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Abstract—Environment awareness through advanced sensing
systems is a major requirement for a mobile robot to operate
safely, particularly when the environment is unstructured, as in
an outdoor setting. In this paper, a multi-sensory approach is
proposed for automatic traversable ground detection using 3D
range sensors. Specifically, two classifiers are presented, one based
on laser data and one based on stereovision. Both classifiers
rely on a self-learning scheme to detect the general class of
ground and feature two main stages: an adaptive training stage
and a classification stage. In the training stage, the classifier
learns to associate geometric appearance of 3D data with class
labels. Then, it makes predictions based on past observations. The
output obtained from the single-sensor classifiers is statistically
combined exploiting their individual advantages in order to reach
an overall better performance than could be achieved by using
each of them separately. Experimental results, obtained with a test
bed platform operating in a rural environment, are presented to
validate this approach, showing its effectiveness for autonomous
safe navigation.

I. INTRODUCTION

Safe autonomous driving in outdoor environments relies
on the ability to distinguish drivable terrain from obstacles,
including man-made artifacts, ruts, cliffs, trees, bushes, shrubs,
and other vegetation that can obstruct or endanger the robot’s
motion. In the last few years, a large body of research has been
devoted to address this issue through the use of different sensor
modalities. Many researchers rely on stereovision to generate a
3D point cloud at relatively high frequency, [1], [2], [3], [4]. By
applying geometric and statistical heuristics, the terrain surface
and obstacles can be classified. However, the resulting map
may present “holes” in some parts due to insufficient texture
or noisy images, or it may be affected by lighting conditions.
There are also many researchers using LIDAR sensors to detect
the terrain surface for robot navigation, [5], [6]. In general,
LIDAR sensors can return dense 3D point clouds; however,
scanning LIDAR sensors often operate at a relatively low
frequency (1 Hz or less) resulting in difficulties to capture dy-
namic obstacles. Expensive LIDARSs like the Velodyne HDL-
64E are an exception (www.velodyne.com/lidar). Fixed (non-
scanning) LIDAR sensors can operate at higher frequencies;
however, they have to rely on the robot’s self-localization
system, whose accuracy generally decreases on rough terrains.
Due to the mentioned limitations, various methods have been
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proposed to combine vision and LIDAR into one system and
mitigate the drawbacks of single sensor-based approaches. For
example, in [7], an obstacle detection algorithm that can be
used with both LIDAR or stereo with small modifications
is proposed. New interest in this field has been generated
by the application of probabilistic learning techniques and
self-learning classification methods [8]. For instance, a self-
supervised approach is proposed in [9], where monocular
vision is combined with a laser range finder. Specifically, the
laser is used to scan for a flat drivable surface area in the
vicinity of the vehicle. Once identified, this area is used as
training data for the computer vision algorithm. A similar
scheme was applied in [10] to the specific case of a forested
environment. Other sensors, including a radar [11], [12] and
a stereo camera [3] have been also used as the supervising
sensor to automatically train a ground classifier.

In this paper, a novel approach for terrain analysis is presented,
which combines LIDAR and stereovision within a statistical
framework. An adaptive self-learning scheme is proposed,
whose basic principles can be applied to any 3D range sensor
modality to develop single-sensor ground classifiers. Here, it is
demonstrated for LIDAR and stereo data although they differ
in resolution, accuracy and field of view. The LIDAR-based
and stereo-based classifier comprises two main stages: a train-
ing stage and a classification stage. During the training phase,
each classifier automatically learns to associate the geometric
appearance of data with class labels. Then, it makes predictions
based on past observations classifying new observations in two
general categories, i.e. ground and non-ground. The ground
class corresponds to observations from traversable terrain,
whereas the non-ground class corresponds to all other data,
including points from above ground objects (i.e., obstacles) or
from occluded areas, and poor sensor reconstructions. Since
the characteristics of the ground may change geographically
and over time, each classifier is continuously retrained in
every scan: new automatically labeled data are added to the
ground model replacing the oldest labels in order to incorporate
changes in the ground geometric appearance. Afterwards,
the output obtained from the two single-sensor classifiers is
statistically combined to improve the overall perception ability.
It should be noted that most of the algorithms proposed in
the literature generally rely on ground plane estimation, [13],



[14], and the obstacle detection task aims to identify objects
that “stick out” of the ground. However, this assumption is
of limited validity in outdoor scenarios. In this work, ground
plane reasoning is not explicitly required, and the system
automatically adapts to the changing geometry of the terrain.
Furthermore, the proposed approach aims to detect scene
regions that are traversable-safe for the vehicle rather than
attempting to explicitly identify obstacles, [1], [15]. This is
a subtle, but significant difference; only those regions where
there is evidence that it is safe are labeled as traversable,
thereby avoiding both positive and negative obstacles without
explicitly detecting them. An additional advantage of the pro-
posed obstacle detection scheme is that the output traversability
map can be directly employed by grid-based planners [16].

A. Experimental setup

This research was developed within the project Ambient
Awareness for Autonomous Agricultural Vehicles (QUAD-
AV) funded by the ERA-NET ICT-AGRI action and aimed to
enable safe autonomous navigation in high-vegetated, off-road
terrain. The proposed system was integrated with an off-road
vehicle (see Fig. 1) that was made available by the partner
National Research Institute of Science and Technology for
Environment and Agriculture (IRSTEA) at the Montoldre farm
facility, during an experimental campaign in October 2012.
The test bed was equipped with a Point Grey Bumblebee
XB3 camera and a scanning LIDAR SICK LMSI111. The
vision unit features two stereo configurations: a narrow stereo
pair with a baseline of 0.12 m using the right and middle
cameras, and a wide stereo pair with a baseline of 0.24 m
using the left and right cameras. By employing the narrow
baseline to reconstruct nearby points and the wide baseline
to reconstruct more distant points, this stereo device takes the
advantage of the small minimum range of the short baseline,
while preserving the higher accuracy at each visible distance
of the wide baseline [3]. Additional technical details of the
stereo system are collected in Table I. The LIDAR generates
single line scans covering an angle of 270 deg with an angular
resolution of 0.5 deg at a rate of 50 Hz. It is mounted on
a servo-controlled rotating stage that sweeps the scan plane
through 360 deg around the longitudinal axis of the robot,
generating a complete 3D point cloud with a size of 80,000
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Fig. 1. The experimental platform used in this research provided by the
partner IRSTEA and used for field validation in the QUAD-AV project.

TABLE I TECHNICAL DETAILS OF THE STEREOVISION SYSTEM.

Trinocular

Bumblebee XB3 Baseline: 12 cm and 24 cm
1280 x 960 pixels at 15 FPS

66deg(H) x 50deg(V')

Camera
Model

Image size (pixels)

Field of view

Optics focal length: 3.8 mm 2.0
Range 2t022m
TABLE II. SPECIFICATIONS OF THE LIDAR SCANNER.
LIDAR Rotating rangefinder
Model 3DSL with SICK LMS111
Number of points | ~ 80,000
Field of view 360deg(H) x 270deg(V')
Range 0.5t0 17 m

points in about 3 s. Multiple scans obtained during the robot’s
motion are aligned and integrated using ICP-based algorithms
[17], to generate a dense 3D point cloud in a fixed reference
frame. The salient technical details of the LIDAR system are
collected in Table II.

The remainder of the paper is organized as follows. Section
IT describes the proposed self-learning classification scheme.
In Section III, the system is validated in field tests performed
with the test platform. Finally, Section IV concludes this paper.

II. SYSTEM DESCRIPTION

A self-learning approach is proposed to detect traversable
ground using 3D range data. The term ‘“self-learning” refers
to automatic training of a ground classifier. If in a traditional
(i.e. manually) supervised classifier a user provides labeled
examples to train each class of interest, in a self-learning
scheme these training instances are automatically produced.
In the context of this research, the use of a rolling training set
is proposed. Initially, the robot has no knowledge of the ground
class appearance. The training set is initialized at the beginning
of the robot’s operation via a bootstrapping approach and
progressively updated. The only underlying assumption is that
the vehicle starts its operations from a clear (free of obstacles)
area, so that each sensor initially “looks” at ground only.
During this stage, features can be extracted from the sensor-
generated 3D point cloud and they can be associated with the
ground class. When sufficient data is accumulated, the ground
classifier can be trained, and the ground labels are related with
3D point cloud properties. The task is that of generalizing
from training data to unseen situations to identify single new
observations as ground or non-ground. This allows the system
to predict the presence of ground in successive scenes based on
past observations. In order to account for ground changes, the
model (i.e., the training set) is continuously updated using the
most recent sensor readings. In every new-acquired scan, the
latest training set is used to train the classifier. It is important
to note that the proposed classification scheme can be used to
characterize the scene structure obtained from any 3D range
sensor. In this research, it is applied to develop two classifiers:
one based on LIDAR data and one based on stereo data. Then,
the single-sensor classifiers are statistically combined to obtain
a unique classification result.

In the rest of this section, first the ground modeling and
classification approach common to both the LIDAR and stereo
classifier is described. Then, the classifier fusion scheme is



introduced.

A. Ground modeling and classification

The goal is to classify a given terrain patch as being
traversable or not. This problem can be formulated as a one-
class classification [18]. In general, one-class classification
methods are useful in two-class classification problems,
where one class (the target class) is relatively well-sampled,
while the other class (the outlier class) is relatively under-
sampled or it is difficult to model. This is the case for our
outdoor application, where most of the patches belong to the
ground with sparse instances of non-ground. In addition, the
variation of all possible non-ground classes is unlimited. That
makes it difficult to model the non-ground class, whereas,
although it changes geographically and over time, the ground
class is generally less variable than random objects. To
model the ground class, a feature-based representation using
geometric features extracted by 3D range data is adopted.
The ground feature set is then fitted with a multivariate
Gaussian distribution and a Mahalanobis Distance (MhD)-
based classification approach is adopted to recognize whether
a new pattern is an instance of the ground class following an
outlier detection strategy.

1) Geometric features: The appearance of ground is
constructed upon a set of geometric features that can be
extracted from 3D scene reconstruction. First, the point cloud
generated by the sensor is divided into a grid of 0.4-m
by 0.4-m terrain patches projected onto a horizontal plane.
Geometric features are statistics obtained from the point
coordinates associated with each terrain patch. This geometric
information is used in the self-learning classification scheme
to label all cells as traversable or non-traversable. Therefore,
positive and negative obstacles, as well as, unknown regions
can be implicitly detected and avoided. The first element
of the geometric feature vector is the average slope of the
terrain patch, i.e. the angle 6 between the least-squares-fit
plane and the horizontal plane. The second component is the
goodness of fit, F/, measured as the mean-squared deviation
of the points from the least-squares plane along its normal.
This is the same as the minimum singular value of the
points’ covariance matrix. The third element is the variance
in the height of the range data points with respect to the
reference plane, O'}QL. The fourth component is the mean of
the height of the range data points, k. Thus, the geometric
properties of each patch is represented by a 4-element vector
r=1[0,E, 0% hl.

2) Ground class model: Let X; be an n x m data table
representing a sample of z; feature vectors with7 =1,2,...n,
each characterized by m traits (m = 4, in our case): X; =
{x1,...,z,}. These vectors constitute the training set at a
given time t. If we compute the sample mean p; and the
sample covariance ¥; of the data in X;, we can denote the
ground model at this time as M;(u, Xt), where i describes
the location, and X; the scale (shape) of the distribution. Then,
in the next sensor scan acquired at time ¢ + 1, the single new
observation T, can be classified by estimating its squared
Mahalanobis distance from the ground model:

d? = (xnew - /}Jt)zt_l(xnew - /Lt)T (1)

Assuming that the vectors x; are independent and have
Gaussian distribution, [3], it can be proved that the squared
Mahalanobis distance is asymptotically distributed as the m
degrees of freedom chi-square distribution x2,. Then, we can
use the quantile 8 of the m degrees of freedom chi-square
distribution as the delimiter (cutoff) for outlying observations,
ie.

Ly = @

Any observation with Mahalanobis distance d satisfying the
inequality d > Lz may be suspected to be an outlier.

It is worth to note that the ground model is continuously
updated as the vehicle moves, using a rolling training window
strategy: new ground feature vectors labeled in the most recent
radar scans are incorporated, replacing an equal number of the
oldest ground instances, thus keeping constant the size of the
rolling window.

B. Classifier fusion

In order to exploit the individual advantages of vision and
LIDAR sensors and to reach an overall better performance,
the single-sensor ground classifiers are combined. Combining
classifiers aims at exploiting the complementary information
residing in the single classifiers. Assume that we are given a
set of classifiers, which have already been trained to provide
as output the class a posteriori likelihood in the form of
the Mahalanobis distance from the class center. For a one-
class classification task, given an unknown observation z,
the classifier ¢+ produces estimates of the a posteriori class
likelihood, that is M;(z). In our case ¢ = L, S, where L stands
for LIDAR-based classifier and S for stereo-based classifier.
Our goal is to devise a way to come up with an improved
estimate of a final a posteriori likelihood M (z) based on
all the resulting estimates from the individual classifiers. One
way is to weight the individual output obtained from the
classifiers with their prior probabilities that can be statistically
quantified using ground-truth data. This analysis would provide
various statistical quantities including for instance a confusion
matrix. By appropriately normalizing true positives (TP), false
positives (FP), true negatives (TN), false negatives (FN), ob-
tained from the confusion matrix, we can construct (empirical)
expected rates of positive predictive value or precision (P) and
negative predictive value or rejection precision (RP),

TP
P=—_
TP+ FP )
TN
P=——"_ 4
RP =N PN @

Being normalized, these rates are also probabilities. So now,
we have values of uncertainty associated with the LIDAR and
stereo only ground detection in the form of prior probabilities
over these detections. These (prior) probabilities can be used as
weights to combine statistically the decision of each classifier
through a weighted sum and obtain a unique classification

result,
s

(=) ; Wi+ Ws ©)

where the weight, W;, is equal to P; or RP; if the observa-
tion x is labeled as ground or non-ground, respectively, by



the classifier i. As a result, the uncertainty associated with
each classifier is propagated throughout the final classification
result.

III. EXPERIMENTAL RESULTS

In this section, experimental results are described to vali-
date the proposed approach for terrain analysis using LIDAR-
stereo combination. The system was integrated with an ex-
perimental platform (see Fig. 1) and tested in rural settings.
Various scenes were analyzed including positive obstacles
(high-vegetated areas, trees, buildings, agricultural equipment),
negative obstacles (ditches and other depressions), moving
obstacles (vehicles, humans and animals), and highly-irregular
terrain. In all experiments, the vehicle was driven by a human
operator with a travel speed between 10 and 20 km/h, as the
onboard sensors acquired data from the surrounding environ-
ment. Then, the proposed classification framework was applied
offline. For each data set, the vehicle started its operations
from an area that was clear of obstacles in order to initialize
the ground model for both the LIDAR-based and stereo-based
classifier. Few scans (sop = 3, in our case) were necessary to
complete the bootstrap phase, requiring a short time interval
(e.g., a 10 s window if a sampling rate of 0.3 Hz was used
for the LIDAR scanner). After the system was initialized, the
single-sensor classifiers were able to predict the presence of
ground in successive acquisitions.

A subset of salient images taken from different data sets was
hand-labeled to identify the ground-truth terrain class corre-
sponding to each cell. In this manner, it was possible to provide
a quantitative evaluation of the prior classification probabilities
of the LIDAR and stereo-based classifier. Specifically, the
precision, i.e. the number of true positives divided by the total
number of elements labeled as belonging to the ground class,
and the rejection precision, i.e. the number of true negatives
divided by the total number of elements labeled as belonging to
the non-ground class, were evaluated, as explained in Section
II-B. A significance level of 5% (i.e., 8 = 0.95) was assumed
for the cutoff threshold expressed by (2), in both the LIDAR-
based and stereo-based classifiers. Based on the knowledge of
the prior classification performance, it was possible to fuse the
two single-sensor classifiers using (5).

In Fig. 2(a), a typical scene is shown acquired during the field
testing of the system. Figure 2(b) shows the upper view of the
3D reconstruction as obtained by laser scanner (marked by
black points) and stereovision (denoted by grey points). One
first advantage of combining LIDAR with stereovision is that
the overall field of view is increased with LIDAR and vision
providing data mostly in the short and long range, respectively.
In addition, the sparseness of LIDAR data is mitigated by
dense stereo reconstruction. In Fig. 3, the results obtained from
the LIDAR-based classifier are shown for the scene of Fig.
2(a) in terms of traversability map. Cells labeled as ground are
marked in green, whereas cells that are labeled as non-ground
are denoted in red. In Fig. 3(b), the same results are projected
over the co-located image for visualization and comparison
purposes. Pixels associated with ground and non-ground cells
are marked using green and red, respectively. The LIDAR-
based classifier correctly detected both the obstacle in front
of the vehicle and the building on the right side, as well
as the traversable ground. For this scene, the precision and
rejection precision of the LIDAR-based classifier were 99.0%
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Fig. 2. (a) Original visual image. (b) Reference grid divided into 0.4-m by
0.4-m cells. Points reconstructed by laser scanner are denoted in black. Points
reconstructed by stereovision are marked in grey.

and 80.1%, respectively. Fig. 4 shows the results obtained
from the stereo-based classifier applied to the running example
of Fig. 2(a). Again, cells labeled as ground are marked in
green, whereas cells that are labeled as non-ground are denoted
in red. Classification results are projected over the original
image as shown in Fig. 4(b), where pixels associated with
ground and non-ground cells are marked using green and red,
respectively. The stereo-based classifier was also correct in
labeling obstacles and traversable ground. The precision and
rejection precision of the stereo-based classifier resulted in
98.9% and 66.0%, respectively. When the two single-sensors
classifiers are combined by weighting their results with the
associated prior probability, the performance of the overall sys-
tem resulted in a precision and a rejection precision of 99.3%
and 76.5%, respectively. The traversability map obtained from
the combined classifier is shown in Fig. 5. At a first glance,
it may seem that the combined classifier performs worse than
the LIDAR classifier in terms of rejection precision. However,
it should be noted that the single-sensor and the combined
classifiers differ in field of view, thus a direct comparison of
their classification performance is possible only when consid-
ering the cells that are “seen” simultaneously by both sensors.
As a matter of fact, if a given cell is being observed only by
one sensor modality, it will be labeled by the single-sensor
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Fig. 3. (a) Traversability map obtained by the LIDAR-based ground classifier.
(b) Results projected over the original image. Pixels associated with ground-
(non ground-) labeled cells are marked using green (red).

classifier and no sensor integration will be possible. Table
IIT collects the results obtained from each classifier over the
common cell subset that amounts to about the 35% of the total
number of labeled cells. These results clearly demonstrate that
the statistical fusion of the two classifiers helps in increasing
the information content and accuracy of the output produced.

Figure 6 shows a different scenario where the vehicle
travels on a country asphalt road. While the LIDAR-based
module performs well, as demonstrated in Fig. 6(a)-(b), the
stereo-based classifier produces many false negatives due to
the presence of heavy shadowing on the road, as shown in
Fig. 6(c)-(d). The traversability map, obtained fusing the two
classifiers, is shown in Fig. 6(e). For this scene, the LIDAR-
based classifier provided a precision and rejection precision
of 99.0% and 98.3%, respectively, against values of 97.1%
and 49.1%, respectively, for the stereo-based classifier. When
the two systems are fused, P and RP resulted in 98.2% and
75.1%, respectively. Again, the combination of the two sensor
modalities allowed the overall field of view to be increased,

TABLE III. CLASSIFICATION RESULTS OBTAINED FROM THE
SINGLE-SENSOR AND COMBINED CLASSIFIERS OVER THE COMMON CELL
SUBSET, 1.E. THE CELLS THAT ARE LABELED SIMULTANEOUSLY BY BOTH

SENSORS.
LIDAR-based | Stereo-based | Combined
Precision 99.1% 96.5% 99.6%
Rejection Precision 87.5% 96.1% 98.3%

I Classified ground cells
I Classified nonground cells

1

r

(b)

Fig. 4. (a) Traversability map obtained by the stereo-based ground classifier.
(b) Results projected over the original image. Pixels associated with ground-
(non-ground-) labeled cells are marked using green (red).

and the low rejection precision provided by the vision to be
compensated while preserving at the same time high precision
in detecting ground examples.

In summary, the combination of stereo and LIDAR data is
useful in that 1) it allows to widen the overall field of view
of the perception system, 2) vision can help to overcome
limitations of LIDAR, such as sparseness of data and low
acquisition frequency, by producing dense maps at relatively
high frequency, 3) being not affected by lighting conditions,
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Fig. 5. Traversability map obtained by the combined LIDAR-stereo system
for the scene of Fig. 2(a).
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Fig. 6. (a) Traversability map obtained by the LIDAR-based ground classifier,
(c) and the stereo-based ground classifier. (b, d) Results projected over
the original visual image. (e) Traversability map obtained by the combined
LIDAR/stereo system. Ground-labeled cells and associated pixels are marked
using green. Non-ground labeled cells and associated pixels are denoted in
red.

LIDAR can help to overcome limitations of vision, such as
reconstruction errors due to poor lighting conditions, shadows
and lack of texture.

IV. CONCLUSIONS

A multi-sensory approach combining LIDAR and stereo
imagery within a statistical self-learning framework for
traversable ground detection was presented. Field experiments
obtained using a test platform in natural scenarios validated
this approach showing good classification performance. The
proposed system led to the following main advantages: (a)
improvement of the perception performance of the combined
LIDAR/stereo system due to complementarity of the two sen-
sor modalities, (b) self-learning training of the system, where
the sensors allow the vehicle to automatically acquire a set

of ground samples, eliminating the need for time-consuming
manual labeling, (c) continuous updating of the system during
the vehicle’s operation, thus making it adaptive and feasible
for long range and long duration navigation applications.
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