Terrain Detection & Terrain Adaption in Prosthetic Feet

Design of Medical Devices Conference April 10 2012, Minneapolis

Fraunhofer IPA Dept. "Orthopedics & Motion Systems", Stuttgart Dr. Urs Schneider, Florian Dennerlein, Felix Starker, Harald von Rosenberg

Department "Orthopedics + Motion Systems"

Scope of activities

Research & Development

- Prosthetics & Orthotics and Rehabilitation
- Functional Testing
- Orthopedic Surgery

Education & Training

- Lecture "Mechatronics in Orthopedics", Stuttgart University
- P&O Technology Seminars "Stuttgart Talks" for CPOs
- Establishment of German P&O association O-PAEDIX

Standard activities

- Prosthetics test standards
 CEN/TC 293 / WG5 and ISO/TC 168 / WG3
- Initiation of German "sensor data fusion" standard group

-

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

Department "Orthopedics + Motion Systems"

Prosthetics & Orthotics Research Examples

Terrain detection

Activity Monitoring

Foot engineering

8

Orthotic Drives

Virtual 22675 testing

Robot Testing

Knee engineering

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

3

Rehabilitation Research Cooperation between

Minneapolis VA Healthcare System & Fraunhofer IPA Stuttgart

Stuttgart Minneapolis Rehab Research

A Fraunhofer IPA and Minneapolis Veteran Affairs Medical Center Cooperation

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

Falling of Amputees

32% of all bellow knee amputees fall once per year (Brit. Prothetics Failure Registry, 2009)

Falls and related treatment costs in Europe (NHS, 2009)

5

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

Overview

Approach 1: Optic terrain detection for active terrain adaption

Approach 2: Passive terrain detection for passive terrain adaption

Approach 3: User foot control for active terrain adaption

Definition:

"active" stands for drive controlled; passive stands for a mechanic solution without electronics and drives.

Fraunhofer

Basic idea:

real time obstacle detection

for automatic control of sagital ankle/ foot plate inclination

- Mechatronic foot concepts show that controls based on kinematic/ kinetic sensory:
- > cannot foresee obstacles
- > need > 3 steps for state detection
- Idea is sensory foresight for automatic foot lift in prosthetic feet and drop feet
- Development of a mobile sensor system including motion detection and distance measurement for detection of ground area in upcoming saggital stance phase
- as a control input of an active foot or AFO

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

Control Architecture

B Kleiner, TAR 2012: "Foresighted control of active prosthetic feet."

Inertial Measurement System

(Position and Orientation)

2D Laser Scanner

(270° horizontal scan)

Inertial measurement unit by Fraunhofer IPA

Motion of the sensor unit during gait phase

Engineering Bernhard Kleiner, Fraunhofer IPA 2009

3 axsis

- Sensor system moves continuously with the prosthesis
- Inertial motion measurement and gait phase detection
- Tibia rotates around center of pressure during stance
- Position estimation of the sensor on the tibia with motion model during stance and swing

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

Inertial measurement unit by Fraunhofer IPA

Measurements on ramps

Ramp in the Fraunhofer IPA gait lab

3D point cloud of the measured ramp

Mesh of the measured ramp

Engineering Bernhard Kleiner, Fraunhofer IPA 2009

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

Measurement of stairs

	<u>Real</u>	<u> Measured</u>
Distance to stairs:	1,2 m	1,2 m
■Height of a stair:	15 cm	14,9 cm
■Depth of a stair:	30 cm	29,9 cm

Pylon mounted laser concept

Engineering Bernhard Kleiner, Fraunhofer IPA 2009

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

Overview

Approach 1: Optic terrain detection for active terrain adaption

Approach 2: Passive terrain detection for passive terrain adaption

Approach 3: User foot control for active terrain adaption

Definition:

"active" stands for drive controlled; passive stands for a mechanic solution without electronics and drives.

Fraunhofer

Basic idea:

real time mechanic detection of vertical foot loading for passive hydraulic adaption to saggital terrain inclination

Mauch Ankle Product Catalogue Fotos, 1980)

Fraunhofer

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

The Story Behind

June 2009:

Dudley Childress proposed to Andrew Hansen and Urs Schneider to revise the Mauch ankle

"Patients liked the terrain-adaptive behavior of this foot. Leakage problems led to its withdrawal from the market in the early 80ties"

Future Plan:

Andrew Hansen

Via a master thesis at NUPAC (Chicago) we wanted to analyze the Mauch ankle technology properly before approaching a revision with modern hydraulics knowhow

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

Falz & Kannenberg GmbH & Co.KG

Urs Schneider

- •Falling on your back or your nose, you may choose
- Missing adaption of vertical shank on inclined ground
- •Adaption meaning late stance torque not just increased range of motion
- •Side effect: heel height adaption

The Mauch Ankle Patent drawings

- Mechanical approach
 - Disc brake
 - Blocked by 2 balls

Hydraulic approach

Control channel blocked by ball

The Mauch Ankle

- Adaption to shoe heel height
- Adaption to different terrain

Inclination: 20°

Declination: 10°

Inversion: 8°

Eversion: 0° (restricted)

Early functional prototype - 2010

Adaption to uneven terrain

20° inclination

20° declination

Early functional prototype – 2010 Evaluation

Prototype 2011

Engineering Felix Starker
Planned Pre-Clinical Tests Andrew Hansen

■ Build height: ~ 100 mm

■ **Weight:** ~ 600 g

■ Foot size: 27

23

Overview

Approach 1: Optic terrain detection for active terrain adaption

Approach 2: Passive terrain detection for passive terrain adaption

Approach 3: User foot control for active terrain adaption

Definition:

"active" stands for drive controlled; passive stands for a mechanic solution without electronics and drives.

Fraunhofer

Basic idea:

EMG and gait sensory based decission

for user control of sagital ankle/ foot plate inclination

Myo elektrics for the lower extremity

- Current lower limb prostheses cannot be arbitrarily conrolled by the user
- No biosignal based control feedback yet
- Muscle action based man machine interface
- Based on surface EMG array information
- combined with inertial and pressure sensory for gait phase interpretation

Engineering Harald von Rosenberg, Fraunhofer IPA

Sensory system I: version EMG and pressure

Various sensory arrays versions
Entwicklung eines Sensor-Arrays zur robusten Detektion
von Biosignalen
4x4 dry EMG array
4x4 pressure sensory array behind the EMG Array

21

Sensory system II: Inertial tracking and heel pressure for gait phase

28

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

Signal Processing

DMD Minneapolis 2102, Urs Schneider: Terrain Detection & Terrain Adaption

Concept "Virtual EMG"

Engineering Harald von Rosenberg, Fraunhofer IPA 2010

Ortho-Reha Weltkongress 2012, Leipzig 15.-19.5.2012 "Opening Session: 15.5.2012"

Thank you very much for your attention. Meet us in Leipzig May 2012.

Symposium "Enabling technologies for improved walking"

World Congress at ORTHOPÄDIE + REHATECHNIK 2012 in Leipzig, 15th May 2012

Chairs: Dr. Urs Schneider, Dr. Andrew Hansen

Active Approaches

- Dr. Hugh Herr, MIT, Media Lab "The MIT powered ankle drive concept"
- Dr. Tomas Sugar- Arizona State University, Phoenix "The Arizona drive Concept"
- Dr. William Durfee, University Minneapolis, "The Minneapolis Hydraulics approach for P & O applications"
- Bernhard Budaker, Fraunhofer IPA Stuttgart "Towards high efficiency in electric knee drives"

Passive Approaches

- Dr. Andrew Hansen, VAMC Minneapolis "Passive Terrain Adaption a Chicago Minneapolis solution"
- Felix Starker, Fraunhofer IPA Stuttgart "Revision of the Mauch ankle an old new hydraulic approach"