

Improving the properties of biobased PLA matrices by addition of surface treated nano- and microscale particles

<u>M. Wanner, M. Entenmann, K. Krawczyk, P. Keller, H. Greisiger, K. Er, T. Schauer</u> Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Stuttgart

State of the art

- Polylactide acid (PLA) represents a biobased polymer with promising economic perspectives [1]. Due to its high elastic modulus, low oxygen and odour permeability, good printability, and high scratch resistance (SR), it is increasingly used e.g. in food and cosmetics packaging.
- In contrast, properties like:
 - → Water vapour permeability (WVP)

- Using talcum as a barrier pigment, even in case of surface treatment a significant improvement of the relevant properties was not possible. Therefore talcum was substituted by Minatec 40 CM (Merck, Min) and attempts to optimize the relevant properties were undertaken by:
 - Surface treatment; starting from the successful treatment Min(Pen1%) \rightarrow Addition of CeO₂ nanoparticles (VP Ceria 60, Evonik); surface treatment; for improvement of scratch and photodegradation resistance → Addition of cellulose in order to suppress incompatibility of the surface treated pigments with the PLA matrix. \rightarrow Addition of an organic scratch resistance additive (Byk 3239P)

- Photodegradation resistance (PDR)
- → Antistatic, represented by the specific surface resistance (SSR) do not yet meet all the demands of the applicants.
- Due to decreasing price; the market acceptance of PLA will surely raise, if the critical properties of PLA could be improved economically.

Research ideas

- Addition of commercially available supplies:
 - Careful market search and selection of barrier pigments and functional additives
 - Systematic and quantitatively varying addition of promising and economically acceptable products to PLA
 - Characterization of the modified films
- Additional improvement of properties by surface treatment of functional particles:
 - → Generation of hydrophilic/phobic surfaces and different extends of particle stratification by systematic variation of the silane/diolecomponent ratio [2]
 - Characterization of the modified films

- → Use of a silent crusher for a higher degree of particle separation
- The table below displays the results of the best variants regarding photodegradation resistance (PDR), reduced water vapour permeability (rWVP), specific surface resistance (SSR) and scratch resistance (SR):

Composition:	PDR	rWVP /	SSR /	SR: 1st crack /
PLA +	∆c(CO₂) / ppm	µmg/(m²Tag)	Ωm	mN
pure PLA	5981	10120	1.82 E13	35.23
12%Min	1465	2707	1.22 E7	12.37
12%Min(Pen1.0%GLYMO <mark>1.0</mark> %)	1228	1783	7.85 E14	~ 10.9
12%Min+0.2% <mark>Byk3239P</mark> with Silent Crusher	1315	2220	6.96 E12	10.70
1%f/f Ceria 60	3922	9801	7.49 E12	37.50
12%Min(Pen1.0%GLYMO <mark>0.3</mark> %) +0,3%CeO ₂ (Pen1.0%GLYMO <mark>1.0</mark> %)	1167	1666	1.07 E15	10.18
12%Min(Pen1.0%GLYMO <mark>0.3</mark> %) +0.3%CeO ₂ (Pen1.0%GLYMO <mark>1.0</mark> % <mark>Cellulose</mark> 10%)	1313	1667	1.04 E13	~ 10.9

- None of the systems is best in all relevant properties
- In presence of barrier pigments no improvement of SR occurred; addition of pure <u>CeO₂</u>, however, resulted in better SR (and antistatic properties) Best antistatic properties were generated by addition of 12%Min, which also resulted in significantly improved PDR and water vapour barrier • Addition of treated 12%Min+0.3%CeO₂ resulted in the overall best results regarding PDR as well as water vapour barrier. Antistatic properties and scratch resistance, however, are worse than in pure PLA Addition of treated 12% Min and 12% Min+0.3% CeO₂ (treatment with cellulose) resulted in moderate but well-balanced improvements of the relevant properties. SR, however, remained low.

Achievements (implementation)

- Using talcum (Tal) as a lowpriced barrier pigment, the photodegradation resistance, which is quantified by the FTIR-detected increase of c(CO₂) above an UV-irradiated sample (instrumentation: see right), decreased significantly (5841 ppm \rightarrow 8192 ppm)
- Two series of surface treatments using the diols ethylene glycol or pentanediol and the silane GLYMO (see below) resulted in improved photodegradation resistance (PDR) for several concentration ratios (see right).

Next steps

- Transfer of the optimized systems to technical process:
 - → Extrusion of modified PLA matrices
 - Generation of relevant technical building elements and cosmetics packaging
 - Characterization of the properties in comparison to the properties of pure PLA
- Processing of a cost-benefit calculation
- Selective implementation of economical PLA modifications in industrial processes for manufacturing biobased polymer products equipped with specific properties

References

• The best PDR Pen system (Min(Pen1%)) shows also the lowest water vapour permeability (WVP, see right). In contrast, the best PDR Eth system (Min(Eth1%)) is characterized by a very high water WVP \rightarrow Only Pen is used for further optimizations.

- 1. Endres, H.-J., Siebert-Raths, A.; **Technische Biopolymere**, Hanser, München. 2009, 162, 348-349
- 2. WO 01/60926, Method for Coating Substrate Surfaces with LCST **Polymers;** WO 03/014229, **Method for Treating the Surfaces of** Substrates; WO 03/014230, Method for Coating Substrate Surfaces

