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Abstract
The theory of Cosserat rods provides a self consistent framework for modeling large spatial deformations of slender
flexible structures at small local strains. Discrete Cosserat rod models [1, 2] based on geometric finite differences
preserve essential properties of the continuum theory. The present work investigates kinetic aspects of discrete quater-
nionic Cosserat rods defined on a staggered grid within the framework of Lagrangian mechanics. Assuming hyperelas-
tic constitutive behaviour, the Euler–Lagrange equations of the model are shown to be equivalent to the (semi)discrete
balance equations of forces, moments and inertial terms obtained from a direct discretization of the continuous balance
equations via spatial finite differences along the centerline curve. Therefore, equilibrium configurations obtained by
energy minimization correspond to solutions of the quasi-static balance equations. We illustrate this approach by two
academic examples (Euler’s Elastica and Kirchhoff’s helix) and highlight its utility for practical applications with a use
case from automotive industry (analysis of the layout of cooling hoses in the engine compartment of a passenger car).
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1. Introduction
The theory of Cosserat rods [3, 4, 5] provides a self consistent framework for modeling large spatial deformations
of slender flexible structures at small local strains. The main deformation modes of a Cosserat rod are bending and
twisting, accompanied by very small, but in general non-zero amounts of longitudinal stretching (or compression),
and transverse shearing, related to tiny out-of-plane cross section deformations. Discrete Cosserat rod models may
be derived in terms of a finite difference approximation that preserves essential geometric properties of the continuum
theory [6, 1, 2]. In a recent contribution [7], we discussed the discrete kinematics of Cosserat rods, based on the
difference geometry of framed space curves defined on a staggered grid (see Fig. 1). The present work complements
these considerations, with a focus on kinetic aspects.

Figure 1: Left: Centerline curve r(s) and attached moving frame R(s) = a(k)(s)⊗ek of a Cosserat curve, describing the
geometry of the configurations of a prismatic rod in Euclidian space. The volumetric geometry is generated by sliding
the cross section spanned by the frame directors {a(1),a(2)} along the centerline. The position vectors of the material
points in the rod volume are parametrized by: x = r(s)+ ξα a(α)(s). Right: Polygonal arc approximating a smooth
regular geometric curve C : The vertices p j ∈ C located at positions r j ∈ E3 define edges [p j−1, p j] of length ` j−1/2,
with edge centered unit length tangent vectors t j−1/2. A discrete Cosserat curve [7] consists of a polygonal arc with
edge centered quaternions q̂ j−1/2 ∈ S3, representing frames R j−1/2 = E(q̂ j−1/2) via the Euler map E : S3→ SO(3).



As sketched on the left of Fig. 1, the kinematic skeleton of a Cosserat rod configuration corresponds to a framed curve
(or Cosserat curve), parametrized by the arc length s of its centerline r(s), augmented by a moving quaternion frame
field q̂(s) ∈ S3. The material curvature and tangent vector fields K = 2q̂∗ ◦∂sq̂ and ΓΓΓ = q̂∗ ◦∂sr◦ q̂ are the differential
invariants that determine the geometry of a Cosserat curve uniquely, up to a global rigid body motion. In the case of
dynamic motions, the velocity v = ∂tr of points on the centerline and the angular velocity ωωω = 2∂t q̂ ◦ q̂∗ of the local
cross section rotations w.r.t. the global inertial frame, or equivalently its material counterpart given by ΩΩΩ = q̂∗ ◦ωωω ◦ q̂ =
2q̂∗ ◦ ∂t q̂ and subject to the compatibility condition ∂sΩΩΩ− ∂tK ≡ K×ΩΩΩ, are additional kinematical variables that
characterize the space–time configuration of a Cosserat rod. Local strains occurring in Cosserat rod configurations,
deformed w.r.t. a given reference state, are described in terms of the difference functions ∆K(s, t)≡K(s, t)−K0(s) and
∆ΓΓΓ(s, t)≡ΓΓΓ(s, t)−ΓΓΓ0 measuring the deviations of the invariants from their reference values K0(s) and ΓΓΓ0 = e3.

The basic kinetic quantities of a Cosserat rod are the sectional force f(s, t), also denoted as stress resultant, and the
sectional moment m(s, t), also denoted as stress couple. Both vector fields are spatial quantities obtained by the
integration of traction forces over the local cross section area, and respectively the integrated couples resulting from
these traction forces w.r.t. the cross section center. The kinetic sectional quantitites are both functions of the curve
parameter s, usually chosen as the arc length of the centerline in its reference configuration, and the time t. Their
dynamic equilibrium is governed by the balance equations for linear and angular momentum

∂sf + βββ = ρL ∂tv , ∂sm + ∂sr× f + µµµ = ∂t ([ρLJ] ·ωωω) . (1)

The inertial terms on the r.h.s. are the time derivatives of the translational momentum density ρLv of infinitesimal mass
segments with density ρL on the centerline of the rod, and the angular momentum density [ρLJ] ·ωωω of the corresponding
cross sections, proportional to their rotational inertia tensor [ρLJ] w.r.t. the global inertial frame.

Consistent with the staggered discretization approach for Cosserat rods [2], semi-discrete balance equations may be
formally derived from the continuous ones by integrating the equations (1) over parameter intervals between adjacent
edge centers s j±1/2 around a vertex r j = r(s j), and over intervals between adjacent vertices. With an approximation of
integral terms by midpoint quadrature one obtains the semi-discrete system of equations

f j+1/2− f j−1/2 + h̄ j βββ j = h̄ j ρL ∂tv j , (2)

m j+1−m j + (r j+1− r j)× f j+1/2 + h j+1/2 µµµ j+1/2 = h j+1/2 ∂t
(
[ρLJ] j+1/2 ·ωωω j+1/2

)
, (3)

where βββ j and µµµ j+1/2 denote the integral averages of the external force and moment vector fields βββ and µµµ over the
respective intervals of lengths h̄ j := 1

2 (h j−1/2 +h j−1/2) =
1
2 (s j+1/2− s j−1/2) and h j+1/2 := s j+1− s j.

While this semi-discrete system provides a consistent finite difference discretization of the continuous balance equa-
tions (1) displaying obvious formal similarities, it is less obvious that a semi-discrete system of this form results as an
equivalent of the Euler–Lagrange equations of our discrete quaternionic Cosserat rod model, if a hyperelastic consti-
tutive behaviour of the rod material is assumed. In this case the semi-discrete force and moment vectors f j+1/2(t) and
m j(t) defined at the edge centers and the vertices of the staggered grid are given as gradients of a stored energy poten-
tial function W (el)({ΓΓΓ j−1/2} j=1,...,N ,{K j} j=0,...,N) w.r.t. the discrete material shear–extensional strain vectors given by
ΓΓΓ j+1/2 := q̂∗j+1/2 ◦(r j+1−r j)/h j+1/2 ◦ q̂ j+1/2, and material curvature vectors K j := 2 log(q̂∗j−1/2 ◦ q̂ j+1/2)/h̄ j extracted
from the difference rotations connecting adjacent frames q̂ j±1/2, both rotated to the global inertial frame according to:

f j+1/2 = q̂ j+1/2 ◦
∂W (el)

∂ΓΓΓ j+1/2
◦ q̂∗j+1/2 = R j+1/2 ·F j+1/2 , m j = q̂ j+1/2 ◦

∂W (el)

∂K j
◦ q̂∗j+1/2 = R j+1/2 ·M j . (4)

While a derivation of the semi-discrete balance equations (2) of the sectional forces is straightforward, it is less obvious
that the semi-discrete balance equations of the sectional momenta as given in [2] in quaternionic form are equivalent to
equations of the form (3).

In our contribution, we investigate these issues and thereby elucidate the kinetic aspects of our discrete Cosserat rod
model. We also present applications of our Lagrangian approach to discrete Cosserat rod models in computing equi-
librium configurations of elastic cables by minimizing their potential energy w.r.t. given boundary conditions. We
investigate some properties of this approach by a discussion of two well known, analytically solvable test examples:
The bending of an Elastica in the plane, and the bending and twisting of a straight rod to a helix in space. Moreover,
we point out applications in automotive industry, illustrated by a typical use case: The analysis of the layout of cooler
hoses in the engine compartment of a passenger car.



2. Langrangian mechanics of Cosserat rods
Assuming a hyperelastic constitutive behaviour, the dynamic balance equations of a Cosserat rod can be derived ac-
cording to Hamilton’s principle1 of stationary action, which states that the variational derivative of the Lagrangian
density L = T −V of the rod, vanishes identically for configurations in mechanical equilibrium, such that the Euler–
Lagrange equations ∂t

(
∇∂tχχχL

)
= ∇χχχL −∂s

(
∇∂sχχχL

)
are satisfied. The Lagrangian density L depends on the field

of configuration variables χχχ(s, t) := (r(s, t), q̂(s, t)) ∈ E3×S3 of the rod, and on their partial space and time derivatives
∂sχχχ = (∂sr,∂sq̂) and ∂tχχχ = (∂tr,∂t q̂), respectively.

2.1. Kinetic and stored energy densities of Cosserat rods
The kinetic energy of a Cosserat rod is given by the integral W (kin) =

∫ L
0 dsT of the corresponding kinetic energy

density T = 1
2 ρLv2 + 1

2 〈ΩΩΩT , [ρI0] ·ΩΩΩ〉. The inertial properties of the rod are described by the mass per length ρL(s)
and the cross sectional inertia tensor [ρI0](s) w.r.t. the material frame. In the case of a prismatic rod with constant
cross section area A, constant area moments I1,2 and J and a homogeneous volumetric mass density ρ0, the inertial
parameters are simply given by ρL = ρ0A and [ρI0] = ρ0 diag(I1, I2,J).

In the absence of external forces and moments acting on the rod, the potential energy of the rod is given by its stored
energy functional W (el) =

∫ L
0 dsV (el)(ΓΓΓ,K). Frame invariance implies that its density function V (el) may depend on

the configuration variables (r, q̂) and their spatial derivatives (∂sr,∂sq̂) only via the invariants ΓΓΓ and K. Hyperelastic
constitutive equations for a Cosserat rod are then given by the relations F = ∂V (el)/∂ΓΓΓ and M = ∂V (el)/∂K providing
the material kinetic quantities F and M in terms of derivatives of the stored energy density w.r.t. the invariants, with
corresponding spatial force and moment vectors resulting from a push forward rotation of the global basis to the local
frame of the deformed configuration according to f = q̂◦F◦ q̂∗ and m = q̂◦M◦ q̂∗.

In the simplest and most frequently considered case, the elastic energy density is given by a diagonal quadratic form
V (el)(ΓΓΓ,K) = 1

2 〈∆ΓΓΓ,CΓ ·∆ΓΓΓ〉+ 1
2 〈∆K,CK ·∆K〉, characterized by the effective stiffness parameters of the local cross

section assembled in the diagonal matrices CΓ = diag([GA1], [GA2], [EA]) and CK = diag([EI1], [EI2], [GJ]), which may
be variable along the rod, but often are assumed to be constant. More general, the local effective stiffness properties may
be modeled by symmetric matrices CΓ and CK , containing off-diagonal coupling terms. In all cases, the constitutive
equations are given by the linear relations F = CΓ ·∆ΓΓΓ, M = CK ·∆K.

In some more advanced applications of Cosserat rod models, cross-coupling of forces and moments appear, e.g. in
the case of ropes, where longitudinal tension may induce a torsional torque, or in the case of rotor blades where the
shear and geometrical centers of the cross section do in general not coincide, such that the transverse shear force and
torsional moment become coupled [8]. To simplify the development of our discrete Cosserat model variant we do not
consider such cross-coupling terms by assuming that second order mixed partial derivatives of the stored energy density
w.r.t. the invariants vanish, such that ∂F/∂K = 0 = ∂M/∂ΓΓΓ holds. This motivates an additive decomposition ansatz
for the stored energy density according to V (el)(ΓΓΓ,K) = V

(el)
F (ΓΓΓ)+V

(el)
M (K).

2.2. Potential density functions for external forces and moments
External forces βββ and moments µµµ may be incorporated into the Lagrangian formalism by assuming that both vector
quantities can likewise be derived from potential energy density terms as gradients w.r.t. the configuration variables.

A simple example is a dead load given by the potential density function V
(ext)

βββ
= −〈r,βββ 〉, which yields the external

force βββ =−∂V
(ext)

βββ
/∂r. The latter relation holds likewise for more complicated potential functions. The gravitational

force per unit length acting on a rod is βββ =−ρLg0e3, proportional to the mass per length ρL and g0 = 9.81m/s2.

The treatment of external moments derived from a potential is technically more involved, due to gradient terms
w.r.t. moving frames, which are variables on a manifold. Following Antman’s considerations, the rotational gradi-
ent may be formulated in terms of the frame directors as µµµ = −a(k)× ∂V

(ext)
µµµ /∂a(k) ≡ −∇RV

(ext)
µµµ , where the lat-

ter expressions symbolizes the gradient operation w.r.t. SO(3) frames. As a concrete example, we consider a dead
load given by a body force field b(x) acting at the positions x = r(s)+ ξα a(α)(s) of the material points of an arbi-
trary deformed configuration of a Cosserat rod body (see Fig. 1). In the three-dimensional theory, the corresponding
potential energy is given by the integral −∫ L

0 ds
∫

A dA〈x,b〉 = ∫ L
0 ds

[
V

(ext)
βββ

+V
(ext)

µµµ

]
, with V

(ext)
βββ

= −〈r,βββ 〉, where

βββ =
∫

A dAb equals the net force acting on the centerline points r(s). The potential for the external moments is given
by V

(ext)
µµµ = −∫A dA〈ξξξ ,b〉, with ξξξ = ξα a(α) pointing to the positions of points in the cross section w.r.t. its center.

1For a detailed exposition of the mathematical problem we refer to section 16. in Ch. 8 of Antman’s book [3].



This yields µµµ = −∇RV
(ext)

µµµ =
∫

A dAξξξ ×b, which corresponds to the integrated torques generated by the body force
field w.r.t. the centerline position. In the case of gravity, the body force is given by b(x) = −ρ(x)g0e3, which yields
βββ (s) =−ρL(s)g0e3 with ρL(s) =

∫
A dAρ(x). If the mass density is constant, the geometrical center of the cross section

coincides with its center of gravity, such that the corresponding moment µµµ vanishes. This also holds in the case of
symmetric cross section shapes and a likewise symmetric mass distribution within the cross section.

The Euler map S3 3 q̂ 7→E(q̂) = R∈ SO(3) is implicitly defined by its action on vectors u∈E3 as: E(q̂) ·u = q̂◦u◦ q̂∗.
A quaternionic formulation of V

(ext)
µµµ can be derived from the parametrization of SO(3) frames by rotational quaternions

via the Euler map R = E(q̂) and the implied representation a(k) = E(q̂) · ek of the frame directors. For the quaternionic
potential defined as V̂

(ext)
µµµ (q̂) := V

(ext)
µµµ (E(q̂)), the quaternionic equivalent ∇q̂ of ∇R can be defined in terms of the

partial derivatives ∂/∂a(k) ≡ [dE(q̂) · ek]
−T ·∂/∂ q̂ using the inverse transpose of the derivative dE : T S3→ T SO(3) of

the Euler map, resulting in: ∇RV
(ext)

µµµ (R)≡ ∇q̂V̂
(ext)

µµµ (q̂) := (E(q̂) · ek)× [dE(q̂) · ek]
−T ·∂ V̂

(ext)
µµµ (q̂)/∂ q̂.

2.3. The Lagrangian of a discrete Cosserat rod
The Lagrangian function of a discrete Cosserat rod may be obtained by a discretization of the integral

∫ L
0 dsL , as dis-

cussed in detail in [2]. Here we present a version of the semi-discrete model that is more general w.r.t. the assumptions
of the stored energy, but we omit viscous damping effects [9].

The total potential energy W (pot) =W (el)+W (ext) consists of the sum of the stored energy functional W (el) =
∫ L

0 dsV (el)

with the stored energy density V (el)(ΓΓΓ,K) = V
(el)

F (ΓΓΓ)+V
(el)

M (K) and the potential W (ext) =
∫ L

0 ds
[
V

(ext)
βββ

+ V̂
(ext)

µµµ

]
from which the external forces and moments are obtained as gradients of the densities V

(ext)
βββ

(r) and V̂
(ext)

µµµ (q̂).

The discretization scheme of the Lagrangian
∫ L

0 dsL is induced by the discrete kinematics [7, 10] of a Cosserat rod.
In the discrete model sketched in Fig. 1 on the right, discrete material curvatures K j := 2 log(q̂∗j−1/2 ◦ q̂ j+1/2)/h̄ j are
vertex based quantities extracted from the difference rotations connecting adjacent quaternion frames q̂ j±1/2, while
the discrete material shear–extensional strain vectors ΓΓΓ j+1/2 := q̂∗j+1/2 ◦ (r j+1−r j)/h j+1/2 ◦ q̂ j+1/2 are egde-centered

quantities. The latter fact motivates an approximation
∫ s j

s j−1
dsV

(el)
F (ΓΓΓ) ≈ h j−1/2 V

(el)
F (ΓΓΓ j−1/2) on the subintervals

[s j−1,s j] by the midpoint rule, which results in the discrete approximation

W (el)
F :=

∫ L

0
dsV

(el)
F (ΓΓΓ) ≈

N

∑
j=1

h j−1/2 V
(el)

F (ΓΓΓ j−1/2) =: W
(el)

F (5)

of the total stored energy part related to extensional and transverse shear deformations of the rod. The other part related
to bending and torsion deformations is discretized by trapezoidal quadrature as

W (el)
M :=

∫ L

0
dsV

(el)
M (K) ≈

N

∑
j=0

h̄ j V
(el)

M (K j) =: W
(el)

M , (6)

using the approximation
∫ s j+1/2

s j−1/2 dsV
(el)

M (K)≈ h̄ j V
(el)

M (K j) of the partial integrals over subintervals between the inter-
val midpoints s j±1/2 =

1
2 (s j + s j±1) around the inner vertices j = 1, . . . ,N−1, and analogously defined one sided ap-

proximations
∫ s1/2

0 dsV
(el)

M (K)≈ h̄0 V
(el)

M (K0) and
∫ sN

sN−1/2
dsV

(el)
M (K)≈ h̄N V

(el)
M (KN) at the intervals of halved lengths

h̄0 =
1
2 h1/2 and h̄N = 1

2 hN−1/2 near the boundary vertices. Different from the curvatures K j located at the inner vertices,
the modified definitions K0 := 2 log(q̂∗0 ◦ q̂1/2)/h̄0 and KN := 2 log(q̂∗N−1/2 ◦ q̂N)/h̄N for the discrete boundary curva-
tures involve vertex based boundary frames q̂0 and q̂N that appear in the discrete model due to boundary conditions,
either explicitly, or by interpolation according to the "shadow quaternion" approach suggested in [2]. In summary, the
sums given in (5) and (6) provide the desired discrete approximation W (el) := W

(el)
F +W

(el)
M ≈W (el) =

∫ L
0 dsV (el) of

the stored energy functional of a Cosserat rod.

The discrete approximation W (ext) ≈W (ext) := W
(ext)

βββ
+ Ŵ

(ext)
µµµ of the external potential according to

W
(ext)

βββ
:=

N

∑
j=0

h̄ j V
(ext)

βββ
(r j) ≈

∫ L

0
dsV

(ext)
βββ

(r) , Ŵ
(ext)

µµµ :=
N

∑
j=1

h j−1/2 V̂
(ext)

µµµ (q̂ j−1/2) ≈
∫ L

0
ds V̂

(ext)
µµµ (q̂) . (7)

results analogously by approximating the respective partial integrals using trapezoidal and midpoint quadrature. This
completes the definition of the discrete potential energy function W (pot) := W (el)+ Ŵ (ext).



The discrete approximation of the kinetic energy W (kin) := W (tr)+W (rot) ≈W (kin) is obtained via the same scheme,
with the discrete approximations

W (tr) :=
1
2

N

∑
j=0

h̄ jρ j v2
j ≈

1
2

∫ L

0
dsρLv2 , (8)

W (rot) :=
1
2

N

∑
j=1

h j−1/2 〈ΩΩΩT
j−1/2, [ρI] j−1/2 ·ΩΩΩ j−1/2〉 ≈

1
2

∫ L

0
ds〈ΩΩΩT , [ρI0] ·ΩΩΩ〉 (9)

of the translational and rotational parts. According to (8), the vertices are equipped with lumped masses given by
h̄ jρ j :=

∫ s j+1/2
s j−1/2 dsρl(s) and move with the velocity v j(t) = ∂tr(s j, t), and h j−1/2 [ρI0] j−1/2 :=

∫ s j
s j−1

ds [ρI0](s) is the
constant inertia tensor of the segment [p j−1, p j] w.r.t. the axes of the local frame q̂ j−1/2(t), rotating with the material
angular velocity ΩΩΩ j−1/2(t) := ΩΩΩ(s j−1/2, t) = 2q̂∗j−1/2(t) ◦ ∂t q̂ j−1/2(t). While the boundary vertices r0 and rN have
masses h̄0ρ0 and h̄NρN , the boundary frames q̂0 and q̂N , which are utilized mainly for a proper formulation of boundary
conditions, are not coupled to rotational inertia.

2.4. Semi-discrete balance equations
Having defined the Lagrangian function L̄ = W (kin)−W (pot) of our semi-discrete Cosserat model, we may proceed
to derive the semi-discrete balance equations for linear and angular momentum from Hamilton’s principle of least (or
stationary) action according to the formalism of Lagrangian mechanics.

The semi-discrete potential energy function W (pot) = W (el)+W (ext) is a function of the vertices {r j} j=0,...,N and the
quaternion frames {q̂ j−1/2} j=1,...,N defining the configuration of a discrete Cosserat rod. In accordance with frame

invariance, the stored energy part W (el) = W
(el)

F +W
(el)

M depends on the discrete configuration variables only via the
discrete invariants {K j} j=0,...,N and {ΓΓΓ j−1/2} j=1,...,N . The discrete external potentials W

(ext)
βββ

and Ŵ
(ext)

µµµ are assumed

to have explicit dependence on the configuration variables. The semi-discrete kinetic energy W (kin) is an invariant
quadratic form of the vertex velocities {v j} j=0,...,N and the angular velocities {ΩΩΩ j−1/2} j=1,...,N of the edges.

The semi-discrete Euler–Lagrange equations2 of our discrete Cosserat rod model are then formally given as follows:

∂L̄

∂r j
= ∂t

(
∂L̄

∂v j

)
,

∂L̄

∂ q̂ j−1/2
= ∂t

(
∂L̄

∂ (∂t q̂ j−1/2)

)
(10)

The first part related to the centerline positions and velocities r j and v j corresponds to the semi-discrete balance
of momentum equations. Making use of (8), its r.h.s. directly yields h̄ jρ j ∂tv j = ∂t(∂W (tr)/∂v j) = ∂t(∂L̄ /∂v j)
and therefore results in the inertial terms on the r.h.s. of (2) for constant ρL. On the l.h.s. we need to evaluate
∂L̄ /∂r j = −∂W (pot)/∂r j = −∂W (el)/∂r j − ∂W (ext)/∂r j. The latter term results in −∂W (ext)/∂r j = h̄ j βββ j, with
the discrete external forces acting at the vertices given by βββ j = −∂V

(ext)
βββ

/∂r j according to (7). The stored energy

function depends on the vertex positions r j solely via the strains ΓΓΓ j±1/2, such that ∂W (el)/∂r j = ∂W
(el)

F /∂r j =

h j−1/2 ∂V
(el)

F (ΓΓΓ j−1/2)/∂r j + h j+1/2 ∂V
(el)

F (ΓΓΓ j+1/2)/∂r j holds according to (5). The material sectional force vectors

are given by F j±1/2 = ∂V
(el)

F /∂ΓΓΓ j±1/2 = ∂W (el)/∂ΓΓΓ j±1/2. Their spatial counterparts are obtained by a forward rota-
tion of the material forces to the local frames, according to: f j±1/2 = R j±1/2 ·F j±1/2 ≡ q̂ j±1/2 ◦F j±1/2 ◦ q̂∗j±1/2, with
R j±1/2 = E(q̂ j±1/2), as stated in (4). Making use of the identities h j±1/2 ∂ΓΓΓ j±1/2/∂r j = ∓R j±1/2, one finally obtains
the difference term f j+1/2− f j−1/2 =−∂W (el)/∂r j according to the chain rule and the expressions discussed above.

Altogether, we arrive at the semi-discrete linear momentum balance equation in the desired form

f j+1/2 − f j−1/2 + h̄ j βββ j =
∂L̄

∂r j
= ∂t

(
∂L̄

∂v j

)
= h̄ jρ j ∂tv j , (11)

as formulated in (2) according to a finite volume type approach, but here derived by Lagrangian mechanics. We wish
to remark that the equation itself is identical to the one given in [2], and also its derivation more or less mimics the
derivation given in that work for the special case of linear constitutive relations.

2In this work we are primarily interested to point out the relation of Lagrangian Cosserat rod mechanics to a discretization approach directly
applied to the balance equations of the continuum model. Therefore, we omit the discussion of details related to the special form of the discrete
equations near the boundaries. Also, our treatment of the quaternionic d.o.f. is kept at a formal level. For technical details related to the enforcement
of unit norm constraints via Lagrangian multipliers and similar issues we refer to [2].



The derivation of the second system (3) of balance equations by the Lagrangian formalism is a more complicated task
due to derivative operations w.r.t. rotational variables. The semi-discrete eqns. (3) do not result directly from Euler–
Lagrange equations formulated in terms of the quaternion frames {q̂ j−1/2} j=1,...,N , but are obtained by taking rotational

gradients [1] w.r.t. the directors a(k)j−1/2 = R j−1/2 · ek of the corresponding SO(3) frames R j−1/2 = E(q̂ j−1/2).

In the continuous theory, the external moment µµµ was assumed to be derivable from a potential function V
(ext)

µµµ (R)

depending on R = a(k)⊗ ek according to µµµ = −∇RV
(ext)

µµµ ≡ −a(k)× ∂V
(ext)

µµµ /∂a(k). By analogous algebraic calcula-

tions one finds that −∇RV
(el)

F (ΓΓΓ) = ∂sr× f holds for the potential function V
(el)

F of ΓΓΓ = RT · ∂sr = 〈a(k),∂sr〉ek from
which the spatial force vector f = R · ∂V

(el)
F /∂ΓΓΓ is obtained. Using the definitions (5) and (7) of the semi-discrete

model, both expressions can be directly transferred to obtain their discrete counterparts as gradients of the respective
potentials w.r.t. the frames R j+1/2, according to: −∇R j+1/2W

(ext)
µµµ = −h j+1/2 ∇R j+1/2V

(ext)
µµµ (R j+1/2) = h j+1/2 µµµ j+1/2

and −∇R j+1/2W
(el)

F = −h j+1/2 ∇R j+1/2V
(el)

F (ΓΓΓ j+1/2) = (r j+1− r j)× f j+1/2, where f j+1/2 = R j+1/2 ·∂V
(el)

F /∂ΓΓΓ j+1/2.

Next, we consider the terms resulting from gradients of the discrete potential function W
(el)

M defined in (6) w.r.t. the
frame variables: As in terms of SO(3) frames the discrete curvatures are given by K j ' K̃ j = log(RT

j−1/2 ·R j+1/2)/h̄ j

with the usual identification of so(3) mappings and vectors in E3, the frame R j+1/2 appears only in the two terms of

the sum (6) that depend on K j and K j+1, such that ∇R j+1/2W
(el)

M = h̄ j ∇R j+1/2V
(el)

M (K j) + h̄ j+1 ∇R j+1/2V
(el)

M (K j+1).
As stated in [7] for the quaternionic formulation, the material difference rotation W j := RT

j−1/2 ·R j+1/2 from which the

discrete material curvatures K j ' K̃ j = log(W j)/h̄ j are extracted may be rotated forward by either of the two adjacent
frames R j±1/2 with the identical result w j :=R j±1/2 ·W j ·RT

j±1/2 ≡R j+1/2 ·RT
j−1/2. Therefore, the discrete vertex based

spatial curvatures log(w j)/h̄ j 'κκκ j =R j±1/2 ·K j are well defined quantities. Using our definition of discrete curvatures

K j, material moment vectors given by M j = ∂V
(el)

M /∂K j and spatial moment vectors defined as m j :=R j+1/2 ·M j, one

may derive the identities h̄ j∇R j+1/2V
(el)

M (K j) = h̄ j∇R j+1/2〈K j,M j〉= R j+1/2 ·M j = m j and h̄ j+1∇R j+1/2V
(el)

M (K j+1) =

h̄ j+1∇R j+1/2〈K j+1,M j+1〉 = −R j+3/2 ·M j+1 = −m j+1, adding up to −∇R j+1/2W
(el)

M = m j+1−m j as desired. This
outlines the derivation of the l.h.s. of the balance equation (3) in terms of gradients w.r.t. the SO(3) frames as:

−∇R j+1/2W
(pot) = −∇R j+1/2

[
W (el)+ Ŵ (ext)

]
= m j+1 −m j + (r j+1− r j)× f j+1/2 + h j+1/2 µµµ j+1/2 . (12)

The inertial terms on the r.h.s. of (3) are obtained analogous to the derivation in the continuous theory in terms of the
gradient operator ∇∂tRT := a(k)×∂T /∂ (∂ta(k)) w.r.t. the time derivative ∂tR = ∂ta(k)⊗ek of SO(3) frames. Applied
to T = 1

2 ρLv2 + 1
2 〈ΩΩΩT , [ρI0] ·ΩΩΩ〉 this results in ∇∂tRT = ∇∂tR

1
2 〈ΩΩΩT , [ρI0] ·ΩΩΩ〉 = [ρLJ] ·ωωω , with the spatial inertia

tensor [ρLJ] = R · [ρI0] ·RT and the spatial angular velocity ωωω = 1
2 a(k)× ∂ta(k) = R ·ΩΩΩ of the moving frame, where

ΩΩΩ ' Ω̃ = RT · ∂tR. For the discrete model, all algebraic computations can be applied to the rotational part (9) of the
discrete kinetic energy function without modification, with the result

∇∂tR j+1/2
W (kin) = ∇∂tR j+1/2

W (rot) = h j+1/2 [ρLJ] j+1/2 ·ωωω j+1/2 , (13)

where the spatial inertia tensor [ρLJ] j+1/2 = R j+1/2 · [ρI0] j+1/2 ·RT
j+1/2 and angular velocity ωωω j+1/2 = R j+1/2 ·ΩΩΩ j+1/2

of each edge segment of the discrete Cosserat rod are defined in complete analogy to the continuous theory. Note that
due to ∂t([ρLJ] ·ωωω) = [ρLJ] ·∂tωωω +ωωω× [ρLJ] ·ωωω the time derivative of r.h.s. of (13) already contains a part equal to the
contribution of the term −∇R j+1/2W

(rot) = h j+1/2ωωω j+1/2× [ρLJ] j+1/2 ·ωωω j+1/2.

In summary, these considerations indicate how the semi-discrete angular momentum balance equation

m j+1 −m j + (r j+1− r j)× f j+1/2 + h j+1/2 µµµ j+1/2 = h j+1/2 ∂t
(
[ρLJ] j+1/2 ·ωωω j+1/2

)
(14)

results by computing both sides of the equivalent equation −∇R j+1/2W
(pot) = ∂t(∇∂tR j+1/2

W (kin)) formulated in terms
of variational derivatives w.r.t. the edge based SO(3) frames according to the Lagrangian formalism.

A quaternionic formulation of the rotational gradient operators ∇R and ∇∂tR provides the connection to the Euler–
Lagrange equations of the quaternionic formulation: The parametrization R = E(q̂) of SO(3) frames by rotational
quaternions via the Euler map and the representation a(k) = E(q̂) · ek of frame directors imply the transformation rule
∂/∂a(k) = [dE(q̂) ·ek]

−T ·∂/∂ q̂ of the gradients w.r.t. the frame directors and the quaternion gradient3 operator ∂/∂ q̂.

3Note that for a scalar function V (q̂) of q̂ ∈ S3 the vector ∂V /∂ q̂ is orthogonal to q̂, i.e.: 〈q̂,∂V /∂ q̂〉 ≡ 0.



Utilizing the dot truncation rule [11] one finds that likewise ∂/∂ (∂ta(k)) = [dE(q̂) · ek]
−T · ∂/∂ (∂t q̂) holds for the

transformation of the gradients w.r.t. the frame director velocities. Therefore, the quaternionic rotational gradient
operators are given by ∇R ≡∇q̂ := (E(q̂) ·ek)× [dE(q̂) ·ek]

−T ·∂/∂ q̂ and ∇∂tR ≡∇∂t q̂ := (E(q̂) ·ek)× [dE(q̂) ·ek]
−T ·

∂/∂ (∂t q̂), where p×q = 1
2 (p ◦q−q ◦p) abbreviates the quaternionic formulation of the cross product of vectors in

E3, and the semi-discrete balance equations (14) may likewise be obtained from−∇q̂ j+1/2W
(pot) = ∂t(∇∂t q̂ j+1/2

W (kin)),

using the discrete energy terms W (pot) and W (kin) expressed in quaternion variables.

It remains to show that the equations −∇q̂W
(pot) = ∂t(∇∂t q̂W

(kin)) may be rewritten as (E(q̂) · ek)× [dE(q̂) · ek]
−T ·[

∂L̄ /∂ (q̂)−∂t(∂L̄ /∂ (∂t q̂))
]
= 0, which in turn implies that, due to the regularity of the transformation operator

(E(q̂) · ek)× [dE(q̂) · ek]
−T , the rotational part of the Euler–Lagrange equations (10) and the balance equations (14)

are indeed equivalent. However, a presentation of the technically involved derivation of this statement is beyond the
scope of (or rather: available space for) this conference paper. The derivation presented in [2] aims at (and results in)
a quaternionic version of angular momentum balance that is primarily useful for numerical computations. Different
from that, the derivation presented in this section aims at pointing out the formal similarity of the semi-discrete and
continuous balance equations, in accordance with the Lagrangian formalism.

3. Static equilibria obtained by energy minimization
Hamilton’s principle characterizes static equilibrium configurations as stationary points of the potential energy, and
stable ones as minima of the latter. Therefore the static balance equations

f j+1/2− f j−1/2 + h̄ j βββ j = 0 ⇔ ∂W (pot)/∂r j = 0 (15)

m j+1−m j + (r j+1− r j)× f j+1/2 + h j+1/2 µµµ j+1/2 = 0 ⇔ ∂W (pot)/∂ q̂ j+1/2 = 0 (16)

hold for stable equilibrium configurations corresponding to minima of the potential energy W (pot). To illustrate the
properties of our discrete rod model, we briefly discuss two well-known academic examples4:

(a) Plane deformations of an elastic band (e.g. a leaf spring), clamped on one end and loaded by a force on the other
one, can be modeled analytically using Euler’s Elastica theory [13, 14].

(b) Helical deformations of a flexible rod (e.g. a steel string or a glass fiber) in space are an elementary application
of the rod theory of Kirchhoff and Clebsch [15, 16].

For both examples, we assume that there are no external forces or moments acting on the rod (i.e. βββ = 0 = µµµ), such
that the sectional force f is constant, and it remains to solve ∂sm+ ∂sr× f = 0 for given boundary conditions. Note
that in equilibrium the spatial moment quantity MMM := m(s)+r(s)× f is necessarily constant along the rod for constant
f, independent of its constitutive properties. For the discrete rod model, minimization of its energy implies constant
f j−1/2 ≡ f on all edges, and the discrete balance equations m j−m j−1 = f× (r j− r j−1) satisfied by minimal energy
configurations, such that MMM j = m j + r j× f is constant on all vertices.

Both examples can be treated analytically using an inextensible Kirchhoff rod model, for which any length changes
of the centerline as well as transverse shearing of the frames are kinematically inhibited. Differently, our discrete
Cosserat model allows for tangential extension or compression of the discrete centerline as well as transverse shearing
of the frames w.r.t. the edge tangents. However, for load cases primarily characterized by bending and twisting, these
deformations are negligibly small. Nevertheless, they are present and provide the discrete strains used to evaluate the
discrete sectional forces f j−1/2 = q̂ j−1/2 ◦F j−1/2 ◦ q̂∗j−1/2 from the constitutive equations F j−1/2 = CΓ · (ΓΓΓ j−1/2− e3)

on all edges. Discrete material moments are computed on vertices as M j = CK · (K j−K0 j), where K0 j ≡ 0 for both
examples. Spatial moments m j = q̂ j±1/2 ◦M j ◦ q̂∗j±1/2 are obtained by rotation of the material ones, using either of the
adjacent frames involved in the computation of the discrete material curvature K j.

Example (a) Euler’s Elastica: The deformed rod configurations shown in Figs. 2 and 3 result from two very different
solution approaches: Modeling the rod as a plane, inextensible elastic curve with a centerline r(s) =

∫ s
0 dζ t(ζ ) obtained

by integration of its unit tangent vector t(s) = cos(θ(s))e1 + sin(θ(s))e2 reduces the static equilibrium equations to
a nonlinear boundary value problem (BVP) for the tangent angle θ(s) as a function of the arc length, which can be
solved analytically in closed form. The other equilibrium configurations shown in Figs. 2 and 3 are obtained via energy
minimization of a discrete Cosserat rod in space.

4We refer to Ch. XIX, Art. 260-263 and 270 Love’s treatise [12] for a concise discussion of an analytical treatment of both examples.
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Figure 2: Visual and quantitative comparison of the discrete Cosserat rod model (20 vertices) in static equilibrium and
the analytical solution of an Elastica of reference length L = 1000 mm and bending stiffness [EI] = 1.0 Nm2, evaluated
in Matlab for the load force fL =−2e1−1e2 N (add. Cosserat rod parameters: [GA] = 10.0 kN = [EA]/3).
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Figure 3: Visual and quantitative comparison of the discrete Cosserat rod model (20 vertices) in static equilibrium and
the analytical solution of an Elastica of reference length L = 1000 mm and bending stiffness [EI] = 1.0 Nm2, evaluated
in Matlab for the load forces fL =−17.8e1 +12.8e2 N (add. Cosserat rod parameters: [GA] = 10.0 kN = [EA]/3).

The boundary condition at the clamped end is θ(0)= 0, at the other end the rod is loaded by a force−fL = f1 e1+ f2 e2 =
f(L). As f(s) ≡ −fL remains constant along the rod, the balance equation for mb = [EI] t× ∂st = EIθ ′(s)e3 reduces
to the differential equation [EI]θ ′′(s) = f1 sin(θ(s))− f2 cos(θ(s)) for the tangent angle. The bending moment mb
and likewise the (signed) the curvature κ(s) = θ ′(s) vanish at the loaded end, which provides the additional boundary
condition θ ′(L) = 0. For given length L and bending stiffness [EI] of the Elastica and given end force fL, the two–point
BVP for θ(s) can be solved analytically in closed form in terms of Jacobian elliptic functions.

The constancy of the function H = 1
2 m2

b/[EI] + 〈f, t〉 = 1
2 [EI]θ ′(s)2 + f1 cos(θ(s))+ f2 sin(θ(s)) along the Elastica

solution can be utilized to integrate the DE for θ(s) by a separation of variables. For an Elastica confined to the
plane spanned by {e1,e2} only the third component M3 = [EI]κ(s)+ f2 x(s)− f1 y(s) of the first integral MMM may take
a nonzero constant value along the the centerline curve r(s) = x(s)e1 + y(s)e2 in equilibrium. Due to the boundary
conditions r(0) = 0, mb(L) = 0 and f(L) =−fL the relation [EI]κ(0) = f1 yL− f2 xL holds for the bending moment at
the clamped end and the sectional force at the end position r(L) = xL e1 + yL e2 of the Elastica.



Equilibrium solutions of the discrete Cosserat rod are computed by minimizing its elastic energy for given boundary
conditions by an interior point method, using the software package IPOPT. To compute solutions for the plane Elastica
problem, the discrete model is not a priori confined to plane. Nevertheless, discrete centerline curves with all vertices
{r j} j=0,...,N located in the plane of the problem result from the numerical solution. Although closed form analytical
solutions of the equivalent two–point BVP for the tangent angle θ(s) of the Elastica in principle could be obtained in
terms of special functions, we computed numerical solutions of the BVP for θ(s) with the Matlab routine bvp4c, using
a very fine discretization to approximate the analytical Elastica solution with high precision, to circumvent technical
problems encountered in the vicinity of inflection points. Typical application cases treated in IPS imply the specification
of kinematical boundary conditions (i.e. the prescription of centerline positions, frames, or both) at the ends of a cable,
rather than the prescription of loads. Correspondingly, in the shown example we clamped the position and frame of the
rod at the left end, and prescribed the position of its other end. The sectional force fL was then extracted from the IPS
solution in post processing and used as an input for the integration of the Elastica BVP in Matlab.

The screenshots displayed in Figs. 2 and 3 show the numerical solutions obtained for our discrete Cosserat rod model,
visualized in the GUI of the IPS5 software, with the vertices indicated by red dots, and an overlay of the Elastica
curve obtained from Matlab for the two cases. For the Elastica solution, the plotted quantities display the values
of the tangential force component ft(s) = 〈f, t(s)〉, the norm fs(s) = ‖f−〈f, t(s)〉t(s)‖ of the shear force, the norm
mb = [EI]

√
κ2(s) of the bending moment as well as the values of the first integrals f, MMM and H along the centerline.

For completeness, also the torsional moment mt is displayed, which for the plane Elastica problem vanishes identically,
by definition for the analytical solution, and for the discrete rod as a result of the numerical computations.

For the equilibrium solution of the discrete Cosserat rod model obtained by energy minimization, the values of discrete
curvature κ j and therefore also those of the bending moment mb j = [EI]

√
κ2

j are defined at the vertex positions r j of
the discrete centerline, while the sectional forces f j−1/2 are obtained from the discrete shear strains ΓΓΓ j−1/2 on edges and
need to be interpolated as weighted averages f̄ j := (h j−1/2f j−1/2 +h j+1/2f j+1/2)/(2h̄ j) to obtain vertex based sectional
forces, which in turn may be used to define a discrete vertex based approximation M̄MM j = m j + r j× f̄ j of the conserved
total moment MMM. A discrete approximation H̄ j ≈ H(s j) of the first integral H needs to be constructed in a similar
manner, taking into account that for the Cosserat rod model the extensional force components F(3)

j−1/2 = 〈F j−1/2,e3〉=
〈f j−1/2,a

(3)
j−1/2〉 replace the tangential force values 〈f j−1/2, t j−1/2〉 generally used in the definition of H for inextensible

Kirchhoff rods. Likewise, the elastic energy term of the inextensible Elastica needs to be replaced by the more general
stored energy density of a Cosserat rod (see [20] for details). While the term V

(el)
M (K j) is by definition evaluated at

vertices, the terms V
(el)

F (ΓΓΓ j±1/2) as well as 〈F j±1/2,e3〉 are edge based and require an interpolation to compute an
approximation of their vertex based values. This is done by the same weighted averaging scheme as used to obtain f̄ j.

For the moderate, cantilever-type deformations shown in Fig. 2 the numerical solution obtained for the discrete Cosserat
rod by energy minimization agrees almost perfectly with the analytical Elastica solution in all aspects.

For the more demanding test case shown in Fig. 3 one still obtains good, but not as perfect agreement, as there are
small, but clearly visible differences between the centerlines of the discrete model and the Elastica. On the one hand,
the discrete force vectors f̄ j are accurately conserved, and also the tangential and shear force components and the
bending moment closely follow the analytical curves6. However, the small deviations of the non-zero component M(3)

j
from a constant value (which must not necessarily equal the one of the continuous model) indicates that the discrete
configuration is not in perfect equilibrium. This is presumably caused by the choice of algorithmic parameters of the
numerical solution procedure, which seems to terminate too early in the case of more demanding deformation cases
where the equilibrium is harder to find. As the function H is only constant in exact equilibrium, it is therefore not
surprising that for H̄ j one recognizes corresponding small deviations from a constant value, and also slight deviations
from the constant analytic value of H for the Elastica in equilibrium.

Nevertheless, the discussion of the results for the two examples shown in Figs. 2 and 3 demonstrates that the discrete
Cosserat rod model combined with the approach to compute equilibrium solutions by energy minimization yields good
results for the configuration variables as well as for the sectional kinetic quantities.

5The geometrically exact rod model currently used in the commercial version of IPS Cable Simulation is actually of extensible Kirchhoff type
[17]. Corresponding benchmark tests like the ones displayed in the extended abstract submitted for this contribution had been performed in early
development phases of the IPS software more than a decade ago. The main purpose of our present work is a thorough exploration of the quasi-static
properties of the discrete Cosserat rod model [2] that was primarily developed for fully dynamic simulations.

6Note that for both the shear force and the bending moment their (non-negative) absolute values are plotted, which explains the sharp kinks in the
respective curves at points where the signed quantities have roots with a change of sign. In the case of the shear force this happens when the force
and tangent vectors are parallel, for the bending moment at points of inflection, where the tangent direction changes from a left to a right turn and
the curvature becomes zero.
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Figure 4: Visual and quantitative comparison of the discrete Cosserat rod model (20 vertices) in static equilibrium and
Kirchhoff’s analytical solution for a helix with bending / torsional stiffness [EI] = 1.0 Nm2 = [GJ], pitch angle α0 =
π/8, radius ρ0 = 200 mm and reference length L = 2πρ0/cos(α0)≈ 1360 mm for one helical revolution (add. Cosserat
rod parameters: [GA] = 10.0 kN = [EA]/3).

Example (b) Kirchhoff’s helix: Helical deformations of a straight elastic rod in space can be treated analytically in
closed form if modeled as an inextensible Kirchhoff rod (see [15] and [12] Art. 270).

The constitutive equation for the moment of the rod are given in spatial form as m = [EI] t× ∂st + [GJ]κ(3) t, where
t×∂st = κb is the curvature binormal of the centerline with Frenet curvature κ =

√
κ(1)+κ(2), and κ(3) is the twist

of the moving frame, such that mb = [EI]κ is the absolute value of the bending moment around the binormal axis b,
and the value of the torsional moment directed (anti)parallel to t is the signed quantity mt = [GJ]κ(3). Both mt and
the function H = 1

2 [EI]κ2 + 1
2 [GJ] (κ(3))2 + 〈f, t〉 are conserved along the centerline of an inextensible Kirchhoff rod

deformed in space.

Helical configurations7 are characterized by constant material curvature K = κ(k) ek and may be held in equilibrium
for specific combinations of the force and moment vectors, with mb = [EI] cos2(α0)/ρ0 and a resultant force value
F = [GJ]κ(3) cos(α0)/ρ0 − [EI] sin(α0)cos2(α0)/ρ2

0 , where the axis of the helix is (anti)parallel to the force direction.
In the example shown in Fig. 4 the helical axis is parallel to e3. The constant force f = Fe3 can be decomposed into its
tangential and shear parts as f = F [sin(α0) t + cos(α0)b] = ft t + fs b.

The screenshots displayed in in Fig. 4 show the side and top view of the discrete solution (vertices again indicated with
red dots), with an overlay of the analytical helical centerline curve. As in the Elastica example, the forces, moments
and first integrals show good agreement with their constant counterparts for the analytical solution.

7Helical equilibrium configurations exist also for uniform Cosserat rods [18, 19, 20] and are characterized by constant values of K and ΓΓΓ.



4. IPS Cable Simulation: Application examples from automotive industry
In automotive industry today, simulation tools are used in the realization of a new product. As changes in the design and
planning concepts are extremely costly in later verification and production phases of the development process, much
can be gained if a product design can be optimized and verified with respect to the assembly process with simulation
tools as early as possible. Specifically, this holds true for the virtual preparation of slender flexible structures such as as
electrical cables and wiring harnesses, hoses, pipes and tubes. In a complex product, these types of structures appear
in a variety of applications, e.g. wired data communication, energy transfer (electrical power supply and hydraulics),
heating and cooling systems, et cetera. They are usually located where there is restricted design space and are therefore
often associated with quality problems and late on-line adjustments due to geometrical interference. Hence, there is a
strong motivation to use a discrete simulation model to accurately predict deformations and stress in slender flexible
structures already in the design phase ([21]).

Cosserat rods are particularly well suited for modeling of slender flexible structures encountered in industrial scenarios.
The rod model accounts for large deformations and captures the interaction between the different deformation modes.
At the same time, it is very efficient to evaluate, which is important when conducting iterative design studies, motion
analysis and real-time manipulation. However, for industrial applications the rod model needs to be extended with
additional functionality in order to be practical.

• Pre-deformation: This is a common property in e.g. plastic pipes and rubber hoses in order to keep the compo-
nent in a chosen configuration implied by its geometrical design. A Cosserat rod model provides direct support
to account for pre-deformation in terms of reference strains given by values of the invariants that are either
prescribed or extracted from a desired nominal shape.

• Systems of rod models: A variety of different boundary conditions needs to be supported in order to model rods
that are kinematically connected to each other and/or to other parts. Systems of cables and hoses typically involve
(free-hanging) branching or break-out points. These boundary conditions can be included as constraints to the
energy minimization problem when solving for static equilibrium, or they can enter as constraints (together with
corresponding Lagrange multipliers) to the system of Euler–Lagrange equations when performing a dynamic
simulation.

• Mechanical clips: Cables and hoses are oftentimes connected to each other or to rigid parts via mechanical
clips with various allowed kinematic degrees of freedom. A typical clip can be modeled as a kinematic chain
mechanism and is then added to the set of boundary conditions when connected to a rod model. The kinematic
degrees of freedom are added as generalized variables in the system.

• Contact handling: Frictionless contact interaction between rods and between rods and triangulated surroundings
needs to be treated as well. A huge computational bottleneck are the calculations of distance and collision with
respect to the surrounding geometry that can potentially consist of millions of triangles.

Functionality as sketched in the list above, as well as a variety of additional productivity features, is implemented and
supported in the simulation software IPS Cable Simulation. With the functionality in place, different case studies can
be performed.

We illustrate this by a case study from the automotive industry depicted in Fig. 6. As the industry is focusing on
electrified and hybrid solutions, both conventional combustion engines and battery supplied electrical engines need to
fit in an already densely packed engine compartment. The lack of available design space makes it difficult to make
qualified geometrical design decisions. The shown example is a static design study of three cooler hoses joined in
a T-section connecting the radiator with the oil cooler and the engine cooling system. All three hoses are of rubber

Figure 5: Examples of mechanical clips, an interconnected system of rods and contact handling between two rod
models captured in the simulation software IPS Cable Simulation.



(a) (b) (c)

Figure 6: The industrial scenario. (a): The engine compartment of a car with the highlighted cooler hoses. (b) and (c):
Side and top view of the static cooler hose case. Hose 1 is color-coded with internal force magnitude.
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Figure 7: Distribution of internal force and moment in the three cooler hoses before (solid lines) and after (dashed
lines) increasing the reference length of hose 2. The arc length parameter is measured from the junction.

material (Young’s modulus E = 5 MPa, poisson ratio ν = 1/2 and volume density ρ = 1100 kg/m3). The inner / outer
radius is 14.4 mm / 18.4 mm for hose 1 and 3 and 9.4 mm / 12.9 mm for hose 2. The reference arc lengths are 400 mm,
190 mm and 350 mm for hose 1, 2 and 3 respectively. The hoses are connected via a free-hanging rigid T-junction of
mass 1 kg.

The distribution of internal forces and moments in the three hoses in static equilibrium is plotted in Fig. 7. It can be
noted that the internal force in the smaller hose 2 is comparably high. By adding an extra design length of 50 mm
to hose 2, the internal forces in all hoses have decreased significantly after the design change, whereas the internal
moment remains roughly unaffected. In this way, design engineers can iteratively evaluate and modify the design of
the product.

5. Conclusions
The present work investigates kinetic aspects of discrete quaternionic Cosserat rods defined on a staggered grid within
the framework of Lagrangian mechanics. Theoretical considerations outline the main parts of a derivation of the semi-
discrete spatial balance equations for linear and angular momentum via variational derivatives of the energy terms of the
Lagrangian function of the rod model. Computing consecutive numerical solutions of the discrete quasi-static balance
equations by sequential energy minimization provides a procedure that displays many favourable properties w.r.t. sta-
bility, robustness and computational performance. Besides its usefulness in automotive applications like interactive
cable assembly simulations or the layout of cooler hoses in engine compartments, the discrete rod model combined
with the energy minimization approach yields reliable results for the sectional forces and moments. Integrated into a
software package like IPS Cable Simulation, this may be utilized by engineers to optimize their system layouts.
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