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Abstract: The selection of training data determines the
quality of a chemometric calibration model. In order to
cover the entire parameter space of known influencing pa-
rameters, an experimental design is usually created. Nev-
ertheless, even with a carefully prepared Design of Exper-
iment (DoE), redundant reference analyses are often per-
formed during the analysis of agricultural products. Be-
cause the number of possible reference analyses is usually
very limited, the presented active learning approaches are
intended to provide a tool for better selection of training
samples.

Keywords: near infrared spectroscopy, active learning,
sample selection

Zusammenfassung: Mit Hilfe von chemometrischen Kali-
brierungsmodellen konnen verschiedene Qualitdts- und
Reifeparameter fiir Agrarprodukte aus Nahinfrarotspek-
tren geschdtzt werden. Die verwendeten Trainingsdaten
bestimmen dabei die Giite des chemometrischen Kalibrie-
rungsmodells. Fiir das Training wird deshalb ein Daten-
satz benotigt, welcher Proben im gesamten Parameter-
raum beinhaltet. In der Regel wird ein Versuchsplan zur
Probennahme erstellt, jedoch konnen viele Parameter in
der Herstellung von Agrarprodukten nicht eingestellt wer-
den. Daher muss in der Regel eine grof3e Menge an Pro-
ben gesammelt werden, wobei hdufig zahlreiche Proben
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den Informationsgehalt des Datensatzes nicht erhéhen.
Des Weiteren miissen die Qualitdts- und Reifeparameter
der Proben im Trainingsdatensatz aufwadndig durch che-
mische Referenzanalysen erstellt werden. Die vorgestell-
ten aktiven Lernansdtze dienen einer optimalen Proben-
auswahl anhand von Nahinfrarotspektren, wodurch sich
die Zahl der benétigten Proben den damit verbundenen
Referenzanalysen verringert.

Schlagworter: Nahinfrarotspektroksopie, aktives Lernen,
Versuchsplanung

1 Introduction

Near-infrared spectroscopy (NIRS) is used to estimate and
quantify quality and other parameters in a wide range
of applications [12]. A large field of NIRS applications is
in agriculture. For example, the ripeness or freshness of
fruits can be determined. Furthermore, parameters such
as moisture, protein content or sugar content can be es-
timated [8]. So-called chemometric calibrations are re-
quired to estimate the above-mentioned parameters of
quality or components. Using methods of statistics and
machine learning, correlations are established between
the optically measured data and reference measurements.
However, the quality of the results of chemometric mod-
els and machine learning methods strongly depend on the
data set used [3]. The presented methods should improve
the creation of a data set.

1.1 Motivation

Depending on the desired parameter, the generation of
reference data can be very costly and time-consuming.
This is particularly the case if chemical analyses have
to be done in laboratories. Therefore, the chemical refer-
ence analysis is a limiting factor in the amount of train-
ing data for chemometric calibrations. In contrast, the ac-
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quisition of NIRS data is fast, non-destructive, and there-
fore cost-effective. Assuming that the desired parameters
are already included in the NIRS data, the following ac-
tive learning approaches could be applied when selecting
samples for reference analysis. The methods make a se-
lection based on unlabeled NIRS data. The goal of the ac-
tive learning approach is to sample a subset of the unla-
beled NIRS data that is as representative as possible for the
whole data. An entropy-based method is used to estimate
and optimize the information content of the training data
set. In addition, another kernel-based method called con-
strained vector quantization (CVQ) will select representa-
tive data on the basis of spectral distances and thus also
determine a training data set with optimal information
content.

1.2 Related work

Design of experiments is a well-researched field of statis-
tics and due to its great importance for near-infrared spec-
troscopy itis also the subject of current research in the field
of NIR spectroscopy [5, 20]. Because, the performance of
chemometric calibration models can be improved by opti-
mized sampling [3, 19]. In addition, methods for continu-
ous model adaptation can significantly reduce costs in pro-
cess analysis technology [4]. Based on an existing model,
new samples can be selected from unlabeled data [6]. An-
other approach is the Kennard-Stones algorithm [9], which
is used to identify the samples with the largest distance.
The Kennard-Stones algorithm can also be applied to un-
labelled NIR spectra [11].

2 Material and methods

The following methods are implemented in the Python
programming language. Additionally, the goal is to keep
the calculations as basic as possible by using commonly
known libraries as numpy or scipy. For the later introduced
machine learning part, the library scikit-learn is used.

2.1 Dataset

The methods introduced by this work are examined on a
NIRS dataset of 80 corn samples in a wavelength range
of 1100-2498 nm with a resolution of 700 bands. Origi-
nally, the data was measured at Cargill and three different
NIR spectrometers (m5, mp5, and mp6) are used as well as
four chemometrical features, i. e., moisture, oil, protein,
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Figure 1: Distribution of the moisture content of the samples. There
are significantly fewer samples with high or low moisture content.
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Figure 2: Partitioning of the data set. Partitioning of the data set.
Four batches of 60 unlabeled samples in each batch are provided for
active learning. Comparative validation of the methods is performed
with 20 samples that are different in each batch.

and starch content. Here, the focus is on moisture con-
tent and NIRS data of the mp5 spectrometer [7]. The distri-
bution of moisture content is typical of agricultural sam-
pling, which is usually uniformly or normally distributed
(see Fig.1).

In this work, the dataset is divided into four sub-
sets, also called batches (see Fig.2). Each batch consist
of a pool of 60 unlabeled samples. The presented algo-
rithms for active learning select the training data from
this pool. To validate the performance of the methods, a
set of 20 labeled samples is used. This allows compari-
son even with different selection of training data from the
unlabeled pool. To make the results more independent of
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the choice of validation data set, cross-validation was ap-
plied.

2.2 Regression

The focus of the presented work is the sample selection,
therefore the methods were compared using a simple par-
tial least square regression (PLSR). The PLSR is a com-
monly used regression technique in chemometrics. As the
main idea, the predictors and responses are projected into
a given number of principal components. These decom-
positions are made with the premise to maximize the co-
variance between the two projections. Before applying the
PLSR on the data, the NIR spectra were smoothed by a
Savitzky-Golay (7,2) filter [15]. Afterwards, the first deriva-
tive was formed and normalization was performed using
the standard normal variable (SNV) transformation. This
routine is a widely used preprocessing method in chemo-
metrics and spectroscopy [14].

PLSR parameter estimation

The main hyper-parameter of the PLSR method is the num-
ber of principal components 1, used in the transforma-
tions. In order to estimate the optimal choice of nyp,, an
experiment is set up where a PLSR with different n .y, is
trained on 75 % randomly assigned data and evaluated on
the remaining 25 %. The root-mean-squared error of valida-
tion (RMSEV) is used as a metric to find the optimal value
0f nomp- The number of components determined and used
in the following is n.om, = 7.

3 Active learning

In data science, active learning is a part of machine learn-
ing. An algorithm (oracle) is used to determine an informa-
tion score from unlabeled data. The data selected by the
oracle are then labelled to form the data set for training
machine learning algorithms.

In the following, the method and idea of “active
learning” is sketched. As a prerequisite, a dataset with
(“cheap”) NIR spectra is given. Additionally, one poten-
tially is capable of doing the (“expensive”) target value ac-
quisition, i.e., chemical reference analysis, for all given
spectra. Now, the goal is to do as few evaluations as
possible to get a reasonably well-performing prediction
model.
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(a) In classical or batch wise learning, a complete set of unlabeled data
X 7 is analyzed. The selection of the samples is usually based on an exper-
imental design.
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(b) In active learning, an oracle selects a set of chosen samples X ¢ of the
unknown samples X ;. Only the selected samples are analyzed.

Figure 3: Principle of active learning. In comparison to classical
methods, only a chosen subset X of the samples is analyzed in ac-
tive learning methods. The oracle determines an informative score
for a pool of spectral data of unknown samples X ;. After the labora-
tory analysis the parameters of the samples are known, the result is
a set of known samples Xy.

Once there is an initial sub-sample to train the PLSR
model, one can further improve it by including more spec-
tra and their target values. Since the goal is to use as few
as possible target value data, one needs a model that de-
liberately includes data that have the highest potential to
improve the fit. This principle is referred to as active learn-
ing and there are several realization techniques. In the
methods presented in this work, the focus is on a pool-
based approach. The term pool-based indicates, that the
process can choose the next spectrum from a bunch of
unlabeled spectra in the pool represented by the matrix
Xy = {x;}iz1y of N spectra. For the given data set, the
pool contains all data that is not included in the model
so far which means that potentially, every single spec-
trum x and its respective target value y can be evaluated.
In comparison to classical methods, only a chosen sub-
set X of the samples is analyzed (see Fig. 3). The refer-
ence analysis is used to build a set of known samples Xy
with pairs of (x,y) for building regression or classification
models.

3.1 PCA-entropy based sampling

The following approach of active learning aims to provide
the most valuable data for a linear regression. The ora-
cle iteratively selects a set of samples whose density dis-
tribution p is close to a desired density function g. The
density function p of the sample distribution is obtained
from a principal component analysis (PCA) of the spec-
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tral data. The PCA gives the variance of the data in a
low-dimensional representation. The desired density dis-
tribution g of the samples is derived from the optimal de-
sign. To minimize the regression error, the variance of the
data must be maximized. The oracle’s algorithm uses the
Kullback-Leibler divergence (relative entropy) to measure
the distance between the density functions p and g. There-
fore it is named entropy based sampling.

3.1.1 Sample distribution using PCA

A NIRS measurement results in a spectrum, which is a
high dimensional vector x;. Although, the dimension of
the resulting vectors is high, the measurements are typi-
cally highly correlated since the general shape of spectra
is quite similar. To determine the variance of the spectra in
a simple way, a PCA can be applied on a collection Xy; of
unlabeled spectra. Usually, most of the variance of a NIRS
measurement is contained in the first components of the
PCA

TU = XUW (1)

For further steps a probability density functions p(t;) €
[0, 1] of the distribution of the PCA scores T with ¢;; = x;w;
was generated by a normalized histogram and normalized

scores t;; € [-1,1].

3.1.2 Optimal sample distribution

In the design of experiments there are optimal designs,
which allow to minimize the effort, i.e., the number of
samples. A common criterion is d-optimality by maximiz-
ing the determinant of the information matrix X’ X. The
d-optimality is closely related to the least squares estima-
tor. Under the Gauss-Markov assumptions, the covariance
of the least squares estimator is proportional to (X7 X) ™. At
this point, the similarity to the principal component anal-
ysis, which includes the eigenvectors X TX, becomes clear.

In agricultural samples, however, it is only possible to
control the parameters in experiments to a limited extent,
and in some cases not all factors are known. Therefore, the
information from the set of unlabeled spectral data X; has
to be optimized. Selecting samples with maximum PCA
scores t; is consistent with d-optimality and minimizes the
covariance of the least squares estimator.

Therefore, the optimal sample distribution function

2
1-¢t
qt) =

11
with ¢ = J J 1-etdt 2
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is chosen, which contains predominantly samples with
high PCA scores.

3.1.3 Entropy based sampling

The entropy definition of statistical physics is closely re-
lated to information theory. Thus, entropy can be used as a
measure for the information from a stochastic source. For
example, an event with low probability has a high infor-
mation content [18]. In the following the relative entropy,
also known as Kullback-Leibler divergence, is used.

The idea of the presented approach is a sample selec-
tion, which is closest to the desired optimal g(t). The oracle
of the active learning algorithm determines the distance
between the probability density function p(t) of the mea-
sured spectra and the probability density function g(t),
which is considered optimal. To determine the similarity
of two probability density functions, the Kullback-Leibler
divergence

D(PIIQ) = j p(®)log %dt 3)

is calculated [10].

3.1.4 PCA-entropy algorithm

The algorithm is built in two parts. In the initialization
two samples are selected and the Kullback-Leibler diver-
gence is calculated for all combinations. After that, an it-
erative approach is used to choose the next optimal sam-
ple. This procedure causes less computation time for larger
data sets. In both parts, the combination of samples with
the minimum Kullback-Leibler divergence is chosen.

A qualitative result is shown in Fig. 4. The algorithm
selects samples starting with the PCA scores in the boarder
region of the first two dimensions. The sample selection is
done symmetrically around the center. In local clusters of
samples with similar PCA scores only a few samples are
selected at the beginning.

3.2 Constrained vector quantization based
sampling

In the following, a method of determining representa-
tive sub-samples of NIRS data by using constrained vec-
tor quantization (CVQ) is presented. The idea exploits the
kernel trick—which is a widely used concept especially
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Figure 4: Principle of entropy based sampling. In this example, the
normalized scores of the first two principal components are shown.
It can be seen that the procedure selects the samples symmetrically,
starting at the edges. It should also be mentioned that initially only
individual samples from a local cluster are selected.

for non-linear machine learning concepts—to find a sub-
sample of the data which represents its distribution prefer-
ably well. The term constrained is actually abbreviated
from subset-constrained and shall denote, that the re-
presentative sub-sample W is a real sub-sample of the
m-dimensional dataset X', namely

WcXcR", (4)

The sub-sample W is referred to as the codebook of the
whole dataset. In order to find the codebook that repre-
sents the distribution of our data best, an objective func-
tion is needed to be minimized. Here, the objective func-
tion of mean discrepancy is used.

3.2.1 Mean discrepancy

As mentioned beforehand, the choice of a optimal code-
book relies on the minimization of (squared) mean discrep-
ancy MD? given by

MD*(X, W) = @ — Pyl (5)
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Algorithm 1: Entropy based sampling.

Data : Matrix Xy of spectra from unknown
samples;
number N of samples to chose;
optimal sample distribution q
Result: List of chosen samples c

Ty — PCA(Xy, Ncomponents = 2)
combinations « Al1Combinations(2,N)
foreach comb in combinations do
select Tomp from Ty
p < hist(Teomp)
deomb — KLDivergence (p, q)
end
€ — min g, (deomp)
remove ¢ from Ty
add cto T,
forn — 3toN do
foreach tin T; do
Teomp < Tcand t
p — hist(T,omb)
d; — KLDivergence (p, q)
end
¢ — min,(d;)
remove c from Ty
add cto T,
end

where X is the dataset and W a codebook sub-sample.
@y and ¢,, are the mean feature space vectors of the re-
spective set defined by

M~

_ 1y 1
D= 2 00). By =i o). (©
J= i

1]
—_

where ¢p(x) is the feature space vector of x. This relies on
the idea to express the probability densities as inner pro-
ducts in a feature space (also known as Hilbert space) [1,
2]. The inner products come into the picture by expanding
equation (5) which is

1@ — Pl® = (@xI@r) + (@ IP) — 2P| Py -
)

3.2.2 Kernel trick

The step of extending the problem in the feature space fol-
lows the principle of the “kernel trick” which is widely
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used in non-linear machine learning methods. For a spe-
cial class of kernels, the so called Mercer kernels, the fea-
ture map ¢ as introduced before exists. Additionally, we
can express the inner products of feature space vectors as
a kernel [16]

px,x") = (@x)|p(x")) . 8

The radial basis function (RBF) kernel
n_ 1 12
$0cx') = exp (- x'IIP) ©

indeed is an instance of a Mercer kernel. Its respective ker-
nel matrix is ® ¢ R™" with the elements

(d))ij = ¢(Xi,xj)~ (10)
The bandwidth parameter h has to be estimated wisely
since it has a high impact on performance of the CVQ
method. It turns out that it can be estimated by using the
dataset’s covariance matrix X and by Scott’s rule of thumb
[17]

1
n d+4’

11

Ascott =

with the number of spectra n and the number of dimen-
sions d. Therefore, we estimate the bandwidth by

h = det(aG . Z) - 12)

3.2.3 Finding an optimal codebook

Moreover, a binary vector z € {0,1}" is introduced to show
which of the n spectra are part of the codebook (= 1) or
not (= 0). Introducing the kernel matrix in equation (10)
finally allows to express the mean discrepancy by matrix
vector notation

1 n n
MD*(X, W) = — 33 (x5, X)
j=11=1
1 n n
+13 2. 2, 5P06.x)7
j=11=1 (13)
2 n n
- =) o, x)z
nk}:llzl
1.7 T 2.7
=—=1d1 bz - —1 D
n2 + X Z X Z

with codebook size k and an all-one vector 1 ¢ R".
Since this derivation here is quite reduced, please find
the complete elaboration in [2]. The first term in equa-
tion (13) is constant, calculation of the last two terms is
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sufficient for a valid objective function. Note, that both
sums in the last two terms of equation (13) are running
from 1 to n. However, only k terms contribute to the
sums since the binary components of z are zero for non-
codebook samples. Thus, the index running up to n is
still valid and should intend that all sums can be per-
formed over the complete data which is crucial to for-
mulate the problem via matrix vector notation. The code-
book with minimal mean discrepancy in this work is cal-
culated by a greedy algorithm elaborated in [1] as well as
the full theory that is sketched above. In the algorithm,
codebook candidates are successively explored by switch-
ing the corresponding elements of z to 1 and calculat-
ing the objective function value. The candidate, whose
inclusion results in the minimal objective function value
is then considered as the next codebook sample. Simi-
larly to the entropy based method, this procedure is ap-
plied on the PCA-transformed NIRS data T; by only us-
ing the first two PCA components. Additionally, the coor-
dinates are normalized to be in the range [0, 1]. A pseudo-
code of the complete method is shown in Algorithm 2.
Moreover, the sampling procedure with the given corn
dataset is shown in Figure 5. In general, greedy algo-
rithms are relatively time-efficient but do not necessar-
ily find the optimal solution. Nevertheless, the greedy
approach is sufficient in this method since this method
should present a more scalable and less time-consuming
alternative to the entropy based sampling method (cf. Sec-
tion 3.1).

4 Results

The performance of the methods is evaluated using the
root mean squared error (RMSE)

S0 -y

n

RMSE = (14)
The RMSE for each training set of 10 to 60 samples was
determined from unlearned data (batch A-D) using k-fold
cross validation. The RMSE determined for the data set and
accessible in the literature [13] is about 0.15, with small de-
viations already caused by the selection of the validation
data set.

4.1 PCA entropy

Already 30-40 samples selected with the PCA entropy
method are sufficient for the training data set used to
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Algorithm 2: Subset-constrained vector quantiza-
tion sampling (“greedy”).
Data : Matrix Xy of N spectra from unknown
samples;
number k of samples to chose
Result: List of chosen samples ¢

Ty < PCA(Xy, Neomponents = 2)

X « CovarianceMatrix(Ty)

Ascott — N (cf. eq. (11) with d = 2)
h— det(aécottZ) (cf. eq.(12))

@ —KernelMatrix(Ty) (cf. egs. (9), (10))
¢d — D1
initializec « [ ]
initialize z < O
fori — 1tokdo
initialize H = oo
forj — 1to N do
if z; == 0 then
Z; — 1
H— 22'®z- 2¢'z
z; — 0
end
end
Jmin < argmin(H)
Zjpn 1
¢ «—append (jin)
end

create a PLSR model. Adding more samples to the train-
ing data set does not result in a significant improvement,
which is the case in all four experiments (see Fig. 6).

Another important aspect of the PCA entropy method
is the possibility of an termination criterion based on un-
labeled data. It is shown that the Kullback-Leibler diver-
gence determined for the training data set also has a mini-
mum between 30 and 40 samples for all four experiments
(see Fig.7). This can be interpreted to indicate that from
this point on there is no more information gain if further
samples are added from the available pool of unmarked
data. The PCA shows (see Fig. 4) that from this point on
the algorithm selects more data near the center, i. e., with
low variance.

4.2 Constrained vector quantization

Similar the entropy sampling method, the CVQ sampling
method shows a convergence at about 30-40 samples.
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Figure 5: Principle of CVQ sampling. In this example, the normalized
scores of the first two principal components are shown. The proce-
dure samples a codebook trying to represent the complete dataset
with a small sub-sample. Denser regions are preferred to outliers.

This emphasizes, that there is no significant improvement
for the PLSR model beyond 40 included training samples.
The k-fold cross-validation shows that there is a slightly
lower variance between the different batches compared to
the entropy method (see Fig. 8).

4.3 Summary

A direct comparison of the two methods (see Fig.9)
shows that the RMSE for the CVQ sampling method de-
creases faster with the number of samples that the en-
tropy method. Additionally, the RMSE variance between
the four batches is significantly lower. Beyond the com-
mon convergence region between 30 and 40 samples, the
entropy method leads to a lower RMSE value than the CVQ
method.

Compared to random sampling, the reliability of the
results of is significantly increased by active learning. For
example, the results with 35 randomly selected samples
can be significantly worse than with a set of 33 samples.
There is also no reliable criterion for the number of sam-
ples to be analysed in random sampling.



304 —

10 20 30 40 50 60
# samples

Figure 6: RMSE of PCA-Entropy based sampling. In all four experi-
ments, the RMSE initially decreases with increasing sample number
of the training data set. From a number of 30-40 samples in the
training data set, there is no significant improvement with a larger
number of samples in the training data set.
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Figure 7: Kullback-Leibler divergence with increasing number of
samples. In all four experiments the Kullback-Leibler divergence
decreases with increasing number of samples until a minimum in
the range of 30-40 samples is observed. The minimum can be used
as a termination criterion for sample selection.
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Figure 8: RMSE of CVQ based sampling. All four experiments show a

similar trend to the entropy method (see Fig. 6). The RMSE variance
between the experiments is lower compared to the entropy method.
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Figure 9: RMSE of both sampling methods. Both methods show a
similar trend, from around 35 samples there is no significant im-
provement in RMSE by adding more samples to the training data
set.
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5 Conclusion

With both methods presented, a training data set with
about 35 selected samples could already be generated from
a pool of 60 unmarked spectral data. This is nearly a reduc-
tion by half of the required data. Active learning methods
therefore offer the possibility to reduce the effort and thus
also the costs of creating chemometric models.

In addition, a termination criterion could be deter-
mined by evaluating the Kullback-Leibler divergence.
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