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Stochastic Nonlinear Model Predictive Control
for a Switched Photovoltaic Battery System

Arne Groß, Bernhard Wille-Haussmann, Christof Wittwer, Benjamin Achzet, Moritz Diehl

Abstract— Battery systems gain popularity among users
in residential household setups. In this setup, currently the
main source of profitability is to increase photovoltaic (PV)
self-sufficiency which is highly dependent on the battery
system efficiency. We present a control approach based on
stochastic dynamic programming suitable to increase the
system efficiency. The optimization framework includes a
switched system with standby losses, a nonlinear modeling
of the converter losses as well as a stochastic forecast
model for household load and PV generation. We show in a
simulation of a typical benchmark case that our approach
can in fact reduce overall system losses and costs of
operation. Then, the applicability in a real-world scenario
is shown using a commercially available battery system in
a field test.

Index Terms— Energy storage, Photovoltaic systems,
Switched systems, Stochastic optimal control

I. INTRODUCTION

Photovoltaic (PV) electricity generation is a key element
in the decarbonization of the energy system. With subsidies
and feed-in remuneration, PV systems steadily gain popularity
in residential setups leading to a reduced electricity bill for
the user. Often, adding a battery system increases the return
of investment even further. Hence, the number of installed
PV battery system increases [1]. This popularity has inspired
many studies, proposing control methods for such systems.
A review of recent publications can be found in [2]. These
studies explore the potential of PV battery systems in various
regulatory and economic settings such as time-variant tariffs
[3], providing flexibility [4], or grid stability [5]. This yields
important insights into the feasibility of a future renewable
energy system. However, using the flexibility of a PV battery
system in such ways is not relevant in practice for residential
users as the regulations and pricing structure currently do
not remunerate such behavior. Instead, the main source of
profitability is to increase the self-consumption of PV gener-
ated electricity on site using a battery electric storage system
(BESS).

In this setup, conversion losses in the power electronics and
standby losses play a large role in the overall profitability
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many, (email: Benjamin.Achzet@varta-storage.com)

Arne Groß and Moritz Diehl are with the IMTEK at Univer-
sity of Freiburg, Freiburg, Germany, (email: moritz.diehl@imtek.uni-
freiburg.de)

of the PV battery systems [6]. Here, the conversion losses
depend nonlinearly on the battery power and play a larger
role at low conversion power. This offers a means to reduce
conversion losses by avoiding this region of low efficiency
and therefore increasing the profit of the user. To do so,
a smart control strategy is needed that takes the nonlinear
modeling of the losses into account. Such a control strategy
is developed in this paper. The new control strategy schedules
battery usage in real-time as well as the switching sequence
between operational and sleep state. For the optimal control
problems arising from this control scheme, the expected PV
generation and household load on site are used as input data.
As both time series are stochastic processes, forecasts are
afflicted with sizable uncertainties, necessitating a stochastic
modeling of PV and household load in the control scheme.

Model predictive control (MPC) is a widely used approach
to control PV battery systems with nonlinear models. The
resulting optimal control problems are solved using vari-
ous methods including dynamic programming [7], [8], ap-
proximate dynamic programming [9], or analytically solving
the KKT conditions [10]. In [5] an MPC formulation as a
quadratic program is developed while [11] approximates the
nonlinearities with piecewise affine functions leading to a
mixed integer linear problem. Both transform the problems
to be able to use efficient commercially available solvers.

Systems with switched discrete states are typically handled
using mixed integer formulations. Such a system is presented
in [12]. These approaches typically lead to high complexity
and cannot be used to integrate uncertainty modeling effi-
ciently.

Stochastic control has been a topic in control systems
applied to a smart grid context frequently [13], [14], [15],
[16], [17]. Here, the complexity of the system modeling is
reduced to linear approximations to allow for a consideration
of forecast uncertainties. In previous publications [18], [19]
we have combined a nonlinear efficiency modelling with a
stochastic forecast albeit without a discrete switched state of
the system. Both, mitigating forecast uncertainty and increas-
ing overall efficiency of battery usage have implications on
the economic performance. This was briefly discussed in [18].

In this brief, we integrate the nonlinear modeling of con-
version losses, a discrete switchable state, and stochastic
system dynamics in a control scheme using stochastic dynamic
programming.

After this introductory Section this brief is organized as
follows. In Section II the battery system modeling is presented
followed by the description of the used control scheme in
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Section III. The control scheme is evaluated using a simulation
in Section IV. A field test is performed to demonstrate the
usability in practice.

II. MODELING

We intend to control a photovoltaic (PV) battery system. For
our system model we use a discrete time formulation with
a time step ∆t and horizon length N . The lower index k
of a time dependent variable specifies the point in time over
the horizon k ∈ {0, ..., N − 1}. Our system consists of a
PV generator, a household load and a battery system. The
system is connected to a public electricity grid. Photovoltaic
generation pPV

k will primarily be used to cover the household
load pload

k . We therefore define the residual load

Rk = pload
k − pPV

k . (1)

If the PV generation exceeds the household load (Rk < 0), it
may be stored in the battery storage to cover the load at a later
time. The AC power of the battery system pb(ub

k, sk) depends
on the controllable converted power ub

k and the operation
state sk (cf. Sections II-A and II-B respectively). Positive
and negative values for pb

k denote charging and discharging
respectively.

Furthermore, excess generation can also be fed into the
public grid and is remunerated with a feed-in tariff cf. We
denote the grid power with pg where negative values denote
feed-in and positive values denote grid supply with costs cs.
To calculate pg we use the conservation of energy

pg(ub
k, Rk, sk) = Rk + pb(ub

k, sk) (2)

We differentiate between grid supply and feed-in using the
functions

P g
+(u

b
k, Rk, sk) = max(0, pg(ub

k, Rk, sk)) and

P g
−(u

b
k, Rk, sk) = max(0,−pg(ub

k, Rk, sk)) (3)

respectively. Hence, we arrive at an expression for the stage
cost of the system at time point k given by

g(ub
k, Rk, sk) =

(
csP g

+(u
b
k, Rk, sk)− cfP g

−(u
b
k, Rk, sk)

)
·∆t .

(4)

A. Battery and Converter Model
The BESS consists of a converter system and a battery

storage where we consider standby and conversion losses. The
variable

pb(ub
k, sk) = ub

k + lsb(sk) (5)

refers to the power at the point of AC coupling to the
household bus. It comprises the converted power ub

k including
the conversion losses and the standby losses of the converter
system lsb(sk). Standby losses depend on the current opera-
tion state sk which is explained in Section II-B.

The converter system is composed of an AC-DC inverter
and a DC-DC converter resulting in losses lc(ub

k) dependent
on the battery power. With that, the evolution of the state of
charge of the battery system xk can be modeled as

xk+1 = fx(xk, u
b
k) :=xk + peff(ub

k) ·
∆t

Cb (6)
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Fig. 1: Conversion losses of the converter system. Plot shows
lab measurements (red squares) as well as the quadratic fit
(black line).

with the battery capacity Cb and effective charging power

peff(ub
k) =

{ (
ub
k − lc(ub

k)
) (

1− ϵeff
)

if ub
k > 0(

ub
k − lc(ub

k)
) (

1 + ϵeff
)

if ub
k < 0

(7)

with the dynamic loss parameter ϵeff accounting for losses in
the battery cells.

The converter losses lc(ub
k) can be described by a quadratic

polynomial [20]

lc(ub
k) =

{
0 if ub

k = 0

pa + uau
b
k + rau

b
k

2 else
(8)

where a lab measurement of the power dependent losses is
performed to determine the model coefficients pa, ua and ra.
The results of this measurement and the fitted model are shown
in Figure 1.

An upper and lower limit of the AC power is given by the
nominal power of the converter system pnom.

B. Switching and Resulting Efficiency

On sunny afternoons a fully charged battery system is
often not used as the PV generation still exceeds the load.
This also occurs after the battery is discharged completely
during the night. Then, standby losses can accumulate to a
significant contribution of losses. For our system, a sleep
mode is implemented where these standby losses are reduced
significantly. Switching between operating and sleep state is
modeled by introducing the discrete state

sk ∈ S :={0, ..., S − 1} (9)

indicating if the system at time k is in sleep state (sk = 0),
in the working state (sk = S − 1) or in a transition between
the two states. The number of modeled states corresponds to
the switching time

tsw = ∆t(S − 1). (10)

Furthermore, the switching control

us
k ∈ Us :={+1,−1} (11)
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defines the transition function of the operation state

sk+1 = fs(sk, u
s
k) :=min(S − 1,max(0, sk + us

k)) (12)

If the converter is not in an operational state (i.e., sk <
S − 1), no conversion is possible and ub

k = 0.
The standby losses normalized to the nominal inverter

power in both operational and deep sleep state can be mea-
sured at the real system and are

lsb(sk)

pnom =

{
4.7W if sk = 0
14.2W else (13)

C. Stochastic Residual Load Model

The stage costs in (2) depend on the residual generation Rk

which are unknown previously. We estimate it with an external
forecast R̄k using a Markov chain model developed in [18].

Rk+1 = fR
k (Rk, εk) := R̄k+1 + τ(Rk − R̄k) + σεk. (14)

Therein, the parameter τ ∈ [0, 1] holds information on how
much a current state is valued as a short-term forecast over
the external information. The parameter σ > 0 denotes the
uncertainty of the external model and can be determined from
probabilistic forecasts as described in [19].

The white noise
εk ∼ N (15)

models the stochastic behavior of the process.

III. OPTIMIZATION

Optimal operation of the system with respect to the costs
of operation is achieved by using Model Predictive Control
(MPC), a paradigm widely applied to various systems. Details
on MPC may be found in [21].

In classic MPC, the system is controlled by solving an
optimal control problem (OCP) at each sampling time and
using the first entry of the resulting control trajectory as control
input.

Here, we deviate from this procedure. Using dynamic pro-
gramming, an OCP is solved at a lower frequency resulting in
optimal policies. From these, the optimal control is obtained
at each sampling time using updated state measurements.

We formulate the optimal control problem used to obtain the
policies in the following. Values for the controller parameters
will be presented in Section IV-A.

A. Stochastic Optimal Control Problem

With the definitions in Section II, the system can be
summarized in the state

yk = (xk, sk, Rk)
T ∈ Y :=[0, 1]× S × R (16)

consisting of state of charge xk, switching state sk and the
residual generation Rk. Here, the symbol R denotes the real
numbers. This state evolves as defined in (6), (12) and (14) as

yk+1 = F (yk, uk, εk) :=

 fx(xk, u
b
k)

fs(sk, u
s
k)

fR(Rk, εk)

 . (17)

The transition is a Markov-chain depending on the previous
state, the realization of the uncertainty εk and the controls uk.
Similar to yk, the switching and battery control variables us

k

and ub
k respectively are summarized to

uk = (ub
k, u

s
k)

T ∈ U :=[−pnom, pnom]× Us. (18)

At each time step, a control is determined from a policy
µk ∈ M where

M :={µ : µ(y) ∈ U ∧ F (y, µ(y), ε) ∈ Y ∀y ∈ Y,∀ε}. (19)

This set M is defined as the set of functions that assign a
feasible control to each point in the feasible set.

Consecutively, the state sequences y can be determined
given the feedback laws µ and the noise ε. In the following,
we use boldface symbols without an index to indicate the
complete time series of a variable over the horizon. For k = 0
we start with an initial value ŷ obtained from measurement at
the time of solving the OCP and define

y0(µ, ŷ, ε) := ŷ (20)

and recursively obtain values for the following time steps

yk+1(µ, ŷ, ε) :=F (yk(µ, ŷ, ε), µk(yk(µ, ŷ, ε)), εk). (21)

Finally, the optimization problem can be written as

min
µ∈M

E
ε∼N

[
N−1∑
k=0

g(µk(yk(µ, ŷ, ε)), yk(µ, ŷ, ε))

+ gN (yN (µ, ŷ, ε))

]
(22)

where we define the terminal costs based on the value of the
stored energy at the end of the horizon xN

gN (xN ) =
cs + cf

2
CbxN . (23)

Solving Problem (22) yields a feedback law for each time
step.

B. Discretization of State and Control Space
In Problem (22), the policy µ can be of any form leading to

an infinite-dimensional optimization problem. Along with the
stochastic state transition this leads to a challenging problem.
We tackle this problem by using stochastic dynamic pro-
gramming (SDP) extending the algorithm described in [18] to
accommodate the efficiency measurements and the switching
from Sections II-A and II-B. For further details on dynamic
programming the reader is redirected to textbooks such as [22].

To use SDP, we discretize the state and control space starting
with nx discrete states for the state of charge

X = {xi =
i

nx − 1
; i = 0, 1, ..., nx − 1} (24)

that are the same for the complete horizon. We use the calli-
graphic setting to indicate that X is a discrete set. Similarly,
the continuous feasible set for the battery power is discretized
into

Unom =

{
i

nu
pnom; i = −nu, ..., 0, ..., nu

}
(25)
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leading to the discretized feasible set of the battery power ub
k

Ub(xk, sk) =

{
{0} if sk = 0

{ui ∈ Unom : fx(xk, u
i) ∈ [0, 1]} if sk = 1

(26)
In (26) we have also ensured that the constraints on xk are

always met by only allowing charging and discharging power
values that lead to a feasible state in the next time step. Note
that no battery activity (ub

k = 0) is always part of the feasible
set. This guarantees that problem (22) is always feasible.

For the residual generation, we use a discrete state space
centered around the external forecast R̄k.

Rk =

{
R̄k +

(
2i

nR − 1
− 1

)
∆R; i = 0, . . . , nR − 1

}
(27)

where the parameter ∆R controls the width of the domain of
the policy. With these definitions, we can define the policy

µk : X × S ×Rk 7→ U(xk, sk) (28)

as a lookup table defined on every point of the discrete state
space.

C. Approximation Scheme
Typically, external forecasts for residual generation are

available with a time resolution of 15 min. With (10), this
entails a modeled switching time of at least 15 min. In practice,
switching times are in the range of one or two minutes. Hence,
we interpolate the forecast to a time step of 1 min to model
the switching time correctly.

However, computation time scales linearly with the horizon
length and SDP is computationally demanding in general. We
therefore developed an approximation scheme using a time
step of ∆t = 15min and S = 2.

In it, we define approximated wake up costs as

gwu(ub
k, Rk) = g (0, Rk, 1) r

wu

+ g
(
ub
k, Rk, 1

)
(1− rwu) (29)

where a transition time of

∆tsw = rwu∆t (30)

is assumed defining rwu implicitly. Switching off is modeled
as instantaneous leading to costs

goff
k (Rk) = gk(0, Rk, 0). (31)

This defines the approximated stage costs

g̃

((
ub
k

us
k

)
, Rk, sk

)
=

 goff(Rk) if us
k = -1

g(ub
k, Rk, sk) if us

k + sk = 2
gwu(uk, Rk) if us

k + sk = 1
.

(32)
As (6) is linear in ∆t, a similar modification leads to an

altered transition for switching on

fx,wu(xk, uk) = xk + rwupeff(ub
k)∆t. (33)

With these modifications, the switching time is modeled in a
framework with a coarser forecast time step. In contrast to
the approach in Section II-B, switching between states during
a 15 min interval is not modeled in optimization. Therefore,

optimization results may be suboptimal. However, modeling a
switching time shorter than ∆t presumably models switching
more accurate than the bare algorithm in Section II-B with a
time step of 15 min.

D. Control Law in Operation
In operation, a new set of policies with a horizon of 12 h

is calculated after every update time of ∆tpol update = 6 h.
Optimization is performed using an updated forecast for the
residual generation.

Control feedback is determined by evaluating the policies
at each sampling time with state measurements x̂k and R̂k

and the current operation state ŝk. The policy is interpolated
between the four closest points in the X×Rk grid for state ŝk.
If a measurement of the residual generation R̂k lies outside
the grid, the policy is evaluated at the closest grid point.

With a sampling time of 1 min, the policy is possibly
evaluated with a higher frequency than the optimization time
step. Then, switching can occur with higher frequency even
though it was not modeled in the optimization.

IV. SIMULATION STUDY

To evaluate the control scheme for the switched inverter
using a precise model of the efficiency curve, a simulation
study is performed with a yearlong dataset.

A. Simulation Setup
For the simulation we use a PV generation time series

measured in Freiburg in 2012. For the generation forecast
we use a forecast developed at Fraunhofer Institute for Solar
Energy Systems using data of the ECMWF-IFS ensemble
forecast [23].

The PV profile was scaled to a nominal power of 4.7 kW.
For the household load, we use a measured profile of a four-
person household with a total load summed over the year
of 4662 kWh. A load forecast is generated using a KNN
approach that has shown a high forecast accuracy on other
household data [24].

We simulated a battery with a capacity of 4.7 kWh and
the model of the converter system shown in Figure 1 with
a maximum AC power of 2.35 kW. Our simulation data had a
time resolution of 1 min. Sizing of PV and battery is selected
in accordance with the 1 MWh / 1 kWp / 1 kWh rule presented
in [25].

Using a smaller dataset of 12 days of the year we performed
a benchmark study to determine the optimal choice of the
model and algorithm parameters. This led us to using the
following parameters for the yearlong simulation

nx = 50, nR = 40, nu = 70,

τ = 0.92, N = 48 (34)

The value for σ was obtained from forecasted uncertainty
of the PV forecast and previous errors of the load forecast
using a method presented in [19]. Subsequently, the parameter
∆R was determined corresponding to the expected standard
deviation of model (14) to be

∆R = 3.5
σ√

1− τ2
(35)
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B. Performance Criteria
To analyze the performance of the proposed algorithm for

the control of a PV battery system, the following performance
indicators are defined.

• The amount of converter usage can be measured by the
summed Converted Energy

Ec, in = ∆t
∑
k

max(0, ub
k). (36)

A high amount of energy stored in the battery leads to a
high saving as the PV energy used to cover the household
load is increased. This is the main driver of profitability
when supply prices are substantially higher than feed-in
remuneration.

• The Conversion Efficiency

η̄c =
Ec, out

Ec, in =
−∆t

∑
k min(0, ub

k)

Ec, in (37)

measures if the converter system is used in an efficient
power range.

• The Standby Losses

Lsb = ∆t
∑

k:ub
k=0

lSB(sk) (38)

denote the overall energy lost in the converter system due
to standby losses. These losses decrease if the converter
system is switched to the sleep state more often.

• The Total Losses in the battery system

Ltotal = ∆t
∑
k

pb
k (39)

sum up the overall energy lost due to conversion and
standby.

• A hypothetical Electricity Bill is obtained by using the
distinction between feed-in and supply in (3) together
with supply costs cs = 28 ct/kWh and feed-in tariff of
cf = 12.3 ct/kWh.

C. Compared Algorithms and Cases
Commercially available PV-battery systems maximize the

self-sufficiency of the system. The battery power set value u∗

can be determined by the control law

u∗ = −R (40)

This is equivalent to charging the battery with excess PV
power and covering the household load from the battery when
it exceeds the PV generation. If the battery state of charge
forbids this, the battery power is changed accordingly. The
battery is switched to the sleep state if either Rk < 0 and
xk = 0 or if Rk > 0 and xk = 1. This control scheme is
referenced as the standard approach.

Furthermore, we have implemented a deterministic MPC
approach (Det. DP). A receding horizon of N = 720 and
∆t = 1min is used with the detailed optimization approach
in Section II-B with S = 3, σ = 0 and τ = 0. The
same method yields the ideal operation when assuming perfect
foresight.

TABLE I: Results of the simulation study with no feed-in
curtailment present

Ec, in Efeed Σself η̄c Lsb Ltotal Costs
kWh kWh % % kWh kWh C

No battery - 4553 34.9 - - - 289.8
Standard 1046 2929 56.4 62.6 61.3 623.7 209.5
Det. DP 939 3148 53.7 64.0 80.9 527.8 216.9
Large ∆t 1005 3010 54.1 60.8 108.3 648.1 228.9
approx 953 3197 54.0 67.2 83.8 464.9 207.1
SDP 1006 3086 55.2 65.9 77.0 521.7 205.4
Ideal 1035 3089 55.9 68.1 76.8 484.1 195.4

Three types of the developed SDP algorithm are compared:

• Large ∆t: Modeling as in Section II-B with a modeling
time step of ∆t = 15min and S = 2. The average
computation time per policy in simulation was 4.5 s.

• SDP: Modeling as in Section II-B with ∆t = 1min,
S = 3, and N = 720. This setup models the switching
behavior most accurately albeit at the high computational
load of 69.6 s per optimization routine.

• Approx: Using ∆t = 15min and the approximation in
Section III-C, the average calculation time per optimiza-
tion routine could be reduced to 8.9 s.

Deterministic DP had a computational load of 9.0 s per
optimization routine while the standard control has negligible
computational load.

As a further reference, we have also included simulation
results without a battery system installed.

D. Simulation Results

For the setup described in Section IV-A a simulation was
performed using every algorithm of those listed in Section IV-
C. From the resulting power time series, certain key perfor-
mance indicators explained above were calculated and reported
in Table I.

In the simulation study, both the high resolution SDP
scheme and the approximation scheme performed better than
the Standard approach which in turn outperformed Large ∆t
and deterministic modeling. A sizable difference remains in
the costs of ideal operation compared with all other methods.

Figure 2 shows the mechanism leading to the cost reduction.
It shows the time a specific loss power occurs over the year.
A higher loss power is entailed by a higher converter power
(typically leading to lower relative losses). Therefore, ideal
operation shows the steepest decline from either high losses
(i.e., efficient operation) to standby losses of approximately
0.01 kW (i.e., no converted power, sleep state).

A second horizontal line above at 0.03 kW corresponds to
standby power of lon exclusively with no converted power.
Compared with the standard approach, all other methods
reduce inefficient operation at low converter powers. Although
standby losses increase as the battery system is in the sleep
state for a longer period, the overall losses decrease (see Table
I). Operation using a large ∆t without the approximation
scheme leads to the highest standby losses. The large time
step renders it unattractive to switch to the sleep state. Hence,
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Fig. 2: Annual duration curve of converter losses pb − peff.
The loss values for all time steps in the simulation are shown
ordered by value. Due to the dependence of the losses on
battery power, high losses indicate more efficient operation.

the battery is idling in the on state for extended periods of
time.

Additionally, in the ideal case, and to a lower extent also
when using deterministic DP, operation is increased at high
powers yielding low relative losses. However, achieving this
increase, relies on forecasting the peaks of load and PV
generation reliably. Otherwise, battery capacity is reserved to
buffer peaks falsely and self-sufficiency is decreased leading
to higher costs. In fact, all non-standard methods decrease the
self-sufficiency compared with the ideal operation due to this
effect.

In general, all methods show lower overall battery usage
as inefficient operation is prevented in favor of feeding in the
public grid.

The current regulatory environment incentivizes self-
sufficiency even at the cost of increased efficiency losses.
This results in slim margins of improvement compared to
the standard heuristic control optimized for this static pric-
ing scheme. However, with increasing renewable generation,
flexibility will be valued higher. Then, storage operation even
in residential setups may face a more complex incentive
structure. In this, optimization-based and especially stochastic
MPC approaches perform better than heuristics. This has been
shown in previous publications [18], [19] for a setup with a
feed-in limit. These results can be observed with the switched
system as well. However, the case is not studied here for
shortness of presentation.

V. FIELD TEST

In the simulation study reported in the previous Section
it was shown that the control scheme based on SDP can
be used to increase the charging and discharging efficiency.
A field test was performed to explore the applicability of
the proposed control scheme to a real world setup. To this
end, the approximated SDP scheme developed in this paper
was integrated into the control software of a commercially
available battery system. The BESS used in the field test had
a battery capacity of 5.9 kWh and the inverter system had a

maximum AC power of 2.2 kW. The system was installed in a
residential household that also had a 9 kWp PV generator. The
field experiment was performed over a duration of 15 days
and measured using the sensors of the BESS. These data
were recorded with a sampling time of 5 s. Subsequently, a
comparative lab test of the same system was performed using
the integrated control. To this end, the residual generation
profiles measured in the field test were provided to the system
through power hardware in the loop.

As discussed in Section III-D the control scheme consists of
the optimization algorithm determining optimal policies and
the real-time control interpreting those policies. The control
scheme of the commercial BESS minimizes the power at the
grid access point pg at all times which is equivalent to the
Standard control strategy.

In the field test, this strategy is replaced by the approximated
SDP scheme. A policy µk : X ×S ×Rk 7→ U with time step
of ∆t = 15min and horizon of 9 h was stored in the real-
time management unit. Control feedback was applied every
five seconds as in the Standard control. The optimal control
u∗ was determined by bilinear interpolation of the policy µ.
With this value, a corresponding set point for the grid power
was determined and used in the real-time management.

Every ∆tpol update = 6 h, a PV forecast is obtained from an
external service [26]. A load forecast is generated by using
the load profile of exactly one week prior.

With these forecasts, the optimization algorithm is triggered
using it as a standalone executable via a json interface. No
additional hardware was necessary for solving the optimization
problems. Instead, the optimizer was compiled for and run on
the existing BESS control hardware. The average calculation
time for a policy of a 9 h horizon was 20 s. After calculation,
the stored policy in the real-time measurement was updated
and the new policy was used for determination of the real-time
control input.

This decoupling of optimization and real-time management
facilitated the integration of the optimization based approach
into the heuristic control scheme of the existing product. Us-
ing the optimizer as a standalone executable led to decoupling
of the optimizer from the BESS control software. Fallback
controls are implemented for the case of failure of policy
generation due to unforeseen reasons.

Over the period of 15 days, the converter efficiency using
the Full SDP approach was η̄c, field = 71.18%. The standard
control led to a converter efficiency of η̄ ,̧ lab = 71.21%. This
is close to the roundtrip efficiency in the simulation study.
However, due to the limited duration of the field test, this can
not be seen as a quantitative analysis comparable to Table I,
but is restricted to a qualitative assessment of the battery usage
characteristics.

From Section IV-D, it was expected that the proposed op-
timization algorithm would lead to charging at higher powers
and hence an increased efficiency. However, some effects
were observed that led to losses in efficiency. First, a slight
misparameterization in the optimization algorithm used in the
field test led to assuming a maximum conversion efficiency at
powers of 1.5 kW. Therefore, the charging power was reduced
to that value on sunny days like shown in the profiles of the
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exemplary day in Figure 3.
Secondly, the internal controller of the battery system used a

measurement of the power at the grid access point to determine
the optimal set point for the battery power from the policy. As
the grid power itself is influenced by the battery power, this
led to an oscillating behavior. The precise mechanism could
not be identified, but the effect was not observed in the lab
test using the Standard control.

In contrast to other studies, here switching to the sleep
state and subsequent lower standby losses are modeled in the
optimization. In the simulation study, it could be observed that
charging was performed at powers with higher assumed effi-
ciency in order to reduce the overall time of battery operation.
When the battery was charged completely and PV generation
exceeded the household load the BESS was switched to sleep
until sunset. Analogously, when the energy needed for the
household load during the night exceeded the energy stored
in the battery, the BESS was only discharged with power
of high efficiency. Unfortunately, this could not be observed
in the field test. The cause for that can be observed in the
late afternoon on the day shown in Figure 3. The battery did
not charge anymore, although a set point was given and the
state of charge was not at 100 %. To reach the highest self-
sufficiency, the battery is charged with excess PV generation
until an SoC of x = 100% is reached. At x = 100%, the
system is switched to deep sleep state. In the real system,
charging stopped before a full battery was reached preventing
the switching command.

The field test was performed in the second half of October
leading to days with meager sunlight and hence longer dura-
tions without battery activity. In this situation, a large potential
can be unlocked by enabling to switch to the sleep state in a
subsequent improvement of the real-time management.

VI. CONCLUSION

In this paper we presented a novel optimization scheme
to model switching behavior of a converter system into a
stochastic model predictive control approach for a PV battery
system. An optimization model was presented and evaluated
in a simulation study. An approximation scheme for switching
times shorter than model time steps was developed to reduce
calculation times at low costs of suboptimality.

It was shown that considering standby and conversion losses
in an optimization model can improve the battery efficiency.
This leads to reduced electricity costs. Then, the model pre-
dictive control approach can be adapted to different economic
environments easily.

A field test showed, that the policy based stochastic MPC
scheme could be integrated into the energy management soft-
ware of a commercially available BESS with little overhead.
Beyond that, the test indicated that the performance could
be improved by more precisely modeling the behavior of
the battery cells at maximum state of charge and preventing
interactions of battery and grid power.
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