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Abstract

The need for predicting physical compound properties supplementing experimental
data is considerable. Nowadays a wide range of classical simulation techniques is
available for computing a multitude of such properties with acceptable effort. We
here give a field report about our approach, which was to fit an initial model to a
single point in the phase diagram. By way of accessing commonly available experi-
mental values we developed a compound specific force-field via simplex optimization.
For predicting the desired properties of the novel model we did engage classical equi-
librium as well as reverse non-equilibrium molecular dynamics in combination with
Monte Carlo methods and report here the performance of these method in detail
for the example compound ethylene oxide. We find that the new model describes
the experimentally observed behavior of the test compound ethylene oxide (EO)
very well in the molecular dynamics section. However, when applying the simplex
optimized model to the Monte Carlo section, the limits of transferability become
apparent.
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1 Introduction

Highly reactive compounds are frequently involved in industrial processes.
While reactivity is a desirable feature, it requires extremely careful handling
and thus prohibits experiments that are dispensable at any means. Still, in
daily practice the need for property data is pressing. Simulation data are useful
to fill this gap. This was the motivation of the Industrial Fluid Properties
Simulation Collective (IFPSC) for announcing the 4th challenge, when the
ethylene oxide (EO) molecule was chosen as a relevant example compound for
testing the transferability of methods and force fields to predict a wide range
of properties [1].

When participating in this challenge, our main objective was to probe the
capability of our simplex optimization procedure for deriving such individually
tailored compound models by fitting them to very few basic experimental
parameters. According to the contest rules, the results for the created models
are compared to those obtained for a previously described reference model [2].

Atomistic soft matter simulations are most commonly used for investigating
system properties that depend on intermolecular interactions for which the
required large system size prohibits quantum mechanical methods [3]. Simpli-
fying assumptions have to be made that lead to a limited number of analytic
terms in order to construct a force field [4]. Compound-specific behavior is
incorporated by the individual choice of the force field parameters for each
atom instead of considering the electronic structure. A variety of very gen-
eral force field parameters (AMBER [5], CHARMM [6], GROMOS [7], OPLS
[8], UFF [9], others) that describe the behavior of a wide range of compounds
globally quite well exists, but these force fields may lack the required accuracy
for a specific compound [10]. Individual parameter sets created by quantum
mechanical methods generally describe very well the intramolecular proper-
ties, but may not sufficiently reproduce intermolecular properties due to the
inherent limitation of the underlying models [11].

Therefore, our approach to develop an all-atom force-field model of EO that
allows extensive simulation studies is to follow a generic, most simple route:
starting from the ab initio level and adjusting the model to very few, commonly
accessible experimental data.

Thus, as the chosen optimization procedure is quite consumptive, the model is
being calibrated with respect to only one point in the phase diagram, i.e. to the
requested temperature of 375 K and the associated experimental value for the
pressure. The properties we address comprise the densities, heat capacities,
isothermal compressibilities, viscosities and thermal conductivities for both
the saturated liquid phase and the vapor phase at 375 K, as well as information
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about the vapor pressure, the heat of vaporization, and critical properties. As
we aim at predicting such a wide spectrum of diverse properties, especially
including transport behavior, we opt for an all-atom model that provides the
maximum number of internal degrees of freedom, in order to capture friction
and exchange of thermal energy comprehensively.

2 Methods and Computational Details

The requested types of properties range from phase equilibria to caloric and
dynamic properties. Especially for the latter, the simulation technique of
choice is molecular dynamics simulation (MD). For all MD simulations the pro-
gram package YASP [12] was utilized. Transport properties were determined
using reverse non equilibrium molecular dynamics (RNEMD)[13], a compara-
tively fast converging method, likewise implemented in YASP. When needed,
supplementary Monte Carlo simulations were performed with the MCCCS
(Monte Carlo for Complex Chemical Systems) Towhee simulation program,
version 5.2.1 [14].

Presuming a reasonable molecular geometry, the diverse physical properties
mainly depend on the non-bonded interactions between the particles, which
are modeled by Lennard-Jones (LJ) and electrostatic interactions in the clas-
sical approach. Thus, the LJ parameters (distance of zero-potential σ and
potential-well-depth ε) are subject to modification, whereas the atomic charges
were kept fixed.

In order to keep not only the computational demand low, but also the opti-
mization problem feasible, we decided to restrict the model to only two atom
types involved in LJ-interactions. Considering the numerical proportion of hy-
drogen to carbon (being 2:1), we neglected the hydrogen atoms consequently,
thereby also maintaining comparability to the reference model.

2.1 Models

For starting the optimization procedure, an initial all-atom model representing
ethylene-oxide was created with Gaussian 03 [15] using a 6-31G (d) basis set for
Hartree-Fock calculations in order to provide a suitable set of atomic charges
and appropriate bond and angle geometries. Two sets of charge models were
derived from the electrostatic potential (ESP) and fit to the ESP at points
selected according to the CHelp [16] and CHelpG [17] schemes. The second
charge model emphasizes the negative character of the oxygen atom compared
to that of the carbon atoms more, however the overall charge distribution
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among the three atom types of EO is quite alike for both models. Finally,
we used as partial charges the average atomic charges of both models. As
EO is almost rigid due to its three-membered ring structure, throughout all
simulations the bondlengths were kept fixed and only angles involving H-atoms
were treated as flexible, the force constants being derived from the calculated
vibrational spectrum. The LJ-parameters of oxygen and carbon are subject to
variation during the optimization.

The reference or round robin model (RR) is labeled as model A by Wielopolski
and Smith [2] and treats the methylene groups as united atoms. All employed
modeling techniques create the LJ-parameters for mixed interactions accord-
ing to the rules of Lorentz and Berthelot [18,19]. As implemented in YASP,
we apply a reaction field to cope with long range Coulombic forces, whereas
Towhee utilizes Ewald summation.

2.2 Simplex optimization

The chosen set of parameters is optimized according to an iterative algorithm,
i.e. cycles of MD-simulation, evaluation of target properties, and eventually
readjustment of parameters according to the downhill simplex method are
performed repeatedly until the abort condition is reached [20], which was the
relative quadratic error ((ρ−ρtarget)/ρtarget)2+((∆Hvap−∆H target

vap )/∆H target
vap )2)

to fall below the chosen threshold.

The readjustment of parameters is achieved by reflection, expansion or con-
traction in parameter space [21]. This optimization method is robust and
applicable even if an analytical functional form is not available, as is the case
here.

The choice of parameters to optimize was based on two considerations. The
number of optimization iterations to find a minimum increases exponentially
with the number of parameters to optimize in one go. Therefore, we were lim-
ited to only few parameters. Test simulations (not shown here) with up to
6 parameters in one optimization have been performed. We decided to keep
the values from the quantum calculations fixed and to concentrate on the
optimization of other parameters. Besides this technical consideration, we in-
tended to start with a model for EO comparable to the RR model and to refine
it stepwise to a new model. Thus, we started experimentally by optimizing σ-
and ǫ-values independently and finally went on with the here reported proce-
dure of optimizing σ and ǫ at the same time. When trying to incorporate the
optimization of charges the algorithm changed the charges significantly out-
side of their expected range of values (even inverting the polarity), without
improving the overall performance of the force field with respect to the goals
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of the challenge. Therefore we report here the results of the optimization of
the LJ-parameters for the carbon and oxygen atoms.

For starting the simplex optimization procedure, initial values for the variables
have to be provided manually. The values chosen should cover quite a large
(but still reasonable) region in parameter space in order to avoid the results
being confined in a local minimum all over the time. As the four-dimensional
parameter-space needs five starting points for the simplex algorithm, we con-
sidered quadruples of values which cover the following spans: σCC = 0.3 – 0.4
nm, σOO = 0.26 – 0.31 nm, εCC = 70 – 95 K, εOO = 60 – 80 K.

Table 1 summarizes all the details of the final models that are used for property
prediction. The optimized model differs from the reference model mainly in
the presence of hydrogen atoms, i.e. in the distribution of charges, as the LJ
parameters for H-atoms are set to zero. Besides that the actual values of σ
and ε differ.

2.3 System setup and simulation conditions

2.3.1 Molecular dynamics

In general, uniform settings were used throughout all simulations in order to
ensure utmost consistency. However, as the system size affects computation
time, even more drastically when repeated iteratively, previous to the opti-
mization process the finite size effect on the density was studied by running
liquid phase MD simulations of cubes with 256, 512 and 1024 molecules (data
not shown). As a consequence 256 molecules per box were considered sufficient
for the equilibrium MD runs of the optimization procedure. Due to different re-
quirements concerning system geometries for other settings (GEMC, NEMD),
system sizes of 512 or 768 molecules were used for computing the heat capaci-
ties, transport properties or vapor-liquid-coexistence curves, respectively. The
computational details for all simulations comprised a non-bonded cut-off of 0.9
nm and a neighbor list cut-off of 1.0 nm in case of the liquid phase systems
and a non-bonded cut-off of 5.0 nm in case of the vapor phase systems with a
neighbor list cut-off of 5.1 nm. The neighbor list was updated every 10 time
steps, the reaction-field-dielectric was 14.5 in both cases. The temperature was
coupled to 375 K using a Berendsen thermostat with a coupling constant of
0.2 ps while the pressure was coupled to 1428.5 kPa using a Berendsen mano-
stat with a coupling time of 2 ps and a compressibility of 1*10−6 1/kPa. The
center of mass drift of the systems was removed every 1000 time steps. The
frequency of snapshot collection and the instantly calculated properties was
every 200 time steps. The timestep size was 2 fs throughout.

The simplex algorithm implemented in YASP as published by Faller et al.[20]
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has been applied to optimize the parameter set. In each optimization cycle at
least three different simulations have been carried out:

(1) A pre-equilibration of the starting configuration (which is the output co-
ordinate file of the previous simplex steps with most similar parameter
sets; or a standard equilibrated one if none is available) has been per-
formed for 100 000 time steps.

(2) The system was considered sufficiently equilibrated, as soon as there was
no significant drift detectable in the pressure of the system, i.e. a linear
regression was performed on the recorded pressure values. The product
of the slope of the regression line times the total number of datapoint
needed to fall below the standard deviation of datapoints. Thus, the final
equilibration of the system was achieved by repeating simulation cycles
of 100 000 time steps each until the equilibration criterion was met.

(3) Starting with the equilibrated system the finally evaluated production
run was performed for another 100 000 time steps.

After this sequence of simulations the simplex algorithm calculated the per-
formance of the current parameter set by comparing the obtained density ρ
to the target liquid density ρtarget of 747 kg/m3 and the obtained heat of va-
porization ∆Hvap to a target heat of vaporization ∆H target

vap of 19.8 kJ/mol.
The target values were derived from the data given in the ethylene-oxide user-
guide [22] and in Walters and Smith [23] and were chosen such that the final
model is optimized at the chosen thermodynamic system settings, i.e. 375 K
and 1428.5 kPa. With the resulting performance value, the simplex steps were
executed, i.e. a new set of parameters was generated and finally a new cycle
was started. This procedure was repeated until the performance fell below the
threshold of 0.0001 in order to ensure convergence.

For setting up systems under saturated phase conditions, NpT simulations
were conducted. We estimated the saturated vapor pressure by use of the
definition of the acentric factor as given in [24]: log[P sat

r ]Tr=0.7 = −(ω+1) with
P sat

r being the reduced saturation pressure, Tr being the reduced temperature
and ω the acentric factor. Applying the experimentally known data (pcrit =
7190 kPa, Tcrit = 469 K and ω = 0.2114 [22]) leads to a theoretical vapor phase
saturation pressure of 10 % below the experimental value at 328 K. This was
transferred to 375 K yielding 1248.5 kPa as reference pressure for vapor phase
simulations. Likewise the pressure was increased by 10 % to 1571.4 kPa for
the liquid phase simulations in order to ensure stable phase separation. As the
compressibility of a liquid is usually very small, such a moderate increase in
pressure should not significantly affect the final results.

For computing the transport properties, for all systems (both in liquid and
in vapor phase) a L × L × 3L box containing 768 EO molecules was built
by replicating an equilibrated cubic box containing 256 molecules three times
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in z-direction. For both the RR model and the optimized model, RNEMD
simulations were performed for the liquid phase at exchange periods of every
60, 200, 400, 800, and 1200 steps for calculating the shear viscosity and at
exchange periods of every 100, 200, 400, 800, and 1200 steps for calculating
the thermal conductivity. In the vapor phase, exchange periods of every 2,
5, 20, 40, 80, and 120 steps were applied for calculating the shear viscosity.
Swap periods of 100, 200, 400, 800, 1200 steps, respectively, were employed
for determining the thermal conductivity. In both cases, molecular velocity
exchange has been done. All simulations were done for 9 ns and the last 8 ns
were used for data analysis.

2.3.2 Monte Carlo

The Gibbs-Ensemble Monte (GEMC) Carlo method was utilized as described
in Panagiotopoulos [26] and Martin [10] for recording vapor-liquid coexistence
curves. Therefore, 256 + 512 EO molecules of the respective model were dis-
tributed among two cubic boxes (for the vapor and the liquid phase), both
with periodic boundary conditions. Initial configurations were generated by
multiplying a single molecule and placing the copies on a simple cubic lat-
tice to yield cubic boxes. The respective box-lengths were chosen such that
the corresponding experimental density was obtained and after subsequent
equilibration the phase separation was maintained. In contrast to the reaction
field method implemented in YASP, the MC program Towhee [14] utilizes
Ewald summation,and for LJ interactions a non-bonded cutoff distance of 1.0
nm and analytical tail correction. Although this is not fully consistent with
the conditions used throughout the MD simulations and especially during the
optimization, lacking exactly matching methods this proceeding was accepted.

For the rigid RR model only volume moves (p = 0.002), rotational bias two-box
molecule transfer moves (p = 0.001) and center of mass translational as well
as rotational moves (p = 0.7 each) were considered. Vapor-liquid coexistence
data were recorded for temperatures ranging from 230 to 375 K. The systems
were equilibrated for 50 000 Monte Carlo cycles, where a cycle consisted of
768 moves. Additional runs of 50 000 cycles were executed and evaluated by
splitting the simulation into 20 parts for estimating the uncertainties.

3 Calculation

The list of requested properties given in the challenge announcement is divided
into three categories. Out of these we intend to determine the liquid and vapor
phase densities, the heat of vaporization, the vapor pressure and the critical
temperature and critical density, the heat capacity at constant pressure for
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both phases and the associated isothermal compressibilities, as well as the
corresponding liquid state and gas state viscosities and thermal conductivities.
The utilized techniques are specified below.

3.1 Category 1 properties

The current or finally the average density is a standard output value. Accord-
ing to Equation 1 the density ρ of the simulated system is derived from the
volume V of the cubic simulation box with box length l (therefore V = l3)
and the total mass in the system msys which is equal to the n (the number of
molecules in the box) divided by the Avogadro constant A times the molecular
weight of one ethylene oxide molecule mEO = 44.05 g/mol.

ρ =
msys

V
=

n · mEO

A · l3
(1)

The heat of vaporization ∆Hvap is derived from the total non-bonded energy
Enb, the temperature T , the gas constant R, and the number of molecules n
according to Equation 2.

∆Hvap = −
Enb

n
+ R · T (2)

In order to derive the critical properties (temperature Tcrit and density ρcrit),
the resulting liquid and vapor phase densities were fitted to the law of rectilin-
ear diameters (Equation 3) and the law of order parameter scaling (Equation
4), where the critical exponent βcrit was taken as 0.313 [27]:

ρliq + ρvap

2
= ρcrit + C1(T − Tcrit) (3)

ρliq − ρvap

2
= C2(T − Tcrit)

βcrit (4)

From the latter production runs the resulting thermodynamic pressure of the
gaseous box was taken as vapor pressure of the respective model at a given
temperature.

3.2 Category 2 properties

The molar heat capacity at constant pressure Cp for the saturated liquid phase
and for the vapor phase, respectively, has been calculated with five production
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runs at different temperatures (365, 370, 375, 380 and 385 K), but otherwise
identical simulation conditions (see above). The total energy 〈Etot〉 and volume
〈V 〉 were averaged over time. The pressure used in the following formula is
the target value of the manostat (p=1571.4 kPa for liquid phase and p=1248.5
kPA for vapor phase). A linear fit of the plot (〈Etot〉 + P 〈V 〉) versus T has
been used to calculate Cp.

Cp =
1

nmol

[

∂(〈Etot〉 + p〈V 〉)

∂T

]

p=1571.4kPa

(5)

The isothermal compressibility β is a measure of the relative volume change
depending on the pressure P at constant temperature:

β = −
1

V

(

∂V

∂P

)

T

(6)

This equation can be expressed in terms of density (ρ) as follows:

β =
(

∂ ln(ρ)

∂P

)

T

(7)

As the density of a system is a function of the pressure, the slope of the graph
when plotting ln(ρ) against P gives the isothermal compressiblitiy β. In our
case, the temperature was fixed to 375 K and simulations were conducted at
10000, 20000, 30000 and 40000 kPa for the liquid phase and 200, 500, 800 and
1000 for the vapor phase, respectively.

3.3 Category 3 properties

For computing the transport properties we apply RNEMD [13] where a steady
gradient is established artificially. According to the linear-response theory, the
shear viscosity η is the proportionality constant between a shear field and a
flux of transverse linear momentum:

jz(Px) = −η
∂vx

∂z
(8)

The shear field, also called the shear rate, is defined as the gradient ∂vx/∂z: we
have chosen the x component of the fluid velocity relative to the z direction.
The momentum flux jz(px) is the x component of the momentum px, which is
transported in the z direction during a given time. In order to calculate the
shear viscosity, unphysical momentum transfer needs to be performed within
the simulation box.
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(1) The simulation box is divided into N (even) slabs labeled from 1 to N .
Slab 1 is supposed to have a positive x component for the momentum
and the slab in the center of the box (slab M=N/2+1) has a negative x
component of the momentum.

(2) To achieve the first point, we look for the molecule in slab 1 with the
largest negative x component of the momentum in slab 1 and for the
molecule with the largest positive x component of the momentum in slab
M.

(3) We exchange the x component of the center-of-mass momentum p of
the chosen molecules with each other. Since we only have one type of
molecules, the mass of the chosen molecules is always the same. Therefore,
we can exchange center-of-mass velocities instead. Simultaneously in both
chosen molecules, the x-component of the center-of-mass velocity Vx =

px
∑

n

i=1
mi

is subtracted from the x-velocity component of every atom in the

chosen molecule and added to the atoms in the other molecule.

If we repeat this procedure periodically, after a simulation time t, the total
exchanged momentum is Ptot =

∑

exch(px,M − px,1) and the momentum flux is

jz(Px) =
Ptot

2tLxLy

, (9)

where px,1 and px,M are the two x components of the exchanged momentum
in the slabs 1 and M, respectively, and Lx and Ly are the lengths of the
orthorhombic simulation box in the x and y directions. When the system has
converged towards a steady state, we can measure the mean velocity in x
direction in each slab, determine ∂vx/∂z, and calculate the value of the shear
viscosity using Equation 8.

In our calculation, the strength of the shear field is controlled by the swap
period W with which momentum swaps are executed; a larger value of W
meaning a weaker shear field.

In analogy, the thermal conductivity λ relates a heat flux jz to a temperature
gradient dT/dz:

jz = −λ
(

dT

dz

)

(10)

In order to build up a steady temperature gradient induced by continuous heat
flux, unphysical heat transfer needs to be performed within the simulation box.
Similarly, the method contains three steps.

(1) The simulation box is divided into N (even) slabs labeled from 1 to N.
Slab 1, at the beginning of the simulation box, is designated as the hot
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slab, and slab M, at the center of the simulation box, is designated as the
cold slab.

(2) The Molecule in slab M with the largest modulus of its velocity vector
and the molecule in in slab 1 with the smallest modulus of its velocity
vector are identified.

(3) The center-of-mass momenta of these two selected molecules are ex-
changed. This mimics the process of taking heat from slab M to slab
1 in an unphysical way.

Since the energy is conserved, it flows back through the system through a
physical transport mechanism which results in a heat flux. After a long enough
simulation time a steady temperature gradient will be established.

The heat flux through the system can be deduced from the unphysical heat
exchange during the exchange steps.

jz =
1

2tLxLy

∑ m

2
(v2

hot − v2

cold) (11)

This allows to calculate the termal conductivity according to equation 10.
Again, the strength of the thermal field is controlled by the swap period W .

4 Results

4.1 Performance of models

With the chosen initial points in parameter space, the simplex algorithm yields
the model EOopt as summarized in Table 1. For the novel model as well as
the reference RR model the physical properties have been determined. The
final results are presented in Tables 2 and 3 and compared to experimental
reference data.

Table 1

4.1.1 Category 1 properties

We find that the liquid phase density of the RR model in the chosen range
of temperatures is about 5-7 % lower than the respective reference density,
whereas the vapor phase densities are quite within the expected range. Cor-
respondingly, the vapor pressure at 375 K of 1.468 MPa agrees well with the
experimentally observed value of 1.437 MPa. The computed critical tempera-
ture of 467.1 K reproduces almost perfectly the reference value of 469.15 K,
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whereas the critical density ranges approx. 3 % below the measured value,
which is consistent which the general trend of too low densities. Consequently,
also the heat of vaporization at 375 K is underestimated by approx. 5 %.

For liquid densities of the optimized model we observe the same, but even more
pronounced trend as for the RR model; accordingly the optimized model yields
a critical density that is about 8 % lower than the reference. The associated
critical temperature of 448.7 K is approximately 20 K below the experimental
value. In contrast, the gas phase densities tend to be higher than measured
[22] and consequently the thermodynamic pressure exceeds the reference value
by 15 %.

The remaining physical properties were obtained by MD simulations. For the
RR model the liquid density value at 375 K of 701.3 kg/m3 matches nicely the
value of 702.2 kg/m3 that results from the Monte Carlo simulations, indicating
a good consistency of results obtained by different simulation techniques under
liquid phase conditions. For the vapor phase the density obtained by MD
is 15 % lower than that achieved in GEMC simulation or by experimental
measurements, which is due to the reference pressure that was used for the
manostat. This reference pressure was set to 1.248 MPa (instead of 1.468 MPa
that were obtained by GEMC).

Concerning the optimized model and in contrast to the previous one, the values
for the liquid density as well as for the heat of vaporization match perfectly
the experimental values, as these numbers were used as target values during
the optimization procedure. The vapor phase density however, is by roughly
50 % much too low, compared to the experimental reference, which traces
back to the same reason as above.

4.1.2 Category 2 properties

For the RR model, the heat of vaporization is 15 % below the reference. The
same applies for the specific heat capacity, which is consistently too low for
the liquid, as well as for the vapor phase systems and thus does not resemble
the experimental data. The obtained values for the isothermal compressibility
are well reproduced in case of the liquid phase (14 % below reference value),
but almost twice as large in case of the vapor phase simulations.

The optimized model performs better in terms of heat of vaporization obvi-
ously, and heat capacity: the molar heat capacity for the liquid Cp is 37 %
higher than compared to experiment, but the vapor phase heat capacity is only
7% off; the recorded data are presented in Figures 1 and 2. In terms of isother-
mal compressiblity however, the results consistently exceed by approximately
a factor of two the expected values.
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Figure 1

Figure 2

4.1.3 Category 3 properties

Shear viscosity and thermal conductivity were studied using RNEMD simu-
lations. Compatible to the observed low density, the liquid phase of the RR
model displays a too low viscosity as well, whereas the vapor phase matches
nicely the experimental value. The values for the thermal conductivity, in con-
trast are quite close to the reference values, where the one for the liquid phase
was not measured, but calculated as well.

For the optimized model, the results are presented in more detail.

Figure 3

Figure 4

Figure 3 shows the velocity profiles of all systems in liquid phase at differ-
ent shear rates. Linear behavior was observed for the selected swap periods.
We then calculate the shear viscosities at these shear rates and the results
are shown in Figure 4. The shear viscosities range from 0.164 – 0.171 mPa·s,
displaying almost a constant level, which is indicative for an appropriate mag-
nitude of perturbation and a good signal-to-noise ratio. Therefore the value
of 0.171 mPa·s was taken as result and is in agreement with the experimen-
tal observation of 0.15 mPa·s. The shear viscosity of the vapor phase was
found to be 0.0160 mPa·s which also compares well to 0.012 mPa·s obtained
experimentally.

Figure 5

The calculation of the thermal conductivity is in the same spirit as the calcu-
lation of shear viscosity. In Figure 5, the temperature profiles of all systems
are shown. Linear behavior was found for all perturbation rates tested for the
liquid system. The obtained results range from 0.335-0.439 W/(mK), which is
considerably higher than the computational reference of 0.12 W/(mK), esti-
mated by the Missenard-method [30]. This is suggested to be a general feature
of all-atom models which have more degrees of freedom for transferring kinetic
energy than united-atom models such as the RR model which in this case gives
a much better value of 0.125 W/(mK). The thermal conductivity of the vapor
phase of the optimized model was found to be 0.031 W/(mK) which is in
agreement with the experimental observation of 0.02 W/(mK).
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5 Discussion

A wide range of simulation techniques ranging from simple MD to RNEMD
and MC has been employed to predict very diverse physical properties for
EO at conditions that require considerable care and effort when conducting
experimental measurements. As a contribution to the fourth IFPSC callenge a
new EO-model has been created by simplex optimization with respect to the
experimental reference values for the liquid density and the heat capacity.

Generally, the reference model (RR) originally developed by Wielopolski and
Smith [2] performs quite well. It is very good in reproducing the critical tem-
perature and the vapor pressure, for the other properties however, the values
were generally underestimated. The optimized model naturally performs bet-
ter in terms of liquid density and heat of vaporization, but also with respect to
the heat capacity and the transport properties. Generally, the properties acces-
sible by MD or RNEMD for EOopt were obviously much better predicted than
those accessible by GEMC. Hence, the vapor-liquid-coexistence data given in
Table 2 display much lower density values over the whole range of chosen tem-
peratures than expected, leading to a much too low critical temperature as
well. The associated density, however, is just within tolerable accuracy (8.6
% below the experimental value), only the density-profile, when compared to
the experiment, appears to be shifted to lower temperatures. Despite of agree-
ing very nicely for the RR model, the liquid density values of the optimized
model obtained at 375 K by GEMC and MD do not match. This mismatching
behaviour was checked thoroughly (data not shown) and unfortunately is per-
sistent, pointing at problems concerning the transferability of our proposed
model.

The novel model was optimized explicitly, but also implicitly with respect
to very special conditions, therefore not accounting for the subtle algorith-
mic nuances between YASP and towhee (e.g. energy and pressure corrections,
treatment of long range electrostatic interactions, thermostats, barostats). Ob-
viously this makes the model sensitive to changes and thus endangers its trans-
ferability from YASP to other programs.

The simplex alogorithm is well known for being a very robust, but not a fast
optimization method. Our intention of producing an acceptable model with
a (still costly) minimum of computational expense in fact was not entirely
satisfied. However, this was not immediately conceivable from the course of
the optimization, which is detailed below.

With a starting parameter set of four variables chosen to span the full pa-
rameter space, the algorithm took about 40 iterations to achieve an accuracy
of 1% for each parameter and about 90 iterations to reach an accuracy of
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0.001%. The optimization did abort after 150 iterations while the parameters
were only varying in the accuracy of 10−4%. To illustrate the process of the
optimization, Figure 6 shows the relative error of the density, heat of vapor-
ization, and of the total error function in dependence of the number of runs
performed (the iteration number). We observe high fluctuations at the begin-
ning of the optimization, which decrease to an absolute value of below 0.1%
after 40 iterations and decrease further, the more cycles are performed.

Figure 6

The accuracy of the two target properties (density and heat of vaporization)
can also be monitored. Figure 7 shows the sequence of results calculated from
the iteration runs. The wide fluctuation at the beginning of the optimization
corresponds to the error fluctuations in Figure 6. Although all the initial pa-
rameter sets produce too high densities and too high values for the heat of
vaporization, the iteration converges to a minimum which is located outside
the space spanned by the initial parameters.

Figure 7

A similar plot can be produced to show the history of the parameter values.
Although all four variables have been optimized at the same time, for the sake
of clarity, the two Figures 8 and 9 show only the two ǫ-values and the two
σ-values in conjunction. We see here as well that the final parameter set is
located outside the parameter space spanned by the initial parameter sets.
Convergence is achieved due to the robustness of the method but requires lots
of iterations. Nevertheless, computational resources were sufficient to afford
this course to obtain parameters that lead to a better behavior of the model
with respect to the target properties.

Figure 8

Figure 9

So a broad span of parameter values has been visited during optimization
with the adjustments becoming smaller and smaller the closer the final min-
imum is being encircled. The final σOO-value is only 1.3% percent below the
corresponding value of the RR model, and the σCC value is 3.2% larger (see
Table 1). Given that the assumed bond lengths are slightly shorter, these
values appear quite reasonable, as in terms of modeling the LJ-interactions
both models are equal. However, the ǫOO and ǫCC values for the optimized
model are significantly (i.e. 45 and 20 %) lower than those for the RR model.
We note that the visited ǫOO-values fluctuate more than the ǫOO-values, pos-
sibly reflecting the 2:1 ratio of carbon to oxygen atoms, implying that any
change in the carbon parameters will have a more pronounced impact on the
model-performance than changes in the oxygen parameters. Considering the
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smaller partial charges in the optimized model, however, these ǫ-values seemed
acceptable, too.

In principle, other parameters could have been chosen for optimization. As
mentioned above, test runs including e.g. a reparameterization of partial charges
have been performed previously, but did not yield promising models. Due to
the nature of the contest, the limitation of time prevented investigating other
parameter sets and evaluation functions. On the parameters side, especially
the incorporation of the hydrogen atoms with (also optimizable) LJ param-
eters would introduce additional sterical features to the model. On the eval-
uation function side, taking into account the dipolar momentum would help
to control the partial charges and a term controlling the kinetics (e.g. dif-
fusion coefficients or shear viscosity) of the model is also desired for future
investigations.

The above detailed quality of the results however suggests, that at least a
second point in the phase diagram or a parallel GEMC simulation during the
optimization cycles would have improved the final outcome, especially with
respect to transferability. Both options are equally and considerably consump-
tive, but obviously necessary. Finally when exploring the parameter space with
simplex two mathematical aspects have to be remembered: Simplex is a greedy
algorithm which looks for local minima. Since the path through the parameter
space depends on the starting parameters, the algorithm can get trapped in
different local minima. Additionally we have to point out, that optimizing four
parameters with only two target values is mathematically an underdetermined
system, that consequently has more than one solution. These two issues lead
to the fact, that generally simplex finds many parameter sets that fulfil the
threshold criterion of sufficient accuracy of the target function. We tested four
different starting parameter configurations, which simplex in all cases shifted
to the same region in parameters space. The here reported parameter set was
the most promising one.

6 Conclusion

Summarizing this work, the optimization of the LJ σ and ε values of oxygen
and carbon against the density and the heat of vaporization by the simplex
algorithm has led to a new parametrization of the force field for EO. The
strengths of this model lie in the evaluation of transport properties calculated
with YASP. We obtained a novel parameter set which was located outside
the initially estimated parameter space. Therefore the new parameter set may
deviate from tabulated ε and σ values of oxygen and carbon which allow a
physical interpretation according to LJ-theory; but it represents one solution
to the mathematical problem of reproducing the target properties accurately
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and is a valid candidate for a new parametrization. We have shown hat using
distinctly different simulation techniques, such as molecular dynamics, Monte
Carlo, and reverse non-equilibrium molecular dynamics, this new parameter
set performed in the tasks of predicting phase equilibrium data, caloric data
and transport data mostly within the accuracy requested in the IFPSC chal-
lenge. Due to the conditions the model was optimized to, the strength of this
model lies in describing the liquid phase properties.

For our future work, however, we will consider several options in order to
increase the overall performance of this approach: Although the simplex op-
timization procedure has proven to be robust and reliable, the method itself
could be substituted by alternative, i.e. faster converging algorithms. In any
case, as the accuracy of the repeatedly computed test properties (in our case:
liquid density and heat of vaporization) is of utmost importance for limiting
the number of iteration cycles, thus even longer equilibration and evaluation
periods come into account. Furthermore, adding more test properties to the
simplex evaluation function will improve the general performance of a model.
The self diffusion coefficient (if available) would be a natural choice for that
purpose, because this value is easily accessible by simulation and then a dy-
namic property would be linked to the process of parameterization, which
accomplishes the so far more more static set.
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Figure Legends

Figure 1: From the temperature dependence of 〈Etot〉 + P 〈V 〉 the molar heat
capacities were derived for the optimized model in liquid phase.

Figure 2: From the temperature dependence of 〈Etot〉 + P 〈V 〉 the molar heat
capacities were derived for the optimized model in vapor phase.

Figure 3: Velocity profiles relative to the slabs of the simulation box for differ-
ent swap periods as recorded for the optimized model in the saturated liquid
phase.

Figure 4: Viscosity in dependence of exchange period.

Figure 5: Temperature profiles relative to the slabs of the simulation box for
different swap periods for the optimized model in saturated liquid phase.

Figure 6: Tracking the relative error of the calculated density to the target
density, the relative heat of vaporization to the target one, and the total error
value throughout the optimization.

Figure 7: Values of ε and σ during the optimization. Consecutively run values
are connected by a line to show the evolution of values during optimization.

The values of the five initial parameter sets are shown in light gray triangles
while the final parameters are marked by a dark gray circle.

Figure 8: Sequence of the calculated values against which the optimization
was performed: density and heat of vaporization. The results of the initial five
parameter sets are shown as light gray triangles while the target value (and
the results where the optimization forced the system to) is marked by a dark
gray circle.

Figure 9: Sequence of the calculated values against which the optimization
was performed: density and heat of vaporization. The results of the initial five
parameter sets are shown as light gray triangles while the target value (and
the results where the optimization forced the system to) is marked by a dark
gray circle.
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Table 1
Summary of models

RR EOopt

Lennard-Jones parameters

σOO [nm] 0.2666 0.26308

εOO [K] 73 55.47

εOO [kJ/mol] 0.60695 0.46119

σCC [nm] 0.37143 0.38372

εCC [K] 90 74.82

εCC [kJ/mol] 0.7438 0.62209

atomic charges

qO -0.3216 -0.312

qC 0.1608 -0.084

qH - 0.120

bondlengths (fixed)

rCO [nm] 0.1431 0.1401

rCC [nm] 0.1466 0.1453

rCH [nm] - 0.1077

bondangles + force constants

α(HCH)[degree], kα [kJ/mol·rad2] - 115.23, 276.33

α(CCH)[degree], kα [kJ/mol·rad2] - 119.88, 314.01

α(OCH)[degree], kα [kJ/mol·rad2] - 115.24, 293.08
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Table 2
Vapor-liquid coexistence data and related properties for both models obtained by
GEMC

RR EO-opt experiment [22]

density [kg/m3] liquid vapor liquid vapor liquid vapor

230 K 910.6 0.257 870.3 0.287 955 0.253

260 K 875.1 0.747 829.4 0.869 918 0.738

290 K 835.6 2.531 788.4 2.976 878 2.50

330 K 778.2 8.307 724.1 9.71 820 8.29

375 K 702.2 23.897 644.1 28.09 744 24.1

400 K 650.1 37.247 592.7 44.43 694 -

Tcrit 467.1 448.7 469.15

ρcrit 301.83 285.4 311

p375K
vapor [MPa] 1.468 ± 0.0032 1.649 ± 0.0169 1.437
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Table 3
Physical properties obtained by MD at a simulation temperature of 375 K. For
computing the heat capacity, additional runs at 365, 370, 380 and 385 K were
performed. For the liquid phase simulations the reference pressure was set to 1571.4
kPa, in case of vapor phase simulations to 1248.5 kPa.

RR EO-opt experiment[22,23]

liquid vapor liquid vapor liquid vapor

Category 1 properties

density [kg/m3] 701.3 19.8 749.8 11.0 746.7 24.6

∆Hvap [kJ/mol] 17.00 19.87 19.8

Category 2 properties

Cp [J/g·K] 0.79 0.86 3.16 1.79 2.30 1.67

β [1/10−6kPa] 2.23 1591 5.23 1800 2.6 819

Category 3 properties

viscosity [mPa·s] 0.081 0.010 0.171 0.0160 0.151 0.012

± 0.002 ± 0.003 ± 0.003 ± 0.0004

th. cond. [W/(mK)] 0.095 0.0125 0.439 0.031 0.12 [30] 0.02

± 0.002 ± 0.0001 ± 0.003 ± 0.001
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Fig. 6.
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Fig. 7. Müller et al.
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Fig. 8. Müller et al.
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Fig. 9. Müller et al.
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