)

]
,

yj(sb(tn), tn) =
1

∆skr−1/2

[
(sb(tn)− skr−1)Ykr,j(tn)− (sb(tn)− skr)Ykr−1,j(tn)

]
.

We use El,j(tn) and Er,j(tn), respectively, to address such an extrapolation boundary
from now on.

iii) All other components of y(·) that are not required by the discrete scheme are set to
dummy values. This is already anticipating the thoughts of Remark 4.9 and is solely
done to facilitate the notation.
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Remark 4.10. Certainly it would be possible to alter the discrete formula (4.3), when
adjacent to the boundary, in a way that no artificial boundary conditions are necessary in
the first place. We decide to use them in order to maintain the generality and simplicity of
our scheme. With our approach those artificial boundary conditions can be easily replaced,
e.g. the linear extrapolation in ii) with a higher order one.

We solve the boundary conditions as separate equations in the non-linear system to deter-
mine the boundary unknowns Y n

L ,Y
n
R ∈ RM , i.e., when solving for the time level tn we

add the equations

L(sa(tn), tn,Y
n
L ) = 0, R(sb(tn), tn,Y

n
R ) = 0 (4.6)

to the system. The boundary conditions then enter the discrete formula (4.3) through
those non-active Ykl−1/2,j(tn) and Ykr+1/2,j(tn) that are required in (4.3), we interpolate
them linearly with the help of the boundary unknowns

Ykl−1/2,j(tn) =
skl − skl−1/2

skl − sa(tn)
Y n
L,j +

skl−1/2 − sa(tn)

skl − sa(tn)
Ykl,j(tn),

Ykr+1/2,j(tn) =
skr+1/2 − skr
sb(tn)− skr

Y n
R,j +

sb(tn)− skr+1/2

sb(tn)− skr
Ykr,j(tn). (4.7)

We mentioned earlier that the choice of the active domain has an impact on the coupling
of the boundary conditions. The following example illustrates that and also shows when
artificial boundary conditions are required.

Example 4.11 (Choice of node and edge). Let the following system of equations

∂ty1 + ∂sy2 = 0, (4.8a)
∂ty2 = 1, on Q = [0, 1]× [−1, 0] (4.8b)

y(s, 0) = yi(s), s ∈ [−1, 0] (4.8c)
y2(0, t) = yr(t). t ∈ [0, 1] (4.8d)

for the unknowns y = (y1, y2) be given. The general functions used in (4.1) are

a(y) =

(
y1

y2

)
, f(y) =

(
y2

0

)
, g(y) =

(
0
−1

)
.

In an ideal case no interpolation of the spatial averages and no artificial auxiliary conditions
are necessary in the discrete version of System (4.8). One key feature that should be
ensured is the narrow central approximation of the fluxes (important for a conservative
approximation), thus we know with (4.8a) that y1 and y2 have to have different types.
Since the meaning of node/edge is interchangeable it is enough to consider one case. We
choose y1 to be of node type and y2 to be edge type, the choice vector is D = (1, 0). With
an equidistant grid in time and space the discrete version of (4.8a) at an arbitrary active
node (si, tn) within the domain is

∆s (Yi,1(tn)− Yi,1(tn−1)) + ∆t
(
Yi+1/2,2(tn)− Yi−1/2,2(tn)

)
= 0 (4.9a)
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and the one of (4.8b) at an arbitrary active edge (si+1/2, tn) within the domain is

∆s
(
Yi+1/2,2(tn)− Yi+1/2,2(tn−1)

)
−∆s∆t = 0. (4.9b)

Looking back at (4.4) it can be seen that no interpolation of the spatial averages is neces-
sary. The initial values are set for all (sk, 0) ∈ Qh by

Yk(0) = A(s, 0) with A(s, 0) = yi(s).

For the discussion of the boundary conditions the key aspect is the choice of the boundary
types pl and pr. We have two cases on each side:

• pl = 0: The first active tuple is a node, meaning we solve (4.9a) there and it requires
Ykl−1/2,2(·), which is a non-active tuple. Since no boundary condition for it is given,
we use extrapolation

L(−1, tn,Y
n
L ) =

(
Y n
L,1 − Cun

Y n
L,2 − El,2(tn)

)
.

We want to mention once here that the extrapolation condition is an artificial bound-
ary conditions and ensures that the numerical system stays uniquely solvable. It is
not necessary for the fully continuous model equations to be well-defined though. It
is only necessary due to our staggered approach.

• pl = 1: The first active tuple is an edge, meaning that we solve (4.9a) on the active
node to the right of it, i.e., the boundary values never enter the discrete system and
are simply the dummy values

L(−1, tn,Y
n
L ) =

(
Y n
L,1 − Cun
Y n
L,2 − Cun

)
.

• pr = 0: The last active tuple is a node, meaning we solve (4.9a) there. The
boundary condition for y2 couples naturally through the spatial flux that requires
Ykr+1/2,2(tn+1), which in turn requires Y n

R,2 in (4.7). We set

R(0, tn,Y
n
R ) =

(
Y n
R,1 − Cun

Y n
R,2 − yr(t)

)
.

• pr = 1: The last active tuple is an edge, meaning that we solve (4.9a) on the active
node left of it. The boundary conditions for y2 never couples through the spatial
flux of (4.9a) and the system is underdetermined. A coupling can be induced by
replacing (4.9b) of the last active edge with an extrapolation condition that includes
the boundary unknown, namely

Er,2(tn)− Y n
R,2 = 0.

The boundary conditions are then set

R(0, tn,Y
n
R ) =

(
Y n
R,1 − Cun

Y n
R,2 − yr(t)

)
.

Note that this is comparable to choosing pr = 0 from the start in terms of distance
of the discrete unknowns to the boundary.
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Considering all cases we recommend to use the one with the least interpolation and ex-
trapolations. The suitable pick is pl = 1, pr = 0, i.e., Q1−0.

Example 4.11 demonstrates the synergies when choosing the types of unknowns and the
active domain. The larger the system the more complex this choice becomes and careful
attention is needed.

4.1.3 Algorithm

Assume that well-defined model equations on a space-time domain with their initial and
boundary conditions are given. In order to prepare the model for our discrete approach,
the following steps are necessary:

1. Formulate the system as a first-order system in the form (4.1) with the help of a,f , g.

2. Define node and edge unknowns and the unknown-equation assignment with the goal
of small stencils in the derivatives and minimal amount of interpolation in general.

3. Define the types of the boundaries pl, pr ∈ {1, 0} – and therewith the active domain
Qh,A – to properly couple the given boundary conditions.

4. Assess the need for artificial boundary conditions and express the complete initial
and boundary conditions with the help of A, AL, AR and L,R.

The prepared model then is ready for our discrete approach. For a condensed description
we introduce a notation for all active nodes and edges of the time levels tn, n ∈ N:

Ωh(tn) = {sk ∈ Ω(tn) | (sk, tn) ∈ Qh,A, k ∈ K}.

The steps of the iterative solver for the numerical approximation are listed in the following.

Initialization

i) Choose the equidistant spatial grid spacing ∆s and a default ∆t and set t0 = 0 and
n = 0.

ii) Iterate over all k with sk ∈ Ω(t0) and set Yk(t0) = A(sk, t0).

iii) Find t1 such that
∣∣Ωh(t1)

∣∣ > 0 and t1 − t0 is a multiple of ∆t.

Time Stepping

i) Set n := n+1. In case of no time step control, set tn = tn−1+∆t, otherwise determine
tn. Set ∆tn = tn − tn−1.

ii) Determine the spatial boundaries sa(tn) and sb(tn).

iii) Initialize Yk,j(tkn−1), if necessary, and evaluate any explicitly used information.
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4.1 Finite Volume method

Iterate over all k with sk ∈ Ωh(tn) and sk /∈ Ωh(tn−1).
Set Yk(tkn−1) = AL(sk, t

k
n−1) on the left side and Yk(tkn−1) = AR(sk, t

k
n−1) on the

right side.

iv) Determine the unknowns and equations of time level tn and build a non-linear system.

a) Add every active unknown Y n
k,j and their equation (4.3) with sk ∈ Ωh(tn) and

Dj = T (k).

b) Add the boundary unknowns Y n
L and Y n

R and their equations (4.6).

v) Solve the non-linear system with Newton’s method. If tn = T , terminate. Otherwise
goto i).

4.1.4 Solution reconstruction

A solution obtained with our algorithm from Section 4.1.3 is piecewise constant on the
underlying grid. It essentially has two parts for every time level tn: The unknowns Y n

L ,
Y n
R and all Y n

k,j with k, j such that Dj = T (k) and (sk, tn) ∈ Qh,A, as well as the underlying
spatial grid. We address such a solution with Yn. We introduce the piecewise constant
function Zj(·;Yn) : Ω(tn)→ R as follows:

Zj(s;Y
n) =


Y n
L,j if s ∈ [sa(tn), skl−1/2),

Y n
k,j if s ∈ [sk−1/2, sk+1/2) and

k such that sk ∈ Ωh(tn) and Dj = T (k),

Y n
R,j if s ∈ [skr+1/2, sb(tn)].

Note that all solution specific components in Zj(·;Yn), e.g., sa and Ωh(tn), are associated to
the solution Yn. To compare solutions of the same model problem with each other we need
to reconstruct them if they have different spatial grids. Assume now that two solutions Yn

1

and Yn
2 at some time tn for the same model problem are given. We use the L2-error on our

staggered grid since the discrete unknowns represent cell averages and define

err(Yn
1 ,Y

n
2 ,J ) =

√√√√ ∑
sk∈Ωh,refn

∫ sk+1/2

sk−1/2

∑
j∈J

(Zj(s;Yn
1 )− Zj(s;Yn

2 ))2 ds (4.10)

with J ⊂ {1, . . . ,M} as the list of unkowns to be compared. The appearing integral over
the piecewise constant function is evaluated exactly. The reference grid Ωh,ref

n is either the
node grid or the edge grid and taken from one of the solutions, preferably the one with the
coarser grid. The node (p = 1) and edge grid (p = 0) is given by

Ωn
h,p = {sk ∈ Ω(tn) | T (k) = p, sk ∈ Ωh(tn)}.

In the remaining part of this work we will address the error (4.10) as the L2(tn)-error, the
context will allow to determine which solutions and components are compared.
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unknowns r̄ λ̄τ q (λκ, λs) τ κ λt χ v ω n m u
equation in (2.37) a b c d e f g h i j k l -

type 1 0 1 0 0 0 0 1 1 1 1 0 0

Node/edge assignment of the jet model

Table 4.1: Type and equation assignment of the jet model (2.31) with the reduced un-
knowns r̄, λ̄τ , q, λκ, λs, τ , κ, λt, χ, v, ω, n, m, u.

4.2 Application to the jet model

The application of the jet model to the discrete scheme is fairly straightforward. In this
section we present the choice of node/edge type for the equations and unknowns and
a reduction of unknowns that is easily obtainable through the proper choice of typical
values. We will also comment on the impact of our chosen kinematics formulation and the
choice of the active domain for the set-ups of Section 2.3.

Node/edge assignment and reduction of unknowns The jet model from Section 2.2.5
can be put in the general PDAE form (4.1) with the help of a simple substitution for the
spatial derivatives of λτ and λκ, the other formulations of the model with respect to its
kinematics are analogously (see Appendix D.2 for details). Before talking about node/edge
type assignments we want to highlight an obvious reduction of unknowns without restrict-
ing the applicability of the model. The dimensionless mass and volume line density σM
and σV as well as k are all conserved type-1 quantities, which will all be chosen to be node
type. We always assume that they are independent of s in the initial values and scaled to
one in the Lagrangian parameterization through their typical values. That means that σM ,
σV and k are easily expressed with the spatial functional determinant χ according to the
transformation rule (2.14). Consequently all three are replaced with χ in the jet model,
which is a conserved quantity itself and thus is determined by its conservation equation
(more details are given in Remark D.3). The reduced unknowns of the jet model and their
node/edge type assignments are listed in Table 4.1. The unknown order is analogously to
the order of the assigned equations of (2.37). Note that the three conservation equations
for σM , σV and k are replaced with one for χ. For completeness, the condensed jet model is
printed with unknown/equation and type assignment in (D.6) together with further reason-
ing for the choice in Table D.1. The type assignment reduces the amount of interpolations
to a minimum, nevertheless an ideally staggered assignment according to Remark 4.5 is
not possible. Interpolation is still required in the spatial fluxes of the artificial convection
u and some source terms, e.g. the term τ × n in the angular momentum balance.

Remarks on the kinematics formulation The above node/edge assignment is analo-
gously transferred to the M and T formulation of the jet model. For the S formulation
difficulties arise which are described in Remark 4.12. Furthermore we want to clarify our
choice of correction terms in the SAMW correction in Remark 4.13.
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Remark 4.12 (Difficulties with the S-formulation). The jet model in System 2.31
with kinematics in the S-formulation (cf. Remark 2.2) has no node/edge type assignment
of the unknowns and equations that avoids interpolation in the spatial fluxes. The system
becomes highly unstable due to the decoupled broad stencils in the fluxes and has to be
discarded. The stabilized formulation of the kinematics with GGL correction can be seen
as an S-formulation with an added linearly dependent equation to repair the node/edge
assignment problem (cf. Remark 2.28). This has to be treated with care since it creates
another inconsistency, which is described in Remark 4.13.

Remark 4.13 (Necessity of the SAMW correction). Let the stablized formulation of
the kinematics be given (cf. Formulation 2.22) with the GGL correction, or in that mat-
ter, any correction that uses Λr,2 ≡ 0, Λq,2 ≡ 0. The Lagrangian multipliers λ̄1 and λ2

are of edge type and appear in the node equation (2.37a) and (2.37c). Without correction
terms in the compatibility conditions, those equations solely determine the multipliers (cf.
Remark 2.28), or in other words, a node equation determines an edge unknown. This is
only possible if there is an equal amount of node unknowns and edge unknowns, otherwise
the system becomes under- or overdetermined. The jet extrusion set-up in Section 2.3.1
has an equal amount of unknowns and thus allows the usage of the GGL correction. The
other two set-ups (Section 2.3.2 and 2.3.3) in contrast are not solvable with it. The SAMW
correction overcomes this issue by introducing additional correction terms in the compati-
bility conditions, i.e., an edge equation. This also introduces an error in the compatibility
conditions. To keep this error to a minimum we set the constant that appears in (2.37e)
and (2.37f) to C = ∆t∆s. The correction terms are then of order O(∆t2∆s2) in (4.3).

Choice of active domain for the set-ups The subsequent step for the numerical scheme
is to ensure that the boundary conditions are directly incorporated at all times, especially
for the time-dependent domain where cells will be added. All set-ups are similar: We
have a combination of the position and tension boundary. Consider the position boundary.
We have e.g. a boundary condition for the jet curve. It appears in the spatial flux of
(2.37b), which is edge type. Consequently, the numerical formula of (2.37b) only couples
to the boundary if the adjacent active cell is of edge type, meaning the boundary has to
be node type. Now consider the tension boundary. We have boundary conditions, e.g.,
for the contact forces and couples, which are needed for the fluxes of the balance laws
(2.37i) and (2.37j), which are both node type. Consequently we have a coupling if the
adjacent active cell is of node type, i.e. the boundary has to be edge type. Taking the
above discussion into account we analyze the four possible combinations of the boundaries
and present suitable choices of boundary types in Table 4.2. The initial and boundary
conditions of the jet model for all set-ups are set according to Section 2.3. Our choice of
unknowns requires artificial boundary conditions for χ at a position boundary and for τ ,
κ at a tension boundary. We set them with the help of the initial conditions for χ and use
linear extrapolation for τ , κ (an alternative is described in Remark 6.2). The resulting
functions A, AL, AR and L, R of the set-ups are presented in Appendix D.2.

Solution comparison with general parameterization The spatial grid of the jet model
(2.37) is with respect to the general parameterization. A feasible comparison and inter-
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set-up boundary suitable active domain
left right

Section 2.3.1 position tension Q1−0

Section 2.3.2 tension tension Q0−0

Section 2.3.3 position position Q1−1

Table 4.2: Overview of suitable active domains for the jet model with the node/edge as-
signment from Table 4.1.

pretation of solutions is only possible if they have the same parameterization. Since the
model was originally formulated in the Lagrangian parameterization we use it for the com-
parison. For that purpose we transform the unknowns of a solution Yn to the Lagrangian
parameterization (if not already given in it) according to their type, use the corresponding
Lagrangian grid for Zj and determine the L2(tn)-error. The Lagrangian grid is given by
{σk ∈ R |σk = Ψ(sk, tn), sk ∈ Qh}. The transformation Ψ can be reconstructed with help
of one of the interval boundaries σa(t), σb(t) and ∂sΨ = χ, which we assume is given with
the solution. We denote the solution in Lagrangian parameterization with Ŷn.

4.3 Application to r-refinement strategies

The jet model is extended by the respective equations of the moving mesh strategy from
Section 3.1. Depending on the used set-up, the additionally required boundary conditions
are either directly given or can be set with one of the equations in (2.44). We rewrite
the moving mesh strategies as systems of first order to fit the form (4.1). Both DELAX
strategies require the distribution α for which we use a mid-point quadrature rule. The
mesh control function M ,fα of the moving mesh strategies are complicated and dependent
on derivatives of solution components, furthermore they are spatially smoothed. Thus
we decide to evaluate them explicitly, which will create an additional temporal lag in the
movement of the mesh similar to the one induced by the temporal relaxation parameter τ .
We use finite difference approximations for the derivatives appearing inM ,fα, in particular
a second-order central approximation within the domain and first-order, one-sided one at
the boundaries. For the spatial smoothing technique we follow [58], see Appendix C.2 for
details. The type of the parameter speed u is edge according to Table 4.1. We summarize
the equations of the strategies below. Note that all strategies use the temporal relaxation
parameter τ , which is not to be confused with the distortion measure τ .

• Strategy 3.11, DELAX1 is combined with a coupling condition for u

∂tΨ = −χu,

χu =
1

τ

(
Ψ−Ψ ◦ α−1

∣∣
p=s

)
using the parameter speed u and Ψ (edge type). The distribution α is inverted
numerically using linear interpolation.
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• Strategy 3.13, DELAX2 is used in terms of the parameter speed u, i.e., its equation
is

u = −1

τ
(s− α) .

• Strategy 3.9, MMPDE1 is rewritten as a first order system that is given by

∂tχ = χt,

∂s
(
M
(
τχt + χ

))
= 0

with a subtitution unknown χt (node type) and parameter speed u.

• Strategy 3.10, MMPDE2 is used in terms of the parameter speed u, i.e., its equation
is

−Mχτu = ∂s(Mχ).
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In Chapter 2 we presented our stabilized, index-reduced formulation of the viscous, in-
compressible jet model together with versatile set-ups. We proposed a suitable numerical
approach in Chapter 4 and gave details on the algorithm. In this section we explore its
numerical properties. If not otherwise mentioned all our implementations are done in Mat-
Lab 2016a, the underlying solver for the Newton’s method is the band solver that is built
in the MatLab backslash routine. The simulations were conducted on a workstation with
a Intel(R) Xeon(R) CPUs @ 2.40GHz and 24 GB RAM.

We introduce the academic viscous cantilever scenario in Section 5.1 and show the fea-
sibility of our discrete scheme by investigating convergence properties of the scenario in
Section 5.2. In particular we are interested in a comparison of the influence of the bound-
ary handling (time-independent and time-dependent domain) and point out the improve-
ments compared to [5]. We also discuss numerical difficulties arising from the M- and T-
formulation of the jet kinematics that ultimately lead us to our stabilized, index-reduced
formulation. In Section 5.3 we comment on our solver with focus on the condition number
of the underlying linear system. Afterwards we shift the focus to the investigation of the
general parameterization in Section 5.4 and in particular its impact on the overal com-
putational performance and its adaptive possibilities, e.g. when combined with the mesh
refinement strategies from Chapter 3.

5.1 Academic scenario: Viscous cantilever

In the elastic context, the cantilever is a prominent example. The rod is fixed at one side
and exposed to gravity that is acting normal to the nozzle direction as the sole external
load, cf. Figure 5.1. We design an analogous viscous scenario that serves as an academic
example. For that purpose we use the jet model (2.37) together with the external loads

f = − 1

Fr2σMR(q) · e2, l = 0

and employ the jet extrusion set-up in Section 2.3.1 with

r̄A(s) = (s+ L0, 0, 0), qA(s) =
1

2
(1,−1,−1,−1),

r̄L = (0, 0, 0), qL =
1

2
(1,−1,−1,−1),

meaning that R(qL)T = (e2, e3, e1), and consider two cases:

a) Time-independent case with l(t) = l0 = 1 and r(t) = 0, i.e. vA(s) = vL = 0. We call
this the fixed viscous cantilever.
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Figure 5.1: Illustration of the classical cantilever in the elastic context.
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Figure 5.2: Simulation of a viscous cantilever with (Re,Fr, ε, T ) = (1, 1, 8.86 · 10−2, 4) de-
picted at interim time points (the value of ε is

√
π/2 · 10−1, cf. Remark 2.17).
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b) Time-dependent case with l(t) = t, r(t) = 0, i.e. l0 = 0 and vA(s) = vL = 1. We call
this the growing viscous cantilever.

Using a Lagrangian parameterization (u ≡ 0) we illustrate the jet behavior for both cases in
Figure 5.2. In Figure 5.2a the fixed cantilever is shown. The total mass remains constant,
yet the jet is stretched while falling down. In Figure 5.2b the growing cantilever is shown.
The total mass is constantly increasing due to the inflow, the total length accounts for
the mass inflow and the stretching. Notice the difference in ∆s, the fixed cantilever case
requires a higher spatial resolution due to the large elongation in proximity of the nozzle.

5.2 Convergence order

Our proposed finite volume method employs a second order flux approximation in space
and a first order one in time that are both appropriate for the respectively underlying DAEs
of the viscous jet model (2.37) (cf. Section 2.2.4), the expected convergence order is one
in time and two in space. We use the viscous cantilever scenario from Section 5.1 because
it allows the qualitative comparison of a time-independent and time-dependent domain.
The computed convergence orders for one set of the physical parameters are depicted
in Figure 5.3 and Table 5.1, certainly the convergence properties of the scheme are not
influenced by the physical parameters. The theoretical results are partially confirmed:
The temporal convergence rate is matched whereas the spatial one is not. For the spatial
convergence rate we suspect that the influence of the source term approximation hinders a
fully second order convergence order. Regarding the linear interpolation in (4.4) from node
to edge position and vice versa, simply exchanging the method with cubic interpolation in
the inside and quadratic interpolation at the boundaries (including (4.7)) does not yield an
overall second order in space, neither for the fixed or growing domain case. Thus the linear
interpolation is not the source of the worsened computed convergence order, which points to
the approximation of the source terms as cause. The discrete geometric approach of Audoly
et al. ([12], Remark 5.1) can only achieve first order as well. Further investigations are left
to future work. We compare the time-independent and time-dependent case and deduct
that our approximation of the space-time domain (with slanted cells) does not significantly
deteriorate the global error of the solution. Furthermore, the viscous jet model with our
new stabilized, index-reduced kinematics formulation contains Lagrangian multipliers, that
are analytically zero. This is confirmed for ∆s,∆t → 0, giving the numerical equivalency
of our formulation, cf. Lemma 2.29.

In [5] we use the jet model with an index-reduced, but not stabilized kinematic formula-
tion and combine it with a Finite Volume method for the semi-discretization in space (first
order, upwind flux approximations) and a Radau IIA-method in time (with stage one to
obtain a first order method (Euler’s method) and stage two for a third order method). The
investigations in [5] of the convergence order are done with a two-dimensional rotational
spinning scenario (cf. Section 6.1 for the process and Appendix B.2 for the dimensional
reduction). Other than the drift-off introduced with the kinematic formulation, the scheme
in [5] showed a worrisome temporal order reduction effect that rendered approximations
for higher convergence orders useless. Regarding the underlying DAE-character of the
jet model and handling the approximation of the space-time domain appropriately (cf.
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Figure 5.3: From left to right: Spatial, temporal and combined convergence behavior for
the cantilever scenario with (Re,Fr, ε, T ) = (1, 1, 8.86 · 10−2, 0.5) and default
∆t = ∆s = 10−2. The unknowns are seperated in differential (̄r, v, q,ω,κ) and
algebraic ones (n,m, λs, λt, λ̄τ ,λκ) and split in terms of similar behavior. Top:
Time-independent case (L(t),R(t)) = (1, 0). Bottom: Time-dependent case
(L(t),R(t)) = (t, 0). Numerically found orders are listed in Table 5.1.

Viscous cantilever (̄r, v, τ , q) (ω,κ) (n,m) (λs, λt, λ̄τ ,λκ)
fixed case spatial 1.50 1.54 1.55 1.54

temporal 1.17 1.17 1.17 1.17
combined 1.17 1.27 1.24 1.23

growing case spatial 1.58 1.51 1.5 2.00
temporal 1.42 1.31 1.42 1.15
combined 1.05 1.06 1.07 1.06

Table 5.1: Spatial, temporal and combined convergence order for the fixed and growing
case of the viscous cantilever scenario.

92



5.2 Convergence order

10−3 10−2
10−6

10−5

10−4

10−3

10−2

2

∆ s

L
2
(T

)-
er

ro
r

10−3 10−2

1

∆ t
10−3 10−2

1

∆ t=∆ s

(̄r, v, τ , q) (ω,κ) (n,m) (λs, λt, λ̄τ ,λκ)

Figure 5.4: From left to right: Spatial, temporal and combined convergence behavior
for rotational spinning process with (L(t),R(t)) = (t, 0), (Re,Rb,Fr, ε, T ) =
(1, 1, 1, 8.86 · 10−2, 0.5) and default ∆t = ∆s = 10−2. Numerically found orders
are listed in Table 5.2.

Remark 4.7), our new scheme and stabilized formulation of the kinematics overcome the
hitherto existing restrictions for the two-dimensional scenario and also transfers to the full
three-dimensional model. The numerical investigations show spatial, temporal and com-
bined convergence orders analogously to the previous test with the cantilever, see Figure 5.4
and Table 5.2 (we already published these results in [89]).

Rotational spinning process (̄r, v, τ , q) (ω,κ) (n,m) (λs, λt, λ̄τ ,λκ)
spatial 1.73 1.50 1.50 2.01
temporal 1.38 1.27 1.48 1.15
combined 1.05 1.07 1.07 1.06

Table 5.2: Spatial, temporal and combined convergence order of the rotational spinning
process. The order is calculated with the three finest solutions, excluding the
reference 10−4.

Remark 5.1 (Comparison to Audoly et al. (2013)). The discrete geometric Lagran-
gian method in [12] employs a careful spatial discretization of the kinematics of the cen-
terline on a staggered grid and reconstructs the remaining discrete unknowns based on the
geometrical and variational principles. The mixed derivatives that appear in the center-
line-spin formulation are handled algorithmically by defining local discrete operators for
the time derivatives. The time integration is semi-implicit in the viscous forces, in contrast
to our fully implicit approach. The discrete geometric Lagrangian method has been vali-
dated with experimental data of the fluid-mechanical sewing machine [28, 25] and it shows
first order convergence in space-time. In this work we stick to our viscous jet model since it
is well suited for (standard) conservative finite volume schemes, which gives great flexibility
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due to the easy exchange of the underlying flux approximations. A direct comparison of the
computational performance of both methods is not possible due to a missing benchmark.

Insight into the other kinematics formulations We introduced a index-reduced, sta-
bilized kinematic formulation in the jet model in (2.2.4). Nevertheless, the M- and T-
formulations can also be used with our discrete scheme under some restrictions, whereas
the S-formulation can not, cf. Remark 4.12:

• The M-formulation has temporal index three, but due to its structure (cf. Sec-
tion 2.2.4) there exist theoretical convergence results for the implicit Euler’s method,
which we have employed in our discrete scheme. The M-formulation works well in
the fixed domain case, and with ∆s ≤ vL∆t in the growing domain case. Further-
more it is applicable to all three set-ups due to the symmetric boundary conditions.
The issue is the temporal convergence of the growing domain case with ∆s > vL∆t.
The discrete compatibility conditions are violated in proximity to the nozzle (due
to the handling of the boundary cells), which manifests particularly in the contact
force and contact couple. They start to fidget when a new discrete point is created
and appease after a couple of time steps (see Figure 5.5a). Depending on the actual
scenario this effect is more or less developed, yet always visible. In order to fulfill the
discrete compatibility conditions our discrete scheme would have to be adjusted in
a way that the time steps of all newly initialized points coincide with the time step
of the already active cells and their initial values are an extrapolation of the inner
points from the previous time step. The consequence is that the actual initial condi-
tions along the slanted space-time boundary are no longer fulfilled exactly, creating
a similar fidgeting of the contact force and couple.

• The T-formulation works well with the jet extrusion set-up in Section 2.3.1 in the
fixed domain case, and in the growing case if ∆s ≥ vL∆t. A sufficiently small time
step should be used to minimize the temporal drift-off effect. Nonetheless the T-
formulation creates a non-smooth jet curve in the growing domain case if ∆s < vL∆t,
i.e. more than one cell is possibly created during one single time step. This issue is
consequently transferred to the distortion measures, but most dominantly visible in
the curve, as illustrated in Figure 5.5b. This non-smoothness is undesireable, but it
seems to have a negligible affect on the robustness of the simulation. Unfortunately
the other two set-ups are not applicable because of the non-symmetric boundary
conditions.

The SAMW formulation does not show the above problems and is applicable for all set-ups
and parameter ranges. We want to mention that all formulations show problems similar to
the one above described for the M-formulation when using the discrete scheme according
to [5].

Rule of thumb for convergent behavior The stabilized kinematics show numerically
proven convergent behavior for ∆s,∆t→ 0 (as do the other formulations). But in industrial
scenarios such a test is not feasible in most cases and general answers to the question if a
specific simulation already shows convergent behavior are not possible and depend on each
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Figure 5.5: Illustration of the critical issues in the M and T-formulation for the growing
viscous cantilever with (Re,Fr, ε) = (0.5, 0.5, 0.01) and ∆s = 10−3, ∆t = 10−2,
or vice-versa.

case. Nevertheless a rule of thumb can be formulated with the help of the slenderness ratio
ε, which correlates with the stiffness of the system. For the purpose of fair comparison
between the M-, T- and SAMW-formulation, we choose the growing cantilever scenario
with ∆s = ∆t and repeat the same simulation with different ε, as illustrated in Figure 5.6.
The deviation of the SAMW-formulation to the other two for ε = 10−4 comes from the
correction terms in the temporal evolution of the quaternion, but it can be controlled by
chosing appropriate grid spacing. In our experience (including other parameter sets), the
resolution should be smaller or at least of the same magnitude as ε.

5.3 Avoiding a singular Jacobian

We use Newton’s method with a analytical Jacobian to solve the non-linear system arising
from our discrete scheme, i.e. we solve repeatedly linear systems. The performance of those
iterations is tied to the condition number of the system matrix (which is the Jacobian),
up to the point that the matrix becomes numerically singular, meaning that the Newton’s
method will fail. A common approach to avoid this issue is the use of a preconditioner, but
the Jacobi, symmetric Gauss-Seidel and ILU preconditioners did not significantly boost
the performance of our solver (the computational trade-off is analyzing, adjusting and
solving vs. simply solving the system). There is indeed one thing that one can easily
analyze by hand, even with large system matrices: Large entries should be avoided in the
system matrix. We already accounted for that in one way by avoiding that we divide by
the slenderness ratio in our jet model. Furthermore, in the industrial examples to come
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Figure 5.6: Influence of ε on the behavior of the jet model in its different formulations. The
growing viscous cantilever with (Re,Fr, T ) = (0.5, 0.5, 0.1) and ∆s = ∆t = 10−3

is used. From left to right: ε = 10−1, 10−2, 10−3, 10−4. Note that the r̄2 scale
of the axes differs.

in Chapter 6 the viscous jets behave highly dynamic in reaction to the external loads
causing elongations that are expected to vary several orders of magnitude within the jet.
In particular, we investigate the elongation τ3 in the material law: It appears in second and
third power, meaning that we will have very large entries in the Jacobian. This could be
avoided by dividing the whole equation by τ3, yet our assumed form of the PDAE does not
have mixed terms involving the temporal derivative (e.g. the term (∂tτ3)/τ 2

3 would appear
in (2.37k) after dividing, which does not match (4.1)). To avoid an additional substitutional
unknown, we decide to do the following: We evaluate both equations (2.37k)-(2.37l) of the
material law fully implicitly and then divide them by an explicitly evaluated elongation
with the respective power, more precisely we use the maximum elongation from the previous
time step.

5.4 Adaptivity

We formulated the viscous jet model specifically in a general parameterization by intro-
ducing the parameter speed u and its artificial spatial fluxes into the system. Thus far we
assumed that u is somehow determined. At first we analyze the impact of the additional
terms and fluxes with an analytically given u. Then we investigate different approaches
how to determine u, in particular with the moving mesh approaches in Chapter 3 and a
variation of the Eulerian parameterization.
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5.4.1 Cost of general parameterization

In the general parameterization of the jet model an additional equation for u is required.
For the purpose of the following tests we prescribe u ≡ 0, which is added as a seperate
equation to the model (this gives an Lagrangian parameterization, yet all additional terms
involving u are kept). We explore the increase in computation time that results simply by
transforming from the Lagrangian parameterization to the general parameterization and
then highlight a possible issue within the artificial fluxes.

Computation time Simply using the general parameterization enlarges the system and
complicates its Jacobian (illustrated in Figure 5.7). Compared to the Lagrangian system
the sparsity pattern of the general parameterization worsens: The number of entries is
increased by roughly 50% (the actual size of the Jacobian is only increased by 5%) and
the band width size at the boundary is increased by 20% and for the inner points by 60%.
This certainly will affect the runtimes in the simulations. The calculation time is broken
down into three parts:

a) pre- and postprocessing of the time step,

b) evaluation and construction the system matrix and its Jacobian,

c) solving of the non-linear system.

Timing plots for the viscous cantilever are given in Figure 5.8. The critical part is the per-
formance of the underlying band solver, the remainder in our simulation is mostly MatLab
overhead. The computation time of the solver is increased by roughly 95%, the effective
runtime of the entire MatLab simulation is increased by roughly 81%, which is substan-
tial. Remember that this example uses a general parameterization with u ≡ 0 as seperate
equation. When an actual moving mesh equation is employed, the costs are even worse:
The computation time of the solver is over three times longe compared to a corresponding
Lagrangian simulation.
The simulations show roughly quadratically increasing computational effort in t and thus
in the number of discretization points. We found that a simulation with Lagrangian param-
eterization can have roughly half the grid spacing ∆s compared to one using the general
parameterization, while still being competitive in terms of computation time.

Broad stencil issue In Section 4.2 we have shown the type and equation assignment of
the unknowns of the jet model. A careful examination reveals that no ideally staggered
grid for the spatial fluxes is possible, which is due to the artificial convection terms. That
means that the scheme creates broad stencils that can decouple in the worst case, e.g. for
the edge type-1 unknowns τ and κ in the compatibility conditions and the material law.
The involved unknowns still appear in the source terms, thus we monitor at all times if
actual decoupling of the solution occurs, at which point the simulation is aborted. An
Eulerian parameterization can relax this issue by enforcing the arc-length constraint which
simplifies the equations, but it is still present.
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Figure 5.7: Pattern of the Jacobian of the non-linear system with an example of the viscous
cantilever scenario with 3 inner points.
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Figure 5.8: Computation time of the Lagrangian (dashed line, total computation time
31min) and general (solid line, total computation time 56min) parameteriza-
tion of the growing viscous cantilever with (Re,Fr, ε, T ) = (1, 1, 8.86 · 10−2,∞)
and ∆s = ∆t = 10−2.
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5.4.2 Suitable re-parameterization

The determination of the parameter speed u in the viscous jet model was left open up
to this point. Other than using the two most prominent examples – the Lagrangian and
the Eulerian parameterization – we will consider the moving mesh approaches of Chap-
ter 3. The performance of the MMPDE1, MMPDE2 and DELAX2 strategy is now under
investigation, the DELAX1 strategy is discarded due to its direct dependence on Ψ (cf.
Remark 3.28). Additionally, we think of a scaled Eulerian parameterization that is not arc-
length (i.e. elongation equal to one), but that enforces a constant elongation in space. This
parameterization is only added as another example of an analytically prescribed parame-
terization, but it is not used in the later industrial simulations. The following approaches
for the determination of u are considered:

(L) Lagrangian (material) description: u ≡ 0,

(SE) Scaled Eulerian description: u becomes the multiplier of ∂sτ3 = 0 with appropriate
boundary condition,

(D)p u is determined by DELAX2 (Strategy 3.13). The superscript p = i means that
the implicated parameter density is used and p = t means the transferred one, the
underlying monitor function is (5.1).

(M1) u is determined by MMPDE1 (Strategy 3.9) and the monitor function given according
to (5.1).

(M2) u is determined by MMPDE2 (Strategy 3.10) and the monitor function given accord-
ing to (5.1).

We aim to control rapid changes in the jet curve and its orientation (like it likely happens
close to the nozzle) and thus we employ a mesh control function targeting y = (̄r, q) for
the moving mesh strategies. We use the optimal curvature monitor function [59] and state
it in the computational parameterization

M cur(s, t) =
(

1 + 1/α(t)
∥∥∂σσŷ(σ, t)|σ=Ψ(s,t)

∥∥2
)1/3

, (5.1a)

αcur(t) =

(
1

|Ω|

∫
Ω

∥∥∂σσŷ(σ, t)|σ=Ψ(s,t)

∥∥2/3
ds

)3

(5.1b)

with

∂σσŷ(σ, t)|σ=Ψ(s,t) =
1

χ(s, t)
∂s

(
∂sy(s, t)

χ(s, t)

)
and its implicated and transferred parameter density (cf. Strategy 3.19 and 3.20).

Remark 5.2. The way the monitor function (5.1) is formed is not apparent, for a in-depth
motivation we refer to [59]. The additive term in the monitor function ensures that it is
strictly positive since derivatives could vanish in the solution. The (adaption) intensity
parameter α determines the level of impact the derivatives have on the mesh distribution.
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A carefully chosen α can improve the interpolation error bounds of the adapted mesh and
creates a more spatially balanced mesh since large peaks in the derivative are weakened
(large peaks create locally very dense meshes) . The choice of α for the monitor function
(5.1) is motivated by finding an optimal error bound of an optimal equidistributing mesh.

We investigate the performance of the fixed viscous cantilever scenario, which has a time-
independent domain, in combination with our stabilized kinematics. The jet is attached
to a wall and we expect that large elongation will build up in proximity to the wall. In a
Lagrangian parameterization all material points are constantly moving away from the wall
which ultimately causes the simulation to fail or behave physically unrealistic. At first we
compare the different re-parameterizations and a Lagrangian simulation with ∆s = 10−2

and ∆t = 0.1 (plotted in Figure 5.9). The moving mesh approaches behave like expected
and concentrate the discrete points close to the nozzle, cf. Figure 5.10. The L2(T )-error
with respect to the Lagrangian reference solution (∆s = 10−4, ∆t = 10−3) is calculated and
printed in Table 5.3. Comparing (M2), (D)i and (D)t to (L) the error is improved for every
unknown. Notice the increase in computation time, which is the price for the adaptivity.
Keeping that in mind, we refine the spatial grid spacing and redo the Lagrangian simulation
in two ways: i) we seek similar computation time compared to the moving mesh solutions,
and ii) we seek to obtain a similar error in (ω,κ). For i) we find ∆s = 4.3 · 10−3 to be
suitable and for ii) ∆s = 2.1 · 10−3. The respective Lagrangian solutions are marked with
a subscript and also printed in Table 5.3. The results are in favor of the moving mesh
approaches: The computation time for a similar error is roughly doubled compared to the
moving mesh simulations (compare (L)2.1·10−3 to e.g. (M2)), whereas a similar computation
time does not lead to comparable errors (compare (L)4.3·10−3 to e.g. (M2)).

L2(4)-error
strategy band solver [s] (̄r, v, τ , q) (ω,κ) (n,m) (λs, λt, λ̄τ ,λκ)
(L) 1.76 0.8884 9.3951 0.0261 0.0285
(SE) 4.37 0.5127 12.7525 0.0231 0.0391
(D)i 4.22 0.7721 2.6085 0.0130 0.0012
(D)t 4.27 0.7272 2.6779 0.0172 0.0015
(M1) 4.94 0.7841 2.4549 0.0140 0.0014
(M2) 4.42 0.6741 2.2549 0.0099 0.0014
(L)4.3·10−3 4.32 0.8164 3.9755 0.0238 0.0076
(L)2.1·10−3 8.92 0.8073 2.3608 0.0232 0.0071

Table 5.3: Comparison of the band solver’s computation time and resulting error for the
fixed viscous cantilever of Figure 5.2.

Another advantage of the moving mesh approaches can be seen in the simulation runtime
of the example. The Lagrangian simulation quickly fails after the time t = 4 (over- and
undershooting is already visibly in κ2, Figure 5.9) whereas the moving mesh approaches
allow a continued simulation. The scaled Eulerian case also fails when the overall elongation
becomes too large causing insufficient resolution close to the wall.
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Large external loads The former cantilever scenario with a moderate Froude number
does not include locally large forces like we are expecting to face in the industrial spinning
scenarios. In order to test our discrete scheme we decrease the Froude number to Fr = 0.1
and redo the simulations. We find that the moving mesh solutions start to oscillate and
ultimately break down quicker (in simulation runtime) than the respective Lagrangian
simulation, likely due to the broad stencil of the general parameterization (described in
the end of Section 5.4.1). The oscillations are illustrated for the rotational spinning process
in Appendix C.4. The use of a higher order interpolation (Remark 5.3) or the usage of τ
and κ as type-0 fields in the material law and compatibility conditions (cf. Remark 5.4)
could not overcome this issue.

Remark 5.3 (Higher order interpolation). The oscillations in the moving mesh solu-
tion are possibly caused by decoupled, broad stencils that can be addressed by a higher order
node to edge interpolation (and vice-versa). In particular, we employ cubic interpolation
in the inside and quadratic interpolation at the boundaries for (4.4) and (4.7). This can
prevent a sudden blow up of the oscillations, but they are not completely avoided.

Remark 5.4 (Using the distortion measures as unknowns). All physical meaning-
ful conservation quantities are node unkowns which led us to the decision to put the artificial
convection speed u on edges in order to maintain perfect conservation for them. Neverthe-
less we also have edge unknowns that are type-1 and thus obtain a conservation form in
the general parameterization, namely τ and κ. Conservation is not guaranteed due to the
interpolation that is required in their fluxes, which leads to decoupled, broad stencils for the
flux approximation. Since conservation is not guaranteed anyways in this case, it is not
too far-fetched to give up the conservative form, i.e. treat τ and κ as type-0 fields. Then
the transformation is

τ̂ |σ=Ψ(s,t) = τ , κ̂|σ=Ψ(s,t) = κ,

∂tτ̂ |σ=Ψ(s,t) = ∂tτ + u∂sτ , ∂tτ̂ |σ=Ψ(s,t) = ∂tκ+ u∂sκ.

We do not restate the whole jet model at this point. As an example, the material law
(2.37k) becomes

∂tτ3 + u∂sτ3 =
Re
3µ

χτ 2
3

σV
n3.

This avoids an entirely decoupled broad stencil because u is now outside of the flux. The
price is the transformation invariance of the jet model and some additional interpolation
when χ is required on the edge grid. This adjustment does not improve the performance
of the moving mesh strategies, it even worsens it in general (to be more precise, numerical
oscillations occur earlier). We conclude that the non-conservative form introduces more
aggravating errors than the broad stencil.

The example of this section is just an illustration, the issue of an oscillating solution
transfers to all cases relevant in this work. The mesh control function (5.1) is solely
an example as well, even though it is working best for the jet model in our experience.
We do not claim that this is in fact the best one, simply because there is such a vast
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variety of possibilities. In particular, the use of the arc-length and optimal slope monitor
function [59] (that use the first derivative of the solution components), as well as the
component-averaged monitor function as used in [96, 102] (see also Appendix C.2) does
not overcome the issue of an oscillating solution. Furthermore, the mesh control function
is not restricted to which components of the solution are controlled, e.g. the usage of the
distortion measures or contact force and couple with one of the above monitor functions is
feasible as well, but does not improve the results. Our experience leads us to the assumption
that more sophisticated spatial flux approximations are required for the artificial fluxes (see
Remark 5.5). On the other hand, benchmarks of our discrete scheme with simple, central
approximation and the moving mesh strategies in combination with the viscous Burger’s
equation (cf. Appendix C.2) perform comparably to results found in literature [59]. Further
investigation is necessary here to find what is actually causing the oscillations. An idea to
adjust the temporal relaxation parameter τ is stated in Remark 5.6.

Remark 5.5 (High resolution schemes). There are many ideas in literature for flux
splitting strategies and high resolution schemes with special consideration of adaptive mesh
refinement (AMR) and conservation laws – e.g. in [96, 40, 99, 102, 83]. In particular, the
third- and fifth-order weighted essentially nonoscillatory (WENO) method [92] used in [110]
seems promising. WENO uses the idea of adaptive stencils in the reconstruction procedure
of the derivatives. A convex combination of candidate stencils is employed, each being
assigned a nonlinear weight depending on the local smoothness of the numerical solution
based on that stencil. Such a WENO reconstruction has a high computational effort and
would be, in a first attempt, only be applied to the artificial fluxes of the jet model. The use
of a monotone upstream-centered scheme for conservation laws (MUSCL) method [103],
which is more straight-forward to implement and computationally efficient than WENO is
certainly feasible to be explored as well.

Remark 5.6 (Time step control). The time step is taken to be constant in the simula-
tion. We specifically do not want to employ a time step control since that might drastically
increase the computation time for longtime simulations. If the mesh movement cannot be
properly resolved by the chosen time step, mesh racing effects can occur [96, 26]. This might
be overcome by using a time-dependent temporal relaxation parameter τ that is chosen in
accordance with the current parameter speed. The basic idea is that the mesh movement is
slowed down to avoid mesh racing effects without the reduction of the time step [94]. Even
so, the oscillations found in the example above with the jet model are likely not due to mesh
racing because the mesh movement is properly resolved by the chosen time step when the
oscillations occur.

Nevertheless, our central flux approximation works well for the jet model in Lagrangian
parameterization due to the ideally staggered fluxes, cf. Remark 4.5. We will examine its
capabilities in the following chapter with the industrial applications at hand.
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The industrial applications that motivated this work are highly dynamic jet spinning pro-
cesses with an out-stream element. In such a process a jet consisting of a liquid polymer
is extruded through a nozzle and then moves due to viscous friction, surface tension and
gravity while it is cooling down. Aerodynamic forces and other external loads may also
influence the jet [74, 6, 8]. In the last sections we introduced the viscous jet model – neglect-
ing surface tension – with suitable frames for initial and boundary conditions, as well as a
discrete scheme that will now be used. We discuss capabilities of said model and scheme
with two industrial examples at hand, namely the rotational spinning and the melt-blowing
process. The selection of those two production processes is motivated through the research
cooperation with the Fraunhofer ITWM and their ties to industrial partners (in particular
the physical parameters, and for the melt-blowing process the airflow data, is provided by
the Fraunhofer ITWM, as well as key routines for the aerodynamic force and turbulent
reconstruction, Remark 6.5). In those highly-viscous processes the transient behavior of
the jet is an essential feature, which hinders any meaningful reduction of the model and
underlines the significance of transient simulations. We aim to provide a framework for
both industrial applications.

From our point of view, special interest is on robust long-time simulations and the
applicability of industrially relevant parameter ranges, as well as predictions of the jet
behavior close to the nozzle and of the jet’s thickness. We discuss the key aspects that
have to be considered for a successful simulation and show exemplatory simulations for
both processes, yet neglecting temperature effects. In particular we introduce the rota-
tional spinning process in Section 6.1 and describe the required model alteration as well
as the external loads in Section 6.1.1. In Section 6.1.2 we present details of the numerical
method, explore alterations of the boundary conditions of the tension-free end and estimate
resolution requirements of the process. In Section 6.1.3 the impact of the characteristic
numbers (Reynolds and Rossby number) is studied. At last, simulations for industrially
relevent parameter ranges are shown in Section 6.1.4. Our course of action is similar for the
melt-blowing process in Section 6.2. We introduce the necessary models for the turbulent
aerodynamic force in Section 6.2.1 and Section 6.2.2. Following that, we present details
of the numerical method in Section 6.2.3 and analyze resolution requirements imposed by
the turbulent scales of the used airflow. Approaches for the industrial example are shown
in Section 6.2.4.

6.1 Rotational spinning process

In the rotational spinning process [72] many small nozzles are located on the curved face of
a circular cylindrical drum that rotates around its symmetry axis with high frequency. Like
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(a) Picture taken from [6].

303 773 1,273 1,773

temperature [K]

(b) Visualization of a drum with 30000 jets with surrounding
airflow, taken from [72].

Figure 6.1: Illustration of the rotational spinning process.

we mentioned in the beginning of Section 6.1, the jets deformation is driven by external
loads, in this process additionally of centrifugal and Coriolis forces. The temperature of
the polymer at the nozzle is 1303K, the surrounding airflow has a temperature range from
1773K to 303K, thus the deformation of the jet is highly dependent on the temperature
(see Figure 6.1). The jets are being swirled by the aerodynamic forces while solidifying and
are normally deposited onto a conveyor belt. In this work we are focusing on the extrusion
process and the deformation of the jet caused by gravitational and rotational forces, aero-
dynamic forces are neglected. During the cooling process the jet behaves more and more
elastic, which we expect has a beneficial effect on the simulation since the deformations
become less drastic. Nevertheless, we simulate this process with the viscous jet model
and a constant viscosity instead of using a viscoelastic material law and a temperature-
dependent model for the viscosity (cf. Section 2.1.3 and Section 2.1.4), as required for a
realistic behavior. Our purely viscous approach can be seen as a worst-case scenario, which
justifies its usage.

In [6, 9, 8, 5] the use of the viscous jet model in the rotational spinning process is
analyzed in a stationary case – both theoretically and numerically – in great detail. The
numerical investigation was done by reducing the process to the extrusion process of one
jet and thus neglecting jet interaction, which we will do as well. A sketch of the drum with
one jet is shown in Figure 6.2. The numerical approach for the instationary case in [5] has
a worrisome convergence order reduction effect in the temporal convergence, which is due
to their zig-zag approximation of the space-time domain, cf. Remark 4.7. Furthermore, in
[5] we used a formulation of the jet kinematics that introduces drift-off effects that might
alter solutions in long-term studies. We avoid them here by using our viscous jet model
with the stabilized kinematics (cf. Section 2.2.5), that, together with our discrete scheme,
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~fg ~a2
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·
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~a2

~a3

Ω

Figure 6.2: Sketch of the drum with one nozzle on the side. The jet is indicated with a red
line. On the left a side view of the drum, on the right a top view. Inspired by
[6].

can overcome the order reduction effect, cf. Section 5.2, Figure 5.4.

6.1.1 Model alteration, external loads and parameters

The symmetry axis of the rotating drum is ~Ω = Ω~eΩ with rotational frequency Ω. To fit the
rotational spinning process into our definition of the jet extrusion set-up in Section 2.3.1
we follow [6, 5] and use a reference frame that rotates with the drum. Let ~Ω = Ω~eΩ be
the angular frequency of the rotating device with the rotational axis ~eΩ. We set the outer
basis {~a1(t), ~a2(t), ~a3(t)} such that ~a1 ≡ ~eΩ and ∂t ~ai(t) = ~Ω × ~ai(t) holds for i = 2, 3.
This makes the position of the nozzle and the direction of the inflow time-independent,
but introduces rotational body forces and couples in the dynamic equations due to inertia
(cf. (6.1)). We incorporate them into the ~Ω-adapted linear and angular velocities, i.e.
~vΩ = ~v − (~Ω × ~r) and ~ωΩ = ~ω − ~Ω. Those adapted fields are now substituted into the
jet model (2.37), which means that the kinematics keep the form stated in (2.37). The
substitution adds fictitious external loads for Coriolis as well as centrifugal effects in the
balance laws for linear and angular momentum. Overall, the external loads cover the
mentioned fictitious loads and gravity and are characterized by the dimensionless Rossby
number Rb and Froude number Fr. The gravitational force is acting in direction of −~a1

and the gravitational constant g = 9.81 [m/s2] induces the Froude number (ratio of flow
inertia to gravity)

Fr2 =
v2
?

gr?
.

The symmetry axis of the drum is ~a1 and the rotational effects use the typical angular
frequency Ω0 = Ω?[1/s]. To relate both time scales of our model we introduce the Rossby
number

Rb =
v?

Ω?r?
,
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which expresses the ratio of inertial to centrifugal forces. The underlying choice of the
typical values is the following: r? = R is the radius of the rotating drum and Ω? = Ω the
rotational frequency. Furthermore v? = U is the extrusion speed, σM? = ρ(π/4)D2 the
mass line density and σV ? = (π/4)D2 the cross-section area of the nozzle. The slenderness
ratio ε is now a relation between the cross-section diameter and the radius of the drum.
Furthermore we set µ? = µ as the dynamic viscosity (µ is the viscosity of a typical polymer
at the nozzle with temperature 1323K). The appearing physical parameters are listed in
Table 6.1. Summing up, the external loads are given by f = fg + fΩ and l = lΩ with

fg = − 1

Fr2σMR · e1

fΩ = − 2

Rb
σM(R · Ωe1)× v − 1

Rb2σMR · (Ωe1 × (Ωe1 × r̄)),

lΩ =
1

Rb

[
(JM · (R · Ωe1))×

(
ω +

1

Rb
(R · Ωe1)

)
+ (JM · ω)× (R · Ωe1)

+ JM · (ω × (R · Ωe1))− ∂tJM · (R · Ωe1)

]
(6.1)

with rotation R = R(q). Note that the usage of the incompressible geometry model gives
the simplification ∂tJM = −(∂tτ3/τ3)JM. The jet model with the ~Ω-adapted velocities
is used in this section without restating the complete model equations, also no special
marking is introduced for the rotating outer basis since the context allows to distinguish
it. Only keep in mind that we deal with adapted quantities and that the outer basis is
changed, i.e., the director triad represented by the quaternions is also with respect to the
rotating outer basis.

Remark 6.1 (External loads compared to Arne et al. [5]). Note that we summa-
rize the external loads of the rotational spinning process in a different way compared to
[5]. In particular, consider the angular momentum balance law (2.37j). In [5] the whole
term h × ω is moved into the torque l. One of our goals is to keep the form of the model
equations, therefore we split it up. Furthermore, Arne et al. use a two dimensional sim-
plification of the process for their convergence studies by neglecting the gravitational force
(Fr→∞). For completeness we present it in our formulation in Appendix B.2.

6.1.2 Numerical method and investigation

We use the framework for the space-time domain and initial and boundary conditions
provided by the jet extrusion set-up in Section 2.3.1. In particular we use the setting
prescribed by Example 2.38, with its two cases: with and without mass outflow at the
right side. Starting with l(0) = r(0) = 0 we set

r̄L = e2, qL =
1√
2

(1, 1, 0, 0)

and assume L(t) = l(t) = t, R(t) = r(t) if not otherwise mentioned. This yields vL = 1
for the mass inflow, yet the mass outflow vr varies in the simulations and is stated with
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6.1 Rotational spinning process

Parameters
Description Symbol Value Unit
Fiber density ρ 2500 kg/m3

Fiber dynamic viscosity µ 162.3577 kg/m/s
Nozzle diameter D 7.4 · 10−4 m
Extrusion speed U 6.7 · 10−3 m/s
Drum rotational frequency Ω 2.3 · 102 1/s
Drum radius R 2 · 10−1 m
Dimensionless quantities
Description Formula Value
Reynolds Re = ρUR/µ 2.06 · 10−2

Rossby Rb = U/(ΩR) 1.46 · 10−4

Froude Fr = U/
√
gR 4.78 · 10−3

Slenderness ε = (
√
π/2)(D/R) 3.28 · 10−3

Table 6.1: Overview of the physical parameters of the industrial example of the rotational
spinning process illustrated in Figure 6.1, taken from [8]. The typical values are
plugged in and the dimensionless numbers computed.

them. We now analyze the impact of different approaches for the tension-free boundary
and estimate resolution requirements depending on the Rossby number.

Outflow at the tension-free boundary

Industrial partners are mostly interested in the behavior close to the nozzle and the achiev-
able thickness of the jet. Thus, simulations of the rotational spinning process leave some
freedom in choosing the boundary conditions for the tension-free end. We explore two
cases, that we already published in [89]: a) without mass outflow, i.e. r(t) = 0, and b) with
mass outflow, i.e. r(t) > 0, more precisely we utilize r(t) = 0.3t here.

a) A natural boundary layer at the tension-free end arises because the distortion mea-
sures keep their initial values due to the viscous material law. This creates physically
unrealistic behavior and ultimately causes the simulation to fail – in our explanatory
simulation in Figure 6.3 at time t = 1.52.

b) The jet behaves comparable to a) over its length (cf. τ3 in Figure 6.4), but the immi-
nent boundary layer is suppressed due to mass outflow. Different attempts to find a
suitable outflow function have shown that the concentration of mass at the tension-
free end is crucial for realistic deformation of the jet. Too much mass outflow creates
quasi-stationary state in the jet long before the expected deformation is reached,
too little outflow creates physically unrealistic behavior due to the boundary layer
which manifests most obviously in the fact that the bulk mass at the jet end starts to
move against gravity, at which point the simulation quickly fails. Our choice of mass
outflow is illustrative to show the possibilities for a prolonged simulation. While the
boundary layer can be avoided, at some point however the normal velocities start to
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oscillate due to errors in the director triad (the jet appears to be twisting). When
the jet becomes thinner and the normal velocities increase drastically they cannot be
properly resolved with a static grid – in our explanatory simulation in Figure 6.5 at
time t = 5.02. The use of the moving mesh strategies of Chapter 3 with mesh control
functions (like shown in Section 5.4.2) targeting the jet curve, orientation, contact
force and couple, as well as linear and angular velocity (or any combination of those)
can not overcome this issue, the respective simulations show an oscillating solution
similar to Section 5.4.2.

The results show that case b) is preferable. We expect simulations of even longer run
time (more importantly producing an even longer jet) when using a more suitable outflow
function.

Artificial boundary conditions at the tension-free boundary

In general, when an outflow is present, the viscous jet model requires artificial boundary
conditions for its distortion measures. We use an extrapolation boundary as described
in Section 4.2. The use of alternate boundary conditions that are possible through the
tension-free boundary do not give improved results, cf. Remark 6.2.

Remark 6.2 (Artificial condition for τ3 and κ). In Section 4.2 we discuss the neces-
sary artificial boundary conditions for a tension-free boundary. In particular we use an
extrapolation boundary for τ and κ. Alternatively, we use the inherent equations (2.41c)
and (2.41d) along the boundary, more precisely we use one-sided, first-order finite differ-
ence approximation of them. We do this by replacing all equations j in R (the function
that provides the boundary conditions, cf. Section 4.1.2), belonging to τ and κ by

(Y n+1
R,j − Y n

R,j)−
R(tn+1)−R(tn)

R(tn+1) + skr−1/2

(Y n+1
R,j − Y n+1

kr−1/2,j)

− ∆t

R(tn+1) + skr−1/2

(Y n+1
R,u Y

n+1
R,j − Y n+1

kr−1/2,uY
n+1
kr−1/2,j) = 0

with Y n+1
·,u as the component representing the parameter speed u. In the special case that

u ≡ 0 and R(t) = 0 this can be simplified even further and the boundary unknowns can
be set according to τ3(R(t), t) = e3 and κ(R(t), t) = 03. We repeat the longtime studies
shown in Figures 6.3 and 6.5 with the replaced boundary conditions. The difference at time
t = 5.01 for mass outflow case is less than 1.5% in the unknowns of the last active cell
and this quickly vanishes further into the domain. It also has no effect on the the runtime,
the simulation breaks down at the same time as the former one with extrapolation bound-
aries. Overall, the influence on the discrete solution of these replaced boundary conditions
is marginal, since we only consider mass outflow on the right side. We always use the
extrapolation boundary.

Spatial and temporal resolution

The applied spatial and temporal grid spacing critically depends on the considered problem
parameters. Smaller parameter values of Rb, Fr and ε, or bigger ones for Re imply faster,
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Figure 6.3: Rotational spinning scenario with (L(t),R(t)) = (t, 0), (Re,Rb,Fr, ε) =
(1, 0.1, 1, 8.86 ·10−2) and ∆t = ∆s = 10−2. Notice the inaccuracies due to over-
shooting in the velocities of the jet (e.g. v1) which are caused by the boundary
layer. It creates unrealistic behavior and ultimately causes the simulation to
fail (cf. the tension-free end is moving against the gravitational force).

−5
0

5
10

0

10

−0.4

−0.2

0

e2
e3

e 1

r̄, outflow
r̄, no outflow

−1.5 −1 −0.5 0
0

100

200

s

v1, outflow
v2, ·
v3, ·
τ3, ·
τ3, no outflow

Figure 6.4: Comparison of the effects of tension-free boundary with and without mass
outflow at t = 1.51, remaining unknowns are comparable in the similarity.
[89]

111



6 Applications

−4
−2

0
2

−5

0

−5

0

·10−2

e2e3

e 1
r̄, t = 0.71

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2
0

10

20

30

s

v1
v2
v3
τ3

0
10

0

10

−4

−2

0
·10−1

e2e3

e 1

r̄, t = 1.51

−1.4 −1.2 −1 −0.8 −0.6
0

20

40

60

80

s

v1
v2
v3
τ3

−50
0

−50

0

−4

−2

0

e2e3

e 1

r̄, t = 4.01

−4 −3.5 −3 −2.5 −2 −1.5

0

2

4

·102

s

v1
v2
v3
τ3

0
200

0
200

−0.2

0
·102

e2e3

e 1

r̄, t = 5.01

−5 −4 −3 −2
−1

0

1

·103

s

v1
v2
v3
τ3

Figure 6.5: Longtime simulation of the rotational spinning process with (Re,Rb,Fr, ε) =
(1, 0.1, 1, 8.86 · 10−2) and ∆t = ∆s = 10−2, given mass outflow vr = 0.3.

112



6.1 Rotational spinning process

10−5 10−4 10−3 10−2 10−1
10−6

10−5

10−4

10−3

Rb

∆
t,

∆
s

Rb scaling
no scaling

Figure 6.6: Estimation of the safety factor CRb for the rotational spinning process. For ev-
ery Rb the graph indicates the minimal grid spacing (∆s=∆t) that is necessary
for a successful simulation.

larger changes in the dynamics and higher elongation, which requires a finer resolution.
The impact of Rb is now explored, since it is the driving parameter for the rotational
spinning process. The Rossby number is linked to the dimensionless time that the drum
needs for one rotation, namely 2πRb, and is very small in industrially relevant parameter
ranges, cf. Table 6.1. This revolution time has to be properly resolved, thus ∆t has to
be equal or less than CRbRb, where CRb is a positive constant and 2π/CRb estimates how
many time steps within one revolution are necessary for proper resolution. The jet leaves
the nozzle unstretched and unbent and then undergoes external loads in normal direction
that aggravate with Rb → 0. This manifests in a boundary layer close to the nozzle that
develops quickly in the normal inner forces, curvature and angular velocity but do not
worsen over time (cf. n2, ω1 in Figure 6.3). To find CRb for the example in Table 6.1 we
set (Re,Fr, ε) = (2.06 · 10−3, 4.78 · 10−3, 3.28 · 10−3) and ∆t = ∆s = 10−2. We start a
simulation for every Rb ∈ {10−5, 2 · 10−5, . . . , 10−1} and keep track of the boundary layer
that builds up towards the nozzle. If it behaves unrealistic after 100 time steps or the
simulation breaks down, we equally refine the grid spacing until success. The estimation
of the required resolution for every Rb is presented in Figure 6.6. For Rb > 5 · 10−3 we
require at least ∆t = ∆s = 10−3, due to the the stiffness of the system – observe that ε is of
similar magnitude. For small Rb numbers we estimate CRb ≈ 2 · 10−1 (2π/CRb ≈ 30). The
longtime study in Figure 6.5 has moderate physical parameters, especially in the Rossby
number. Due to the fact that we are dealing with small Rossby numbers and Rb appears
quadratic in the external loads (6.1) of the conservation laws, we divide both equations
with Rb2 to avoid small number division – we call this Rb-scaling. As expected the Rb-
scaling has a big impact when Rb2 gets close to the accuracy of the Newton’s method:
Without scaling the simulation fails for Rb ≤ 2 · 10−5, cf. Figure 6.6, dashed red line. In
general the condition of the Jacobian is improved, thus we always use the Rb-scaling.
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6.1.3 Parameter study

We continue the investigations in the spirit of [5] regarding the robustness and applicability
in terms of parameter ranges. We mentioned in the introduction (Chapter 1) that former
attempts for the instationery simulations of rotational spinning processes use a string
model, which has a restricted applicable parameter range in terms of Re and Rb [80, 6]. The
more sophisticated rod model opens the full parameter range to simulations [5], which is
confirmed here by simulations with our three-dimensional viscous model and the stabilized
kinematics (deviations compared to the original kinematics are less than 0.8%).

For the no outflow case (cf. Section 6.1.2) we exemplarily visualize the elongation in
dependence on Re and Rb for T = 1 in Figure 6.7, red line, with a fixed grid spacing for all
parameter sets. We start with a Rossby number Rb = 1 and compute the solutions for the
different Reynolds numbers. Then we halfen the Rossby number and repeat the computa-
tions until the simulation breaks down, which is the case for Re = 100.2,Rb = 3.125 · 10−2.
In theory all parameter settings can be computed with the help of our discrete scheme, but
the simulations with no outflow are practically restricted to moderate parameter ranges
by the appearance and therein lack of resolution at boundary layers at the free jet end.
Certainly, those layers can be resolved with a finer static grid, but this study employs a
fixed grid spacing. Attempts with the moving mesh approaches (Chapter 3) help with
the proper resolution of the layers, but they can not achieve the required runtime due
to appearing oscillations similar to Section 5.4.2. We adjust the tension-free boundary
conditions by introducing mass outflow, which avoids an aggravating boundary layer and
broadens the applicable parameters range. We repeat the study of Figure 6.7 for an arbi-
trarily chosen outflow of 30% (cf. Figure 6.7, black line) and an adjusted end time T = 1.3
(cf. Figure 6.7, dashed black line), for which the extruded length is the same as in the
no outflow case. The elongation behavior is similar in all three cases and simulations up
to Re = 100.5,Rb = 1.5625 · 10−2 are now possible. The simulation for bigger Reynolds
or smaller Rossby numbers still breaks down due to the fact that the outflow magnitude
is not fitted to the problem, it still allows some mass lumping at the free jet end. This
lumping also creates the difference of the curvature behavior for small Reynolds numbers.
For bigger Reynolds numbers, and generally for small Rossby numbers the impact of the
mass lumping at the tension-free end on the elongation behavior is decreasing. For exam-
ple, consider the outflow case with T = 1.3 and the no outflow case (those two cases have
the same extruded length) with Rb = 3.125 · 10−2 in Figure 6.7, that have very similar
maximum elongation.
Our results for the no outflow case are comparable to [5], but the resolution requirements

are greatly relaxed. The discrete approach in [5] was quite restrictive and required a
resolution of magnitude O(10−4) for Rb = 1.25 · 10−1, whereas our new approach reaches
Rb = 3.125 · 10−2 with ∆t = ∆s = 10−3, and an even broader parameter range when
an outflow is used. We expect that the Rossby numbers can be decreased further if the
outflow function is chosen more carefully and fitted to the problem. We will do this for
the industrial application in the following Section 6.1.4.
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Figure 6.7: Total elongation in dependence of Re and Rb for the rotational spinning process
with (Fr, ε) = (1, 8.86 · 10−2) and ∆s = ∆t = 10−3. The no outflow is com-
pared to two outflow cases with vR(t) = 0.3 and the indicated end times. The
parameter ranges are Rb = {1, 0.5, 0.25, . . .} and Re = {10−1, 10−0.9, . . . , 101},
those parameter tupels that allow a succesfull simulation are indicated. Here,
the jet length is

∫ −r(T )

−l(T )
∂sr̄(s′, T ) ds′ and the extruded length |Ω̂| = r(T )− l(T ).

6.1.4 Industrial application

The results of Figure 6.6 allow to estimate the resolution requirements for the example in
Table 6.1, which is ∆s = ∆t < CRbRb ≈ 2.92 · 10−5. This estimate takes the effects close
to the nozzle and the revolution speed of the drum into account. As the jet extrudes and
rotates around the drum we expect large elongation to form. It varies several orders of
magnitude within the jet, which requires special consideration to avoid singular matrices
of the non-linear system. Unsurprisingly, the approach of Section 5.3 is the key for a
successful simulation: The elongation appears in second and third power in the material
law. We divide the respective equation by the equal power of the maximum elongation
from the previous time step. Additionally, an aggravation of the boundary layer on the
tension-free end is avoided by choosing the mass outflow appropriately. We come to know
by several targeted simulations that an outflow function vr(t) = 0.98 enables the simulation
of the relevant area between the nozzle and a possible conveyor belt. This choice seems
drastic, but it avoids that the boundary layer arising from the tension-free end is affecting
the solution, see Remark 6.3 for more details. The viscous jet and the resulting domain of
the simulation are depicted in Figure 6.8, the simulation is stopped when sufficient height
is produced. Our investigation shows that the jet is properly resolved, although a material
parameterization is used. The deformation gradually increases within the jet but never
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Figure 6.8: Industrial example of the rotational spinning process with parameters from
Table 6.1 and ∆t = ∆s = 10−5. The mass outflow is vr(t) = 0.98.

explodes. Without the explicit elongation scaling of the material law the simulation breaks
down due to a numerically singular system matrix when the elongation reaches roughly a
magnitude of 5 ·103. The oscillation in the normal velocities, that are the bottleneck in the
example of Figure 6.5, are properly resolved here and seem to be less severe. We suspect
that this is due to the dominating rotational forces.

Remark 6.3 (Finding the outflow function). The outflow function in Figure 6.8 is
not an intuitive choice. We identify one reason the simulation breaks down, namely the
influence of the free end that creates boundary layers (Figure 6.3) due to the inherent con-
dition (2.41c). If those boundary layers are not properly resolved, the jet, and in particular
its end, will behave unrealistic. We define two states for the jet in the rotational spinning
process:

• Valid: The jet end moves with gravity, i.e.

argmins∈Ω(tn)r̄1(s, tn) = R(tn).

• Invalid: The jet end moves against gravity.
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Figure 6.9: Industrial example of the rotational spinning process with parameters from
Table 6.1 and ∆t = ∆s = 2 · 10−6. The heuristic mass outflow of Remark 6.3
was used.

With the help of those two states we set the outflow heuristically. We define a desired
outflow function vr,desired that can be discontinuous and consists of three parts: An initial
growth phase (tn ≤ tgrowth = 6 · 10−3) in which we set vr,desired(tn) = 0.5 (these values have
been determined by trial and error). After the initial growth we set vr,desired(tn) = 0.5 if
the jet was valid at the time tn−1, otherwise vr,desired(tn) = 1.5. The actual mass outflow
is now chosen to approach the desired mass outflow in a smooth manner. This is done to
avoid difficulties in the iteration of the Newton’s method, the actual smoothing process has
no significant effect (we choose to restrict the acceleration of the mass outflow by ∆t/10−3).
The simulation and the resulting domain are depicted in Figure 6.9. We observe that the
tension-free end is still affecting the solution, visible in the reverberating elongation kinks
in Figure 6.9, right plot. The beginning of such a kink can also be seen for moderate
parameters, cf. Figure 6.4. The shape of the domain suggests that instead of an heuristic
approach for the mass outflow one could pick a analytic linear mass outflow function that
approximately reflects the heuristic one. After the initial growth phase we find a slope of

117



6 Applications

0.88 to be a good approximation. We repeat the simulation by setting the linear outflow
vr(t) = 0.88 and obtain comparable results. Gradually increasing the mass outflow we find
that the kinks disappear with an outflow of vr(t) ≥ 0.98.

We conclude that our jet model, set-up and discrete scheme greatly extends the applica-
ble parameter range of the rotational spinning process, including the ones for industrially
relevant simulations. A key aspect is the introduction of some mass outflow at the tension-
free boundary to compensate for the boundary layer in the elongation at the tension-free
jet end. The achievable elongation of the jet in the outflow case is seemingly not restricted
due to proper scaling of the material law (cf. Section 5.3). This naive statement has to be
re-evaluated in a realistic scenario with intrinsically correct material behavior (viscoelas-
tic material law with temperature-dependent viscosity, cf. Section 2.1.3) and aerodynamic
forces. Nevertheless, the capabilities of our approach are demonstrated in Figure 6.8,
elongations of magnitude O(105) are achieved.

Remark 6.4. We expect that the viscoelastic model facilitates the numerics whereas the
aerodynamic forces worsen them due to their dominating effect on the jet. Even so, the
aerodynamic forces are expected to be the highest in the area close to the nozzle, which will
in turn allow to give a reasonable estimate on the necessary resolution. Since this is the
main effect restricting the capabilities of the static grid (Lagrangian parameterization) in
the rotational spinning process, we expect a viscoelastic model with aerodynamic forces to
perform equally well if the initial resolution requirements can be met. Exemplary simula-
tions of the thermal, visoelastic jet in an academic scenario are shown in Appendix A.3.

6.2 Melt-blowing process

The melt-blowing process is designed to manufacture nanofibers. Directed, highly turbu-
lent air streams are used to rapidly deform polymer jets that are extruded through multiple
nozzles. A typical production design of a melt-blowing machine is sketched in Figure 6.10.
There is a chamber of some molten polymer that is extruded through the nozzles and un-
dergoes aerodynamic forces that push the stretched jets onto some collecting structure, e.g.
a conveyor belt, while cooling it down. The turbulent nature of the airflow is a key feature
of such production processes since it forms the desired stochastic microstructures through
overlapping of the deposited jets. The melt-blowing process is characterized economically
by low production costs compared to the mateiral costs, which makes it attractive for com-
mercial use. A successful simulation would provide a valuable contribution to optimization
efforts in terms of material properties of the microstructures and achievable jet thickness
without reducing the machine throughput. So far there has been a gap in literature that
deals with simulations of the melt-blowing process in regards to the computed jet thickness,
in particular results from experiments and simulations deviate several orders of magnitude
([101] and more recently [112, 109]). This likely due to insufficient consideration of turbu-
lent effects. To exemplify this, consider the elongation τ3, which is the ratio of the cross
section at the nozzle and the deformed jet. In a stationary treatment of incompressible
jets, the maximal elongation can be expressed as the ratio of the velocities (nozzle velocity
vs. maximal jet velocity). The attainable maximal jet velocity is characterized by the
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(a) Exemplary melt-blowing pro-
cess. The jets are extruded,
picked up by hot, high velocity
air streams, swirled and laid-
down with suction at the col-
lector1.

(b) High-speed photograph of
possible swirling behavior
of one jet (in red), picture
taken from [109].

Air Air

Molten
polymer

high relative
velocity

large elongation

(c) Sketch with exemplary propaga-
tion of the jet, not to scale.

Figure 6.10: Illustration of a melt-blowing processs.

mean airflow velocity and would cause an elongation of τ3
~O(104), whereas measurements

of actual experiments show elongations of τ3
~O(106). Experiments in [93, 109] indicate the

relevance of the turbulent fluctuations for the jet thinning, which prohibits any stationarity
assumptions. This assumption was investigated numerically with a simplified ODE model
for the jet by Hübsch et al. [60], who achieved promising results that raise hope to close the
melt-blowing gap that is reported in literature. We aim to provide a basis for the robust
simulation of the melt-blowing process with our more sophisticated viscous model and to
provide more insight into the physical effects that can explain said melt-blowing gap.
Our interest is on the behavior of the jet in the flow situation, and expecially the elon-

gation behavior in in longtime simulations. The immersed jet moves exclusively in the
distinct region prescribed by the air stream. Whereas its initial motion is determined
strongly by the mean flow pulling the jet, the flow fluctuations cause slight bouncing that
reinforce as the jet accelerates. When the jet velocity starts to follow and finally adjusts
to the flow velocity, i.e. the relative velocity of jet and air goes to zero, the deformation
of the jet is presumably dominated by the flow fluctuations. The aerodynamic forces are
clearly the key player in the deformation of the jet, overall the applied external loads cover
turbulent aerodynamic forces and gravity
Considering a representative melt-blowing scenario (Figure 6.11 and Figure 6.12), the

jet behavior was explored with an ODE model and correlated aerodynamic force resulting
from the turbulence reconstruction in [60]. In said scenario an airflow is directed vertically
downwards and enters the domain via thin slot dies, the many nozzles are located inbetween

1Picture reproduced with permission of the Textile Centre of Excellence, Textile House, Red Doles Lane,
Huddersfield, HD2 1YF, enquiries@textilehouse.co.uk
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~a1

~a3~a3~a2

~a1

Figure 6.11: Illustration of the considered melt-blowing process. Left: Flow domain with
immersed jets and indicated two-dimensional cut (~a3-~a1-plane, marked by
dashed line) that is representative for the whole domain due to the homogene-
ity in ~a2-direction. Right: Side view of the ~a3-~a1-plane with zoom on slot
dies with the nozzle inbetween. [60]
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Figure 6.12: Components of the mean airflow velocity of the representative two-dimensional
flow domain in Figure 6.11.
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6.2 Melt-blowing process

and point in the same direction. We study the scenario by help of our jet model and follow
[60] by neglecting temperature effects and influences of the jets on the airflow (one-sided
coupling through the aerodynamic line force). Furthermore, the outer basis in the sketch
is chosen such that ~a2 is aligned with the slot inlet, ~a3 is in normal direction of the nozzles
and ~a1 in negative tangential direction. The airflow is time-independent and homogeneous
in direction of the slot, thus a representative two-dimensional airflow can be used. The
scenario is simplified to only consider one of the nozzles, i.e. jet interaction is neglected, and
we put the origin of the fixed, outer basis of the jet model {~a1, ~a2, ~a3} on top of the nozzle
(that means that the boundary conditions for the jet position are always the origin). For
the sake of an unambigous visualization we introduce yet another outer basis {~e1, ~e2, ~e3}
that only differs in the choice of the origin from {~a1, ~a2, ~a3} and assumes the coordinates
given by the external flow data (Remark 6.5). In it, the nozzle position in the airflow
field is at −0.03~e1 [m]). The typical values for the jet model are chosen analogously to
the rotational spinning process (Section 6.1) with the exception of the typical length. It is
chosen to be the height of the airflow field r? = H. The appearing physical parameters are
described in Table 6.2. The kinematic viscosity of the airflow is assumed to be constant,
whereas the density can not be considered constant due to the high velocities.

Summing up, the external loads consist of aerodynamic and gravitational forces:

f = fg + fair, l = 0.

We handle the delicate jet-turbulence problem by help of two models: a drag force model
for an incompressible flow acting on a slender fiber by Marheineke and Wegener [75] (cf.
Section 6.2.1) and an approach for correlated turbulent fluctuations by Hübsch et al. [60]
(cf. Section 6.2.2).

Parameters
Description Symbol Value Unit
Fiber density ρ 7 · 102 kg/m3

Fiber dynamic viscosity µ 1 kg/m/s
Nozzle diameter D 4 · 10−4 m
Extrusion speed U 1 · 10−2 m/s
Height of airflow field H 1.1986 · 10−1 m
Air kinematic viscosity νair 1.5 · 10−5 m2/s

Dimensionless quantities
Description Formula Value
Reynolds Re = ρUH/µ 8.39 · 10−1

Froude Fr = U/
√
gH 9.22 · 10−3

Slenderness ε = (
√
π/2)(D/H) 2.96 · 10−3

mixed Reynolds Re∗ = DU/νair 2.66 · 10−1

Table 6.2: Overview of the physical parameters of representative melt-blowing process from
Figure 6.11, taken from [60]. The typical values are plugged in and the dimen-
sionless quantities computed.
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In the following subsections we introduce the models for the air drag force and the turbu-
lent fluctuations. Both require the diameter of the slender jet, that is given in dimensionless
form by d : Q → R+ with its typical value d0 in accordance with Remark 2.17, i.e.

d =

√
σV
‖τ‖ , d0 = 2

√
σV ?
π
. (6.2)

6.2.1 Air drag model

The dynamics of a jet surrounded by an airflow depend on the drag forces that are imposed
on the jet by the air. In principle, it can be computed by a coupling of jet and airflow
with no-slip interface conditions. However, the needed high resolution (even with potential
adaptive grid refinement) makes the direct numerical simulation of the three-dimensional
fluid-solid-problem practically impossible for relevant applications. We adapt the air drag
model from Marheineke and Wegener [75] that was specifically created for slender fibers in
an incompressible flow and imposes a model for the jets line force density. It is constructed
in an Eulerian parameterization and universally valid for all Reynolds number regimes,
incident flow directions and all kind of fibers or jets. The model uses the Global-from-Local
concept of [73] and globalizes by superposition. This simplified globalization strategy is
applicable because the jet stays in the area of the free stream (depicted in Figure 6.12) and
does not get close to the boundaries, i.e. it stays in an area where the Global-from-Local
assumption holds. Locally, the jet is assumed to be a thin circular cylinder, and the force
acting on it is exclusively caused by friction and inertia due to the incompressible flow
assumption. The model for the aerodynamic line force is dependent on the material and
geometrical properties as well as the specific inflow situation. The concept of [75] allows
for a one-sided consideration of the airflow effect on the jets by using a filament-free airflow
as a basis, but also for the complete coupling of jet and aerodynamics via additional source
terms in the flow external computation. We use one-sided coupling.

The aerodynamic force fMW modeled in [75] is non-dimensionalized with typical mass,
length and time chosen to be ρairD3

jet, Djet and D2
jet/νair, respectively. The density ρair

[kg/m3] and kinematic viscosity νair [m2/s] of the airflow and the diameter Djet [m] of the
jet are used. Note that νair is assumed to be constant whereas ρair and Djet are functions
on Q. More precisely, ρair is given through an external computation, and Djet = dd0, cf.
(6.2). The aerodynamic line force in director basis that is suitable for the jet model in
terms of its non-dimensionalization is given by

fair = F
τ3

d
fMW (e3,Re∗dvrel) , (6.3)

F =

√
π

2

ρairν
2
airr?

σM?v2
?

√
σV ?

=
1

ε2

1

ReRe∗
Vi∗, Vi∗ =

ρairνair
µ?

, Re∗ =
2√
π

√
σV ?v?

νair

with the typical values of the jet model, cf. Section 2.2.2, and the dimensionless numbers
Re, Re∗ and Vi∗, where Re is the Reynolds number of the jet, Re? is a Reynolds number
relating the inertial forces of the jet to the viscous ones of the airflow and Vi∗ relates
the dynamic viscosity of the airflow and the jet. Note that Vi∗ (and therewith F) is not
a constant but a function dependent on Q through ρair and F is the conversion factor
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between jet and air drag model. Wheras fair is referenced to the jet parameter s, note
that fMW is referenced to arc-length, thus the jet elongation ‖τ‖ = τ3 additionally appears
in (6.2.1). The model behind fMW depends on the normed tangent of the jet and the
flow velocity relative to the jet (we refer to [75] for details). Since the air drag model is
frame-invariant and we are using the director basis, the normed tangent simplifies to e3.
The relative incident velocity is

vrel = R(q) · v̄air − v. (6.4)

Here we require the dimensionless airflow velocity v̄air at the current position of the jet.
It is provided by an external computation and interpolated onto the jet position, cf. Re-
mark 6.5. The underlying model assumes that the airflow velocity cosists of the mean flow
and turbulent fluctuations

v̄air = v̄mean + v̄turb. (6.5)

The turbulent fluctuations are either zero for purely deterministic simulations or will be
given by the turbulence reconstruction that is described in Section 6.2.2.

6.2.2 Turbulent reconstruction

Marheineke and Wegener [73] derive a correlated aerodynamic force concept and argue the
asymptotic transition to Gaussian white noise with flow-dependent amplitude. If the bend-
ing scales of the jet are significantly larger than the turbulent length scales, then the white
noise limit is qualitatively and quantitatively justifiable and gives an enormous simplifi-
cation and reduction of computational time and memory usage (investigeted numerically
and validated in [67, 75]). The impact of the correlated global force has been explored in
[60]. The reconstruction for the fluctuations is on top of a k-ε formulation with a simplified
energy spectrum from [73]. The underlying Global-from-Local concept assumes that the
local velocity fluctuations (fine-scale structure) can be modeled as homogeneous, isotropic
Gaussian random fields. This is ad-hoc possible if the kinetic energy kair [m2/s2] of the
turbulent fluctuations and and the viscous dissipation of the turbulent motions per unit
mass εair [m2/s3] only vary gradually within the considered airflow. The local fluctuations
are globalized by superposition to form the large-scale structure of the global turbulence.
In [60] Hübsch et al. propose a fast and accurate sampling procedure for the random fields
that shows qualitatively appropriate jet thinning in magnitude for a simple isothermal
ODE jet model. The effort is linear in the discretization making a realization possible for
industrial applications. We apply their approach to the more complex viscous jet model.

The airflow velocity (6.5) is assumed to consist of a mean flow and turbulent fluctuations.
The stochastic part is reconstructed with the help of the mean flow v̄mean, the kinetic energy
kair and viscous dissipation εair. All three are functions on Q whose values are interpolated
from data given by an external flow simulation, cf. Remark 6.5. The turbulent velocity
fluctuations v̄HM modeled in [60] depend on the current position in the airflow field (given
by the jet position) and time, as well as the viscosity and mean velocity of the airflow at
said position, and are made dimensionless with the turbulent length lT = k

3/2
air /εair and
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time tT = kair/εair. The velocity fluctuations v̄turb suited for the jet model in terms of its
non-dimensionalization are given by

v̄turb =
k

1/2
air

v?
v̄HM

(
εair

k
3/2
air

r?r̄,
εair
kair

r?
v?
t,
εair
k2
νair,

v?

k
1/2
air

v̄mean

)

= Tuv̄HM

(
Tt
Tu

r̄,Ttt,
2ε√
πRe∗

Tt
Tu2 ,

1

Tu
v̄mean

)
, Tu =

k
1/2
air

v?
, Tt =

εairr?
kairv?

with the dimensionless degree of turbulence Tu and time scale ratio Tt, both of which are
not constants but functions dependent on Q.

6.2.3 Numerical method and investigation

Hübsch et al. were investigating the turbulent fluctuations as possible cause for the large
elongation measured in melt-blowing processes [60]. We continue their study by applying
the turbulence reconstruction to the viscous jet model as the consequent advancement
from the ODE model in [60]. We consider the jet extrusion set-up (Section 2.3.1) and
use the frame for the initial and boundary conditions provided by (2.43). Starting with
l(0) = r(0) = 0 we set

r̄L = 0, qL =
1

2
(−1,−1,−1, 1), vL = 1.

If not otherwise mentioned, we assume L(t) = l(t), R(t) = r(t) and vr = 0.

Remark 6.5 (External data and routines). All external data and routines are pro-
vided by the Fraunhofer ITWM. The flow data is provided with permission from their in-
dustrial partner and was obtained by an external simulation of the incompressible Navier-
Stokes equations, namely via the comercial tool FLUENT2. The air drag force model is
available as a MatLab routine (according to [75]) whereas the turbulence reconstruction is
made in MatLab through a .mex interface written in C++ (for performance reasons, ac-
cording to [60, Algorithmus 9]). The computation of the air force is quite CPU-intensive,
also derivatives of the turbulent reconstruction are not available. Thus the air force is best
used explicitly in the jet model.

Necessary spatial and temporal resolution The model for the turbulence reconstruc-
tion (cf. Section 6.2) is built with the turbulent large-scale length tT [s] (expected length
of the large-scale vortices) and time lT [m] (expected creation and break-up time of the
vortices). Both depend on the position in the airflow and have to be considered when
choosing an appropriate resolution. We are interested in the resulting force on the jet as
a slender object that moves freely in the airflow. Thus there is an additional challenge
for the temporal resolution: the time that a vortex needs to pass a fixed material point of
the slender object due to their relative velocity. Without a doubt those scales have to be
resolved properly in the discretization, otherwise the turbulent force is not affecting the jet

2commercial finite volume-based software by ANSYS, http://www.fluent.com/.
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Figure 6.13: Dimensioned turbulent space and time scales for the industrial example of
Figure 6.11 in a) and b). Comparison of the two relevant turbulent time
scales in c) and d).
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accumulatively and becomes white noise. The requirements for a successful simulation in
terms of ∆s, ∆t depend on the underlying non-dimensionalization and parameterization.
We formulate the upper bounds along the jet for every (s, t) ∈ Q

∆s ‖τ‖ ≤ lT
H
, (6.6a)

∆t ≤ U

H
min

(
tT ,

lT
‖vrel‖U

)
(6.6b)

with vrel from (6.4) and the typical values from the jet model given in Table 6.2. An
estimate for the upper bound of the temporal and spatial resolution is given by the right
sides of (6.6) and can be obtained by assuming that the jet velocity is simply the typical
velocity. To find the global minimum of said bounds we calculate it for all airflow data
that is in front of the nozzle, i.e. with a negative ~a1 coordinate. The minimum is then
computed and it is, as expected, located close to the nozzle (cf. Figure 6.13) and given by

∆s ≤ 1.53 · 10−4

H
= 1.18 · 10−3, (6.7a)

∆t ≤ 4.12 · 10−7

H/U
= 3.05 · 10−8. (6.7b)

6.2.4 Industrial example

The time step restriction (6.7) seems too harsh for actual simulations, yet this is the
worst-case only in close proximity to the nozzle. A simulation is indeed possible, but the
runtime is insufficient. In Figure 6.14 several representative jets due to the turbulence
reconstruction are depicted, the simulation runtime is quite short. Longtime simulations
are not feasible, since the expected elongation of this industrial example is of magnitude
106. Considering the impact of the elongation in (6.6), the spatial grid spacing would need
to be at least ∆s = 10−7, in an optimistic guess according to Figure 6.13a (the worst case
in (6.7a) would be of magnitude 10−9, but the large elongations do not occur that close to
the nozzle). Using said resolution, simply extruding the jet until it reaches the arc-length
depicted in Figure 6.14 exceeds our computational capabilities, or more precisely, are no
longer feasibly in terms of computation time.

Deterministic dominance We alter our simulation approach by hypothesizing that the
turbulent fluctuations have neglectable influence on the deformation of the jet when the
relative velocity is very high, i.e. when the jet just exited the nozzle. In other words, in a
certain area directly after the nozzle the jet is dominantly deformed by the mean airflow.
The question is the extent of said area such that our assumption is reasonable.
We estimate the velocity induced solely by the mean flow. For that purpose we assume

that the sole external force is induced by the mean flow in nozzle direction. This simplifies
the scenario drastically to an uniaxial model, which is presented in Appendix B.3. Since
we are interested in longtime simulations we can assume that the jet enters a stationary
state within the nozzle-adjacent area. Consequently the velocity profile of the jet can be
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Figure 6.14: Simulation of the melt-blowing process with parameters from Table 6.2 and
∆s = ∆t = 5 · 10−7. The plots show representatives of jet curve at time
t = 1.8 · 10−3 due to the turbulence reconstruction.
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Figure 6.15: Velocity profile of a jet only considering non-turbulent airflow in the direction
of the nozzle. The jet position and its velocity are depicted for (̄r1, v̄3) =
(−0.0322 [m],−10 [m/s]) and (̄r1, v̄3) = (−0.0434 [m],−100 [m/s]).
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calculated with a stationary simulation in Eulerian parameterization that spans the whole
area. The velocity profile is plotted in Figure 6.15.
The simulation is altered with the following idea: Choose an arbitrary speed Uadj greater
than the extrusion speed U of the nozzle. Then the steady-state simulation allows to
estimate the jet position with the help of the velocity profile in Figure 6.15 (meaning:
Read the position of the jet when ii t has velocity equal to Uadj). We put a fictive nozzle
at said position (which will be the origin of the outer basis {~a1, ~a2, ~a3}) and adjust the
typical values of the simulation to obtain the same mass flow as with the original nozzle
(cf. Table 6.2), i.e.

v? = Uadj, σM? = ρ
πD2

4

U

Uadj
, σV ? =

πD2

4

U

Uadj
,

which means that the diameter of the fictive nozzle is adjusted by a factor of
√
U/Uadj.

With the adjusted velocity and position, the dimensionless number and the necessary
turbulent scales relax (we simply neglect the airflow that is behind the nozzle, and the
relative velocity decreases). We choose Uadj = 10 [m/s], which puts the adjusted nozzle
position in the airflow field at −0.0322~e1 according to Figure 6.15. The diameter of the
adjusted nozzle becomes D = 1.26 · 10−5, which translated to a preassumed elongation
compared to the original nozzle of Uadj/U = 103, and the dimensionless numbers become
(Re,Fr, ε) = (8.23 · 102, 9.31, 9.53 · 10−5). Of course the jets extruded with the original
parameters are not passing exactly through the adjusted nozzle position −0.0322~e1, but
this deviation is neglected (cf. Figure 6.14b). We will be using the adjusted nozzle for the
following investigation.

Investigation of the turbulent effect causing large elongations We run a simulation
with parameters of Table 6.2 and the adjusted nozzle with Uadj = 10. The applied airflow
field is simply the velocity 400 [m/s] in negative ~e1 direction. We observe that the turbulent
vortices create swirls in the jet and pull it in opposite directions due to velocity gradients
(cf. Figure 6.16). Sooner or later the fluctuations cause the jet to position itself normal
to the high-velocity airflow, creating large normal aerodynamic forces due to high relative
velocity gradients (cf. Figure 6.17a). If those external forces can accumulate over time,
a spike in the elongation is formed that easily exceeds the deterministic expectations. In
Figure 6.17b those forces have created such an elongation peak. We can see in the jet and
airflow velocities that the jet is closely following the airflow, the induced forces are more
uniform indicating that the jet will only be stretched up to a certain maximum elongation,
at which point the jet is simply following the airflow low.
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Figure 6.16: Simulation of the melt-blowing scenario with parameters from Table 6.2 and
∆s = ∆t = 10−6 with an adjusted nozzle and airflow, the time is t = 0.0078.
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Figure 6.17: Details of the simulation depicted in Figure 6.16: The plots show the di-
mensioned normal (‖· × e3‖) and tangential component (·3) of the jet v and
airflow velocity vair as well as the induced aerodynamic line force fair and the
elongation velocity relative to the adjusted nozzle τ3Uadj.
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6.2 Melt-blowing process

We repeat the simulation with the actual airflow from Figure 6.11. The jet curve of
different representations due to the turbulence are shown in Figure 6.18. We can observe
maximum total elongations (compared to the original nozzle) of 10−5 to 10−6 within those
jets. They all exhibited similar effects, the tangential velocity and elongation of one repre-
sentation is depicted in Figure 6.19. Very high elongation peaks appear and we expect in
a a prolonged simulation that the jet is evenly deformed due to inertial effects (if the jet is
thick, it is not following the airflow and velocity gradients can occur during swirling. If it
is thin, it simply follows the airflow without anymore significant deformation). Notice the
many sign changes of the tangential velocity in Figure 6.19c, in all those areas high normal
forces are acting on the jet, possibly creating elongation peaks.

Unfortunately, our computational capabilities are not sufficient to run longtime sim-
ulations with a Lagrangian parameterization to reproduce jets that have an evenly dis-
tributed elongation of the same magnitude. The moving mesh approaches from Chapter 3
are tailored exactly for this problem of locally strongly varying solution components, but
such simulations (more precisely, with the strategies and mesh control function from Sec-
tion 5.4.2) start to oscillate and break down before its Lagrangian counterpart does. We
hypothesize that a smoother, higher-order approximation for the artificial spatial fluxes of
the jet model in general parameterization can overcome that issue, cf. Remark 5.5. Even
so, the performance of the jet model in Lagrangian parameterization is already promising
and we do not preclude that the use of those smoother, higher-order approximation for
the material spatial fluxes can extend the simulation runtime to be suitable for longtime
considerations.

Despite all that, our viscous jet model and discrete scheme allows the general simulation
of the melt-blowing process in industrially relevant parameter ranges if an adjusted nozzle
is used. The impact of such an adjusted nozzle needs to be investigated in more detail, but
simulations show that the underlying turbulent fluctuations can in fact create jet swirling
that creates elongation peaks that well surpass the results induced by a non-turbulent
airflow. Furthermore we observe that there is no significant further deformation when the
jet’s inertia becomes so small that it simply follows the airflow, which explains that there
is an expected maximum elongation of the process.
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Figure 6.18: Industrial example of the melt-blowing process with parameters from Ta-
ble 6.2. A fictive nozzle with Uadj = 10 [m/s] and ∆t = ∆s = 10−6 is
used. The plot shows the jet curve of various representations depicted at
t = 0.0113 ± 0.01, the maximum elongation compared to the original nozzle
(Uadj/U)τ3 is stated in the legend. A continued simulation of the jets would
quickly break down or behave unrealistic due to a lack of resolution in the
elongation peaks.
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(b) Zoomed in on the jet curve with the area around the highest
elongation (at s = −3.423 · 10−3) highlighted.
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(c) Tangential jet velocity v3 and elongation relative to the adjusted
nozzle τ3Uadj . Highest peak at s = −3.423 · 10−3 (not in scale),
which is compared to the original nozzle a total elongation of
3.32 · 105.

Figure 6.19: A detailed plot of one of the representations of Figure 6.18, the time is t =
0.012002. Notice the plenty sign changes in the tangential velocity indicating
the swirling of the jet that accumulatively can cause elongation peaks.
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We gave a detailed derivation of the one-dimensional Cosserat rod model describing the dy-
namics of a three-dimensional slender object in Section 2.1. The general form of the model
(Section 2.2) allows the simple exchange of geometric and material behavior. Furthermore
a stabilized, index-reduced formulation of the kinematics is used that allows the usage of
various set-ups (including, but not restricted to, jet extrusion with free end, free falling
jet, jet drawing), and more importantly, does not suffer from convergence order reduction
effects compared to [5]. The considered set-ups are built with different combinations of the
position and tension boundary, which are discussed in Section 2.3, especially with respect
to the underlying inherent relations.

The model is formulated in a general parameterization that allows the use of r-refinement,
or moving mesh, which we introduced in Chapter 3 with a new view on the inner structures,
interpreted through a framework of three parameterization layers. We showed the link to
two existing moving mesh strategies with the help of our framework and introduce two new
strategies, yet no claim on their competitiveness is made. All introduced strategies do in
fact produce valid meshes for time-dependent spatial domain – which was not shown so far
in literature [59] – and they are applicable to the jet model. The strategies are validated
numerically with the broadly used Burger’s equation in Appendix C.

In Section 4.1 we proposed a discrete scheme that looks upon the space-time domain
as a two-dimensional domain and employs a Finite Volume method on it. We use simple
quadrilateral cells for the proper approximation of the space-time boundaries, while allow-
ing decoupling in time for iterative solving. Further on we employ a central approximation
for the spatial fluxes and a fully implicit approximation of the temporal fluxes. The stag-
gered grid approach allows here the use of a narrow, direct-neighbor stencil. The entire
discrete scheme is formulated completely independent of the underlying model equations,
nevertheless the approximations are tailored for the underlying DAE character of the jet
model. In general, the scheme is applicable to PDAEs with index 1 in space and index
2 in time, and even higher indices when special structures are present. Details for the
application to the jet model and the moving mesh strategies are given in Section 4.2 and
Section 4.3.

The performance of the model and discrete scheme is validated through numerical con-
vergence order results in Chapter 5. For that purpose we introduced an academic scenario
– the viscous cantilever, cf. Section 5.1. In Section 5.2 we obtained linear/super-linear
convergence behavior in space, in time and combined for our jet model with the stabilized,
index-reduced kinematics, independent of the used space-time domain (time-independent,
time-dependent). Furthermore the convergence order reduction effect that was present in
[5] could be overcome. In Section 5.3 we remark on possibly occurring singular Jacobian of
the underlying linear solver. The use of r-refinement requires the jet’s general parameteri-
zation, which we investigated in Section 5.4. We compared the computational requirements
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that are imposed by using said parameterization and the moving mesh strategies and found
an increase of roughly factor three in computation time. Nevertheless, the moving mesh
strategies could outperform the Lagrangian parameterization in terms of computation time
and achieved error for the considered case of the viscous cantilever. We explored the usage
of the r-refinement when large external forces are present and discovered that it does not
perform like expected, the simulation breaks down even before its Lagrangian counterpart
does due to oscillations. We assume that our premise to employ simple temporal and
spatial flux approximations in the discrete scheme is hindering the successful application.

As examples for industrial applications we consider the rotational spinning process and
the melt-blowing process in Chapter 6. Both processes are highly dynamic in the deforma-
tion of the jet which suggests the use of r-refinement, but unfortunately it fails like already
mentioned in the previous paragraph. Even so, our discrete scheme greatly extends the
applicable parameter range (physical parameters and discretization parameters) of the con-
sidered production processes with a Lagrangian parameterization. To include industrially
relevant parameter ranges we altered the boundary conditions with the aim of easing the
computational effort. In particular we include mass outflow at the tension-free jet end for
the rotational spinning process and adjusted the extrusion speed and nozzle position for the
melt-blowing process. Both alteration now enable the simulation of industrially relevant
parameter ranges and therewith gives a valuable contribution to the existing simulation
approaches for those processes.

To encourage a continued research we now talk about insights gained from this work. The
moving mesh strategies do show great promise with the Burger’s equation, and applications
for jet model with moderate external forces, but fail altogether for large external forces.
In order to overcome the oscillatory effects we propose the exploration of second order
MUSCL-type, or third-/fifth-order WENO-type approximations for the artificial spatial
fluxes (cf. Remark 5.5). Since the general parameterization of the jet model is computa-
tionally ponderous, we think the use of those high resolution schemes for all spatial fluxes
in the Lagrangian parameterization is worth investigation as well. Additionally, the moving
mesh strategies are possible to be used with the Lagrangian parameterization by employing
a rezoning approach, i.e. the model is used in Lagrangian parameterization, but remeshing
inbetween timesteps is allowed. For that purpose an appropriate interpolation is required
that considers the physical meaning of the unknowns. With such an interpolation at hand,
the classical h-refinement is easily incorporated as well, which would certainly be an en-
hancement to the existing discrete scheme as well. As for the industrial applications, the
consideration of temperature-dependent viscoelastic material behavior is the next logical
step. Exemplary academic viscoelastic simulations are presented in Appendix A.
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A Other material laws

In this work we focused on the viscous jet model. Nevertheless our modelling efforts,
discrete scheme and its implementation aim at providing a framework that facilitates the
exchange of the underlying geometric model and material law. For completeness we now
state the non-dimensionalization of the elastic and viscoelastic material law and show
exemplatory simulations for the viscous and viscoelastic jet with temperature-dependent
viscosity.

A.1 Elastic

Consider the elastic material law presented in Section 2.1.3. We introduce the typical
Young’s modulus E0 = E? [kg/(m s2)] for the nondimensionalization (also used for the
shear modulus G0 = E0) implying the characteristic Mach number

Ma = v?

√
σM?

σV ?E?
.

The inextensible, unshearable elastic fiber model in the general parameterization is given
by

τ = τ oe3, (A.1a)

ε2(κ− κo) = Ma2 τ o

EA2
M−1

E ·m. (A.1b)

The referential state τ o,κo is handled as type-1 fields

∂tτ
o + ∂s(uτ

o) = 0, ∂tκ
o + ∂s(uκ

o) = 0, (A.1c)

whereas the material property E is handled as a type-0 field as well as A = σV /τ3 due to
its definition. In case of a constant Young’s modulus this yields

∂tE + u∂sE = 0, ∂tA+ u∂sA = 0 (A.1d)

which completes the material model. A full model for a elastic fiber is given by exchanging
the material law of the viscous model (2.37). By furthermore neglecting the inertia term
in the angular momentum balance, the classical Kirchhoff beam (also known as Kirchhoff-
Love equations [3]) is contained in the elastic fiber model. It is given by the slenderness-low
Mach number limit as ε→ 0, Ma→ 0 and ε/Ma = constant (cf. [15]).
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A.2 Viscoelastic

Our industrial examples both start with an initially incompressible viscous, liquid polymer
that undergoes some degree of cooling and becomes inextensible elastic in the process. To
approach a monolithic numerical simulation and design of such spinning processes from
nozzle to deposition the obvious choice would be viscoelastic material behavior. Recent
works of such models applied to Cosserat rod models are [107, 77, 10]. In Section 2.1.3 we
follow [10] that use one that has the viscous and elastic behavior as asymptotic limit cases
in its characteristic numbers. The relaxation time θ is handled as a type-0 field with its
typical time θ0 = µ0/E0 inducing the Deborah number De. It can be expressed as function
of Re and Ma, i.e.

De =
µ?v?
E?r?

=
Ma2

Re
.

The dimensionless model is then formulated in general parameterization and given by

∂tτ3 + ∂s(uτ3) =
Re
3µ

τ 2
3

σV
n3, τ1 = 0, τ2 = 0,

ε2(∂tκ+ ∂s(uκ)) =
Re
3µ

τ 3
3

σV 2
M−1

µ · (m + Deθ(∂tm + u∂sm)).

The viscous limit is achieved by De → 0, whereas the elastic one follows by De → ∞,
Re → 0 such that DeRe = Ma. We have 3µ/θ = E due to the initial incompressibility
assumption. For a more detailed discussion we refer to [10]. A full model for a viscoelastic
jet is given by exchanging the material law of the viscous model (2.37).

A.3 Thermal simulations

The aim is a temperature-dependent simulation, thus we add the energy balance with
convective air cooling (cf. Section 2.1.4) with a model for the heat transfer coefficient
αair that is based on the treatment of a cylindrical incident flow analogously to the air
drag model in Section 6.2. We use a heuristic based model based on the Nusselt number
Nu (ratio of convective to conductive heat transfer across the exchanging surface) that was
proposed by Wegener and Arne [106]. It is the consecutive advancement to the one initially
formulated in [97, 104], which was only valid for vertical incident flow and thus extended
by [8] for arbitrary incident flow directions on the basis of experimental data. Wegener
and Arne [106] added modifications to include meaningful values for limit cases (cf. [107]),
avoid singularities and and ensure continuous differentiability. The Nusselt number uses
the diameter of the jet Djet = dd0 (cf. Section 6.2, (6.2)) as typical length and is dependent
on specific dimensionless numbers, namely the tangential Reynolds, Reynolds and Prandtl
number as well as the degree of turbulence which are given by

Re′τ = Re∗de3 · vrel, Re′ = Re∗d ‖vrel‖ , Pr′ = Pr =
ρairνaircp,air

λair
, Tu′ = Tu

1

‖vrel‖
.
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Here, Pr is the Prandtl number of the airflow (ratio of viscosity to thermal diffusivity), the
appearing physical constants are the thermal conductivity λair [W/(mK)= kg m/(s3 K)]
and the specific heat capacity cp,air [J/(kg K)=m2/(s2 K)] of the airflow. The Reynolds
number Re? was already introduced in Section 6.2.1 and the degree of turbulence Tu in
Section 6.2.2. The suggested model for the Nusselt number is given by

Nu(Re′τ ,Re
′,Pr′,Tu′) =

(
1− 0.5h(Re′τ ,Re

′)
)
Nulam(Re′,Pr′)

(
1 + Nuturb(Re′,Tu′)

)
with the help of

Nulam(Re′,Pr′) =

{
0.462(Re′Pr′)0.1 + f(Pr′) (Re′Pr′)7/10

1+2.79(Re′Pr′)1/5 , Re′Pr′ ≥ 7.3 · 10−5,

a(Re′Pr′)3 + b(Re′Pr′)2 + c, Re′Pr′ < 7.3 · 10−5
,

Nuturb(Re′,Tu′) =
1.3 · 10−2Tu′1/2Re′2Tu′1/10

3.08 · 103 + Tu′1/4Re′2Tu′1/10−0.5

and

f(Pr′) =
2.5(

1 +
(

1.25Pr′1/6
)5/2 )2/5

,

a = −8.70481 · 1011 + 5.14116 · 1012L− 3.128 · 109f(Pr′),
b = 9.69899 · 107 − 5.62957 · 108L+ 3.97675 · 105f(Pr′),
c = L.

The formula in Nulam for Re′Pr′ ≥ 7.3 · 10−5 has the limit L = 0.1 for Re′Pr′ → 0. The
coefficients a, b, c are chosen to ensure continuous differentiability of Nulam. The function

h(Re′τ ,Re
′) =


(

Re′τ
Re′

)2

, Re′ ≥ δ,(
1−

(
Re′
δ

)2
)2

+

(
3− 2

(
Re′
δ

)2
)(

Re′
δ

)2 (Re′τ
δ

)2

, Re′ < δ

extends the applicability of the model to arbitrary incident flow directions (for vertical flow
we have h(Re′τ ,Re

′) = 0). The appropriate regularization with the associated parameter
δ � 1 (here, δ = 10−7) guarantees a smooth transition for vanishing relative velocity to
the case of parallel incident flow (namely limRe′→0 h(Re′τ ,Re

′) = 1). This was also done in
[107], but the above choice is additionally continuous differentiable. Note that

Re′τ/Re
′ = e3 ·

vrel
‖vrel‖

is the cosine of the incident flow angle. The construction with Re′τ and Re avoids sin-
gularities for vanishing relative velocity. The term Nuturb can be neglected in stationary
flows.

The dimensionless energy balance solely considering convective air cooling of the jet (cf.
Section 2.1.4) is now given by

A(∂t(σMT ) + ∂s(uσMT )) = −2 ‖τ‖ (T − Tair)Nu
(
Re∗de3 · vrel,Re∗d ‖vrel‖ ,Pr,Tu

1

‖vrel‖

)
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using the dimensionless quantity

A =
σM?v?
r?

cp
λair

= ε2RePr∗, Pr∗ =
cpµ?
λair

with a mixed air-jet Prandtl number Pr∗ (ratio of viscosity to thermal diffusivity from air
to jet) that contains the constant specific heat capacity cp [J/(kg K)=m2/(s2 K)] of the
jet. Note that Pr and Tu are functions dependent on Q, whereas A and Re? are constant.
The material that we are considering is a polypropylene that is typical for melt-blowing

processes. The parameters necessary for the Arrhenius law of the temperature-dependent
viscosity are provided by the Fraunhofer ITWM and were calibrated for temperatures
given in Celsius. Its dimensionless form is obtained by introducing the typical temperature
T0 = T? [K] (chosen to be the nozzle temperature) and given by

µ(T ) = c1 exp (c2/(T − c3)) (A.2)

with the physical constants c1 = 0.1352/µ0 and c2 = 852.323/T0 and c3 = 273.15/T0. Due
to the exponential dependence on the temperature, the viscosity will vary several orders of
magnitude, more precisely O(10−1) up to O(1015) for 300 up to 1500 K. Our formulation
of the material law (µ only appears in the denominator) is recommended.

To illustrate different material behavior we will now present simulations of the can-
tilever example in Section 5.1, we use the jet model with original kinematics. As the
first example we consider the fixed and growing cantilever with viscous and viscoelas-
tic material, both are equipped with the temperature-dependent viscosity model (A.2).
A temperature profile is set that is homogeneous in r̄1 and r̄3 direction. It is cold at
the nozzle and then gradually gets warmer in negative r̄2 direction. The parameters are
(Re,Fr,De, ε, T ) = (1, 1, 0.1, (

√
π/2)0.1) and ∆s = ∆t = 10−2. Results for the viscoelastic

jet are depicted in Figure A.1, the temperature profile of the domain is indicated in the

Parameters
Description Symbol Value Unit
Air specific heat capacity cp,air 1006.43 J/(kg K)=m2/(s2 K)
Air thermal conductivity λair 2.42 · 10−2 W/(m K)=kg m/(K s3)
Jet specific heat capacity cp 1700 J/(kg K)=m2/(s2 K)
Jet Young’s modulus E 109 kg/(m s2)
All remaining parameters are taken from Table 6.2

Dimensionless quantities
Description Formula Value
Deborah De = µU/EH 8.50 · 10−8

mixed Prandlt Pr∗ = µcp/λair 7.02 · 104

Table A.1: Overview of the physical parameters of an industrial example for viscoelastic
simulations. The typical values are plugged in and the dimensionless quantities
computed.
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Figure A.1: Simulation of a initially cold viscoelastic Cantilever that is heated up. The bar
on the right side indicates the applied temperature profile that ranges from
300 K at the nozzle and 1500 K at the bottom, it is depicted dimensionless.

right plot. As the jet is heating up it becomes more viscous and stretches like expected.
The analogous viscous simulation simply extrudes in r̄1, since it is a rigid body in that
temperature range.

The second example is now with an added airflow that has a reverse temperature profile
and has a velocity that is homogeneous in r̄1 and r̄3 direction. The airflow starts initially
at the nozzle as standing air until r̄2 ≤ −1.6, then its component in negative r̄1 direction
increases. To account for the convective thermal exchange between airflow and jet the
energy balance is added. A viscous and viscoelastic simulation are depicted in Figure A.2.
The difference in the behavior for cold temperature is clearly visible. Whereas the viscous
jet keeps its curvature when cooled down, the viscoelastic one tends to straighten and
follow the airflow.
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Figure A.2: Simulation of a cantilever that is extruded with high temperature and then
cooled by the surrounding air. At the bottom is an airflow layer with high
velocity normal to the gravitational force. The bar on the left side indicates the
dimensionless velocity profile and the one on the right side the dimensionless
temperature of the airflow for both simulations.
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B Modeling and reduction of
dimensions

B.1 GGL projection correction for the kinematics

In Section 2.2.4 we introduced the stabilized, index-reduced formulation of the kinematics
of the jet model. Throughout the work we have used our SAMW-correction that was
inspired by the Gear-Gupta-Leimkuhler (GGL) correction [43]. In this appendix we want
to present said approach for completeness.

Correction B.1 (GGL correction). Assume Formulation 2.22 for the kinematics. In
the beginning of Section 2.2.4 we described our interpretation of the Gear-Gupta-Leim-
kuhler approach for PDAEs. Following that outline there we obtain

Λ̄
GGL
r,1 := ∂sλ̄r, ΛGGL

q,1 := ∂sλq −A(κ) · λq,
ΛGGL
r,2 := 0, ΛGGL

q,2 := 0

with λ̄r := λ̄1 and λq := λ2 as the multipliers.

The equivalence of the GGL correction to the original kinematics can be shown analogously
to Section 2.2.4. The inherent equations (2.33) enforced by the kinematics become

∂ssλ̄r − R(q)T · ∂sλ̄r = 0,

∂ssλq − 2A(κ)∂sλq −A(∂sκ) · λq = 0,

which is a system of linear, homogeneous, differential equations of second order with vari-
able coefficients analogous to the SAMW-correction in Lemma 2.29. One could also think
of a proof similar to the one in [43], that was done for DAEs. We do not want to reiter-
ate it here, but the key idea to transfer it to PDAEs is to apply a semi-discretization in
space – which makes it a DAE – and to consider all discrete equations including boundary
conditions in the proof.

B.2 Two-dimensional jet model

The rotational spinning process from Section 6.1 (and of course also the jet model generally)
can be simplified to a two-dimensional model by neglecting gravity (Fr → ∞). The jet
solely undergoes the rotational loads and moves in the exit plane perpendicular to the
rotation axis of the drum if the initial and boundary conditions also abide by said plane.
We set ~Ω||~a1, thus the unknowns ~r, ~v, ~n and ~τ take shape in the the ~a2 − ~a3 plane,
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B Modeling and reduction of dimensions

whereas ~κ, ~ω and ~m are parallel to ~a1 as a consequence of the kinematic equations and
the material law. The direction of the jet can be prescribed by a single angle α ∈ [0, 2π]
with

R(α) =

(
sin(α) − cos(α)
cos(α) sin(α)

)
.

The three-dimensional unknowns are reduced to

r̄ = (̄r2, r̄3), v = (v2, v3), n = (n2, n3)

τ = (τ2, τ3), ω = ω1, κ = κ1, m = m1, Ω = Ω̄1

and the two-dimensional jet model in Lagrangian parameterization with original kinematics
is given by

∂t̄r = R(α)T · v,
∂sr̄ = R(α)T · τ ,
∂tα = ω,

∂sα = κ,

∂tp = −ωp⊥ + ∂sn + κn⊥ + f, p = σMv,

∂th =
1

ε2
∂sm+ τ · n⊥ + l, h = JM ω,

∂tσM = 0, ∂tσV = 0,

∂tτ3 =
Re

3µ

τ 2
3

σV
n3, τ2 = 0,

ε2∂tκ =
Re

3µ

τ 3
3

σV 2
M−1

µ m

with the artificial outer loads resulting from the rotating outer basis

f = fΩ = − 2

Rb
σM Ω v⊥ +

1

Rb2σM Ω2 R(α) · r̄,

l = lΩ = − 1

Rb
Ω∂tJM

and

JM =
σMσV
τ3

Min, Min = Mµ =
1

4π
.

Furthermore z⊥ = (−z2, z1)T was introduced for any tupel z ∈ R2. We published simula-
tions for the two-dimensional rotational spinning process in [87].

B.3 Uniaxial jet model

The jet model can be reduced to an uniaxial case with restrictions on the initial- and
boundary conditions and external loads. Assume that the initial- and boundary conditions
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B.3 Uniaxial jet model

A

r

r(−R(t), t)

f

∂sr

v

r(−L(t), t)

Figure B.1: Illustration of an extruded, uniaxial jet with arbitrary outer force with no
outflow, cf. Example 2.38.

are given such that the fiber is a straight line. Assume furthermore that the external forces
are of the form ~f = f ~d3 and ~l = l ~d3. Then the fiber always remains a straight line, an
illustration is shown in Figure B.1. Respective simulations are published in [88, 90].

Without loss of generality we set ~d3 = ~a1 and use r = r̄1, v = v3, ω = ω3, τ = τ3, κ = κ3,
n = n3 and m = m3 as well as λτ = λ̄τ,3 and λκ = λκ,3. The viscous jet model (2.37)
reduces to

∂tr = v − ue+
1

k
∂sλτ , (B.1a)

∂sr = e, (B.1b)
∂tτ + ∂s(uτ) = ∂sv + Ckλτ , (B.1c)

∂tσM + ∂s(uσM) = 0, ∂tσV + ∂s(uσV ) = 0, (B.1d)
∂tp+ ∂s(up) = ∂sn+ f, p = σMv (B.1e)

∂tτ + ∂s(uτ) =
Re
3µ

τ 2

σV
n, (B.1f)

∂tµ = 0. (B.1g)

Bending will not appear and the torsion of the jet can be depicted by a single angle α and
the rotation matrix

R(α) =

1 0 0,
0 sin(α) − cos(α),
0 cos(α) sin(α)

 .
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B Modeling and reduction of dimensions

Its dynamics are decoupled from Equation (B.1) and given by

∂tα = ω − uκ+
1

k
λκ, (B.2a)

∂sα = κ, (B.2b)
∂tκ+ ∂s(uκ) = ∂sω + Ckλκ, (B.2c)

ε2∂th+ ∂s(uh) = ∂sm+ ε2l, h = (σMσV /τ3)Min, (B.2d)

ε2(∂tκ+ ∂s(uκ)) =
Re
3µ

τ 3

σV 2
M−1

µ m (B.2e)

with Min = 1/(2π) and Mµ = 1/(6π).
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C Adaptivity

We explore the performance of the moving mesh strategies in Chapter 3 with an analytical
function to explore how the strategies and mesh control functions influences the mesh and
subsequently do a benchmark with the Burger’s equation at hand. Before we get to that
we present the considered mesh control functions and the spatial smoothing technique.

To illustrate the moving mesh strategies we use mesh control functions according to
choices in literature that have proven to work well for the Burger’s equation (cf. [59,
Section 1.2.2, Section 2.4.4]). The considered possibilities for the monitor function are the
arc-length one (3.25), the optimal curvature one (5.1), and the the optimal slope monitor
function given by

M slo(s, t) =

(
1 +

1

α(t)

∣∣∂σŷ(σ, t)|σ=Ψ(s,t)

∣∣2)1/3

, (C.1a)

αslo(t) =

(
1

|Ω|

∫
Ω

∣∣∂σŷ(σ, t)|σ=Ψ(s,t)

∣∣2/3 ds

)3

, (C.1b)

with their corresponding implicated and transferred parameter density (cf. Strategy 3.19
and 3.20). The mesh control functions are discretized using central finite differences within
the domain and one-sided ones at the boundary, appearing integrals are approximated with
a trapezoidal rule.

Remark C.1. We want to mention another option for the monitor function – yet not
used in this work – namely the component-averaged monitor that is developed in [94] for
hyperbolic systems. The idea is to tailor a monitor function for some or all unknowns
of the system and to combine them in an appropriate fashion such that physical features
of the solution are properly resolved. The example in [94] is tailored to a model problem
for the one-dimensional Euler equation for an inviscid, compressible and polytropic gas
that experiences shocks and contact discontinuity. They use a shock monitor and contact
monitor controlling the first spatial derivative of velocity and entropy of the solution. Both
are then scaled and combined.

The spatial smoothing operator G−1 from Lemma 3.22 is replaced by the approximation
1+ λ−24+ (λ−24)2 + . . .+ (λ−24)p with a properly chosen λ, p > 0 and a central finite
difference for 4, i.e. 4Mi = (Mi+1 − 2Mi + Mi−1)/∆s2. This approximation uses 2p + 1
adjacent cells for the averaging of the monitor function. Huang et al. use two discrete
approximations. The first one, that was originally based on [38], is given by

MG
i =

(
i+p∑

k=i−p
(Mk)

q

(
γ

1 + γ

)|k−i| / i+p∑
k=i−p

(
γ

1 + γ

)|k−i|)1/q

. (C.2)
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with p = 3, γ = 2 and q = 2. The second one is a simple but effective smoothing scheme
utilizing the above formula. By using p = 1, γ = 1 and q = 1, (C.2) reduces to the simple
averaging of direct neighbors, i.e. MG

i = 1
4
Mi−1 + 1

2
Mi+

1
4
Mi+1. They apply several sweeps

of the scheme within one integration step, in particular they redo it four times and in each
sweep use the result from the previous sweep as input. We follow the second approach
approach. We use the notation from Section 5.4.2 to address the different moving mesh
strategies.

C.1 Analytical example

Analogous to [59, Section 2.5.4] we present an illustrative example here for which the
adaptive meshes are generated from a known function to gain insight of the performance
of our discrete approach and the suggested moving mesh strategies. Consider the function

ŷ(σ, t) = tanh(R(σ + 1)) (C.3)

on Q̂ = [−2, 0] × [0, 1] with R = 100 as a parameter. The general space-time domain is
chosen to coincide, i.e. Q̂ = Q. We use the moving mesh strategies from Chapter 3 but do
not apply spatial smoothing to the mesh control function. The results for different mesh
control functions are depicted in Figures C.2, C.1, C.3 and C.4. In those simulations the
temporal relaxation parameter τ was adjusted such that the different strategies behave
comparibly (if possible). In Figure C.5 we kept τ constant to illustrate the difference
in the stratgies. All strategies enforce that the mesh movement is following the mesh
control function, with exception of (D2)t (DELAX2 (Strategy 3.13) with the transferred
parameter density). Since the transferred parameter density is defined solely on the general
paramterization . It seems that the role of the mesh adaption factor is diminished and
the spatial balance is lost (observe that e.g. (M2) (MMPDE2 (Strategy 3.10)) reached
a converged state of the mesh at the end time). This can lead to a spatially skew mesh
and areas with moderate values of the mesh control function are resolved insuffiently, cf.
Figure C.5. The lack of the spatial smoothing procedure is clearly visible for the optimal
curvature mesh control function. The unbalanced resolution in the steep front is avoided
when spatial smoothing is employed, cf. Figure C.2.

The simulations suggest that the performance of (M1), (M2) combined with our discrete
scheme agrees with [59]. (D2) performs comparably with the implicated parameter density,
but has the disadvantage of possible mesh skewness with the transferred parameter density.
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(c) Jacobian χ and monitor function M at the end time t = 1.

Figure C.1: Details of the analytical example (C.3) together with (M1), τ = 2 · 10−2 and
different monitor functions. From left to right: Arc-length, optimal slope and
optimal curvature monitor function.
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(c) Jacobian χ and monitor function M at the end time t = 1.

Figure C.2: Details of the analytical example (C.3) together with (M2), τ = 2 and different
monitor functions. From left to right: Arc-length, optimal slope and optimal
curvature monitor function.
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(c) Jacobian χ and parameter density fα, as well as the underlying monitor function z at the end time
t = 1.

Figure C.3: Details of the analytical example (C.3) together with (D2)i, τ = 2·10−1 and dif-
ferent implicated parameter densities. From left to right: Arc-length, optimal
slope and optimal curvature parameter densities. 153
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(c) Jacobian χ and parameter density fα, as well as the underlying z at the end time t = 1.

Figure C.4: Details of the analytical example (C.3) together with (D2)t, τ = 1 and different
transferred parameter densities. From left to right: Arc-length, optimal slope
and optimal curvature parameter densities.
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Figure C.5: Mesh trajectories of the analytical example (C.3) with τ = 10−1. From top
to bottom: (M1), (M2), (D2)i, (D2)t. From left to right: Arc-length, optimal
slope and optimal curvature mesh control function.
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Figure C.6: Details of the analytical example (C.3) together with (M2) and the smoothed
optimal curvature monitor functions.
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C.2 Burger’s equation

C.2 Burger’s equation

Benchmarks are now carried out with the DELAX and MMPDE strategies. The model
problem for this investigation is a initial-boundary value problem consisting of the viscous
Burger’s equation (broadly used in literature, e.g., in [21, 61, 58, 96, 98, 59, 110, 78]) on a
fixed domain Ω̂ = [0, 1] in the referential (Lagrangian) parameterization

∂tŷ + ∂σ
(
ŷ2/2

)
= µ∂σσŷ, (C.4a)

with ŷ : [0, 1]× [0, T ]→ R and a viscosity parameter 0 ≤ µ� 1 (not to be mistaken with
the viscosity of the jet model) and appropriate initial and boundary conditions given by

ŷ(−1, t) = ŷ(0, t) = 0, ŷ(σ, 0) = sin (2πσ) +
1

2
sin (πσ). (C.4b)

Starting out with a smooth initial profile a steep front develops whose inclination depends
on ε. The front propagates towards the right side while being dampened by the homoge-
neous Dirichlet boundary condition at s = 0. The steep front has to be properly resolved,
which is the difficulty of a numerical solution. The Burger’s equation is now transformed
into the computational (general) parameterization, whereas the general domain is assumed
to coincide with the Lagrangian one if not otherwise mentioned. Treating ŷ as a type-0
field (y(s, t) = ŷ(Ψ(s, t), t)) we obtain by using the conservation for χ

∂t(χy) + ∂s(uχy) + ∂s
(
y2/2

)
= µ∂s

(
1

χ
∂sy

)
. (C.5)

The Burger’s equation is discretized using the discrete scheme presented in Chapter 4.
To obtain a first-order system the substitution unknown ys = ∂sy is used. The derivative
at the boundaries is approximated with a one-sided, first-order finite difference. The set
of unknowns is y, ys, χ and u for the Burger’s equation as a first-order system and one of
the moving mesh strategies. Analogously to the jet model we choose y, ys to be node type
and ys, u to be edge type.

Remark C.2. Huang and Russell [59] use a finite difference approximation in space of
the Burger’s equation, i.e. they use pointwise approximations yi = y(si, t), Ψi = Ψ(si, t)
and ui = u(si, t) (i = 0, . . . , N) and obtain the semi-discrete Burger’s equation

∂tyi − ui
yi+1 − yi−1

2∆s
+

(y2
i+1 − y2

i−1)/2

Ψi+1 −Ψi−1

=
2µ

Ψi+1 −Ψi−1

(
yi+1 − yi

Ψi+1 −Ψi
− yi − yi−1

Ψi −Ψi− 1

)
for i = 1, . . . , N − 1 and ∆s = 1/N and given initial conditions for t = 0 and boundary
conditions y0, yN and Ψ0, ΨN . The integration in time that they use is fully implicit
with MatLab’s ode15i solver. It employs an automatic time step control [91] whereas our
discrete scheme uses a constant time step. Our discrete scheme is prepared for an automatic
time stepping, but we focus explicitly on constant time steps in this work.

The following exemplary test uses one of the moving mesh strategies and parame-
ters, analogously to what can be found in literature. The Burger’s equation (C.5) is
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(c) Jacobian χ and monitor functionM at the end
time t = 1.
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(d) The transformation Ψ at the end time t = 1.

Figure C.7: The computed solution for Burger’s equation with µ = 10−4, ∆s = 2.5 · 10−2

and ∆t = 10−4 and the optimal curvature monitor function.
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(c) Jacobian χ and monitor functionM at the end
time t = 1.
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Figure C.8: The computed solution for Burger’s equation with µ = 10−4, ∆s = 2.5 · 10−2

and ∆t = 10−4 and the arc-length monitor function.
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solved with Strategy 3.10, (MMPDE2). The parameters are µ = 10−4 and (τ,∆s,∆t) =
(10−2, 2.5 · 10−2,∆t = 10−4). Results for the smoothed optimal curvature are illustrated in
Figure C.7, and ones for the arc-length monitor function analogously shown in Figure C.8.
In Figure C.7a the solution in referential parameterization is shown. No under- or over-
shooting, or oscillations appear, we magnified the steep front at the final time in the figure.
Said steep moving front is properly resolved and tracked with the moving mesh approach,
which is visible in the mesh trajectories in Figure C.7b. In Figure C.7c the Jacobian χ
and the underlying monitor function at the final time is depicted. The strategy performs
like expected by adapting to the monitor function. The transformation Ψ is depicted in
Figure C.7d. It is defined to map from the computational to the referential parameteriza-
tion, thus no steep layers occur when the mesh is very dense (which is a clear advantage
compared to other alternative strategies using the inverse transformation [59]). We observe
that our discrete scheme performs comparable to results in [59]. The broad stencils caused
by our staggered scheme do not pose a problem (in contrast to results from the jet model,
cf. Section 5.4).

C.3 Growing Eulerian parameterization with Lagrange
tracking

The growing viscous cantilever was simulated in Section 5.1 with a Lagrangian parameter-
ization. We now seek to use the approach described in Example 2.40b) with an Eulerian
parameterization that globally prescribes τ3 ≡ 1. Then L(t) is the arc-length of the jet
at the time t. During an actual simulation, the just mentioned arc-length of the jet of
some arbitrary time is not known a priori, a free boundary value problem would have to be
solved. We avoid this by precalculating L(t) with the help of the Lagrangian parameteri-
zation. Consider a solution at any time tn. Before advancing with the normal algorithm
the estimation of the arc-length L(tn + ∆t) is done with a purely Lagrangian sub-step.
In particular, the given solution at time tn is Eulerian. It is converted to solution in a
Lagrangian parameterization and the time step is performed with it. The new Lagrangian
solution now allows the calculation of L(t+ ∆t) and we switch back to the original simu-
lation and continue to advance with the Eulerian parameterization. We call this approach
Eulerian with Lagrange Tracking (ELT).
This approach creates a new issue in the time integration. The total amount of cells

for any time can not be estimated a priori of the simulation because the jet growth is
not predictable. It is thus possible that multiple cells are added within one time step,
i.e. the jet is growing quickly. In those situations the accuracy of the approximation of
the arc-length L(t + ∆t) through the Lagrangian sub-step decreases and in consequence
significantly alter the Eulerian solution. Therefore a time step control is added to avoid
having to create multiple cells within one time step. If multiple cells would be inserted
within one time step, it is reduced in some linear fashion and then repeated until no or
only one new cell is needed. The respective time steps ∆ti are numbered increasingly until
the end time is reached, T = t0 +

∑k
i=0 ∆ti, k ∈ N.

An exemplary study is done to get a comparison in computation effort and amount of
cells required. System B.1M is used, the test parameters are (Re,Fr) = (1, 0.4), T = 5. The
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C.4 Rotational spinning process

∆s ∆t0/min(∆ti) Time (sec) # Cells max(e) jet arc-length
(PL) 1e-1 1e-1 5.08 52 26.60 55.4690

1e-1 5e-3 71.97 52 23.75 50.9115
5e-3 5e-3 112.29 1002 23.92 50.9089
1e-3 1e-3 2760.76 5002 23.82 50.7245

(ELT) 1e-1 1e-1 / 4.11e-3 1018.10 513 15.80 51.1781
1e-2 1e-2 / 4.15e-4 15915 5069 22.59 50.6730
1e-3 1e-3 / 4.04e-5 1081487 50660 23.65 50.6583

Table C.1: Comparison of a purely Lagrangian solution (PL) to the Eulerian one with
Lagrange tracking (ELT). The computation time, number of cells, maximum
elongation and physical length of the jet are shown.

results for a purely Lagrangian solution (PL) and for the Eulerian solution with Lagrangian
tracking (ELT) are presented in Table C.1. The results clearly favor (PL). The computation
effort for (ELT) are exploding for small discretization parameters. Even if the (ELT)
solution would be competitive in terms of computation time and accuracy, the solution
produces boundary layers due to the mass lumping at the free end (visible in e.g. in the
mass line density). It is unsuitable for further consideration.

C.4 Rotational spinning process

We redo the longtime simulation with the moving mesh strategies from Section 5.4.2 and
the mesh control functions considered in the beginning of this chapter. The behavior of all is
similar, the simulation breaks down before its Lagrangian counterpart, cf. Figure C.9. The
oscillations start to develop early on and aggravate until ultimately causing the underlying
Newton’s method to diverge.
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C Adaptivity
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Figure C.9: Rotational spinning process: Comparison of a Lagrangian solution (L) and
a moving mesh solution with MMPDE1 (Strategy 3.9) (M1) and the optimal
curvature monitor function controlling the jet curve and orientation (cf. (5.1)).
Parameters taken from Figure 6.3. Top two: Elongation and bending at two in-
terim times. Observe the oscillation that develop early on and ultimately cause
the moving mesh solution to break down before the Lagrangian counterpart.
Bottom: Mesh trajectories until t = 1.34.
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D Numerical scheme and
implementation

D.1 Details to derivation of the Finite Volume method

In this appendix we give details on the derivation of the discrete scheme. The shape of the
two-dimensional cells can be rectangular and trapezoidal, cf. Strategy 4.3. The rectangular
cell can be seen as a special case of the trapezoidal cell, nevertheless we introduce them
separately.

Rectangular cell Let one equations with index j ∈ {1, . . . ,M} and Dj = node be given.
Consequently the domain splitting of node type is used. Assume a rectangular cells of
node type with corners (si−1/2, tn+1), (si+1/2, tn+1), (si+1/2, tn) and (si−1/2, tn) ∈ Qh. The
cell spans the area C, the faces are named N,S,W,E (illustrated in Figure D.1). Define
φ = (s, t)T , F (φ) = (fj, aj)

T (y(s, t)) and G(φ) = gj(y(s, t)). The divergence of F then is
∇ · F (φ) = ∂taj(y(s, t)) + ∂sfj(y(s, t)). We integrate the node equations of (4.1) denoted
trough F and φ over C ∫

C

∇ · F dC +

∫
C

Q dC = 0 (D.1)

and apply Gauss’ Theorem to express the integral over C through integrals over the faces∑
K∈{N,S,W,E}

∫
K

F · η(K) dK +

∫
C

G dC = 0,

with outer normal η of the faces given by

η(N) = (0, 1)T , η(W ) = (−1, 0)T ,

η(S) = (0,−1)T , η(E) = (1, 0)T .

All five integrals are approximated with quadrature rules. We choose the midpoint rule for
N and S ∫

N

F · η(N) dN =

∫ si+1/2

si−1/2

aj(y(s, tn+1)) ds

= ∆saj(y(si, tn+1)) +O(∆s3),∫
S

F · η(S) dS =

∫ si+1/2

si−1/2

−aj(y(s, tn)) ds

= −∆saj(y(si, tn)) +O(∆s3)
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D Numerical scheme and implementation

si−1/2 si si+1/2

tn

tn+1

CW

N

E

S

s

t

Figure D.1: Illustration of a singled out space-time cell. The nodes and eges that will be
relevant for the numerical approach are highlighted.

and box rules for the integration of W and E∫
W

F · η(W ) dW =

∫ tn+1

tn

−fj(y(si−1/2, t)) dt

= −∆tn+1fj(y(si−1/2, tn+1)) +O(∆t2n+1),∫
E

F · η(E) dE =

∫ tn+1

tn

fj(y(si+1/2, t)) dt

= ∆tn+1fj(y(si+1/2, tn+1)) +O(∆t2n+1).

The quadrature rule for the time integral would be equivalent to the well-known implicit
Euler method in a semi-discretization. For the source terms we decompose the integral into
space and time direction. Then we choose the quadrature rule analogously to the faces
with midpoint rule for the spatial direction and box rule for the time direction∫

C

Q dC =

∫ tn+1

tn

∫ si+1/2

si−1/2

gj(y(s, t)) ds dt

=

∫ tn+1

tn

∆sgj(y(si, t)) +O(∆s3) dt

= ∆s
[
∆tn+1gj(y(si, tn+1)) +O(∆t2n+1)

]
+O(∆s3∆tn+1)

= ∆s∆tn+1gj(y(si, tn+1)) +O(∆s∆t2n+1 + ∆s3∆tn+1)

Putting everything together we obtain the approximations of the integrals for one cell

∆s
[
aj(y(si, tn+1))− aj(y(si, tn))

]
+ ∆tn+1

[
fj(y(si+1/2, tn+1))− fj(y(si−1/2, tn+1))

]
+ ∆tn+1∆sgj(y(si, tn+1))

+O(∆t2n+1 + ∆s3 + ∆s∆t2n+1 + ∆s3∆tn+1) = 0. (D.2)

A first-order Finite Volume method with constant cell-values is the goal. We want to
decouple the time-integration, thus we defined spatial averages. Since we have unknowns of
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D.1 Details to derivation of the Finite Volume method

node and edge type we define spatial averages for both, cf. (4.4). In (D.2) the functions are
evaluated point-wise, we now evaluate them with the spatial averages Yk(tn) = y(sk, tn) +
O(∆s2), see Remark D.1.

Remark D.1 (Approximation with cell averages). The unknowns at a given point sk
are approximated with spatial averages. We derive the approximation error for the different
combination of node and edge in the following. Assume that yj is node type, i.e. Dj = 1.
We analyze the situation for some time t at a node si

yj(si, t)−∆s2 = yj(si, t)−
1

∆s

∫ si+1/2

si−1/2

yj(s, t) ds,

= yj(si, t)−
1

∆s

(
∆syj(si, t) +O(∆s3)

)
= O(∆s2).

Analogously at an edge si+1/2 with an additional Taylor expansion

yj(si+1/2, t)− Yi+1/2,j(t)

= yj(si+1/2, t)−
1

2

[
1

∆s

∫ si+1/2

si−1/2

yj(s, t) ds+
1

∆si+1

∫ si+3/2

si+1/2

yj(s, t) ds

]
= yj(si+1/2, t)−

1

2

[
yj(si, t) + yj(si+1, t) +O(∆s2)

]
= O(∆s2).

Now assume that yj is edge type, i.e. Dj = 0, the procedure is analogous:

yj(si, t)− Yi,j(t) = O(∆s2)

yj(si+1/2, t)− Yi+1/2,j(t) = O(∆s2).

The time evolution and source term in (D.2) are evaluated at the node si

aj(y(si, tn+1)) = aj(Yi(tn+1)) +O(∆s2),

gj(y(si, tn+1)) = gj(Yi(tn+1)) +O(∆s2),

the fluxes are to be evaluated at the edges si+1/2 and si−1/2, thus we have analogously

fj(y(si+1/2, tn+1)) = fj
(
Yi+1/2(tn+1)

)
+O(∆s2),

fj(y(si−1/2, tn+1)) = fj
(
Yi−1/2(tn+1)

)
+O(∆s2).

The overall approximation of (D.2) then becomes

∆s
[
aj(Yi(tn+1))− aj(Yi(tn))

]
+ ∆tn+1

[
fj(Yi+1/2(tn+1))− fj(Yi−1/2(tn+1)

]
+ ∆s∆tn+1gj(Yi(tn+1)) + Erec = 0 (D.3a)

and analogously if we do the approximation with an equation of edge type. The error is

Erec :=O(∆t2n+1 + ∆s3 + ∆s∆t2n+1 + ∆s3∆tn+1 + ∆s2∆tn+1).
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Figure D.2: Illustration of a slanted space-time cell. The circles and bars exemplify the
sampling points that will be used in the numerical approach, the cross marks
the location of the boundary at time tn+1, the function t? is the creation time.

The last term ∆s2∆tn+1 only appears due to the constant cell averages and the possible
interpolation in (4.4). If the cell averages are exact for the midpoint of the cell, then this
error appears only if interpolation occurs in (4.4).

So far the structure of the numerical formula and error oder of a node and edge equation
are analogously, the grouping according to node and edge type seems random. The full
potential of this staggered approach unfolds due to the fact that for the jet model (and
most likely many others) the node/edge assignment of the unknowns and equations can be
done in such a way that aj, gj solely depends unknowns of type Dj and fj solely depends
unknowns of the opposite type. We call the assignment then ideally staggered. The conse-
quence is that no interpolation in Equation (4.4) is necessary and the approximation of the
spatial flux is central using only direct neighboring values (interpreted as finite differences
we obtain a narrow, central stencil with second-order accuracy).

The rectangular cell is now generalized to a trapezoidal one.

Slanted cell For a time-dependent space-time domain (see Figure 4.5b) we additionally
need a trapezoidal cell to completely cover the domain. We explain the mechanism at
hand with the example of a time-dependency on the left side, a time-dependent right
side would be treated analogously. Assume one equations with index j ∈ {1, . . . ,M} and
Dj = 1. Assume a trapezoidal cell of node type with corners (si−1/2, tn+1), (si+1/2, tn+1),
(si+1/2, t?(si+1/2, tn+1)) and (si−1/2, t?(si−1/2, tn+1)) ∈ Q. The creation time t?(s) of the
point s appears, cf. Definition 2.13. An illustration of such a cell is given with Figure D.2.
The difference to the rectangular cell are the facesW,E and S. We follow the outline of the
rectangular cell and approximate the integral on every face separately. The faces W and
E have an adjusted length of ∆t

i−1/2
n+1 and ∆t

i+1/2
n+1 respectively, with ∆tkn+1 = tn+1 − t?(sk)
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-L(T ) s−5/2 s−3/2 s−1/2 s1/2 = 0
t0

t1

tc(s−1)

t∗(s−1)

∆t−1
1

s

t

Q
(Lc(t), t)

Figure D.3: Illustration of the linear approximation Lc to L.

(cf. Equation (4.3)) Their integrals are approximated with the box rule∫
W

F · η(W ) dW =

∫ tn+1

t?(si−1/2,tn+1)

−fj(y(si−1/2, t)) dt

= −∆t
i−1/2
n+1 fj(y(si−1/2, tn+1)) +O((∆t

i−1/2
n+1 )2),∫

E

F · η(E) dE =

∫ tn+1

t?(si+1/2,tn+1)

fj(y(si+1/2, t)) dt

= ∆t
i+1/2
n+1 fj(y(si+1/2, tn+1)) +O((∆t

i+1/2
n+1 )2)

The face S is a slanted line with constant slope defined by

mi =
t?(si+1/2, tn+1)− t?(si−1/2, tn+1)

∆s
.

We restrict our choices of the domain to those cases where S exactly reflects the border of
the domain, a general case is discussed in Remark D.2.

Remark D.2. If there is no restriction on the border of the space-time domain, the face
S gives only a linear approximation. The error can be incorporated in the scheme by
introducing the polygonal chain Lc defined through L at the sampling points t?(sk+1/2),
k ∈ N0, where Lc(sk+1/2) = L(sk+1/2). Furthermore the creation time has to be adjusted
analogously, giving the approximated creation time tc. An illustration of the distances and
the linear approximation to the domain boundary is shown in Figure D.3.

The outer normal of S is constant in space and time within one cell and given by

η(S) =

(
mi√
m2
i + 1

,− 1√
m2
i + 1

)
=: (ηs, ηt).

The face S of the slanted cell can be formalized by

S = {(s, t) ∈ R− ×R+|s ∈ [si−1/2, si+1/2], t = t?(s)},
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D Numerical scheme and implementation

we use the midpoint rule for the approximation of the integral∫
S

F · η(S) dS =

∫
S

ηtaj(y(s, t?(s))) + ηsfj(y(s, t?(s))) dS

= ∆sηtaj(y(si, t?(si, tn+1))) + ∆sηsfj(y(si, t?(si, tn+1))) +O(∆s3)

with ∆s =
√

(t?(sk−1/2)− t?(sk+1/2))2 + ∆s2. We simplify ∆sηt = −∆s and ∆sηs =
∆ti,∗ := t?(si+1/2, tn+1) − t?(si−1/2, tn+1). The spatial fluxes have to be evaluated strictly
implicit in time, thus we do Taylor expansions in time to pull it to the implicit time
tn+1 = t?(si, tn+1) + ∆tin+1 and one in space to split it equally to the edges si+1/2 and
si−1/2:

∆sηsfj(y(si, t?(si, tn+1))) =

∆ti,∗
2

(fj(y(si−1/2, tn+1)) + fj(y(si+1/2, tn+1))) +O(∆ti,∗∆t
i
n+1 + ∆s2∆ti,∗).

The combined weights for the fluxes fj(y(si+1/2, tn+1)) and fj(y(si−1/2, tn+1)) are(
∆t

i+1/2
n+1 +

∆ti,∗
2

)
= tn+1 − t?(si+1/2, tn+1) +

1

2

(
t?(si+1/2, tn+1)− t?(si−1/2, tn+1)

)
= tn+1 −

1

2

(
t?(si+1/2, tn+1) + t?(si−1/2, tn+1)

)
= tn+1 − t?(si) = ∆tin+1,

−
(

∆t
i−1/2
n+1 −

∆ti,∗
2

)
= −

(
tn+1 − t?(si−1/2, tn+1)− 1

2

(
t?(si+1/2, tn+1)− t?(si−1/2, tn+1)

))
= −

(
tn+1 −

1

2

(
t?(si+1/2, tn+1) + t?(si−1/2, tn+1)

))
= − (tn+1 − t?(si)) = −∆tin+1

respectively. We need to integrate the source term as well, we do that by decomposing the
integral in two one-dimensional parts analogously to the rectangular cell∫

C

Q dC =

∫ si+1/2

si−1/2

∫ tn+1

t?(s)

gj(y(s, t)) dt ds

=

∫ si+1/2

si−1/2

∆tn+1(s)gj(y(s, tn+1)) +O((∆t·n+1)2) ds

= ∆s∆tin+1gj(y(si, tn+1)) +O(∆s(∆tin+1)2 + ∆s3∆tin+1)

Overall we have for the approximations of the integrals for the slanted cell

∆s
[
aj(y(si, tn+1))− aj(y(si, t?(si, tn+1))

]
+ ∆tn+1(si)

[
fj(y(si+1/2, tn+1))− fj(y(si−1/2, tn+1))

]
+ ∆s∆tin+1gj(y(si, tn+1))

+O((∆t
i+1/2
n+1 )2 + (∆t

i−1/2
n+1 )2 + ∆s3 + ∆s(∆tin+1)2 + ∆s3∆tin+1) = 0. (D.4)
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D.2 Details on the application of the jet model

In the final step we add the approximation with the spatial averages. The complete ap-
proximation then is, written in general notation for equations of node and edge type

∆s
[
aj(Yk(tn+1))− aj(Yk(t?(sk)))

]
+ ∆tn+1(sk)

[
fj(Yk+1/2(tn+1))− fj(Yk−1/2(tn+1))

]
+ ∆s∆tn+1(sk)gj(Yk(tn+1)) + Esla,k = 0

(D.5)

with

Esla,k =O((∆t
k+1/2
n+1 )2 + (∆t

k−1/2
n+1 )2 + ∆s3 + ∆s∆tn+1(sk)

2 + ∆s3∆tkn+1 + ∆s2∆tkn+1).

D.2 Details on the application of the jet model

The viscous jet model from System 2.31 is presented with node/edge assignment. The
unknowns and their type are printed preceding their assigned equation (here, node means
that the respective Dj = 1 and edge means Dj = 0), the reasoning for the choice is given
in Table D.1:

r̄, node : ∂t̄r = RT (q) · (v − uτ ) +
1

k
∂sλ̄τ , (D.6a)

λ̄τ , edge : ∂sr̄ = RT (q) · τ , (D.6b)

q, node : ∂tq = A(ω − uκ) · q +
1

k
A(∂sλκ) · q + λtq, (D.6c)

λκ, λs, edge : ∂sq = A(κ) · q + λsq, (D.6d)
τ , edge : ∂tτ + ∂s(uτ ) = ∂sv + κ× v + τ × ω + CkR(q) · λ̄τ , (D.6e)
κ, edge : ∂tκ+ ∂s(uκ) = ∂sω + κ× ω + Ckλκ, (D.6f)
λt, node : q · q = 1, (D.6g)
χ, node : ∂tχ+ ∂s(uχ) = 0, (D.6h)
v, node : ∂tp + ∂s(up) = p× ω + ∂sn + κ× n + f, p = σMv,

(D.6i)
ω, node : ε2 (∂th + ∂s(uh)) = ε2h× ω + ∂sm + κ×m + τ × n + ε2l, h = JM · ω,

(D.6j)

n, edge : ∂tτ3 + ∂s(uτ3) =
Re
3µ

τ 2
3

σV
n3, τ1 = 0, τ2 = 0, (D.6k)

m, edge : ε2 (∂tκ+ ∂s(uκ)) =
Re
3µ

τ 3
3

σV 2
M−1

µ ·m. (D.6l)

with JM = (σMσV /τ3)Min. The parameter speed u is still a degree of freedom in the
system, but assumed to be globally zero if not otherwise mentioned. The terms σV , σM , k
are left in the system for clarity, but are not meant as unknowns anymore. They are to be
substituted with χ, which is introduced according to Remark D.3.
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D Numerical scheme and implementation

node edge description
m,n Stress free-jet end at s = 0 in every set-up, and s1/2 = 0 is the

reference edge.
χ, v,ω Minimum amount of interpolation (narrow stencils) in conser-

vation laws (D.6i), (D.6j) (m,n in their spatial flux).
τ , κ Material models (D.6l), (D.6k) are ODEs with m,n, which are

edge type.
r̄, q Connected through (D.6a) and (D.6c) to v,ω, which are node

type.
λt Unit quaternion constraint (D.6g) needs the same type as q.

λτ ,λκ, λs Connected through (D.6b) and (D.6d) to τ ,κ (edge type) in the
source terms and to r̄ and q (node type) in the fluxes.

u Maintain perfect conservation in (D.6i), (D.6j) and (D.6h).

Table D.1: Overview of the choice of node and edge unkowns.

Remark D.3. There is a shortcut to calculate type-1 fields with simple conservation equa-
tions under certain assumptions. Remember the transformation rule for a type-1 field
f : Q → R:

f(s, t) = ∂sΨ(s, t)f̂(Ψ(s, t), t).

Assume that the Lagrangian quantity is independent of t and also independent of s in the
initial values, thus f̂(Ψ(s, t), t) = f0 ∈ R for all (s, t) ∈ Q. Then it holds that

f(s, t) = χ(s, t)f0. (D.7a)

The spatial functional determinant of the transformation χ(s, t) = ∂sΨ(s, t) appears, which
is a conserved quantity itself by definition. Remember that the whole theory of this work
emerged from the 3d continuum mechanics, in which we consider volume conservation in
integral depiction under a time-dependent transformation as one of the very first basics. It
can be seen by taking (2.16) and applying a spatial derivative to it to obtain

∂tχ+ ∂s(uχ) = 0. (D.7b)

That means all similar type-1 fields can be calculated with (D.7) – in summary only one
equation to solve instead of one for every field.

To faciliate the application of our discrete scheme onto the viscous jet model (D.6) is
now expressed with the functions a,f and q in the general form (4.1) with the ordered
unknowns y = (̄r, λ̄τ , q, λκ, λs, τ , κ, λt, v, ω, χ, n, m, λ̄sτ , λsκ, u). The last equation
is u ≡ 0, which would be exchanged when using a moving mesh strategy. The substitutes
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λ̄
s
τ = ∂sλ̄τ and λsκ = ∂sλκ appear, and overall we have

a(y) = f(y) = q(y) =

r̄
03

q
04

τ
κ
0
χv
ε2h
χ
02

τ3

κ
03,
03

0



,



03

r̄
04,
q
uτ − v
uκ− ω
0,
uχv − n,
ε2uh−m
uχ
02

uτ3

uκ
λ̄τ
λκ
0



, −



RT (q) · (v − uτ ) + 1
k
λ̄
s
τ

RT (q) · τ
A(ω − uκ) · q + 1

k
A(λsκ) · q − λtq

A(κ) · q + qλs
κ× v + τ × ω + CkR(q) · λ̄τ
κ× ω + Ckλκ
q · q − 1
χv × ω + κ× n + f
ε2h× ω + κ×m + τ × n + ε2l
0
02

(Reτ 2
3 /3µχ)n3

(Reτ 3
3 /3µχ

2)M−1
µ ·m

λ̄
s
τ

λsκ
u



with h = (χ2/τ3)Min ·ω. Initial and boundary conditions are set according to Section 4.1.2.
As an example we apply the jet extrusion process of Section 2.3.1 and use

A(s) = AL(−L(t), t) =

r̄A(s)
Cun,3

qA(s)
Cun,3

Cun
e3

03

Cun
e3v

A(s)
03

1
Cun,3

Cun,3

Cun,3

Cun,3

Cun



,



r̄L

Cun,3

qL

Cun,3

Cun
e3χ

L(t)
03

Cun
e3v

L

03

χL(t)
Cun,3

Cun,3

Cun,3

Cun,3

Cun



.
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for the initial conditions and

L(−L(t), t,y(−L(t), t)) = R(−R(t), t,y(−R(t), t)) =

y(−L(t), t)−



r̄L

Cun,3

qL

Cun,3

Cun
∗e3χ

L(t)
∗03

Cun
e3v

L

03

?χL(t)
Cun,3

Cun,3

Cun,3

Cun,3

vL/χL(t)− d
dt
L(t)



, y(−R(t), t)−



Cun,3

03

Cun,3

03

Cun
?Er,τ3(t)
?Er,κ(t)
Cun
∗Er,v(t)
∗Er,ω(t)
∗Er,χ(tn+1)
03

03

Cun,3

Cun,3

(vR/χR − d
dt
R)(t)


for the spatial boundaries. We use abbreviations 0x,x ∈ N for a n-dimensional zero and
Cun,x for an n-dimensional vector with Cun as the components and Er,x(t

n+1) as the ex-
trapolation boundary of the unknown x. Artificial auxiliary conditions have been marked
with a leading ?, conditions that are only required when u is not zero are marked with
∗. Additionally, it is assumed that χL(t) and χR(t) are given by the grid motion induced
by the artificial convection speed. In the special case of a Lagrangian parameterization
(u ≡ 0) with arc-length reference, we have χL(t) = χR(t) = 1 for all t ∈ [0, T ].
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Notational conventions used in the chapters are summarized here.

Scalars, vectors, matrices and more

x Scalar-valued quantity
~x Invariant vector in E3

A Tensor-valued quantity
x Components of a vector depicted in canonical basis of Rn

x Component triple in R3 of a vector depicted in the director basis
x̄ Component triple in R3 of a vector depicted in the outer basis
e1, e2, e3 Canonical basis of the respective basis
A Matrix in Rn×n

N Natural number: N = {1, 2, 3, . . .}
Z Integer numbers: Z = {. . . ,−2,−1, 0, 1, 2, . . .}
R Rational numbers

|x| Absolute value of x
‖x‖ Euclidean norm
x · y Inner / scalar product
x× y Cross-product
x⊗ y Dyadic product

1, id Identity matrix resp. mapping
AT Transpose matrix of A
A−1 Inverse of the matrix A
f−1 Inverse of a bijective mapping f
x−1 Reciprocal of the scalar x
diag(x) Diagonal matrix with x as the diagonal entries

f Mapping from Rm to Rn

∂xf Component-wise partial derivative of f with respect to x, ∂xf =
∑

ei∂xfi
d
dx
f Component-wise total derivative of f with respect to x, d

dx
f =

∑
ei

d
dx
fi

∇f Component-wise gradient of f , i.e. for a ∇f =
(
∇f1| . . . |∇fn

)
Df Jacobian of f , Df = (∇f)T

I Interval in R, I = [a, b] with a, b ∈ R and a < b
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◦
I Interior of I
∂I Boundary of I
O(f) Function satisfying |O(f)/f | ≤ k with a positive constant k

Cl(Rm,Rn) l-times continuously differentiable functions on Rm with image in Rn.

Jet model

σ Spatial coordinate in Lagrangian parameterization
s Spatial coordinate in general parameterization
t Time
Q̂ Lagrangian space-time domain
Q General space-time domain
Ψ Transformation from the general to the Lagrangian domain

~̂x, x̂, ˆ̄x, x̂ Unknown in Lagrangian parameterization (starting Section 2.2.1)
~x,x, x̄, x Unknown in general parameterization (starting Section 2.2.1)
~r, r̄ Jet curve (invariant, in outer basis)
~d1, ~d2, ~d3 Orthonormal director triad, director basis
{~a1, ~a2, ~a3} Outer basis, possibly time-dependent
R,R Rotation between outer and director basis and its associated matrix in SO(3)
q Quaternion to parameterize the rotation, relative to the outer basis
~v, v Velocity (invariant, in director basis)
~ω,ω Angular velocity (invariant, in director basis)
~τ Tangent (invariant),
τ Distortion measure τ = (τ1, τ2, τ3). Shear strains: τ1, τ2. Stretching strain:

τ3. Elongation: ‖τ‖
~κ Curvature (invariant)
κ Distortion measure κ = (κ1, κ2, κ3). Bending: κ1, κ2. Torsion: κ3

σM Mass line density
σV Volume line density
~n Contact force
n n = (n1, n2, n3). Shear stress: n1, n2. Tension: n3

~m Contact couple
m m = (m1,m2,m3). Bending torque: m1,m2. Twisting torque: m3

~f , f External body force line density
~l, l External body couple line line density
µ Dynamic viscosity
u Parameter speed
JM Inertia matrix
Min Cross-section specific part of inertia
Mv Cross-section specific part of viscous torques
Lp Helper matrix, given by Lp = diag(1, 1, p)/(4π) for p ∈ R
A Area of the cross-section, given by A = σV / ‖τ‖
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Re Reynolds number (ratio between inertia and viscosity)
ε Slenderness number (ratio of the length to the cross section diameter)

λτ ,λκ Multiplier of the SAMW correction
k Fictitious type-1 field
C Constant � 1 used in the SAMW correction
χ Jacobian of the transformation Ψ; Substitute for type-1 fields with simple

conservation law

Applications

Ω Rotational frequency
fΩ Fictitious rotational body force line density
lΩ Fictitious rotational body couple line density
Rb Rossby number (ratio of inertial to centrifugal forces)

fg Gravitational force
g Gravitational constant
Fr Froude number (ratio of inertia to gravity)

vrel Relative velocity of jet and airflow
v̄air Velocity of the airflow
v̄mean Mean velocity of the airflow
v̄turb Velocity of the turbulent fluctuations
ρair Density of the airflow
νair Kinematic viscosity of the airflow
fair Aerodynamic line density suitable for the jet model
fMW Aerodynamic line density with its local non-dimensionalization according to

[75]
Vi∗ Relation of the dynamic viscoties of the airflow and the jet
Re∗ Mixed Reynolds number (ratio of inertia of the jet to the viscosity of the

airflow)

kair Kinetic energy of the turbulent fluctuations
εair Viscous dissipation of the turbulent fluctuations
lT Turbulent large-scale length, lT = k3/2/ε
tT Turbulent time for decay of large-scale vortices, tT = k/ε
v̄HM Velocity of the turbulent fluctuations with its local non-dimensionalization

according to [60]
Tu Degree of turbulence
Tt Time scale ratio of jet model and turbulence model

Tair Temperature of the airflow
αair Heat transfer coefficient
λair Thermal conductivity
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cp,air Specific heat capacity of the airflow
cp Specific heat capacity of the jet
T Jet temperature
Nu Nusselt number (ratio of convective to conductive heat transfer normal to the

surface of two fluids) modeled according to [107]
Pr Prandtl number (ratio of viscosity to thermal diffusivity)
Pr∗ Mixed Prandtl number (ratio of viscosity to thermal diffusivity from air to jet)
c1, c2, c3 Physical constants for the Arrhenius law of the viscosity
De Deborah number (ratio of the time of relaxation to the time of observation)

r-refinement

σ, Ω̂ Parameter and corresponding domain of the referential parameterization
s,Ω Parameter and corresponding domain of the computational parameterization
p, Ω̃ Parameter and corresponding domain of the desired parameterization
t Time
Ψ Transformation of the computational parameterization to the referential param-

eterization, or parameter distribution
α Transformation of the computational parameterization to the desired parame-

terization, or parameter distribution
ν Transformation of the desired parameterization to the referential parameteriza-

tion, or parameter distribution
Ξ, fΞ Generic parameter distribution Ξ ∈ {Ψ, α, ν} and the corresponding parameter

density.
M̂,M Monitor function in referential and computational parameterization, i.e.

M̂(Ψ(s, t), t) = M(s, t)
τ Temporal relaxation parameter
G Spatial smoothing operator
fG Application of the smoothing operator to a scalar-valued function f , i.e. fG =

G−1f
M smo Smoothed monitor function
f smoα Smoothed parameter density

Discrete scheme

y Vector of unknowns
a Temporal flux function
f Spatial flux function
g Source function
s Spatial parameter
t Time
i Index for integer values
n Index for natural numbers (zero excluded)
k Index for spatial grid, k ∈ K = {. . . ,−3

2
,−1,−1

2
, 0, 1

2
, 1, 3

2
, . . .}
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j Index for counting the vector of unknowns
Qh Discrete space-time domain: Set of all discrete points enclosed by Q
Ωh(tn) Set of all discrete points with t = tn in Qh
T (k) Type of all discrete points with s = sk, whereas T (k) = 1 means node

and T (k) = 0 edge.
D Type of the unknowns y where yj has type Dj
Qh,A Active space-time domain: Set of all active discrete points in Qh
Qpl−pr Special active space-time domain: pl and pr give the type of the bound-

ary, meaning that considering all time levels separately, the adjacent
active discrete point in Qpl−pr is of opposite type

Y n
k,j Discrete unknown (spatial average) at s = sk and tn if T (k) = Dj,

otherwise not defined
Yk(t) Approximation of the spatial averages for all points in the active space-

time domain for t ∈ {t1, . . . , }, otherwise initial values.
∆s Equidistant spatial grid spacing
∆tn, ∆tkn Temporal grid spacing and adjusted temporal grid spacing (incorpo-

rates slanted boundary cells)
knl , knr First and last active discrete point (counting starting with smallest s)
A, AL, AR Initial value functions
L, R Boundary functions
Y n
L ,Y

n
R Spatial boundary unknowns

Yn Solution calculated with the discrete scheme at time level tn
Zj(s;Y

n) Spatial reconstruction of the solution for s ∈ Ω
err(Yn

1 ,Y
n
2 ,J ) L2-error calculated of the two given solutions for all components given

in the index vector J
Ωp
h,n All discrete points in Qh with t = tn and s = sk with k such that

T (k) = p
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This work investigates models and numerical strategies for the behavior of a slender 
object deformed by large external forces in spinning processes. Our main 
consideration is an incompressible, highly viscous and three-dimensional jet that is 
described by a one-dimensional model of partial differential-algebraic equations.  
We aim to provide a robust basis for the simulation of production processes that 
require transient treatment and prevent any meaningful simpli  cation of the model 
equations. The spatial domain is considered time-dependent and requires proper 
handling. For that purpose, a Finite Volume method for an arbitrary space-time 
domain is proposed. The performance of the model and discrete scheme is validated 
through numerical convergence order results (in space, time and combined). As 
examples for industrial applications we consider production processes of insulation 
with the rotational spinning process and nonwoven materials with the melt-blowing 
process. Both exhibit large elongations that manifest in strongly varying solution 
components, possibly causing numerical dif  culties. ossibilities with adaptive mesh 
re  nement (in particular r-re  nement) are also explored.
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