
Master thesis

An OGC Sensor Observation Service

for GPS and mobile sensors

Roland Müller

B-IT Master Studies Autonomous Systems

University of Applied Sciences Bonn-Rhein-Sieg

Fraunhofer Institute for Intelligent Analysis and Information Systems

IAIS Advisor: PD Dr. Michael Mock

FH Professor: Prof. Dr. Paul Plöger

June 30, 2010

I, the undersigned below, declare that this work has not previously been submitted to

this or any other university, and that unless otherwise stated, it is entirely my own work.

DATE Roland Müller

Contents

1. Introduction 9

1.1. Motivation . 9

1.1.1. Sensor Web . 9

1.1.2. Task . 10

1.2. Application scenarios . 11

1.2.1. Emergency Support System . 11

1.2.2. Fleet tracking . 12

1.3. State of the art . 12

1.3.1. Comparison of SOS implementations 13

1.3.2. 52◦ North SOS . 15

1.4. Problem formulation . 16

2. Basics 18

2.1. XML . 18

2.1.1. Structure & processing . 18

2.1.2. XML parsers . 20

2.1.3. Binding . 21

2.2. Relevant OpenGIS standards . 21

2.2.1. Important nomenclature . 22

2.2.2. Sensor Model Language . 23

3

Contents 4

2.2.3. Observations & Measurements . 23

2.2.4. OGC Web Services Common Specification 24

2.3. Sensor Observation Service . 24

2.3.1. Core profile . 25

2.3.2. Transactional profile . 27

2.3.3. Enhanced profile . 28

2.3.4. Upcoming version 2.0 . 28

3. Development & testing environment 30

3.1. IDE . 30

3.2. Web server . 31

3.3. Database . 31

3.4. XML editor & validator . 32

3.5. Mobile phones & emulators . 33

3.6. GIS . 33

4. Requirements analysis 35

4.1. Desired functionality . 35

4.1.1. Sensor Observation Service . 35

4.1.2. Raw data transmission . 36

4.2. Constraints . 37

5. Concept 38

5.1. Enhancing an existing implementation 38

5.2. Application structure . 39

5.3. XML parser & generator . 40

5.4. OGC-specific quirks . 41

5.4.1. Enabling mobile sensors . 41

Contents 5

5.4.2. Further modifications . 43

5.5. Database . 44

5.6. Raw sensor data transmission . 44

6. Implementation 47

6.1. SOS servlet . 47

6.1.1. Main class . 49

6.1.2. XML parsing . 50

6.1.3. XML generation . 51

6.1.4. Database access . 51

6.2. Oracle database . 54

6.3. Java ME phone client . 56

6.4. Java TCP/UDP server . 58

6.5. Java test client . 60

6.6. CSV import tool . 62

7. Tests & results 64

7.1. Test environment . 64

7.2. Functionality test . 65

7.3. Performance tests . 65

7.3.1. Black box . 66

7.3.2. White box . 71

7.4. Outdoor test . 73

8. Summary & Outlook 75

Bibliography 77

A. SOS XML example documents 80

Nomenclature

AES Advanced Encryption Standard

API Application Programming Interface

CSV Comma-Separated Values

DES Data Encryption Standard

DOM Document Object Model

DTD Document Type Definition

EPSG European Petroleum Survey Group

ER Entity Relationship

ESS Emergency Support System

FOI Feature Of Interest

GIS Geographic Information System

GML Geography Markup Language

GPRS General Packet Radio Service

GPS Global Positioning System

6

Contents 7

GPX GPS Exchange Format

GUI Graphical User Interface

IDE Integrated Development Environment

IMEI International Mobile Equipment Identity

ISO International Organization for Standardization

JAXB Java Architecture for XML Binding

JAXP Java API for XML Processing

JCE Java Cryptographic Extension

JDBC Java Database Connectivity

JSR Java Specification Request

MD5 Message-Digest Algorithm 5

MTJ Mobile Tools for Java

O&M Observation & Measurements

OCI Oracle Call Interface

OGC Open Geospatial Consortium

OWS OGC Web Services Common Specification

RDBMS Relational Database Management System

RSA Rivest, Shamir & Adleman

SATSA Security and Trust Services API for J2ME

Contents 8

SAX Simple API for XML

SensorML Sensor Markup Language

SHA Secure Hash Algorithm

SOAP Simple Object Access Protocol

SOS Sensor Observation Service

SQL Structured Query Language

SRID Spatial Reference System Identifier

StAX Streaming API for XML

SWE Sensor Web Enablement

TML Transducer Markup Language

TPTP Eclipse Test & Performance Tools Platform Project

UAV Unmanned Aerial Vehicle

UML Unified Modeling Language

UMTS Universal Mobile Telecommunications System

URN Uniform Resource Name

WMS Web Map Service

WST Web Standard Tools

XML Extensible Markup Language

XSD XML Schema Definition

1. Introduction

The “Emergency Support System” (ESS) project1 is developing an emergency manage-

ment system whose architecture ideally should comply with the OGC (“Open Geospatial

Consortium”) standards. Mobile sensors (e.g. mobile GPS-enabled sensor stations for

toxic values) will provide emergency case related information to a central back-end. The

ESS system should then assist in providing the collected data through a portal to the

emergency operator.

This work has been partly funded under the EU ESS project, which has the contract

number 217951.

1.1. Motivation

As the focus of this work is positioned in the environment of the “Sensor Web”, we first

describe this term, followed by a task definition.

1.1.1. Sensor Web

The term “Sensor Web” was first introduced in 1997 by a NASA employee, defining a

collection of distributed environmental sensors, which conjointly appear as one single

unit. There should be a standardized access for publishing and requesting sensor data

1http://www.ess-project.eu/

9

http://www.ess-project.eu/

1. Introduction 10

via the World Wide Web, enabling a high interoperability of different heterogeneous

sensor networks.

For defining sensor descriptions, data exchange formats and interfaces to access this

data, standard documents had to be created. These are housed by the “Open Geospa-

tial Consortium” (OGC) under the umbrella brand “Sensor Web Enablement” (SWE).

Main idea of the SWE is a dynamic system in which new sensors can be added during

runtime, and whose measurement data is requestable in real-time through standardized

web services. The sensor metadata should be human-readable by employing XML en-

codings, and measurement data be geo-located and time-dependent for allowing client

software to do data processing without a priori knowledge of the systems components.

Further the sensors shall act autonomously, and the system should be able to handle

alerts which can be triggered if measurements exceed certain thresholds. [4]

1.1.2. Task

The task of this thesis is to develop an OGC-compliant Sensor Observation Service

(SOS) – a component of the SWE – for GPS related sensor data in this context. It

should, in contrast to existing implementations, support full mobility of the sensors and

be configurable with respect to adding different kinds of sensors. In particular, mobile

phones should be considered as sensors, which transmit their data to the SOS server

through the transactional SOS interface.

The SOS specification is split into 3 sub-profiles, from which according to the speci-

fication the core profile is mandatory. Furthermore the transactional profile is required

for allowing the registration of new GPS sensors and the insertion of new measurements

in the current scenario. It has to be evaluated, which functions of the enhanced profile

are needed, and which ones of the upcoming version 2.0 of the specification are required

for enabling non-stationary sensors.

1. Introduction 11

For the description of the sensors, in this case mobile phones, a SensorML (Sensor

Markup Language) model must be used to fulfil the SOS standard. For the same reason,

the transmission of the measured values has to follow the “Observation & Measurements”

(O&M) XML schema.

On the mobile phone side, a sensor client software must be implemented, which is

capable of registering at the SOS and sending measurements in O&M format as well as

transmitting GPS coordinates as raw data.

To retain privacy, user-dependent access permissions on sensor data should be set up

and the transmission of data be encrypted.

After the implementation it should be measured experimentally, to what extent the

OGC compliance – in particular the data transmission formats – induces an overhead

compared to existing data formats such as GPX or binary formats. The aim is to deter-

mine the scalability between both approaches on a large number of sensors. Furthermore

the server should be able to filter the data for offering measurements of certain regions

and time periods.

1.2. Application scenarios

Being involved with the Emergency Support System (ESS) project, the primary applica-

tion scenario for a mobile enabled Sensor Observation Service is already predetermined.

But aside from that, other use cases are also possible.

1.2.1. Emergency Support System

The ESS project was started in June 2009 with the goal of setting up a portable cri-

sis management system. Stationary or mobile sensor platforms like UAVs (Unmanned

Aerial Vehicles) collect environmental sensor data which is sent in real-time to a central

1. Introduction 12

server. The fusion of the collected data may then assist the system operator in deciding

on how to setup a rescue plan [1]. Due to the instantaneous access to the sensor’s mea-

surements, the operator can immediately detect changes in the environment and refine

his decisions.

Currently being in the proof of concept phase, the capabilities of the project partner’s

components and their integration were demonstrated during a field test in June 2010.

As the collected environmental measurement data is currently stored in CSV files and

then spread by using a FTP server, a better integration of the components by employing

a Sensor Observation Service is highly desirable.

1.2.2. Fleet tracking

Another scenario is the tracking of vehicles. The buses of a public transportation com-

pany may send their current positions to the central web service. Linking the location

data with traffic information, the passengers waiting at the bus stop can follow the bus

position on their mobile phone and get an estimation of its arrival time.

In non-public freight forwarding companies, the current position of a truck shall not

be disclosed to third party persons. Therefore an encryption of the location data is

desirable.

1.3. State of the art

According to the OGC web site there are 9 organizations which offer products that

implement the SOS standard [20]. For some of the implementations neither the source

code nor a demo application are available, for which reason they are not covered here.

1. Introduction 13

1.3.1. Comparison of SOS implementations

The remaining implementations can be split into two groups: the ones which primarily

implement the SOS/SWE, and the ones where the SOS rather is a side-product. To the

first group we count the OSCAR SOS by 1Spatial Group Ltd.2, the 52◦ North SOS 3

and the OOSTethys JAVA SOS Toolkit4. In contrast to that, the OSGeo project offers

deegree5 as a Java framework for web-based spatial applications and MapServer 6 for the

web-based display of maps. The last implementation mentioned here is the Constellation

server by Geomatys7 which has the goal to implement a framework for managing spatial

data.

The aforementioned servers were analyzed for being adaptable to the requirements of

the ESS project. Important properties are the programming language which they are

written in and the kind of data storage they use. In regards of performance, there is

also an interest in which XML parser they use to interpret the incoming requests. A

comparison of these aspects is depicted in table 1.1.

The OGC-specific terms which are used in this section, will be described in the Basics

chapter.

2http://81.29.75.200:8080/oscar/
3http://52north.org/maven/project-sites/swe/sos/index.html
4http://www.oostethys.org/downloads/oostethys-toolkit-java
5http://www.deegree.org/
6http://mapserver.org/
7http://www.constellation-sdi.org/

http://81.29.75.200:8080/oscar/
http://52north.org/maven/project-sites/swe/sos/index.html
http://www.oostethys.org/downloads/oostethys-toolkit-java
http://www.deegree.org/
http://mapserver.org/
http://www.constellation-sdi.org/

1.
Intro

duction
14

Developer Name Version Open Source Implements XML proc. Data source

1Spatial

Group Ltd.

OSCAR 2.0 No Core & Transactional ? ?

52◦ North SOS 3.1.1 Yes, Java Core & Transactional;

GetFeatureOfInterest,

GetResult

XMLBeans PostgreSQL

OOSTethys JAVA SOS

Toolkit

0.4.3 Yes, Java Core XMLBeans OPeNDAP,

NetCDF

OSGeo deegree 2.3 Yes, Java Core DOM PostgreSQL,

Oracle,

JDBC

OSGeo MapServer 5.6.3 Yes, C++ Core; DescribeObser-

vationType

libxml2 XPath file-based

Geomatys Constellation 0.5.2 Yes, Java Core & Transactional;

GetResult

Geotoolkit PostgreSQL

Table 1.1.: Comparison of different SOS implementations

1. Introduction 15

1.3.2. 52◦ North SOS

As it seems to be the furthest developed implementation, the 52◦ North implementation

was analyzed in more detail. First we tried to register a sensor with multiple phenomena

to the SOS. While this was successful, the following InsertObservation request only was

accepted, when there was not more than one phenomenon specified at a time.

Having a look at the database model of the server, it is fairly complex as it consists

of 16 tables with 23 interconnections for the referential integrity.

Further the server does not support mobile sensors in an OGC-compliant manner.

However there is already a page about an own mobile extension in the documentation

wiki8. It is barely filled with content but references to a paper [23] and an UpdateSensor

operation.

Paper discussion

In the paper, the current O&M model is extended by two elements, namely a Sam-

plingFeature and a DomainFeature. The former represents the position where the mea-

surement took place, the latter describes the area in which the sensor is moving (e.g. a

lake). This is realized by making modifications to the SOS operations: for the core pro-

file, a time parameter is added to the DescribeSensor request which enables the client to

retrieve the sensor’s position at a given timestamp. GetObservation is extended by new

SampleFeature and DomainFeature filters and additionally, an UpdateSensor operation

was invented.

The corresponding UpdateSensor example in the wiki includes a link to a non-existing

schema definition file in the header, making further investigation of the allowed content

difficult. In the body, the updated parameters are the timestamp, current position and

self-defined features including the “domain feature” and Boolean values which indicate

8http://52north.org/twiki/bin/view/Sensornet/SosMobileExtension

http://52north.org/twiki/bin/view/Sensornet/SosMobileExtension

1. Introduction 16

if the sensor is mobile and if it is active.

1.4. Problem formulation

Apart from the limitation that only one phenomenon may be contained in an InsertOb-

servation request, the 52◦ North implementation and its extension approach come along

with several problems.

First, the mobile sensor not necessarily knows its domain feature if it enters an area

where it has not been before and which it was not expected to visit on launch. The server

in contrast is able host a large feature database, and map the current sensor locations

to domain features. It also could easily react to changing domains, being a growing lake

due to a flood or a moving feature like an iceberg.

The second issue are the additional Boolean flags of the new UpdateSensor operation.

If the sensor runs out of battery or if its data transmission fails, it is not able to set

itself into an inactive state. For the server it would be possible to declare the state

by calculating the passed time since the last received observation. Also the mobility

property could be determined by comparing the last received positions of the sensor.

Another problem rather applies to the SOS standard than to its implementations. The

DescribeSensor response returns the SensorML document which was published during a

RegisterSensor operation, including the sensor’s position. Updated location information

of mobile sensors, which the server gets by InsertObservation requests, is not carried

over to the SensorML document. Therefore the UpdateSensor operation was proposed,

but for each new measurement of a moving sensor it requires the invocation of two

operations instead of one. UpdateSensor is needed for updating the sensor position and

InsertObservation for inserting the measured values for the phenomena.

Finally, the proposed extensions are not conform to the SOS 1.0 standard. It seems

that the primary goal of the authors was not to point out how to extend the OGC

1. Introduction 17

standard to cope with mobile sensors, but how to extend the 52◦ North implementation

for their reference project. This also results in bloating up its database model from 16

tables to 22 tables.

2. Basics

This section gives an introduction of the terms and standards which are relevant for the

SOS implementation, beginning with a short XML introduction followed by the OGC

standards which are built upon XML.

2.1. XML

The “Extensible Markup Language” (XML) is a meta language which is used to define

other languages.

2.1.1. Structure & processing

Basically, an XML document is a simple text document, which facilitates the readability

for humans and the interoperability between different machines and applications. By

employing special markup tags, put into angle brackets, a classification of the actual

content is possible. The content itself is housed in between two markup tags, an opening

and a closing one, latter beginning with a slash (/) symbol. Additionally, the markup

tags may contain further parameters called attributes. [9, p. 38]

18

2. Basics 19

A document for specifying a GPS location may look like the following example:

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<p o s i t i o n coordinateSystem=”WGS84”>

< l a t i t u d e>50.7801</ l a t i t u d e>

<l ong i tude>7 .1826</ l ong i tude>

</ p o s i t i o n>

Listing 2.1: Sample XML document

For the processing of XML documents, so-called parsers are used. They offer an

interface for easing access to the input file in several programming languages, and they

relieve the programmer of having to verify its structure.

There are two ways of checking the consistency of an XML document. Most XML

parsers begin with verifying if it is well-formed. This procedure ensures that the docu-

ment has a proper syntax: if every opened markup tag is closed again properly, if the

nesting of the tags is correct, etc.

The second check is called schema validation. By setting up a DTD (Document Type

Definition) or an XSD (XML Schema Definition) it is possible to construct a set of rules

which declares constraints for the content of the XML file. [11] For the above example,

the schema against which the document is validated could specify that the root element

of the document always reads position.

Namespaces as they are known in programming languages like C++ are also available

for XML. If an XML file relies on several XSD schemata, their namespaces can be

specified as attributes of the root markup element. The further markup tags can then

be distinguished by using prefixes.

2. Basics 20

2.1.2. XML parsers

For the interpretation and processing of incoming XML data, several different approaches

exist which are splittable into three classes: DOM parsing, push parsing and pull parsing.

[24, p. 33]

DOM

The DOM (Document Object Model) holds the whole XML document in memory, struc-

turing it in a tree representation. This facilitates a random access to all elements, at-

tributes and text contents of the document at the cost of memory usage. Therefore it is

not suitable for very large documents. An advantage of DOM is the possibility of being

able to modify the document or to create a new one, and to write it back into an XML

file. DOM is – like the following both approaches – included in the “Java API for XML

Processing” (JAXP) and offers direct access to the document content with functions like

getElementsByTagName(), getAttribute() and getValue().

Push

A push parser processes the document sequentially and generates events during the

parsing operation. These events trigger callback functions in which the document data

can be accessed. This has the advantage that the data processing can already begin

without having to wait that the parsing of the whole file has finished. Also the document

does not have to be kept in memory with the drawback that no random access to

the content is possible. The most common API which implements this approach is

called SAX (Simple API for XML), throwing events like startDocument, endDocument,

startElement, endElement and characters for the text content.

2. Basics 21

Pull

The pull approach is also event-based, similar to push. Though here not the parser

generates the events, but the application does by moving a cursor or an iterator. In

opposite to the push model, pull also features the generation of XML, but there is no

random access to the document elements possible, as it is with DOM. An API for pull

is called StAX (Streaming API for XML) with methods like hasNext() and next() for

checking the availability of tags and for navigating through them.

2.1.3. Binding

A completely different method for accessing XML documents is called binding. The

JAXB (Java Architecture for XML Binding) has a special compiler xjc that reads XML

schema definition files, from which corresponding Java objects are generated. During

runtime, the XML document of interest is then mapped to instances of these objects,

called unmarshalling. Also the opposite direction is possible by serializing an object

back to XML (marshalling).

2.2. Relevant OpenGIS standards

The Open Geospatial Consortium (OGC) is a non-profit organization which was founded

in 1994 with the aim to create standardized interfaces for the exchange of spatial infor-

mation. The resulting standards are published under the trademark “OpenGIS”. With

currently having more than 30 standards, only a subset of them is relevant for the imple-

mentation of a Sensor Observation Service. These are the standards for the SOS [19], the

“Sensor Model Language” (SensorML) [18] the “Observations & Measurements” (O&M)

[15] and the “OGC Web Services Common Specification” (OWS) [16].

Aforementioned standards are, together with further ones, part of OGC’s Sensor Web

2. Basics 22

Enablement (SWE)1. As the name already suggests itself, this initiative focuses on mak-

ing it possible to exchange sensor data via web services.

Due to the SOS standard being the core component of this work, we devote it an own

subsection.

2.2.1. Important nomenclature

For the better understanding of the standards which are described in the following,

we first introduce the most important terms of the OGC-specific nomenclature that is

defined in [15]:

• A procedure creates a measurement value, be it a real sensor or a simulated one

• The observed property or phenomenon specifies what is measured, for example

water temperature, wind speed, . . .

• An observation delivers the result of a measurement for an observed property at

a certain point of time, e.g. 20◦ C or 50 km/h

• Observations that are related to each other can be grouped into an (observation)

offering

• The feature of interest is the object for which an observation is made, for example

a lake

• The URN stands for “Uniform Resource Name” and is an unique identifier for

a resource like a phenomenon or a coordinate reference system. It always begins

with urn: followed by a namespace, which in our case reads ogc. Then sub-

namespaces may follow and finally the actual resource name, a full example being

urn:ogc:def:property:OGC::AirTemperature

1http://www.opengeospatial.org/ogc/markets-technologies/swe

http://www.opengeospatial.org/ogc/markets-technologies/swe

2. Basics 23

2.2.2. Sensor Model Language

SensorML is a language for describing the characteristics of sensor systems. In the SOS

application, it contains metadata information of the sensor, namely a unique sensor ID

and optionally further data like manufacturer, model number or a contact person.

The more important information is the sensor’s location, which is stored together with

the corresponding coordinate reference system. The actual phenomena which the sensor

is able to measure are stored in an inputs section. Mostly they are directly carried over

to the outputs section, only appended by the unit of measurement. But an output may

also be the result of pre-processed input data, for example if the sensor system is capable

of combining two inputs (distance & time) into one output (speed).

2.2.3. Observations & Measurements

The purpose of O&M is the standardized XML encoding of observations. An observation

begins with the sampling time in GML (Geography Markup Language) format [17],

which usually encapsulates an ISO 8601 timestamp that consists of a date, the time

and the time zone (e.g. 2010-05-31T12:00:00+02:00). If the O&M document contains

multiple measurements, also a time range can be specified by using two timestamps.

Subsequently, the procedure – that is the sensor ID – is written down, followed by the

observed properties and the feature of interest the observation belongs to.

The final result section holds the actual content: the measurement values. If only one

measurement should be delivered, for example the most recent one of a sensor, this can

be done with a DataRecord. It has a subsection for each phenomenon, containing its

quantity, unit of measurement and the actual value.

For multiple measurements, a DataArray is the element of choice. It first specifies the

number of measurements, followed by a record with the quantity and unit of measure-

ment for each phenomenon. Then the concatenated measurement values follow in a long

2. Basics 24

string. It has a CSV-like format whose separators can individually be specified.

2.2.4. OGC Web Services Common Specification

From the OWS standard, the GetCapabilities operation is the most important, which

will be described in the following SOS section. Further the ExceptionReport is needed to

return a failure document, if the client put invalid parameters into its request or if the

server has an error. The ExceptionReport consists of an exception code like “InvalidPa-

rameterValue” and a text that contains a more detailed error message. Optionally, the

locator parameter can indicate the markup tag of the client’s request, in which the error

occurs.

2.3. Sensor Observation Service

The SOS is a web service which was invented to offer a standardized interface to request

sensor metadata and real-time observations. Its operations are split into three profiles

which are illustrated in table 2.1 and described below.

A request can either be sent via HTTP GET or via HTTP POST. The difference

between them is how the parameters of the request are transmitted to the server. Using

GET, the parameters of the request are appended to the URL of the server address.

The POST method in contrast sends the parameters in the body of the HTTP message,

which makes it easier to send larger amounts of data than with GET [8]. The root

markup tag of a POST request must always contain the SOS operation, with the service

attribute being “SOS”.

It depends on the server which of the methods it implements. Most of them allow

both POST and GET for the GetCapabilities request, whose response indicates which

method(s) is/are allowed for the other SOS operations.

2. Basics 25

Profile Core Transactional Enhanced

Type mandatory optional optional

Operations GetCapabilities RegisterSensor GetObservationById

DescribeSensor InsertObservation GetResult

GetObservation GetFeatureOfInterest

GetFeatureOfInterestTime

DescribeFeatureType

DescribeObservationType

DescribeResultModel

Table 2.1.: Sensor Observation Service profiles & operations

Example documents for the operations that are described in the following can be found

in the appendix, and should be read in parallel for gaining a better understanding.

2.3.1. Core profile

The core profile is the only mandatory profile, meaning that its three operations must

be implemented in every SOS. A common sequence of communication between a web

client and a SOS, consisting of the core profile requests and their appropriate responses,

is shown in figure 2.1.

GetCapabilities

The first request that a client sends to a newly discovered SOS is GetCapabilities, which

does not need any further parameters. It is also used for other OGC web services than

SOS like the “Web Map Service” (WMS).

A service metadata document will be returned as the response, with the first sections

giving information about the server in OWS format. This can include properties like

2. Basics 26

Web cl ient

Web cl ient

SOS

SOS

GetCapabilities request

Service metadata document

DescribeSensor request

SensorML document

GetObservation request

O&M document

Figure 2.1.: Sequence diagram of core profile operations

server name, description, version and the responsible company with a contact person.

Among the following OperationsMetadata markup tag, all the operations the server

supports are listed. It is denoted if the respective operation is invokable via POST

and/or GET, which parameters are available and what they may contain. Taking Get-

Observation as an example, its parameters include the available sensor IDs and the time

range in which observations are available.

With the next section, the SOS-specific content of the capabilities begins. The fil-

ter capabilities describe, which kind of spatial, temporal and result filters the server

supports. If implemented, this enables the client to request data of a certain region, a

limited time range or a specific result set.

Finally, under the contents tag the observation offerings with their unique IDs are

listed. Here we find abstract information like description and intended application as well

as the observed properties and the spatial and temporal boundaries of the measurements.

2. Basics 27

DescribeSensor

The DescribeSensor request is used to get information about a particular sensor. It only

contains the procedure, that is the sensor ID of which further information is desired.

A list of valid sensor IDs is contained in the GetCapabilities response document. The

DescribeSensor response is a SensorML document, whose content was already described

above. Alternatively, the returned sensor description may be specified by using the

“Transducer Markup Language” (TML)2. It is primarily used for streaming sensor data

and not covered here in detail.

GetObservation

For requesting the actual measurements, the GetObservation operation is used. In its

request, the indication of the offering and observed properties is mandatory. The client

can get them from the SensorML response of a previously executed DescribeSensor

request. Optionally, the procedure and spatial and temporal filters may be specified for

GetObservation.

To the spatial filters, we count the bounding box, which enables us to request all

observations within a rectangular area. Further it is possible to define a spatial filter

area by specifying a closed polygon. The temporal filters allow the client to request

observations after, before, and equal to a certain point in time, or within a time period.

In response to the GetObservation request we get an O&M document, which is again

described above.

2.3.2. Transactional profile

All the other ones only fetching data from the server, the two operations of the trans-

actional profile allow the insertion of new data into the SOS. Their implementation is

2http://www.opengeospatial.org/standards/tml

http://www.opengeospatial.org/standards/tml

2. Basics 28

optional, as new data may also be inserted by using an other, proprietary method.

RegisterSensor

Beneath the root element of RegisterSensor, there are two sections. The SensorDescrip-

tion contains a SensorML or TML document which specifies the sensor to be inserted

into the SOS. Under the ObservationTemplate, an O&M template is specified which can

be used for the following InsertObservation operation.

The response of RegisterSensor only consists of the AssignedSensorId tag, which con-

tains the ID of the newly inserted sensor.

InsertObservation

The InsertObservation request needs a sensor ID for which the observation should be

stored in the SOS and an observation in the already discussed O&M format.

In the response, there is only the AssignedObservationID generated by the SOS.

2.3.3. Enhanced profile

The enhanced profile contains further optional requests for querying data from the SOS.

There is not paid further attention to them, as they are not required for our application.

For completeness, they are listed in table 2.1 and can be looked up in [19].

2.3.4. Upcoming version 2.0

While this project focuses on the SOS 1.0 specification, the SOS 2.0 version is currently

in development. So far, only OGC members are granted access to the draft documents.

What already can be seen from them is that the specification will be split into several

documents according to the different profiles.

2. Basics 29

The core profile seems to inherit the same operations from version 1.0, whereas the

transactional profile now additionally allows the update and deletion of sensors. By

enabling the possibility of updating the sensor metadata, it seems to be possible to

refresh the sensor’s position of the up to now static sensor description, allowing a better

handling of mobile sensors.

Furthermore, all requests and responses will be embedded into SOAP envelopes. As

there are no schema definitions available so far, there could only be speculated about

more detailed improvements over version 1.0.

3. Development & testing environment

This section gives an overview of the tools which were used to implement the SOS and

the secondary applications. The main programming language for the implementations

is Java.

3.1. IDE

For the Java programming, the open source Eclipse1 Integrated Development Environ-

ment (IDE) was employed. Due to its plug-in architecture, the functionality of the IDE

can easily be enhanced.

An important plugin which was used is the “Web Standard Tools” (WST) for the

integration of the Apache Tomcat servlet container. It enables the automatic deployment

of the implemented servlets to a Tomcat server, facilitating the development. Similarly,

the “Mobile Tools for Java” (MTJ) extension integrates the deployment of mobile phone

applications to the phone emulators.

1http://www.eclipse.org/

30

http://www.eclipse.org/

3. Development & testing environment 31

3.2. Web server

After compiling the Java servlet application and packaging it to a web archive, it can be

run on the free Tomcat2 server by the Apache Software Foundation. Tomcat is written

in Java, enabling the possibility to run it on a large variety of platforms, and consists of

several components. The “Catalina” container runs the Java servlets and the “Coyote”

connector delivers them to the clients using standard protocols like HTTP and HTTPS.

To achieve a better performance, the Tomcat Native Connector (TC-native) can be

used. It does so by replacing some Java I/O components of the Tomcat server with ones

that are written in C and optimized for the underlying operating system.

3.3. Database

The Oracle Relational Database Management System (RDBMS) is the flagship of the

Oracle company. It exists in several versions with different features, beginning with the

free “Express Edition” which is limited to use only 1 CPU, 1GB RAM and a maximum

database size of 4GB. The smallest commercial version is the “Standard Edition One”,

which supports up to 2 CPUs and has no memory or space limitations. Up to 4 CPUs

can be used with the “Standard Edition” which also supports clustering, enabling the

possibility of spreading a database over several machines. The most features are available

with the “Enterprise Edition” that does not have a CPU limitation and amongst others

includes advanced security options and data compression. [10, p. 7]

For the Oracle RDBMS there is an extension called “Oracle Spatial” which enables

spatial support for the database, following the OGC “Simple Features SQL” standard

[14]. It facilitates the calculation of distances between locations, the selection of points

that are located within a defined area, etc.

2http://tomcat.apache.org/

http://tomcat.apache.org/

3. Development & testing environment 32

Important parameters for defining a spatial datum are the type of geometry (point,

line, polygon), the “Spatial Reference System ID” (SRID) following the EPSG standard3

(e.g. 4326 for WGS 84 without altitude or 4979 for WGS 84 with altitude) and the

coordinates of the element which is specified. Some of the spatial queries need a special

spatial index, which speeds up the data selection by using rectangular approximations

instead of the exact shapes. A parameter called tolerance indicates, above which distance

two points are regarded as being different. Its minimum value is 0.05 which equates

to 5cm. The smaller the tolerance, the more processing power is required. A bigger

tolerance decreases the precision and two different locations which are lying near to each

other, may be misinterpreted as being the same. [6]

Two tools which were used for the database administration and development are the

free “Oracle SQL Developer”4 and the “Oracle SQL Developer Data Modeler”5. Both of

them being platform-independent Java applications, the former is useful for operations

like browsing database contents, testing SQL queries, modifying table structures and

deleting table content. Latter was employed for designing a database model by drawing

an entity-relationship diagram, which then can be exported to SQL CREATE statements.

3.4. XML editor & validator

Altova XMLSpy6 is a commercial Windows application for editing XML files. From its

large functional range, primarily the options for formatting XML files with indentation

and the checks for well-formedness and schema validation were used. It is also helpful

for creating new XML files from scratch, by specifying a schema definition file and then

being offered code completion with incorporating namespaces that are specified in the

3http://www.epsg-registry.org/
4http://www.oracle.com/technology/products/database/sql_developer/index.html
5http://www.oracle.com/technology/products/database/datamodeler/index.html
6http://www.altova.com/xmlspy.html

http://www.epsg-registry.org/
http://www.oracle.com/technology/products/database/sql_developer/index.html
http://www.oracle.com/technology/products/database/datamodeler/index.html
http://www.altova.com/xmlspy.html

3. Development & testing environment 33

header of the new file.

There is also an optional plugin for the Eclipse IDE that replaces the Eclipse XML

validators with the XMLSpy implementation, which offers more features.

3.5. Mobile phones & emulators

The mobile phone emulators which were used during development are the one from the

Java ME SDK 3.0 7 and the Nokia S60 SDK for Symbian 3rd Edition FP2 v1.1 8.

For the tests on a real hardware device, the Nokia 5800 Xpress Music and the Nokia

N95 8GB were used. Both are running versions of Symbian OS which allow the execution

of Java ME applications and they also implement the JSRs 179 (Location API for Java

ME)9 and 177 (Security and Trust Services API for J2ME)10, which are needed for

acquiring the current location from the integrated GPS device and for the demand to

encrypt the measurement data before transmission.

3.6. GIS

The “User-friendly Desktop Internet GIS” (uDig)11 is a geographic information system

(GIS) and was used for the visualization of sensor data. As uDig is able to connect

to an Oracle Spatial database and also offers a plugin for fetching sensor data from

a SOS, it was helpful for a graphical verification of the database and the whole SOS

functionality. Together with map data from a “Web Map Service” (WMS) like the

University of Heidelberg is providing for free12, it is directly visible if the sensor is

7http://java.sun.com/javame/downloads/sdk30.jsp
8http://www.forum.nokia.com/Tools_Docs_and_Code/Tools/Platforms/S60_Platform_SDKs/
9http://jcp.org/en/jsr/detail?id=179

10http://jcp.org/en/jsr/detail?id=177
11http://udig.refractions.net/
12http://www.osm-wms.de/

http://java.sun.com/javame/downloads/sdk30.jsp
http://www.forum.nokia.com/Tools_Docs_and_Code/Tools/Platforms/S60_Platform_SDKs/
http://jcp.org/en/jsr/detail?id=179
http://jcp.org/en/jsr/detail?id=177
http://udig.refractions.net/
http://www.osm-wms.de/

3. Development & testing environment 34

located where it should be. A screenshot of this application, drawing a self-recorded

track which is fetched from an Oracle Spatial database, is shown in figure 3.1.

Figure 3.1.: uDig GIS

4. Requirements analysis

This chapter describes the scope of the project by setting the requirements which we

want to achieve and by defining its limitations.

4.1. Desired functionality

In order to compare the overhead of the OGC-compliant XML encoding to a raw data

transmission, two independent implementations should be made. Their specific func-

tionality requirements are assigned below.

4.1.1. Sensor Observation Service

For the SOS implementation, these are the goals which were set:

• The server should best possible fulfill the OGC compliance

• All operations of the core and transactional profiles must be supported, namely:

GetCapabilities, DescribeSensor, GetObservation, RegisterSensor and InsertOb-

servation

• All operations must support the HTTP POST method, with GetCapabilities also

supporting GET

• The implementation must cope with mobile sensors

35

4. Requirements analysis 36

• Mobile phones should be enabled to act as sensors

• It should be possible to handle multiple phenomena for each sensor

• In the DescribeSensor response, the latest sensor position should be contained

• The measured data set must be reducible by applying spatial & temporal filters

• Like in the 52◦ North implementation, a special keyword “latest” should be in-

sertable in the GetObservation temporal filter instead of a timestamp, to receive

the latest observation

• The implementation should adapt to existing server infrastructure, consisting of

Apache Tomcat servlet containers and Oracle RDBMSs

4.1.2. Raw data transmission

The alternative raw data transmission aims on achieving the following:

• A small proof of concept client-server communication must be implemented with-

out the focus on robustness and a pleasant GUI

• The data transmission should utilize user-dependent access permissions and en-

cryption

• This application and the SOS should share the same database for storing the

measurements

4. Requirements analysis 37

4.2. Constraints

The following constraints apply for the Sensor Observation Service:

• As the OGC standards are very extensive, our SOS implementation should pri-

marily center on sensor templates for sensors of the IMEGO1 company, which are

part of the ESS project documents [7]

• For the SOS, user-dependent access permissions would be possible by using HTTP

basic access authentication. In web browsers, this is known by offering a login

window to the user. But as the SOS clients are mostly applications like GIS that

do not support HTTP authentication, this approach is not feasible. Therefore the

only security option for the SOS is to use HTTPS instead of HTTP, which is not

a matter of implementation, but a configuration option of the Tomcat connector

1http://www.imego.com/

http://www.imego.com/

5. Concept

In this chapter, the design decisions of the application, its structure and the employed

technologies are presented.

5.1. Enhancing an existing implementation

The most obvious method for building a Sensor Observation Service that supports mobile

sensors would be the modification of an existing implementation.

Recalling the ones that were presented in the introductory section, only three of them

were pure SOS implementations, with two also opening their source code (OOSTethys

and 52◦ North). The OOSTethys server only implements the SOS core profile and

uses a file-based database instead of a RDBMS, which already violates the desire to

integrate it into the existing server environment. In contrast to that, the 52◦ North

server additionally supports the transactional profile and uses a PostgreSQL RDBMS

with the PostGIS extension, which enables the support of spatial operations.

Staying with the 52◦ North implementation, the InsertObservation function had to be

extended as the aforementioned IMEGO sensor templates contain multiple phenomena

and we want to keep the XML overhead the smallest possible.

Further a migration to the Oracle RDBMS would be very complex due to the high

number of database tables and interconnections, which has been mentioned in the state

of the art section.

38

5. Concept 39

Another aspect is the license of the 52◦ North SOS. The GPLv2 demands that mod-

ifications of the source code must be published if the application is spread. It would

require an examination, if this is granted within the surrounding ESS project.

To sum it up, because of the complex database structure, the missing possibility of

inserting multiple phenomena at a time, the lack of an OGC-compliant way to support

mobile sensors and due to the licensing terms, the 52◦ North implementation does not

provide an appropriate basis for our project. Consequently the decision was made not

to base our implementation on the 52◦ North SOS, but to build up a new web service

from scratch.

5.2. Application structure

To give a first overview of the whole application and its components, the structure is

depicted in figure 5.1.

On the left side, the data source which creates new measurements is presented in the

form of a mobile phone. It determines its current position from an integrated or external

Bluetooth GPS device. On the phone, a Java application links the position data with

further measurements, which it may get from an acceleration sensor. This observation is

then either sent in an OGC-compliant way to the SOS via the InsertObservation request,

or in form of encrypted raw data to an UDP or TCP server.

The SOS will be implemented as a servlet and run on an Apache Tomcat servlet con-

tainer. It connects to an Oracle RDBMS for storing and retrieving the sensor metadata

and measurement values.

For the alternative raw data transmission path, a stand-alone Java server application

is responsible. It has to store the received values in the same database as the SOS server

does.

Now an external web client can connect to the SOS and use OGC-compliant requests

5. Concept 40

Mobile phone

Java ME

MIDP

CLDC

Sensor client
application

GPS
receiver

Bluetooth /
integrated

Sensor Observation
Service (SOS)

Apache Tomcat

J2EE/JSP

SOS
application

Oracle
RDBMS

JDBC
connector

InsertObservation
O&M XML

data (HTTP)

Web client

SensorML
and O&M

Java
TCP/UDP

server
application

JD
B

C
connector

Encrypted
raw data

(TCP/UDP)

or

Figure 5.1.: Application structure

to fetch server and sensor metadata or measurements, or also insert new sensors or

observations into the web service.

5.3. XML parser & generator

One critical question concerning the architecture of the implementation was the choice

of a way to access XML in Java. As pre-generated classes are easier to handle than

manually interpreting the XML markup tags, we first tried to feed the JAXB compiler

with the SOS XSD schemas. Unfortunately, xjc failed with critizising that several

elements were defined repeatedly, presumably due to faulty interdependencies of the

schema definitions. With manually correcting the mentioned XSD files, a re-run of the

compiler resulted in similar failures at other locations. Correcting these for three further

dependency levels without success, the binding approach was dropped.

5. Concept 41

Additionally, a performance comparison resulted in DOM being 20% faster on average

than JAXB [21]. As the incoming XML requests for the SOS are not very large-sized

and therefore their tree representation does not consume much memory, the DOM ap-

proach was favored over SAX since this allows easier access to the content during the

implementation. Due to SAX not being able to create XML which is needed for the SOS

responses, DOM enables us to have the same API in both directions.

5.4. OGC-specific quirks

This section describes how the OGC standards were utilized to cope with mobile sensors,

which constraints result from that, and which other improvements were made.

5.4.1. Enabling mobile sensors

In the basics section, the OGC nomenclature was introduced which already indicates

that the standards were primarily defined for stationary (also called “in-situ”) sensors.

Here we describe how we accommodate mobile sensors into the OGC standards, without

violating their compliance.

A major problem for coping with mobile sensors is the lack of a function that allows

to update the position information. As mentioned before, the DescribeSensor SensorML

response normally returns the sensor location which the server got once during the initial

sensor publication in the RegisterSensor request. Instead of implementing an additional

UpdateSensor operation, which is not part of the standard so far, our approach is to

transmit the mobile sensor’s current position inside the “feature of interest” of an Inser-

tObservation request. In the GetObservation O&M response, the location parameters

(latitude, longitude, altitude) are treated as phenomena and listed together with the

other sensor measurements. By replacing the registered position with the most recent

5. Concept 42

one during a DescribeSensor request, the response stays fully compliant in terms of XSD

schema validation.

If a client of the 52◦ North SOS wants to track a mobile sensor’s position over a specific

period, it has to invoke lots of DescribeSensor requests. For all points in time during

that period, the according position must be requested individually. The advantage of

our approach is that due to declaring the position parameters as phenomena, we enable

the client to request the whole track with only one GetObservation request. This also

enables an easy usage of temporal and spatial filters.

Feature of interest

The “feature of interest” (FOI) brings the same problems with it as the proposed “do-

main feature” extension for the 52◦ North server does, because the sensor not necessarily

knows if it is currently above a lake, a forest, etc. Using mobile phones as sensors, the

phone owner could be the FOI with measuring his heart beat via a Bluetooth arm wrist.

Also the underground of the owner may be an FOI: if he is moving on a bicycle, the

phone’s acceleration sensor may be employed to register pot-holes in the road. The detec-

tion of the current road would require further intelligence by employing a map-matching

algorithm.

Whether the sensor or the server determining the current FOI, in both cases there

arises the problem that if the mobile sensor passes a lot of different FOIs during its tour,

this would heavily bloat up the GetCapabilities document, as they are all listed inhere

for each sensor. Thus the decision was made to set the “feature of interest” equal to the

procedure, that is the sensor ID. If there should arise a need for a different FOI later on,

this is implementable without big effort by adding an additional column to the sensors

or measurements database table.

5. Concept 43

Observation offering

A further ambiguous situation arises with the “observation offering”, that combines

several related measurements into a group and which is the first required parameter

in the GetObservation request. There are different criteria for the grouping and they

are mostly dependent on the intended use of the measurements. The 52◦ North server

for example defines offerings equal to the phenomena. This facilitates the request of

attributes like temperature or wind speed over a large area that contains many sensors.

But if a client wants to receive all measurements of a specific sensor/procedure, it has

to send multiple requests, one for each phenomenon. A different choice is to set the

offerings equal to the procedures. This allows an easy retrieval of all phenomena for a

specific sensor, but on the other hand it requires multiple requests if the client needs the

temperatures of a large area containing several sensors.

As the ESS sensor template document suggests to choose the latter variant [7, p. 16],

our implementation will also use the procedure as the offering.

5.4.2. Further modifications

The following restriction was already indicated in the SensorML section. As we only

want to cope with physical sensors, we assume that the sensor inputs are always equal

to the outputs. This reduces the database structure in which the sensor metadata is

stored.

Officially, the timePosition parameter in the GetObservation request only allows to

contain an ISO 8601 timestamp for requesting observations of a certain point in time.

Inspired by the 52◦ North implementation, a special latest keyword should allow to

request the newest measurement of a specific sensor. This is useful for obtaining the last

known sensor position, including the related values for all its phenomena.

Despite the standardization, there are two different methods for indicating the current

5. Concept 44

sensor location. In the InsertObservation example of the OGC SOS standard, the posi-

tion is stored in the result section, thus being a phenomenon. The 52◦ North examples

as well as the IMEGO template put the position into the “feature of interest” section.

As we want to stick with the IMEGO template, we also chose the second alternative.

5.5. Database

The database will run on a different machine than the servlet container does. This should

result in a higher performance of the whole system, as each machine can use the full

power for its dedicated function. Also due to the costly license of the Oracle RDBMS,

one dedicated database machine where multiple application servers can connect to is

preferable.

For facilitating the implementation of the spatial filters, which are needed to query

sensors that are located within a specific area, the positions must be stored as spatial

geometries. Further this enables us to visualize the sensor locations with the uDig GIS

for validation purposes.

5.6. Raw sensor data transmission

As the alternative path of transferring raw sensor data from the mobile phone via UDP or

TCP to a Java server application should use encryption, we have to select an encryption

algorithm and find a method for employing user-dependent encryption keys.

The JSR 177 implements a subset of the “Java Cryptographic Extension” (JCE)1.

It contains symmetric (DES, AES) and asymmetric (RSA) cryptographic algorithms as

well as hash functions (MD5, SHA-1) and digital signatures. [13, p. 11]

1http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

http://java.sun.com/javase/6/docs/technotes/guides/security/crypto/CryptoSpec.html

5. Concept 45

To avoid the effort for deploying individual keys for each mobile phone, which would

be needed for an asymmetric encryption, we decided to use a symmetric one. The idea is

that the mobile phone user enters a password, which is then used as the encryption key

for the data that he wants to send to the server. As we want to have a user-dependent

encryption, a unique user ID is needed. For that, the IMEI number of the mobile phone

shall be used. The server which receives the encrypted package uses the IMEI to fetch

the user’s password from the database, with which it can decrypt the data again.

From a security-related view, it is a bad idea to store the plain passwords in the

database, as someone who gets access to the database server could easily fetch the

user’s passwords. Therefore only their hash values should be stored. This also has the

advantage that due to the design of the hash functions, the effective encryption key

always has the same length. As the cryptographic algorithms need a minimum key

length of 56 bit for DES – which is not given if the user enters a password that consists

of only 4 characters – the fixed 128 bit length of MD5 and the 160 bit of SHA-1 are on

the safe side.

So the whole data package which the mobile phone sends to the server consists of the

unencrypted IMEI and the number of measurements, followed by the encrypted location

and the measurement values. A visualization of this concept can be seen in figure 5.2.

The number of measurements is needed for letting the server know the real length of

the encrypted data. This is due to the cryptographic algorithms working with blocks of

a fixed size. If the data which should be encrypted does not match the block size, it is

filled up to reach the block size. This procedure is called padding.

Since the transmitted data does not contain the names of the phenomena, which are

needed to store the measurements in the same database as the SOS uses, the server must

be configurable so that the operator can specify them.

5. Concept 46

Password
test123

Password hash = DES key
7288edd0fc3ffcbe93a0cf06e3568e28521687bc

Plain data packet
● IMEI
● Number of
 measurements
● Latitude
● Longitude
● Altitude
● Measurement 1
● Measurement 2

356983015773416
2

50.7801
7.1826
59.0
25.2
21.3

Partially encrypted data packet
● IMEI
● Number of
 measurements
● Latitude
● Longitude
● Altitude
● Measurement 1
● Measurement 2

356983015773416
2

DES

Encry
pted

Figure 5.2.: Encryption in raw data transmission

6. Implementation

In this section, the implementation of the main SOS web servlet with its crucial func-

tions is described, together with the underlying database. Subsequently the raw data

transmission client/server applications follow as well as the performance testing client

and a tool for importing existing data.

6.1. SOS servlet

The servlet that implements the Sensor Observation Service consists of two packages,

from which one contains the implementation itself and the other contains classes that

serve as data storage for the SOS operations and their requests and responses. An UML

diagram of the package containing the core SOS classes is depicted in figure 6.1.

47

6.
Im

plem
entation

48

Figure 6.1.: SOS main package UML diagram

6. Implementation 49

6.1.1. Main class

The init method is mandatory for every servlet. It is executed if the servlet is deployed

to the server, and every time again when the server is restarted. In our implementation

it initializes the Java Logger API which is used to output the servlet startup parameters

and to print out warnings if a failure occurs. Using the Properties class, server settings

like the database address and login parameters can be read from a file and easily be

changed, without the need of re-compiling or re-deploying the servlet. Further the

DOM document builder is initialized for parsing incoming requests and for creating

the outgoing responses, and the database connection is opened. If the latter fails, the

servlet falls back to a dummy database. This ensures that the server still boots up on a

DB connection failure, being able to respond to incoming client requests. The dummy

database will also be useful for doing white box tests later on.

As it was described in the basics SOS chapter, the requests may be done using the

HTTP GET or POST operations. We find both of them again as functions of the Java

servlet specification (doGet and doPost).

Since GET only must be supported by the GetCapabilities operation, and GetCa-

pabilities does not need any further parameters, the content of doGet is pretty short:

the request is checked for the service and request parameters that are appended to the

URL, and which must be equal to SOS and GetCapabilities. If correct, the capabilities

document is returned, otherwise the client gets an ExceptionReport.

The doPost method is more complex as there is an incoming XML document that

needs to be parsed. A setting in the properties file declares, if the document shall undergo

a schema validation in addition to the mandatory check for well-formedness. The schema

validation has the advantage of making the servlet more robust against invalid incoming

requests, at the cost of performance and response time. Normally, the validator retrieves

the locations of the needed XSD schema documents from the header of the incoming

6. Implementation 50

XML request. Then it fetches them, together with their further dependencies, and

executes the validation. This leads to a further slowdown, as the external servers which

host the documents – in our case the OGC servers – also need time for transmitting

them over the net. To eliminate this bottleneck, the EntityResolver is used. It can

manipulate the communication between the parser and external entities by overwriting

the resolveEntity method [2, p. 282]. Figuratively, this can be seen as a search &

replace function. In our implementation, it replaces the links to the external schema

definition files with ones that are cached locally in a sub-directory of the server. Aside

from the performance improvement, this allows it to run the SOS in a local network

without an internet connection, and also keeps it running if the OGC servers should

have a breakdown.

After the parsing, we check for the root element of the incoming document to deter-

mine the requested SOS operation. Basically, the handling of each operation follows the

same procedure. First we pick out the required parameters of the request, use them for

querying the database and finally wrap the database response into the corresponding

OGC-conform XML document, which is then returned to the client. The detailed pro-

cessing will be described in the appropriate sub-classes of the servlet. If there should

occur an error in one of them, the servlet will send an ExceptionReport as the response.

6.1.2. XML parsing

The actual handling of the incoming XML request is done in the XmlOperationFactory

class. Basically, it is the same for each of the SOS operations: first we check for the

existence of the required attributes of the root element, from which the service="SOS"

and version="1.0.0" attributes are mandatory.

Then we look for the presence of every needed markup tag – punishing missing ones

by returning an exception – climbing down each branch of the DOM tree to the level

6. Implementation 51

of the actual text content. This is then either directly stored in an instance of the data

storage classes or pre-processed before, if necessary.

One of the situations where we need further pre-processing of the input data is if

an ISO 8601 timestamp occurs, like in the GetObservation request. For converting the

timestamp into a Java Date object, an external class is used. It is called TimeParser

and originates from the Fosstrak1 project of the ETH Zurich.

6.1.3. XML generation

The generation of the response XML is done in the XmlGenerator class in a top-down

way similar to the parsing. First, the root element that defines the document type is

created, together with its required attributes and the employed namespaces. Then the

further branches are created node by node. Their dynamic content is fetched from the

appropriate instances of the data container classes which have previously been filled with

database content.

6.1.4. Database access

In the OracleSensorFactory, the first function initializes the connection to the database

by using the properties from the main program. Further there are methods that corre-

spond to the SOS operations, which fetch data from or insert data into the database.

They use the parsed input parameters of the request to query the database, and its

response data is put into data storage objects again, which feed the XML generator.

If there are several web clients connecting simultaneously to the SOS, this induces

the servlet container to create multiple threads of the doPost method from the main

class. As we only use one database connection, we have to surround all further database

queries with the synchronize keyword.

1http://www.fosstrak.org/

http://www.fosstrak.org/

6. Implementation 52

Statement vs PreparedStatement

Another important point is to use the PreparedStatement object instead of the Statement

for executing SQL queries with dynamic parameters. To explain their difference, we first

give examples of both methods in the listings 6.1 and 6.2.

public void sampleFunction(String uName) {

ResultSet rs;

Statement stmt = conn.createStatement ();

rs = stmt.executeQuery(

"SELECT * FROM users WHERE uname = ’" + uName + "’"

);

// do result processing here

rs.close ();

stmt.close ();

}

Listing 6.1: Sample java.sql.Statement

public void sampleFunction(String uName) {

ResultSet rs;

PreparedStatement pstmt = conn.prepareStatement(

"SELECT * FROM users WHERE uname = ?"

);

pstmt.setString (1, uName);

rs = pstmt.executeQuery ();

// do result processing here

rs.close ();

pstmt.close ();

}

Listing 6.2: Sample java.sql.PreparedStatement

6. Implementation 53

In the Statement example, the username parameter is directly concatenated to the

main SQL query. This has the disadvantage that a malicious client could specify a mal-

formed user name to modify the actual SQL query. By passing the string alice’;DROP

TABLE users; -- as the user name to the function, the final statement reads SELECT

* FROM users WHERE uname = ’alice’;DROP TABLE users; --’. This has the effect

that after the real SQL command, another one is executed which deletes the whole user

table. This attack is known as SQL injection. The setter method of the PreparedState-

ment in contrast checks the input parameters for malicious content to avoid such kind

of manipulations. [12, p. 160]

Another advantage of this alternative is its superior performance, if the same statement

is executed multiple times with varying parameters. For each Statement, the JDBC

driver has to check its correctness and build an execution plan, before actually executing

it. Using a PreparedStatement, this only has to be done once during the first execution.

Afterwards the object knows that the SQL query is fixed, and only its parameters change.

[22, p. 562]

Batching

Another performance improvement is available only for queries that write data into the

database. It is called batching and a part of the JDBC 2.0 specification. Instead of

sending insert queries one by one to the database, they are collected and sent together

in a package. The Oracle JDBC driver implements its own batching aside from the

standard JDBC batching. It only works for the PreparedStatement by configuring it

with ((OraclePreparedStatement)pstmt).setExecuteBatch(int arg0) where arg0

specifies how many queries should be collected before they are sent to the server. [3, p.

442]

The disadvantage of this method is, that it first destroys the real-time of the SOS

6. Implementation 54

since it can take a lot of time until the specified amount of queries is reached, depending

on the number of sensors and their activity. Second, a problem with the referential

integrity arises. If a query is batched and not inserted into the database so far, a second

sub-query that relies on data of the previous one may result in an error. To resolve

this issue a stored procedure was written, which is a function that is executed on the

database side and contains the main query with all required sub-queries in our case.

For the JDBC client, it appears as one database function. But as we tried to batch

this custom function, this resulted in a BatchException whose cause we were not able

to track down. The final solution was to disable the referential integrity of the affected

database tables and to manually care for the validity of the sub-queries on batching.

Instead of waiting for the number of batched queries to be reached, it is possible

to explicitly induce them to be sent. This is done with the sendBatch() method of

the OraclePreparedStatement. In our case it is executed in the function that closes the

database connection on server shutdown.

6.2. Oracle database

The database layout was created with the Oracle SQL Developer Data Modeler under

consideration of the database normalization criteria to avoid redundancies. An overview

of the tables in form of an ER-diagram is shown in figure 6.2.

In the sensors table, the mandatory sensor ID and its optional metadata are saved.

A foreign key from the users table can specify, which user is responsible for the sensor.

In sensorphenomena, all phenomena are stored, with each of them referencing to their

appropriate unit of measurement from the units table. The purpose of the sensspmapping

table is to map an individual number of phenomena to each sensor.

For storing the observations, the measurements table was created. It must contain the

sensor ID which it was received from, and the corresponding timestamp. The position

6. Implementation 55

mvalues

P * mvid INTEGER
F * mid INTEGER
 * mvalue VARCHAR2 (50)
F * spid INTEGER

mvalues_PK

sensorphenomena

P * spid INTEGER
U * urn VARCHAR2 (50)
 * description VARCHAR2 (50)
F * unid INTEGER

sensorphenomena_PK
sensorphenomena__UN

sensspmapping

P * sspmid INTEGER
F * sid INTEGER
F * spid INTEGER

sensspmapping_PK

units

P * unid INTEGER
U * unit VARCHAR2 (50)
 description VARCHAR2 (50)

units_PK
units__UN

users

P * usid INTEGER
 * uname VARCHAR2 (20)
 password CHAR (40)

users_PK

measurements

P * mid INTEGER
F * sid INTEGER
 * datetime TIMESTAMP (0) WITH TIME ZONE
 position SDO_GEOMETRY

measurements_PK

sensors

P * sid INTEGER
U * urn VARCHAR2 (128)
 description VARCHAR2 (50)
 manufacturer VARCHAR2 (50)
 modelnumber VARCHAR2 (50)
U serialnumber VARCHAR2 (50)
F usid INTEGER

sensors_PK
sensors__UNurn
sensors__UNser

Figure 6.2.: Entity relationship diagram of the database layout

is contained in a spatial geometry for which a spatial index was created. As the number

of measurement results may vary for each observation, they are stored in the additional

table mvalues, which also have a mapping to their appropriate sensorphenomena entries.

6. Implementation 56

The measurement values are stored as strings without distinguishing between data types

like integer, float, etc. This facilitates the storage, and as the input and output of the

SOS are always XML text documents, a differentiation is unnecessary.

During the implementation of the spatial filter queries it was observed that in spite of

using a spatial index, the response time was pretty long. If directly executing the spatial

queries on the database, we sometimes received Java exceptions if invalid parameters

were used. This deduces that the spatial extension of the Oracle RDBMS is – in opposite

to the database core – written in Java, which may be the cause of the response delay.

So the spatial operator that is needed to select sensors within a certain area is only used

for areas which are defined as polygons. In the GetCapabilities request, the accordant

filter is defined by the OGC keyword Contains. If instead the BBOX filter for a rect-

angular bounding box is used, we perform a manual range comparison of the specified

coordinates, instead of using the slower functions of the Oracle Spatial extension.

6.3. Java ME phone client

The mobile phone application for the raw sensor data transmission was written in Java

ME. Figure 6.3 shows the UML diagram of its classes.

In the Positioning class, the location listener of the JSR 179 (Location API) is imple-

mented, configured to retrieve a new location every second. It triggers the processing

of the whole application, as with each received coordinate, a data packet has to be sent

to the server. The new location with its corresponding timestamp are handed over to

the root class GPSSensorMIDlet where they are supplied with two random numbers

that demonstrate the measurements. Later on, they can be replaced with real measure-

ments, like ones from the accelerometers in the phone which are accessible via the JSR

256 (Sensor API).

The aforementioned data is then delivered to the Encryption class. Inhere, the

6. Implementation 57

Figure 6.3.: Mobile client UML diagram

getSha1 function calculates the SHA-1 hash value from the user’s custom password

by using the MessageDigest from the JSR 177 (SATSA-CRYPTO). The EncryptData

method takes the whole data and the password hash and performs the DES encryption.

From our password hash, only the first 8 characters are used because the encryption

key must have this fixed length (56 bit DES key + parity). As the encryption function

doFinal only takes byte arrays as the input, our data values have first to be converted

and concatenated into one byte array. After the encryption, the result is returned to

the main class.

Here, the network transmission function of the UDPNetwork class is invoked that

needs the encrypted byte array, the number of measurements and the phone’s serial

6. Implementation 58

number (IMEI) as input parameters. Normally the IMEI should be obtainable by invok-

ing a System.getProperty call, but this did not work on our Nokia phones. Therefore

it is currently stored as a fixed value and has later on to be entered manually by the

user. The three values are concatenated into one byte array again, and then sent as an

UDP datagram to the server.

Very similar classes exist for the other two transmission paths, namely TCP and

HTTP, which are not shown in the UML diagram for brevity. The difference of the

HTTP class is that it does not use encryption. It stores the static XML code of an

InsertObservation request as a String and only completes the dynamic parts with the

content of the appropriate variables.

The MainScreen class handles the visualization of the mobile phone display. It cur-

rently rather serves as a debug screen, as it displays the current position of the phone

and the random measurement values. Further it is possible to toggle the network trans-

mission, and of course, to exit the program.

6.4. Java TCP/UDP server

The structure of the server side application for the raw data transmission is depicted in

figure 6.4.

In the ServerRunner class the main function is contained, which first processes the

command line parameters. These are the names of the phenomena, which the the server

requires to map the measurements from the mobile phone to SOS phenomena. This

enables us to store them in the same database as the SOS uses. For saving database

queries, the definition of the phenomena is implemented on a per-server basis, not per-

client. This means that one server instance is only able to receive measurements from

clients that measure the same phenomena.

Next, the database connection is initiated. The storePosition function of the

6. Implementation 59

Figure 6.4.: TCP/UDP server UML diagram

DatabaseAccess class is very similar to the InsertObservation method from the Or-

acleSensorFactory of the SOS implementation. It also uses PreparedStatements and

batching, so that it is possible to do a fair performance comparison with the SOS later

on. An additional function is needed here to fetch the user’s password hash from the

database, which is dependent on the IMEI sent with the measurements. To avoid the

need of querying the database again and again for the same hash with each incoming

data packet, the IMEI-to-hash mapping is cached in a Java HashMap.

Finally, the actual server thread – an instance of the UDPServer class – starts and

listens for incoming network data. The received datagram packets are handled inversely

to the mobile client, by first separating the plain data (IMEI and number of measure-

ments) from the encrypted part. After decrypting the data by employing the Crypto

class, the resulting byte array is split and casted into the proper data types, which then

are written to the database. If the client used the wrong password for encryption, this

results in a crypto exception and the packet will be discarded. The same happens, if the

6. Implementation 60

database does not know the specified IMEI.

An additional writeToDB Boolean setting in the server application allows to disable

the call of the storePosition function. This is later on useful for doing white box tests,

where we want to benchmark the server application independently of the database. For

knowing how many UDP packets the server was actually able to handle, their quantity

is counted and printed on the screen on server shutdown. This can then be compared

with the number of packets which one or more clients have sent.

Initially the server was implemented to only work with UDP networking. Subse-

quently, it was extended to also support TCP by cloning the UDPServer class to

TCPServer and modifying the appropriate network functions. An additional command

line parameter was inserted for selecting the server type, which must be specified prior

to the phenomena.

6.5. Java test client

As the Java ME emulators simulate whole mobile phones, they have a long start-up time

and need a lot of resources (memory and processing power). This is especially a drawback

if we want to simulate many mobile clients in parallel for determining the server’s limits.

Therefore we extracted the network and encryption code from the Java ME client to

build a standalone Java testing application (figure 6.5), which is also capable of starting

multiple threads in parallel to simulate a large number of clients.

The configuration of the test client is done via command line parameters for the main

class CommandLineTest. First, the type of connection is specified: http for connecting

to our SOS, udp or tcp for testing the raw data transmission, and http52n for executing a

comparison with the 52◦ North implementation. It requires a different test as our SOS,

since the 52◦ North server only allows the insertion of one measurement per second.

Therefore we have to generate unique timestamps.

6. Implementation 61

Figure 6.5.: Test client UML diagram

Further parameters are the number of threads that should run in parallel, from which

each of them simulates a client. Next, the number of cycles per thread is specified,

which indicates how many requests every thread sends to the server. The last parameter

defines the maximum duration that a cycle may take. This can be compared to a soft

real-time system, where we do not want to exceed a certain time range. If such an

exceeding occurs, we are logging this as a failure.

In the NetThread class, the actual requests are performed. For the location we use

fixed values, the timestamp is equal to the current system time and the measurements

contain the number of concurrent threads. Latter is useful for determining, how many

data packets of each test run actually reached the database, as package losses in the UDP

transmission are not detectable otherwise. For the UDP/TCP testing, the encryption

method is directly taken from the Java ME mobile client. The HTTP test uses static

XML of the InsertObservation request which is directly embedded into the source code,

and only replaces the measurements and timestamp with variables.

6. Implementation 62

For each cycle, the whole time from the request until the response is measured. If it is

below the specified maximum duration, a Thread.sleep is performed for the remaining

time. As we often had duration exceedings during the first cycle of each thread, a ramp-

up period was implemented that does 5 requests before the actual measurements begin.

In the UDP case there is no response from the server, so we always execute a sleep of

the maximum duration.

If the test client is finished, the result is printed to the console. It outputs the number

of threads that were used, the average duration of each request, the number of total

requests, the number of duration exceedings and the number of connection failures,

where we got an exception from the connection object.

For doing multiple tests with varying parameters, a shell script for Linux and a batch

file for Windows were written, which call the Java test client repeatedly.

To perform a JDBC performance test, which is useful to evaluate the different JDBC

drivers and the benefits of batching, the small CmdDBTest class was written. It instanti-

ates the DatabaseAccess class from the UDP server application, and does a configurable

number of storePosition calls for inserting observations into the database. Afterwards,

the number of insertions and the time that was needed for them is printed out to the

console.

6.6. CSV import tool

During the current proof of concept phase of the ESS project, the data which the sensors

produce is stored in CSV files. For later on being able to access this data using our SOS,

an import tool was written. In a neighboring project, the locations of geo-tagged Flickr

photos should be visualized, with the appropriate data already available in one big CSV

file. So this file was used as testing input for the import tool. One entry of the file

consists of location, timestamp, picture description and picture URL.

6. Implementation 63

The CSV file name is specified as a command line parameter, and it is then read with

the Super Csv library2 line by line. As in the Java test client, the InsertObservation

XML request is contained in the source code, and the dynamic values are read from

variables which the CSV reader has filled with content. The description and the URL

of the photo are handled as textual measurement values. Finally, the request is sent via

HTTP to the SOS.

2http://supercsv.sourceforge.net/

http://supercsv.sourceforge.net/

7. Tests & results

In this section, the tests that evaluate the functionality and the performance of our

implementation are described, together with their results.

7.1. Test environment

The server on which the SOS and alternately the Java server applications were running

consists of an Intel Core2Duo E8400 (3.00GHz) CPU, with 4GB of RAM and a 500GB

hard disk drive. On the software side, we employed Ubuntu Linux 9.10 in the 64 bit

edition as the operating system, with Linux Kernel version 2.6.31. The servlet container

was an Apache Tomcat 6.0.26 with APR enabled and TC native 1.1.20. Being based on

the Tomcat’s standard configuration, we modified its Java runtime settings, allowing it

to use more memory by setting the environment variable CATALINA OPTS="-Xms1024m

-Xmx3072m". Also, the maximum number of threads was increased in the server.xml file

(maxThreads="2000").

On a different machine, the Oracle 11g R2 database was running, with the exact

version string being “Oracle Database 11g Release 11.2.0.1.0 - 64bit”. Its operating

system was Debian Linux 5.0.4 (64 bit, Kernel 2.6.26) on a machine that consists of an

Intel Core2Duo E8400 with 8GB RAM and 250GB HDD. In the Java server applications,

the Oracle JDBC Thin driver 11.2.0.1.0 was used to connect to the database.

A third machine was used to execute the test clients. It was an Intel Pentium D CPU

64

7. Tests & results 65

with 3.00GHz, with 2GB RAM and 250GB HDD, running Debian Linux 4.1.1 (64 bit,

Kernel 2.6.19).

7.2. Functionality test

For testing and verifying the functionality of our SOS, an already existent client from

the ESS project was used, which initially was made for testing the IMEGO sensor

templates with the 52◦ North implementation. It first publishes a new sensor using the

RegisterSensor operation, and then checks its availability via GetCapabilities, followed

by a DescribeSensor request. Then an InsertObservation is made for this sensor, which

afterwards is verified by invoking the GetObservation operation.

The test client is either runnable as a JUnit test, or as a stand-alone command line

application. Its requests are read from pre-made XML files, in which only changing parts

like the sensor and observation IDs are replaced. Unfortunately, most of these files did

not pass the XML schema validation, for which reason they were corrected to be fully

OGC-compliant.

A run of the test client was successful for all aforementioned operations but the GetO-

bservation request. This is due to the client expecting an om:ObservationCollection as

the response, but our SOS sends the observation in om:Observation format, with the

more compact swe:DataArray representation of the results.

7.3. Performance tests

The performance tests are dividable into two groups. In a black box test, the whole sys-

tem is benchmarked, without a focus on its individual components. The white box tests

in contrast analyze the system’s elements seperately, being in our case the performance

of the web server and that of the database.

7. Tests & results 66

7.3.1. Black box

For doing HTTP performance tests, there are tools like the Apache JMeter 1 which is

written in Java and the Apache HTTP server benchmarking tool2 (abbreviated ab) as

a C application. According to [5, p. 129], ab is able to perform more requests per

second than JMeter, for which reason the former should be preferred. The same source

also advises to start the load testing tool on a different machine than the web server is

running on.

As these tools are only suitable for performing HTTP load tests, we cannot use them

to compare the performance of our SOS implementation to the raw data transmission,

but for benchmarking the SOS separately. For making a comparison, the own Java test

client was implemented.

Apache Benchmark

The ab tool was used in version 2.0.40-dev for performing InsertObservation requests

on our SOS implementation, with each observation containing two phenomena. It was

configured to do 100 concurrent requests and 10000 requests in total (the corresponding

command line parameters are -c 100 and -n 10000). The server was started in varying

configurations by toggling the schema validation and the batching, which was set to 500

queries. Each test configuration was benchmarked 5 times, from which we picked the

best result. An overview of the configurations and the test results is shown in table 7.1.

From the results we can see that the schema validation has a huge impact on the

performance: with batching disabled, turning off the validation improved the throughput

by a factor of 4.5, with batching enabled we even got an improvement by factor 88.

Looking at the batching option on activated schema validation, we get a small slow-

1http://jakarta.apache.org/jmeter/
2http://httpd.apache.org/docs/2.2/programs/ab.html

http://jakarta.apache.org/jmeter/
http://httpd.apache.org/docs/2.2/programs/ab.html

7. Tests & results 67

validation batching requests/s

on off 32.86

off off 150.47

on on 23.19

off on 2041.67

Table 7.1.: Apache HTTP server benchmarking tool black box test

down if batching is enabled. At this low throughput rate, this is presumably due to the

higher administrative effort that the JDBC driver needs to cache the queries. But if the

schema validation is disabled, the activation of batching causes a speedup of factor 13.5.

Regrettably we were not able to use the Apache benchmark tool on the 52◦ North

implementation, as the server only accepts one observation per second for each sensor,

and the ab tool cannot modify the content of the input XML file, allowing us to specify

dynamic sensor IDs and timestamps.

Java test client

The Java test client was started multiple times with varying parameters, by using a

shell script as it was introduced in the implementation chapter. In the first run, the

number of threads was increased in steps of 50 until reaching 2000 concurrent threads.

Every thread did 10 InsertObservation requests one after another, from which each of

them was allowed to have a maximum duration of one second, as this is the common

interval in which GPS devices update the position. This test was done for all the 4 SOS

configuration combinations (enabling/disabling batching and schema validation) and for

the TCP and UDP raw data transmissions, which always have batching enabled on the

server side. The average duration of a request for each of the transmission options is

depicted in figure 7.1.

7. Tests & results 68

Figure 7.1.: Java test client throughput results

In the case that a single request needed more than one second in one of the connection-

oriented protocols (HTTP & TCP), violating our “real-time” constraints, this was

counted as a duration failure (figure 7.2). This means that the data has correctly been

received and stored in the database, but not in time. As the test client does not receive a

response from a sent UDP datagram, this connection type cannot be incorporated here.

If the server could not handle the request at all, resulting in an exception or in the

case of UDP, if the datagram content was afterwards not findable in the database, this

was counted as a connection failure. In opposite to the duration failures, here the data

is lost. The count of these failures is shown in figure 7.3.

7. Tests & results 69

Figure 7.2.: Java test client duration failures

Looking at the different SOS configurations, the test confirms the results of the pre-

vious Apache benchmarking tool. With schema validation activated and the batching

option not significantly causing a difference, the server completely fails at doing more

than 150 threads in parallel. In the Tomcat log file there were out of memory errors, as

the server cache fills up with more incoming requests than it is able to process.

With schema validation and batching both turned off, the first timing constraint

failures also occur at 150 threads, but there were no memory errors and the server still

kept up at 700 threads. Then the first connection failures begin to occur.

The most performant SOS configuration is the one with schema validation turned off

7. Tests & results 70

Figure 7.3.: Java test client connection failures

and batching enabled. First duration failures occur at about 1000 concurrent threads

and slowly start to raise until 1900 threads, where we have an increasing slope and also

the first connection failures. This number is also not far distanced from the maximum

of 2000 requests per second from the Apache benchmark.

A comparison with the 52◦ North SOS shows that its first duration failures occur at

about 800 threads in parallel, and a high number of connection failures starts at 1200

threads. This lies half the way in between the two options of batching enabled and

disabled of our implementation, with both having schema validation deactivated.

Switching over to the raw data transmission, the first TCP duration failures already

7. Tests & results 71

occur very early, but raise with a low slope and there are only marginal connection

failures up to 2000 threads.

The UDP transmission has the first connection failures at a number of 1900 concurrent

threads, having the disadvantage in opposite to the TCP protocol that lost packages are

not resent.

To answer the initial question on the overhead that the SOS InsertObservation XML

request via HTTP causes over a raw data transmission, we can conclude that depending

on the server configuration, it does not make a big difference. Since with UDP a packet

loss is not detectable for the server, only TCP would be a reliable option. In this

case, the response time was even higher than with the fastest configuration of our SOS

implementation. This is presumably due to the high optimization level of the Tomcat

implementation and its multi-threading architecture, that our raw data Java server is

missing.

7.3.2. White box

Already during the implementation phase, some of the white box tests were done to

detect performance bottlenecks. The Eclipse IDE offers an extension called “Eclipse

Test & Performance Tools Platform Project” (TPTP) which includes a profiler. It

measures execution time and memory consumption of an application and afterwards

visualizes the resulting values top-down from the project’s Java classes to its functions.

The profiler led us to the insight that the schema validation and the JDBC functions

needed the most processing time, for which reason the option to disable the validation

was implemented and further database tests and optimizations (batching) were done.

7. Tests & results 72

Web server

For separately measuring the performance of the SOS implementation, the database

functionality was deactivated and the corresponding classes were replaced by a dummy

database class, as it was mentioned in the implementation chapter. As we do not need

a comparison with the raw data transmission here, only the Apache benchmark was

performed. With schema validation enabled, a throughput of about 30 requests per

second was reached. Switching the validation off, the performance resulted in 2280

requests per second. These values are very close-by to the previously executed black

box tests, showing that not database is the bottleneck in the current setup, but the web

server or rather our SOS implementation.

Database

The database and JDBC driver performance was tested by employing the CmdDBTest

test application. It was configured to use batching and to insert 100000 measurements

into the database, each consisting of one entry in the measurements table and two into

the mvalues table. This simulates the same amount of data as we used for the previously

made InsertObservation requests, each containing two phenomena.

Two different Oracle JDBC drivers were tested, namely the Thin driver and the OCI

(Oracle Call Interface) driver. The most significant difference between the drivers is that

the former is completely written in Java while the latter needs an additional library that

is dependent on the operating system which the Java application runs on. This should

in exchange yield to a higher performance.

While the Thin driver needed 32.02s to do the 100000 inserts, the OCI driver did the

same task in 32.69s, being slightly slower. But both results correspond to about 3100

requests per second – a value that outperforms the web server performance, and which

is also higher than all the previous black box test results.

7. Tests & results 73

If an even higher database insertion performance is needed, this can be achieved by

disabling the spatial index of the position column from the measurements table. This

has the drawback of a worse performance on spatial queries that retrieve data from the

database, so it could be configured for only being used temporarily if there is a high

insertion load. Without the index, we achieved 12795 requests per second with the Thin

driver and 12285 when using the OCI.

This shows that in the second case, the OCI driver was even slower than the Thin

driver, resulting in our decision to stay with the Thin driver, as it is also easier to

deploy since it does not need the OS-dependent libraries. Further we learned that the

Oracle Spatial extension – more precisely the spatial index – slowed down the insertion

performance by a factor of 4. Depending on the application scenario of the SOS, if no

spatial filters are needed in the GetObservation request or if a bounding box filter, which

is implemented as a size comparison of latitude and longitude, is sufficient, the spatial

index can be dropped.

7.4. Outdoor test

For being able to perform an outdoor test with the mobile phone sending data to the

SOS, we setup a Tomcat server which is accessible through the Internet. The phone

then sends its position and measurement values via UMTS or GPRS to the SOS servlet.

Having recorded the bus drive to the ESS field test location, the resulting track is shown

in figure 7.4.

The transmission nearly worked without problems, only if there was a dead spot in

the mobile phone network, packets got lost. In the track they are not visible, as the

visualization software interconnects consecutively received locations. To avoid packets

being lost, the implementation could be extended to cache and resend them, which is of

course not possible on UDP raw data transmission.

7. Tests & results 74

Figure 7.4.: Track created during outdoor test

8. Summary & Outlook

The implementation of our Sensor Observation Service has shown the possibility of

enabling mobile sensors in an OGC-compliant manner. The mobility is reached by

handling the positions as measurements and by manipulating the returned data content

(being the current sensor position in the DescribeSensor SensorML response) without

violating or extending the OGC standards. Especially mobile phones were successful

enabled to act as mobile sensors, but also the integration of existing data in CSV format

was possible.

By giving the server administrator the choice of toggling the XML schema validation

and database batching options, we enable him to customize the server configuration

for more performance or more reliability. In the most performant setting, our imple-

mentation even beats the 52◦ North SOS which is often treated as the reference SOS

implementation.

Having setup this fundamental SOS implementation, there is still further space for

improvements. As the implementation was initially made with relying on the schema

validation, it can get weak if the validation option is deactivated and malformed XML

requests are sent by a client.

Further the batching option increases the performance of inserting new observations to

the server, but destroys its real-time capability. To cut down this drawback, a monitoring

thread could be implemented which induces the JDBC driver to commit the current

batch queue at a certain time interval.

75

8. Summary & Outlook 76

As we have also seen to occur in other SOS implementations, the servers stopped

responding if a client requested a very large number of observations. A workaround

could be a limitation of the measurements in the GetObservation response (e.g. 1000

entries) to avoid the server freeze.

For the upcoming SOS 2.0 specification, the XML requests and responses will be put

into SOAP envelopes. There will also be new functions to better cope with mobile

sensors, which may be useful to be contained in our SOS.

Bibliography

[1] Algosystems S.A. Press release at the Start of ESS. http://www.ess-project.

eu/downloads/category/1-press.html, August 2009.

[2] Dirk Ammelburger. XML mit Java. Markt+Technik, 2002.

[3] Donald Bales. Java Programming with Oracle JDBC. O’Reilly Media, 2001.

[4] Mike Botts and Alex Robin. Bringing the sensor web together. Géosciences, 6:46–

53, 2007.

[5] Jason Brittain and Ian F. Darwin. Tomcat: The Definitive Guide. O’Reilly Media,

2007.

[6] Carsten Czarski. Auf den Ort kommt es an: Geodaten-Untersttzung im RDBMS

Oracle. Datenbank-Spektrum, 21:22–29, 2007.

[7] Johannes Echterhoff and Ingo Simonis. ESS WP3 - SWE Template for IMEGO

Sensors, July 2009.

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2616, June 1999.

[9] Kurt A. Gabrick and David B. Weiss. J2EE and XML Development. Manning

Publications Co., 2002.

77

http://www.ess-project.eu/downloads/category/1-press.html
http://www.ess-project.eu/downloads/category/1-press.html

Bibliography 78

[10] Rick Greenwald, Robert Stackowiak, and Jonathan Stern. Oracle Essentials - Oracle

Database 11g. O’Reilly Media, 4th edition, 2007.

[11] Brett D. McLaughlin and Justin Edelson. Java & XML. O’Reilly Media, 3rd

edition, 2006.

[12] R.M. Menon. Expert Oracle JDBC Programming. Apress, 2005.

[13] Nokia Corporation. MIDP: SATSA Crypto API Developer’s Guide Version 2.0,

2006.

[14] Open Geospatial Consortium Inc. OpenGIS Simple Features Implementation Spec-

ification for SQL. OGC 99-049, May 1999.

[15] Open Geospatial Consortium Inc. Observations and Measurements - Part 1 - Ob-

servation schema. OGC 07-022r1, December 2007.

[16] Open Geospatial Consortium Inc. OGC Web Services Common Specification. OGC

06-121r3, February 2007.

[17] Open Geospatial Consortium Inc. OpenGIS Geography Markup Language (GML)

Encoding Standard. OGC 07-036, August 2007.

[18] Open Geospatial Consortium Inc. OpenGIS Sensor Model Language (SensorML)

Implementation Specification. OGC 07-000, July 2007.

[19] Open Geospatial Consortium Inc. Sensor Observation Service. OGC 06-009r6,

October 2007.

[20] Open Geospatial Consortium Inc. Implementations by Specification. http://www.

opengeospatial.org/resource/products/byspec/?specid=289, 2009.

http://www.opengeospatial.org/resource/products/byspec/?specid=289
http://www.opengeospatial.org/resource/products/byspec/?specid=289

Bibliography 79

[21] Dr. Santiago Pericas-Geertsen. DOM vs. JAXB Performance. http://weblogs.

java.net/blog/2005/12/01/dom-vs-jaxb-performance, December 2005.

[22] Jason Price. Oracle Database 11g SQL. McGraw-Hill Osborne Media, 2007.

[23] Christoph Stasch, Arne Bröring, and Alexander C. Walkowski. Providing Mobile

Sensor Data in a Standardized Way – The SOSmobile Web Service Interface. 2008.

[24] Ajay Vohra and Deepak Vohra. Pro XML Development with Java Technology.

Apress, 2006.

http://weblogs.java.net/blog/2005/12/01/dom-vs-jaxb-performance
http://weblogs.java.net/blog/2005/12/01/dom-vs-jaxb-performance

A. SOS XML example documents

GetCapabilities

Request

<?xml version="1.0" encoding="UTF-8"?>

<GetCapabilities xmlns="http://www.opengis.net/sos/1.0"

xmlns:swe="http://www.opengis.net/swe/1.0.1"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/sos/1.0

http://schemas.opengis.net/sos/1.0.0/sosAll.xsd"

service="SOS">

</GetCapabilities>

Response

<?xml version="1.0" encoding="UTF-8"?>

<Capabilities xmlns="http://www.opengis.net/sos/1.0"

xmlns:gml="http://www.opengis.net/gml"

xmlns:ogc="http://www.opengis.net/ogc"

xmlns:om="http://www.opengis.net/om/1.0"

xmlns:ows="http://www.opengis.net/ows/1.1"

xmlns:sml="http://www.opengis.net/sensorML/1.0.1"

xmlns:sos="http://www.opengis.net/sos/1.0"

xmlns:swe="http://www.opengis.net/swe/1.0.1"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/sos/1.0

http://schemas.opengis.net/sos/1.0.0/sosGetCapabilities.xsd"

version="1.0.0">

80

A. SOS XML example documents 81

<ows:ServiceIdentification>

<ows:Title>ESS SOS</ows:Title>

<ows:Abstract>ESS Sensor Observation Service test</ows:Abstract>

<ows:Keywords>

<ows:Keyword>ESS</ows:Keyword>

</ows:Keywords>

<ows:ServiceType codeSpace="http://opengeospatial.net">

OGC:SOS

</ows:ServiceType>

<ows:ServiceTypeVersion>1.0.0</ows:ServiceTypeVersion>

<ows:Fees>NONE</ows:Fees>

<ows:AccessConstraints>NONE</ows:AccessConstraints>

</ows:ServiceIdentification>

<ows:ServiceProvider>

<ows:ProviderName>IAIS</ows:ProviderName>

<ows:ProviderSite xlink:href="http://www.iais.fraunhofer.de/"/>

<ows:ServiceContact>

<ows:IndividualName>Roland Mueller</ows:IndividualName>

<ows:PositionName>MSc student</ows:PositionName>

</ows:ServiceContact>

</ows:ServiceProvider>

<ows:OperationsMetadata>

<ows:Operation name="GetCapabilities">

<ows:DCP>

<ows:HTTP>

<ows:Get xlink:href="http://cherry.iais.fraunhofer.de:8080/ESSSoS/sos?"/>

<ows:Post xlink:href="http://cherry.iais.fraunhofer.de:8080/ESSSoS/sos"/>

</ows:HTTP>

</ows:DCP>

<ows:Parameter name="service">

<ows:AllowedValues>

<ows:Value>SOS</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="updateSequence">

<ows:AnyValue/>

</ows:Parameter>

<ows:Parameter name="AcceptVersions">

<ows:AllowedValues>

<ows:Value>1.0.0</ows:Value>

A. SOS XML example documents 82

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="Sections">

<ows:AllowedValues>

<ows:Value>ServiceIdentification</ows:Value>

<ows:Value>ServiceProvider</ows:Value>

<ows:Value>OperationsMetadata</ows:Value>

<ows:Value>Contents</ows:Value>

<ows:Value>All</ows:Value>

<ows:Value>Filter Capabilities</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="AcceptFormats">

<ows:AllowedValues>

<ows:Value>text/xml</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

</ows:Operation>

<ows:Operation name="GetObservation">

<ows:DCP>

<ows:HTTP>

<ows:Post xlink:href="http://cherry.iais.fraunhofer.de:8080/ESSSoS/sos"/>

</ows:HTTP>

</ows:DCP>

<ows:Parameter name="version">

<ows:AllowedValues>

<ows:Value>1.0.0</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="service">

<ows:AllowedValues>

<ows:Value>SOS</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="srsName">

<ows:AnyValue/>

</ows:Parameter>

<ows:Parameter name="offering">

<ows:AllowedValues>

<ows:Value>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</ows:Value>

A. SOS XML example documents 83

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="eventTime">

<ows:AllowedValues>

<ows:Range>

<ows:MinimumValue>2010-05-05T11:26:35+02:00</ows:MinimumValue>

</ows:Range>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="procedure">

<ows:AllowedValues>

<ows:Value>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="observedProperty">

<ows:AllowedValues>

<ows:Value>urn:ogc:def:property:OGC::AirTemperature</ows:Value>

<ows:Value>urn:ogc:def:property:OGC::AtmosphericPressure</ows:Value>

<ows:Value>urn:ogc:def:property:OGC::RelativeHumidity</ows:Value>

<ows:Value>urn:ogc:def:property:OGC::WindDirection</ows:Value>

<ows:Value>urn:ogc:def:property:OGC::WindSpeed</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="featureOfInterest">

<ows:AnyValue/>

</ows:Parameter>

<ows:Parameter name="result">

<ows:AnyValue/>

</ows:Parameter>

<ows:Parameter name="responseFormat">

<ows:AllowedValues>

<ows:Value>text/xml;subtype=&quot;OM/1.0.0&quot;</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="resultModel">

<ows:AllowedValues>

<ows:Value>om:Observation</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="responseMode">

A. SOS XML example documents 84

<ows:AllowedValues>

<ows:Value>inline</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

</ows:Operation>

<ows:Operation name="DescribeSensor">

<ows:DCP>

<ows:HTTP>

<ows:Post xlink:href="http://cherry.iais.fraunhofer.de:8080/ESSSoS/sos"/>

</ows:HTTP>

</ows:DCP>

<ows:Parameter name="version">

<ows:AllowedValues>

<ows:Value>1.0.0</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="service">

<ows:AllowedValues>

<ows:Value>SOS</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="outputFormat">

<ows:AllowedValues>

<ows:Value>text/xml;subtype=&quot;sensorML/1.0.1&quot;</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="procedure">

<ows:AllowedValues>

<ows:Value>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

</ows:Operation>

<ows:Operation name="GetFeatureOfInterest">

<ows:DCP>

<ows:HTTP>

<ows:Post xlink:href="http://cherry.iais.fraunhofer.de:8080/ESSSoS/sos"/>

</ows:HTTP>

</ows:DCP>

<ows:Parameter name="service">

<ows:AllowedValues>

A. SOS XML example documents 85

<ows:Value>SOS</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="version">

<ows:AllowedValues>

<ows:Value>1.0.0</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="featureOfInterestId">

<ows:AllowedValues>

<ows:Value>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</ows:Value>

</ows:AllowedValues>

</ows:Parameter>

<ows:Parameter name="location">

<ows:AnyValue/>

</ows:Parameter>

</ows:Operation>

</ows:OperationsMetadata>

<sos:Filter Capabilities>

<ogc:Spatial Capabilities>

<ogc:GeometryOperands>

<ogc:GeometryOperand>gml:Envelope</ogc:GeometryOperand>

<ogc:GeometryOperand>gml:Polygon</ogc:GeometryOperand>

<ogc:GeometryOperand>gml:Point</ogc:GeometryOperand>

<ogc:GeometryOperand>gml:LineString</ogc:GeometryOperand>

</ogc:GeometryOperands>

<ogc:SpatialOperators>

<ogc:SpatialOperator name="BBOX"/>

<ogc:SpatialOperator name="Contains"/>

<ogc:SpatialOperator name="Intersects"/>

<ogc:SpatialOperator name="Overlaps"/>

</ogc:SpatialOperators>

</ogc:Spatial Capabilities>

<ogc:Temporal Capabilities>

<ogc:TemporalOperands>

<ogc:TemporalOperand>gml:TimeInstant</ogc:TemporalOperand>

<ogc:TemporalOperand>gml:TimePeriod</ogc:TemporalOperand>

</ogc:TemporalOperands>

<ogc:TemporalOperators>

<ogc:TemporalOperator name="TM During"/>

A. SOS XML example documents 86

<ogc:TemporalOperator name="TM Equals"/>

<ogc:TemporalOperator name="TM After"/>

<ogc:TemporalOperator name="TM Before"/>

</ogc:TemporalOperators>

</ogc:Temporal Capabilities>

<ogc:Scalar Capabilities>

<ogc:ComparisonOperators>

<ogc:ComparisonOperator>Between</ogc:ComparisonOperator>

<ogc:ComparisonOperator>EqualTo</ogc:ComparisonOperator>

<ogc:ComparisonOperator>NotEqualTo</ogc:ComparisonOperator>

<ogc:ComparisonOperator>LessThan</ogc:ComparisonOperator>

<ogc:ComparisonOperator>LessThanEqualTo</ogc:ComparisonOperator>

<ogc:ComparisonOperator>GreaterThan</ogc:ComparisonOperator>

<ogc:ComparisonOperator>GreaterThanEqualTo</ogc:ComparisonOperator>

<ogc:ComparisonOperator>Like</ogc:ComparisonOperator>

</ogc:ComparisonOperators>

</ogc:Scalar Capabilities>

<ogc:Id Capabilities>

<ogc:FID/>

<ogc:EID/>

</ogc:Id Capabilities>

</sos:Filter Capabilities>

<Contents>

<ObservationOfferingList>

<ObservationOffering gml:id="936DA01F-9ABD-4d9d-80C7-02AF85C822A8">

<gml:description>Combines the observations produced by

IMEGO Medium Sized Sensor Module

</gml:description>

<gml:boundedBy>

<gml:Envelope srsName="urn:ogc:def:crs:EPSG:6.14:4979">

<gml:lowerCorner>50.73822 7.11034 50.0</gml:lowerCorner>

<gml:upperCorner>50.73822 7.11034 50.0</gml:upperCorner>

</gml:Envelope>

</gml:boundedBy>

<intendedApplication>weather monitoring</intendedApplication>

<time>

<gml:TimePeriod>

<gml:beginPosition>2010-05-05T11:26:35+02:00</gml:beginPosition>

<gml:endPosition>2010-05-05T11:26:44+02:00</gml:endPosition>

</gml:TimePeriod>

A. SOS XML example documents 87

</time>

<procedure xlink:href="936DA01F-9ABD-4d9d-80C7-02AF85C822A8"/>

<observedProperty>

<swe:CompositePhenomenon dimension="5" gml:id="adHocPhenomenon">

<gml:description>Ad hoc phenomenon - best practice when measuring

multiple properties at the same time for a given feature of interest.

</gml:description>

<gml:name codeSpace="urn:ogc:tc:arch:doc-bp(xx-xxx)">

319C201F-9000-47dd-3258-835169543B9

</gml:name>

<gml:name>ad hoc compound phenomenon</gml:name>

<swe:component xlink:href="urn:ogc:def:property:OGC::AirTemperature"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::AtmosphericPressure"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::RelativeHumidity"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::WindSpeed"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::WindDirection"/>

</swe:CompositePhenomenon>

</observedProperty>

<observedProperty xlink:href="urn:ogc:def:property:OGC::AirTemperature"/>

<observedProperty xlink:href="urn:ogc:def:property:OGC::AtmosphericPressure"/>

<observedProperty xlink:href="urn:ogc:def:property:OGC::RelativeHumidity"/>

<observedProperty xlink:href="urn:ogc:def:property:OGC::WindSpeed"/>

<observedProperty xlink:href="urn:ogc:def:property:OGC::WindDirection"/>

<featureOfInterest xlink:href="936DA01F-9ABD-4d9d-80C7-02AF85C822A8"/>

<responseFormat>text/xml;subtype=&quot;OM/1.0.0&quot;

</responseFormat>

<resultModel>om:Observation</resultModel>

<responseMode>inline</responseMode>

</ObservationOffering>

</ObservationOfferingList>

</Contents>

</Capabilities>

A. SOS XML example documents 88

DescribeSensor

Request

<?xml version="1.0" encoding="ISO-8859-1"?>

<DescribeSensor xmlns="http://www.opengis.net/sos/1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/sos/1.0

http://schemas.opengis.net/sos/1.0.0/sosAll.xsd"

outputFormat="text/xml;subtype="SensorML/1.0.1""

service="SOS" version="1.0.0">

<procedure>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</procedure>

</DescribeSensor>

Response

<?xml version="1.0" encoding="UTF-8"?>

<sml:Component xmlns="http://www.opengis.net/sos/1.0"

xmlns:gml="http://www.opengis.net/gml"

xmlns:ogc="http://www.opengis.net/ogc"

xmlns:om="http://www.opengis.net/om/1.0"

xmlns:ows="http://www.opengeospatial.net/ows"

xmlns:sml="http://www.opengis.net/sensorML/1.0.1"

xmlns:swe="http://www.opengis.net/swe/1.0.1"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/sensorML/1.0.1

http://schemas.opengis.net/sensorML/1.0.1/sensorML.xsd">

<sml:identification>

<sml:IdentifierList>

<sml:identifier name="uniqueID">

<sml:Term definition="urn:ogc:def:identifier:OGC::uniqueID">

<sml:value>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</sml:value>

</sml:Term>

</sml:identifier>

<sml:identifier name="longName">

<sml:Term>

<sml:value>IMEGO Medium Sized Sensor Module</sml:value>

</sml:Term>

A. SOS XML example documents 89

</sml:identifier>

<sml:identifier name="shortName">

<sml:Term>

<sml:value>imego mssm</sml:value>

</sml:Term>

</sml:identifier>

<sml:identifier name="manufacturer">

<sml:Term>

<sml:value>IMEGO</sml:value>

</sml:Term>

</sml:identifier>

<sml:identifier name="operator">

<sml:Term>

<sml:value>rmueller</sml:value>

</sml:Term>

</sml:identifier>

</sml:IdentifierList>

</sml:identification>

<sml:contact>

<sml:ResponsibleParty>

<sml:organizationName>IMEGO</sml:organizationName>

<sml:contactInfo>

<sml:onlineResource xlink:href="http://www.imego.com"/>

</sml:contactInfo>

</sml:ResponsibleParty>

</sml:contact>

<sml:location>

<gml:Point srsName="urn:ogc:def:crs:EPSG:6.14:4979">

<gml:pos>52.0 8.67 50.0</gml:pos>

</gml:Point>

</sml:location>

<sml:inputs>

<sml:InputList>

<sml:input name="time">

<swe:ObservableProperty definition="urn:ogc:def:property:OGC::Time"/>

</sml:input>

<sml:input name="temperature celsius">

<swe:ObservableProperty definition="urn:ogc:def:property:OGC::AirTemperature"/>

</sml:input>

<sml:input name="pressure">

A. SOS XML example documents 90

<swe:ObservableProperty

definition="urn:ogc:def:property:OGC::AtmosphericPressure"/>

</sml:input>

<sml:input name="percentage">

<swe:ObservableProperty

definition="urn:ogc:def:property:OGC::RelativeHumidity"/>

</sml:input>

<sml:input name="speed">

<swe:ObservableProperty definition="urn:ogc:def:property:OGC::WindSpeed"/>

</sml:input>

<sml:input name="angle">

<swe:ObservableProperty definition="urn:ogc:def:property:OGC::WindDirection"/>

</sml:input>

</sml:InputList>

</sml:inputs>

<sml:outputs>

<sml:OutputList>

<sml:output name="outputData">

<swe:DataRecord>

<swe:field name="samplingTime">

<swe:Time definition="urn:ogc:def:property:OGC::SamplingTime"

referenceFrame="urn:ogc:def:crs:OGC:UTC">

<swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>

</swe:Time>

</swe:field>

<swe:field name="temperature celsius">

<swe:Quantity definition="urn:ogc:def:property:OGC::AirTemperature">

<swe:uom code="Cel"/>

</swe:Quantity>

</swe:field>

<swe:field name="pressure">

<swe:Quantity definition="urn:ogc:def:property:OGC::AtmosphericPressure">

<swe:uom code="Mbar"/>

</swe:Quantity>

</swe:field>

<swe:field name="percentage">

<swe:Quantity definition="urn:ogc:def:property:OGC::RelativeHumidity">

<swe:uom code="%"/>

</swe:Quantity>

</swe:field>

A. SOS XML example documents 91

<swe:field name="speed">

<swe:Quantity definition="urn:ogc:def:property:OGC::WindSpeed">

<swe:uom code="m/s"/>

</swe:Quantity>

</swe:field>

<swe:field name="angle">

<swe:Quantity definition="urn:ogc:def:property:OGC::WindDirection">

<swe:uom code="deg"/>

</swe:Quantity>

</swe:field>

</swe:DataRecord>

</sml:output>

</sml:OutputList>

</sml:outputs>

<sml:parameters>

<sml:ParameterList>

<sml:parameter name="samplingFrequency">

<swe:Quantity definition="urn:ogc:def:property:OGC::SamplingFrequency">

<gml:description>

Set the sensor to measure with the given frequency.

</gml:description>

<swe:uom code="Hz"/>

</swe:Quantity>

</sml:parameter>

</sml:ParameterList>

</sml:parameters>

<sml:method xlink:href="urn:ogc:def:process:OGC::detector"/>

</sml:Component>

GetObservation

Request

<?xml version="1.0" encoding="UTF-8"?>

<GetObservation xmlns:ogc="http://www.opengis.net/ogc"

xmlns="http://www.opengis.net/sos/1.0"

xmlns:gml="http://www.opengis.net/gml"

xmlns:xlink="http://www.w3.org/1999/xlink"

A. SOS XML example documents 92

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/sos/1.0

http://schemas.opengis.net/sos/1.0.0/sosAll.xsd"

service="SOS" version="1.0.0">

<offering>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</offering>

<eventTime>

<ogc:TM After>

<ogc:PropertyName>om:samplingTime</ogc:PropertyName>

<gml:TimeInstant>

<gml:timePosition>2009-08-20T11:39:50+01:00</gml:timePosition>

</gml:TimeInstant>

</ogc:TM After>

</eventTime>

<procedure>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</procedure>

<observedProperty>319C201F-9000-47dd-3258-835169543B9</observedProperty>

<responseFormat>text/xml;subtype="om/1.0.0"</responseFormat>

</GetObservation>

Response

<?xml version="1.0" encoding="UTF-8"?>

<om:Observation xmlns:gml="http://www.opengis.net/gml"

xmlns:om="http://www.opengis.net/om/1.0"

xmlns:sa="http://www.opengis.net/sampling/1.0"

xmlns:swe="http://www.opengis.net/swe/1.0.1"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/om/1.0

http://schemas.opengis.net/om/1.0.0/om.xsd

http://www.opengis.net/sampling/1.0

http://schemas.opengis.net/sampling/1.0.0/sampling.xsd

http://www.opengis.net/swe/1.0.1

http://schemas.opengis.net/sweCommon/1.0.1/swe.xsd">

<om:samplingTime>

<gml:TimePeriod xsi:type="gml:TimePeriodType">

<gml:beginPosition>2009-08-20T12:40:00+02:00</gml:beginPosition>

<gml:endPosition>2009-08-20T12:40:00+02:00</gml:endPosition>

</gml:TimePeriod>

</om:samplingTime>

A. SOS XML example documents 93

<om:procedure xlink:href="936DA01F-9ABD-4d9d-80C7-02AF85C822A8"/>

<om:observedProperty>

<swe:CompositePhenomenon dimension="5" gml:id="adHocPhenomenon">

<gml:name>resultComponents</gml:name>

<swe:component xlink:href="urn:ogc:def:property:OGC::AirTemperature"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::RelativeHumidity"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::AtmosphericPressure"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::WindSpeed"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::WindDirection"/>

</swe:CompositePhenomenon>

</om:observedProperty>

<om:featureOfInterest>

<sa:SamplingPoint>

<gml:name>SF P1</gml:name>

<sa:sampledFeature xlink:href="urn:ogc:def:nil:OGC:unknown"/>

<sa:position>

<gml:Point>

<gml:pos srsName="urn:ogc:def:crs:EPSG:6.14:4979">52.0 8.67 50.0</gml:pos>

</gml:Point>

</sa:position>

</sa:SamplingPoint>

</om:featureOfInterest>

<om:result>

<swe:DataArray>

<swe:elementCount>

<swe:Count>

<swe:value>3</swe:value>

</swe:Count>

</swe:elementCount>

<swe:elementType name="Components">

<swe:SimpleDataRecord>

<swe:field name="Time">

<swe:Time definition="urn:ogc:data:time:iso8601"/>

</swe:field>

<swe:field name="Latitude">

<swe:Quantity definition="urn:ogc:phenomenon:latitude:wgs84">

<swe:uom code="deg"/>

</swe:Quantity>

</swe:field>

<swe:field name="Longitude">

A. SOS XML example documents 94

<swe:Quantity definition="urn:ogc:phenomenon:longitude:wgs84">

<swe:uom code="deg"/>

</swe:Quantity>

</swe:field>

<swe:field name="Altitude">

<swe:Quantity definition="urn:ogc:phenomenon:altitude:wgs84">

<swe:uom code="m"/>

</swe:Quantity>

</swe:field>

<swe:field name="airTemperature">

<swe:Quantity definition="urn:ogc:def:property:OGC::AirTemperature">

<swe:uom code="Cel"/>

</swe:Quantity>

</swe:field>

<swe:field name="humidity">

<swe:Quantity definition="urn:ogc:def:property:OGC::RelativeHumidity">

<swe:uom code="%"/>

</swe:Quantity>

</swe:field>

<swe:field name="atmosphericPressure">

<swe:Quantity definition="urn:ogc:def:property:OGC::AtmosphericPressure">

<swe:uom code="Mbar"/>

</swe:Quantity>

</swe:field>

<swe:field name="windSpeed">

<swe:Quantity definition="urn:ogc:def:property:OGC::WindSpeed">

<swe:uom code="m/s"/>

</swe:Quantity>

</swe:field>

<swe:field name="windDirection">

<swe:Quantity definition="urn:ogc:def:property:OGC::WindDirection">

<swe:uom code="deg"/>

</swe:Quantity>

</swe:field>

</swe:SimpleDataRecord>

</swe:elementType>

<swe:encoding>

<swe:TextBlock blockSeparator=";" decimalSeparator="." tokenSeparator=","/>

</swe:encoding>

<swe:values>2009-08-20T12:40:00+02:00,52.01,8.67,50.01,23.5,40,1013,3.4,180;

A. SOS XML example documents 95

2009-08-20T12:40:01+02:00,52.04,8.69,50.01,23.5,40,1013,3.4,180;

2009-08-20T12:40:02+02:00,52.07,8.71,50.01,23.5,40,1013,3.4,180;

</swe:values>

</swe:DataArray>

</om:result>

</om:Observation>

RegisterSensor

Request

<?xml version="1.0" encoding="UTF-8"?>

<RegisterSensor xmlns="http://www.opengis.net/sos/1.0"

xmlns:om="http://www.opengis.net/om/1.0"

xmlns:swe="http://www.opengis.net/swe/1.0.1"

xmlns:sa="http://www.opengis.net/sampling/1.0"

xmlns:sml="http://www.opengis.net/sensorML/1.0.1"

xmlns:gml="http://www.opengis.net/gml"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/sos/1.0

http://schemas.opengis.net/sos/1.0.0/sosAll.xsd

http://www.opengis.net/sensorML/1.0.1

http://schemas.opengis.net/sensorML/1.0.1/sensorML.xsd

http://www.opengis.net/om/1.0

http://schemas.opengis.net/om/1.0.0/om.xsd

http://www.opengis.net/sampling/1.0

http://schemas.opengis.net/sampling/1.0.0/sampling.xsd

http://www.opengis.net/swe/1.0.1

http://schemas.opengis.net/sweCommon/1.0.1/swe.xsd"

service="SOS" version="1.0.0">

<SensorDescription>

<sml:Component>

<sml:identification>

<sml:IdentifierList>

<sml:identifier name="uniqueID">

<sml:Term definition="urn:ogc:def:identifier:OGC::uniqueID">

<sml:value>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</sml:value>

A. SOS XML example documents 96

</sml:Term>

</sml:identifier>

<sml:identifier name="longName">

<sml:Term>

<sml:value>IMEGO Medium Sized Sensor Module</sml:value>

</sml:Term>

</sml:identifier>

<sml:identifier name="shortName">

<sml:Term>

<sml:value>imego mssm</sml:value>

</sml:Term>

</sml:identifier>

<sml:identifier name="manufacturer">

<sml:Term>

<sml:value>IMEGO</sml:value>

</sml:Term>

</sml:identifier>

<sml:identifier name="operator">

<sml:Term>

<sml:value>Roland Mueller</sml:value>

</sml:Term>

</sml:identifier>

</sml:IdentifierList>

</sml:identification>

<sml:contact>

<sml:ResponsibleParty>

<sml:organizationName>IMEGO</sml:organizationName>

<sml:contactInfo>

<sml:onlineResource xlink:href="http://www.imego.com/"/>

</sml:contactInfo>

</sml:ResponsibleParty>

</sml:contact>

<sml:location>

<gml:Point srsName="urn:ogc:def:crs:EPSG:6.14:4979">

<gml:pos>52 8.67 50</gml:pos>

</gml:Point>

</sml:location>

<sml:inputs>

<sml:InputList>

<sml:input name="time">

A. SOS XML example documents 97

<swe:ObservableProperty definition="urn:ogc:def:property:OGC::Time"/>

</sml:input>

<sml:input name="atmosphericTemperature">

<swe:ObservableProperty

definition="urn:ogc:def:property:OGC::AirTemperature"/>

</sml:input>

<sml:input name="atmosphericPressure">

<swe:ObservableProperty

definition="urn:ogc:def:property:OGC::AtmosphericPressure"/>

</sml:input>

<sml:input name="humidity">

<swe:ObservableProperty

definition="urn:ogc:def:property:OGC::RelativeHumidity"/>

</sml:input>

<sml:input name="windSpeed">

<swe:ObservableProperty definition="urn:ogc:def:property:OGC::WindSpeed"/>

</sml:input>

<sml:input name="windDirection">

<swe:ObservableProperty definition="urn:ogc:def:property:OGC::WindDirection"/>

</sml:input>

</sml:InputList>

</sml:inputs>

<sml:outputs>

<sml:OutputList>

<sml:output name="outputData">

<swe:DataRecord>

<swe:field name="samplingTime">

<swe:Time definition="urn:ogc:def:property:OGC::SamplingTime"

referenceFrame="urn:ogc:def:crs:OGC:UTC">

<swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>

</swe:Time>

</swe:field>

<swe:field name="airTemperature">

<swe:Quantity definition="urn:ogc:def:property:OGC::AirTemperature">

<swe:uom code="Cel"/>

</swe:Quantity>

</swe:field>

<swe:field name="humidity">

<swe:Quantity definition="urn:ogc:def:property:OGC::RelativeHumidity">

<swe:uom code="%"/>

A. SOS XML example documents 98

</swe:Quantity>

</swe:field>

<swe:field name="atmosphericPressure">

<swe:Quantity definition="urn:ogc:def:property:OGC::AtmosphericPressure">

<swe:uom code="Mbar"/>

</swe:Quantity>

</swe:field>

<swe:field name="windSpeed">

<swe:Quantity definition="urn:ogc:def:property:OGC::WindSpeed">

<swe:uom code="m/s"/>

</swe:Quantity>

</swe:field>

<swe:field name="windDirection">

<swe:Quantity definition="urn:ogc:def:property:OGC::WindDirection">

<swe:uom code="deg"/>

</swe:Quantity>

</swe:field>

</swe:DataRecord>

</sml:output>

</sml:OutputList>

</sml:outputs>

<sml:parameters>

<sml:ParameterList>

<sml:parameter name="time">

<swe:Time definition="urn:ogc:def:property:OGC::Time"

referenceFrame="urn:ogc:def:crs:OGC:UTC">

<gml:description>Resets the sensors internal clock

to the given date and time.</gml:description>

<swe:uom xlink:href="urn:ogc:def:unit:ISO:8601"/>

</swe:Time>

</sml:parameter>

<sml:parameter name="samplingFrequency">

<swe:Quantity definition="urn:ogc:def:property:OGC::SamplingFrequency">

<gml:description>Set the sensor to measure with the

given frequency.</gml:description>

<swe:uom code="Hz"/>

</swe:Quantity>

</sml:parameter>

</sml:ParameterList>

</sml:parameters>

A. SOS XML example documents 99

<sml:method xlink:href="urn:ogc:def:process:OGC::detector"/>

</sml:Component>

</SensorDescription>

<ObservationTemplate>

<om:Observation>

<om:samplingTime/>

<om:procedure/>

<om:observedProperty>

<swe:CompositePhenomenon gml:id="adHocPhenomenon" dimension="5">

<gml:description>Ad hoc phenomenon - best practice when measuring multiple

properties at the same time for a given feature of interest.</gml:description>

<gml:name codeSpace="urn:ogc:tc:arch:doc-bp(xx-xxx)">

319C201F-9000-47dd-3258-835169543B9</gml:name>

<gml:name>ad hoc compound phenomenon</gml:name>

<swe:component xlink:href="urn:ogc:def:property:OGC::AirTemperature"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::RelativeHumidity"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::AtmosphericPressure"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::WindSpeed"/>

<swe:component xlink:href="urn:ogc:def:property:OGC::WindDirection"/>

</swe:CompositePhenomenon>

</om:observedProperty>

<om:featureOfInterest>

<sa:SamplingPoint>

<sa:sampledFeature xlink:href="urn:ogc:def:nil:OGC:unknown"/>

<sa:position>

<gml:Point>

<gml:pos srsName="urn:ogc:def:crs:EPSG:6.14:4979"/>

</gml:Point>

</sa:position>

</sa:SamplingPoint>

</om:featureOfInterest>

<om:result xsi:type="swe:DataRecordPropertyType">

<swe:DataRecord>

<swe:field name="airTemperature">

<swe:Quantity definition="urn:ogc:def:property:OGC::AirTemperature">

<swe:uom code="Cel"/>

</swe:Quantity>

</swe:field>

<swe:field name="humidity">

<swe:Quantity definition="urn:ogc:def:property:OGC::RelativeHumidity">

A. SOS XML example documents 100

<swe:uom code="%"/>

</swe:Quantity>

</swe:field>

<swe:field name="atmosphericPressure">

<swe:Quantity definition="urn:ogc:def:property:OGC::AtmosphericPressure">

<swe:uom code="Mbar"/>

</swe:Quantity>

</swe:field>

<swe:field name="windSpeed">

<swe:Quantity definition="urn:ogc:def:property:OGC::WindSpeed">

<swe:uom code="m/s"/>

</swe:Quantity>

</swe:field>

<swe:field name="windDirection">

<swe:Quantity definition="urn:ogc:def:property:OGC::WindDirection">

<swe:uom code="deg"/>

</swe:Quantity>

</swe:field>

</swe:DataRecord>

</om:result>

</om:Observation>

</ObservationTemplate>

</RegisterSensor>

Response

<?xml version="1.0" encoding="UTF-8"?>

<RegisterSensorResponse xmlns="http://www.opengis.net/sos/1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/sos/1.0

http://schemas.opengis.net/sos/1.0.0/sosAll.xsd">

<AssignedSensorId>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</AssignedSensorId>

</RegisterSensorResponse>

A. SOS XML example documents 101

InsertObservation

Request

<?xml version="1.0" encoding="UTF-8"?>

<InsertObservation xmlns="http://www.opengis.net/sos/1.0"

xmlns:om="http://www.opengis.net/om/1.0"

xmlns:sa="http://www.opengis.net/sampling/1.0"

xmlns:swe="http://www.opengis.net/swe/1.0.1"

xmlns:gml="http://www.opengis.net/gml"

xmlns:xlink="http://www.w3.org/1999/xlink"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/sos/1.0

http://schemas.opengis.net/sos/1.0.0/sosAll.xsd

http://www.opengis.net/sampling/1.0

http://schemas.opengis.net/sampling/1.0.0/sampling.xsd

http://www.opengis.net/swe/1.0.1

http://schemas.opengis.net/sweCommon/1.0.1/swe.xsd"

service="SOS" version="1.0.0">

<AssignedSensorId>936DA01F-9ABD-4d9d-80C7-02AF85C822A8</AssignedSensorId>

<om:Observation gml:id="Obs1">

<om:samplingTime>

<gml:TimeInstant>

<gml:timePosition>2009-08-20T11:40:00+01:00</gml:timePosition>

</gml:TimeInstant>

</om:samplingTime>

<om:procedure xlink:href="936DA01F-9ABD-4d9d-80C7-02AF85C822A8"/>

<om:observedProperty xlink:href="319C201F-9000-47dd-3258-835169543B9"/>

<om:featureOfInterest>

<sa:SamplingPoint>

<gml:name>SF P1</gml:name>

<sa:sampledFeature xlink:href="urn:ogc:def:nil:OGC:unknown"/>

<sa:relatedObservation xlink:href="#Obs1"/>

<sa:position>

<gml:Point>

<gml:pos srsName="urn:ogc:def:crs:EPSG:6.14:4979">52 8.67 50</gml:pos>

</gml:Point>

</sa:position>

</sa:SamplingPoint>

</om:featureOfInterest>

A. SOS XML example documents 102

<om:result xsi:type="swe:DataRecordPropertyType">

<swe:DataRecord>

<swe:field name="airTemperature">

<swe:Quantity definition="urn:ogc:def:property:OGC::AirTemperature">

<swe:uom code="Cel"/>

<swe:value>23.5</swe:value>

</swe:Quantity>

</swe:field>

<swe:field name="humidity">

<swe:Quantity definition="urn:ogc:def:property:OGC::RelativeHumidity">

<swe:uom code="%"/>

<swe:value>40</swe:value>

</swe:Quantity>

</swe:field>

<swe:field name="atmosphericPressure">

<swe:Quantity definition="urn:ogc:def:property:OGC::AtmosphericPressure">

<swe:uom code="Mbar"/>

<swe:value>1013</swe:value>

</swe:Quantity>

</swe:field>

<swe:field name="windSpeed">

<swe:Quantity definition="urn:ogc:def:property:OGC::WindSpeed">

<swe:uom code="m/s"/>

<swe:value>3.4</swe:value>

</swe:Quantity>

</swe:field>

<swe:field name="windDirection">

<swe:Quantity definition="urn:ogc:def:property:OGC::WindDirection">

<swe:uom code="deg"/>

<swe:value>180</swe:value>

</swe:Quantity>

</swe:field>

</swe:DataRecord>

</om:result>

</om:Observation>

</InsertObservation>

A. SOS XML example documents 103

Response

<?xml version="1.0" encoding="UTF-8"?>

<InsertObservationResponse xmlns="http://www.opengis.net/sos/1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.opengis.net/sos/1.0

http://schemas.opengis.net/sos/1.0.0/sosAll.xsd">

<AssignedObservationId>o 2</AssignedObservationId>

</InsertObservationResponse>

	Introduction
	Motivation
	Sensor Web
	Task

	Application scenarios
	Emergency Support System
	Fleet tracking

	State of the art
	Comparison of SOS implementations
	52 North SOS

	Problem formulation

	Basics
	XML
	Structure & processing
	XML parsers
	Binding

	Relevant OpenGIS standards
	Important nomenclature
	Sensor Model Language
	Observations & Measurements
	OGC Web Services Common Specification

	Sensor Observation Service
	Core profile
	Transactional profile
	Enhanced profile
	Upcoming version 2.0

	Development & testing environment
	IDE
	Web server
	Database
	XML editor & validator
	Mobile phones & emulators
	GIS

	Requirements analysis
	Desired functionality
	Sensor Observation Service
	Raw data transmission

	Constraints

	Concept
	Enhancing an existing implementation
	Application structure
	XML parser & generator
	OGC-specific quirks
	Enabling mobile sensors
	Further modifications

	Database
	Raw sensor data transmission

	Implementation
	SOS servlet
	Main class
	XML parsing
	XML generation
	Database access

	Oracle database
	Java ME phone client
	Java TCP/UDP server
	Java test client
	CSV import tool

	Tests & results
	Test environment
	Functionality test
	Performance tests
	Black box
	White box

	Outdoor test

	Summary & Outlook
	Bibliography
	SOS XML example documents

