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Abstract. We investigate the problem of counting the number of frequent (item)sets—
a problem known to be intractable in terms of an exact polynomial time computation.
In this paper, we show that it is in general also hard to approximate. Subsequently,
a randomized counting algorithm is developed using the Markov chain Monte Carlo
method. While for general inputs an exponential running time is needed in order to
guarantee a certain approximation bound, we show that the algorithm still has the
desired accuracy on several real-world datasets when its running time is capped poly-
nomially.
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1. Introduction

Frequent pattern mining is considered one of the most influential methods in
data mining as compiled by Wu et al. (2008), and recently it has even made the
step into commercial database systems (Yoshizawa, Pramudiono and Kitsure-
gawa, 2000; Li and Mozes, 2004; Utley, 2005). It is used within several combina-
tions of local pattern types and application domains. A few examples for such
combinations are association rules for market basket data, frequent subgraphs
for molecule prediction, and sequential patterns for time series data (see Han
and Kamber, 2000 for an overview). Their unifying property is that patterns are
only considered interesting if they satisfy a (minimum) frequency constraint, i.e.,
a certain number of records of the input dataset have to “contain” the pattern.

1 A short version of this paper has appeared in the Proceedings of the 2008 Eighth IEEE
International Conference on Data Mining (ICDM 2008).
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In contrast to most other work devoted to frequent pattern mining which deals
with the development and evaluation of algorithms that list all frequent patterns,
in this study, we are interested in counting them quickly. Knowing the relation-
ship between frequency threshold and the resulting number of frequent patterns
can for instance be used for computing a frequency-plot, i.e., a plot showing all
possible thresholds (x-axis) against the corresponding number of frequent sets
(y-axis). Having such a plot prior to the actual mining process can for instance
be used within intelligent discovery assistants (IDAs) (Bernstein, Provost and
Hill, 2005) in order to either provide user guidance for setting the frequency
threshold or to tune it automatically.

For this purpose it is an essential requirement that the involved computation
is performed quickly. “Indeed, the problem is precisely to predict a combinato-
rial explosion without suffering from it [. . . ]”, as Geerts, Goethals and Bussche
(2005) have put it in their related study of bounding the number of candidate
patterns that have to be processed within a BFS-listing of all frequent patterns.
In particular for dense datasets this requirement prohibits the use of any of the
known exhaustive data mining algorithms that list all frequent patterns. Even
though these algorithms have been optimized to an impressive level in recent
years, they have the number of frequent sets as an inherent lower bound of
their time complexity. While this does not pose a problem for sparse datasets,
in dense ones this number behaves in essence exponentially (for low frequency
thresholds). For that reason we are aiming for an algorithm counting the number
of frequent sets in a time that does not depend on that number. Since it is well
known that no exact deterministic algorithm with this property can exist (un-
less P = NP), we are aiming for a randomized approximation algorithm using
the Markov chain Monte Carlo method. Moreover, we restrict ourselves to the
case of plain frequent (item)sets, which are used, e.g., for generating association
rules. In summary, we are aiming for an input polynomial algorithm solving the
following computational problem:

Problem 1 (#-FREQUENT SETS). Given a transactional dataset and a
frequency threshold, compute the cardinality of the corresponding frequent set
family.

We discuss the question of why all this is a worthwhile venture in some more
detail in Section 2. After some formal definitions (Section 3) that are needed for
the subsequent technical content we analyze theoretical limits in Section 4. As
the main result of this section we show that the number of frequent sets is hard
to approximate. In addition we interpret some known complexity results in the
context of our problem. We then develop a randomized approximation scheme in
Section 5 that makes use of a sampling procedure presented in section 6. Details
and speed-ups are presented in Section 7 resulting in a hybrid algorithm with an
exhaustive and an approximative counting phase. As indicated by the hardness
result, we show that for general inputs the algorithm’s correctness cannot be
guaranteed or its time complexity is not bounded polynomially. However, exper-
iments we present in Section 8 constitute its applicability on several real-world
and synthetic datasets. A concluding discussion is given in Section 9.
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2. Motivation

In order to raise business value of data mining or generally to make it more
accessible to non-expert users, approaches like Intelligent Discovery Assistants
(IDAs) (Bernstein et al., 2005) or Mining Mart (Morik and Scholz, 2002) have
been proposed. Both assist a user in selecting a valid data mining process for
their data. Still, once a user has decided on a valid process the next problem is to
find good parameter settings, and in case a frequent pattern mining step is part
of the process this usually involves a minimum frequency threshold. Knowledge
about the relation between frequency threshold and the corresponding number of
frequent sets is very helpful in this context, as it allows to control the output size
and thus indirectly the output time, because frequent set mining algorithms usu-
ally exhibit a time complexity that is roughly linear in the output. Consequently,
quickly counting the frequent sets helps to make optimal use of the available time
budget. Moreover, as we will argue below, a computed frequency plot can also
help semantically to setup and interpret the whole process. It should be noted
that the following discussion is illustrative and motivating. A thorough inves-
tigation of how to choose a minimum frequency threshold justifies a complete
study in its own right.

2.1. Frequency Plots

In order to explain the possible use of a frequency plot let us assume we have a
dataset generated by the following illustrative and absolutely idealized underly-
ing process.

Example 2 (Beginner’s Guide Process). There is a hobby shop carrying
items for k different hobbies. In particular there is a “beginner’s guide” ai for
every hobby and a corresponding “starter kit” consisting of items ci,1, . . . , ci,l(i)
(1 ≤ i ≤ k). A usual (senior) customer purchases every item independent from
one another with probability pc except for the beginner’s guides, which he will
never purchase. However, with probability pa (per hobby independent from one
another) a customer will pick up a new hobby and buy the corresponding begin-
ner’s guide ai. In this case he will always also purchase items ci,1 to ci,l(i) and
behaves like a usual customer otherwise.

Clearly, the most (if not the only) interesting association rules for this underlying
process are the rules

ai → ci,1 . . . ci,l(i)

for i ∈ {1, . . . , k}. All of these rules will have the maximum confidence2 of 1,
which measures the actual semantical value of a rule. Whereas their expected
support is equal to the probability pa. We generated three datasets using the
above process for pa = 0.1, 0.13, 0.16 and pc = 0.6. Each of the datasets was
generated with k = 5 implicant items, 10 different consequence items for each
implicant, and 5000 transactions. Figure 1 shows their resulting frequency plots.
Depending on initial assumption on the generative process there can be different

2 The confidence of a rule is the fraction of transactions containing a rule’s consequence among
those containing its antecedence.
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Fig. 1. frequency plots

strategies of inferring a good threshold from this plot. First, however, it is nec-
essary to clarify the motivation of introducing a minimum frequency threshold
at all.

2.2. Frequency Thresholds

The reasons for introducing a frequency constraint can roughly be subsumed
under three purposes:

(1) suppress statistically insignificant results that are a mere random fluctuation
of the underlying data generating process (for instance all antecedences oc-
curring in only one transaction will induce rules with maximum confidence),

(2) raise output pattern value in the sense that they are applicable to more data
instances, i.e., there are more records satisfying the rule’s antecedence, and

(3) allow additional pruning of search space thus making otherwise intractable
tasks tractable.

In particular for the last purpose, the frequency threshold is often set to higher
values than it would be necessary for reasons (1) and (2) alone. Clearly, this can
harm the analytical value of the resulting patterns, because patterns that are
interesting according to a primary criterion (e.g., confidence) might be pruned
without any statistical reason purely for the sake of performance. Thus, it would
be desirable to set the frequency threshold to the minimum value that is reason-
able with respect to reasons (1) and (2).

For the above example observe that for all three datasets the interesting rules
have an expected support that lies before that point of when the plot finally turns
to a purely exponential behavior. Thus, a user setting the frequency threshold to
this point is expected to not miss most of them. Although this may not always
be the case, this strategy generally aims to find the most conservative threshold
that preserves most interesting rules while it suppresses most of the statistically
insignificant sets. Moreover, the plots lead to a small set of reasonable candidate
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frequency points, namely the sockets before steep exponential slopes. Clearly,
this is an improvement when compared to the uninformed approach of trial-and-
error parameter twiddling.

2.3. Related Work and Objections

An important related approach to raise user control in frequent set mining is
listing only the top-K frequent sets proposed by Wang, Han, Lu and Tzvetkov
(2005). While this approach takes care of output size control and scheduling, it
fails to provide the global overview of computing a frequency plot for all possible
frequency values—a task that cannot be done using a top-K miner (in particular
on dense datasets) because the same restrictions apply to them as stated in the
introduction for ordinary exhaustive miners. Moreover, the most frequent sets
are not necessarily the most interesting ones (Tatti, 2008; Boley, Horváth and
Wrobel, 2009).

Still, this may inspire a general objection to the above motivation: Why is it
useful to compute regions of the plot that correspond to frequent set families so
large that they are impossible to list in a subsequent mining step? The answer
to this lies in the fact that frequency is usually only a subsidiary interestingness
criterion. While the frequency plot shows the effect of that criterion alone, the
final pattern set may result from a conjunction of several constraints, e.g., con-
fidence or lift, many of which can be used for pruning already during frequent
set listing (see Pei and Han, 2000 or Hämäläinen and Nykänen, 2008). Thus, the
resulting output family, albeit its low frequency threshold, can in fact be listed
effectively. Moreover, if effective knowledge post-processing is employed (e.g.,
based on visual analytics as in Blanchard, Guillet and Briand, 2007) it is often
reasonable to produce the maximum number of frequent sets than can possibly
be computed within a given time budget.

A different approach for replacing the minimum frequency threshold by a
more intuitive paramater has been proposed by Zhang, Wu, Zhang and Lu
(2008). In their work, user-specified “fuzzy” thresholds like “more or less fre-
quent” or “highly frequent” are translated into traditional frequency thresholds.
This translation is based on an approximation to the average support that, in
turn, relies on an independence assumption for the distribution of single items.
While this method simplifies parameter setting for the user, it does not provide
control over the output size and the corresponding computation time.

3. Preliminaries

In this section we recall and fix notions from frequent set mining, randomized
approximation algorithms, and Markov chains that are needed in the subsequent
discussion.

Frequent Set Mining and Prefix Trees Let E be a finite set. A dataset D
over E is a finite multiset with D ⊆ E for all D ∈ D. In the context of frequent
pattern mining the elements of E are often called items and the elements of D
transactions. For a set F ⊆ E we define its support multiset as D[F ] = {D ∈ D :
D ⊇ F}. Frequency thresholds can be specified as absolute or relative thresholds
depending on what is more convenient in a given situation. For an (absolute)
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integer threshold f ∈ {1, . . . , |D|}, F is called f -frequent (or frequent) in D if
|D[F ]| ≥ f respectively for a (relative) real threshold f ∈ (0, 1), if |D[F ]| ≥ f |D|.
The family of all f -frequent sets in D is denoted F(D, f) or just as F when D
and f are clear from the context.

Unless stated differently we denote the number of items by n and identify E
with the set {1, . . . , n} throughout this article. This allows use to use the natural
order on {1, . . . , n} and particularly to use the symbols maxF and minF for
F ⊆ E. In addition we assume without loss of generality that the items are
numbered in descending order of their frequency, i.e, 1 ≤ i < j ≤ n⇒ |D[{i}]| ≥
|D[{j}]|. For a set F ⊆ E and i ∈ {0, . . . , n} we denote by Fi = F ∩ {1, . . . , i}
the i-prefix of F . The prefix tree of D is a labeled directed tree (arborescence)
T = (V,E, φ) with nodes V = {Di : D ∈ D, 0 ≤ i ≤ n}, i.e., the set of all
prefixes occurring in D, edges E = {(Di, Dj) : D ∈ D, Dj = Di ∪ {j}}, node
labels φ(X) = |{D ∈ D : ∃i, Di = X}|, and edge labels φ((Di, Dj)) = j.

Probabilistic Approximation Algorithms A bounded probability (BP) al-
gorithm for a problem with instances X and possible solutions Y specified by a
correctness relation R ⊆ X × Y is a probabilistic algorithm A such that it holds
that P[(x,A(x)) ∈ R] ≥ 3/4 where A(x) denotes the output of A on input x.
Now we consider the case when Y is the set of natural numbers N. A randomized
approximation scheme for a mapping g : X → N is a BP-algorithm A taking
arguments x ∈ X and ε ∈ (0, 1) satisfying the relaxed correctness predicate
Rε = {(x, y) : (1 − ε)g(x) ≤ y ≤ (1 + ε)g(x)} (this is sometimes just described
by the phrase “y is ε-close to g(x)”), i.e., A satisfies

P[(1− ε)g(x) ≤ A(x, ε) ≤ (1 + ε)g(x)] ≥ 3/4 . (1)

Such an algorithm is called fully polynomial if its time complexity is bounded
in a polynomial in size(x) and 1/ε. The constant 3/4 appearing in the definition
has no significance other than being strictly between 1/2 and 1. Any two success
probabilities from this interval can be reached from one another by a small
number of repetitions of the corresponding algorithm and returning the median
of the results (see Jerrum, Valiant and Vazirani, 1986).

A weaker notion of approximation is given by the following definition: An
algorithm A is called an α-factor approximation of g (or said to approximate g
within α) if it satisfies the correctness relation Rα = {(x, y) : g(x)/α(x) ≤ y ≤
α(x)g(x)} where α : X → R is a function that may grow in the size of x. Clearly,
an efficient approximation scheme can act as an efficient c-factor approximation
algorithm for all constants c > 1.

Markov Chains A (discrete) Markov chain on state space Ω is a sequence of
discrete random variables M = X1, X2, . . . with domain Ω satisfying the Markov
condition, i.e.,

P[Xn+1 = x|X1 = x1, . . . , Xn = xn] = P[Xn+1 = x|Xn = xn]

for all n ∈ N and x, x1, . . . , xn ∈ Ω satisfying P[X1 = x1, . . . , Xn = xn] > 0.
In this article we only consider finite state spaces Ω. Thus, given a probability
distribution on the initial state, M is completely specified by the state transition
probabilities P (x, y) = P[Xn+1 = y|Xn = x] of all x, y ∈ Ω that do not depend on
n. The (|Ω|×|Ω|)-matrix containing P (x, y) in column x and row y is a stochastic
matrix we denote by P . The t-th power of this matrix contains the probability
of going from x to y in t steps P t(x, y) = P[Xn+t = y|Xn = x]. We call a state
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y ∈ Ω reachable from a state x ∈ Ω if there is a t ∈ N such that P t(x, y) > 0. A
Markov chain M is called aperiodic if for all x, y ∈ Ω with x is reachable from
y there is a t0 ∈ N such that for all t ≥ t0 it holds that P t(x, y) > 0, and it is
called irreducible if any two states are reachable from one another. Finally, M is
called ergodic if it is irreducible and aperiodic.

Any ergodic Markov chain has a unique limiting stationary distribution π :
Ω→ [0, 1], i.e., for all states x, y ∈ Ω it holds that limt→∞ P t(x, y) = π(y). More-
over, if there is a function π′ : Ω→ [0, 1] satisfying the detailed balance condition
∀x, y ∈ Ω, π′(x)P (x, y) = π′(y)P (y, x) then π′ is a stationary distribution. It fol-
lows that ergodic Markov chains with symmetric transition probabilities always
converge to the uniform distribution. The distance from the t-step distribution
of a Markov chain with X0 = x to its stationary distribution can be measured by
the total variation distance ‖P t(x, ·), π‖tv = 1/2

∑
y∈Ω |P t(x, y)− π(y)|. Using

this definition we can define the mixing time of M by

τ(ε) = max
x∈Ω

min{t0 ∈ N : ∀t ≥ t0, ‖P t(x, ·), π‖tv ≤ ε}

as the minimum number of steps one has to simulate M until the resulting distri-
bution is guaranteed to be ε-close to its stationary distribution. For more details
and results about Markov chains and their mixing time we refer to Randall’s
survey (Randall, 2006).

4. Problem Complexity

Gunopulos et al. proved #P-hardness3 of #-FREQUENT SETS implying that
there is no exact algorithm for that problem unless P = NP (Gunopulos,
Khardon, Mannila, Saluja, Toivonen and Sharma, 2003). They did this using
a reduction from the #P-complete problem of computing the number of satis-
fying truth assignments of a given monotone 2-CNF formula, i.e., a conjunctive
normal form formula containing only two positive literals per clause. It was shown
by Zuckerman (1996) that this number and in fact even its logarithm is hard to
approximate within a factor of nε for instances of size n.

The reduction in (Gunopulos et al., 2003), however, transforms a 2-CNF for-
mula into a transaction dataset with n items such that the number of satisfying
truth assignments corresponds to the number of sets that are not 1-frequent,
and then it uses the fact that the number of infrequent sets is equal to 2n minus
the number of frequent sets. Hence, the construction is highly non-parsimonious,
i.e., the numbers usually change drastically without any reasonable bound. As a
consequence relative approximation guarantees are not preserved by that reduc-
tion and it does not lead to a hardness result for approximating #-FREQUENT
SETS. Still, it is an important side note that the two aforementioned theorems
together do imply the strong result that there is no efficient approximation algo-
rithm for counting the number of infrequent sets even if the (absolute) frequency
threshold is fixed to 1. This is an interesting difference to the same restriction
for #-FREQUENT SETS: When restricted to frequency threshold 1 approxi-
mating the number of frequent sets becomes equivalent to approximating the
number of satisfying assignments of a given DNF-formula, and for this problem

3 Essentially, #P is the class of problems asking to count the number of solutions where it is
possible in polynomial time to verify a single solution (Valiant, 1979).
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there is a fully polynomial randomized approximation scheme (Karp, Luby and
Madras, 1989).

Now, for acquiring a hardness result for the number of frequent sets we have
to choose a different starting point, namely the hardness of approximating a fre-
quent set of maximum cardinality. With this approach we can show the following
result:

Theorem 3. Unless for all ε > 0 and for all problems in NP there is a BP-
algorithm that runs in time 2n

ε

for instances of size n, the following holds:
There is a constant δ#F such that there is no polynomial time BP-algorithm
that, given a dataset D over n items and a frequency threshold f , approximates
log |F(D, f)| within nδ#F .

Proof. It was shown in (Boley, 2007) that under the same assumption as in
the claim there is no polynomial time algorithm approximating a frequent set of
maximum cardinality within nδBC . That result was based on Khot’s seminal inap-
proximability result for Bipartite Clique, which in fact ruled out BP-algorithms
under the above assumption (see Khot, 2004 where you can also find more in-
formation about the magnitude of δBC). Furthermore, it is easy to prove that
approximating only the maximum number k such that there is a frequent set
of size k is polynomially equivalent to the actual construction of a correspond-
ing set. Thus, it is sufficient to show that an algorithm for approximating the
logarithm of |F| can be used to approximate this number k.

Since all subsets of a maximizing frequent set F ∈ F with |F | = k are also
frequent, it holds that |F| ≥ 2k. On the other hand, all frequent set are of size
at most k and thus k also induces an upper bound for |F|, namely nk. This
can be seen as follows for the case k ≤ n/2 (the other case, only a little more
complicated, is omitted here for the sake of simplicity).

|F| ≤
(
n

k

)
+

(
n

k − 1

)
+ · · ·+

(
n

0

)
≤ k

(
n

k

)
=
n(n− 1) . . . (n− k + 1)

(k − 1)!
≤ nk .

Now suppose a BP-algorithm A approximates log |F| within nδ. It follows that

k ≤ log |F| ≤k log n

⇔ log |F| / log n ≤ k ≤ log |F|
⇔ A(D, f)/(nδ log n) ≤ k ≤nδA(D, f) .

Now observe that for any δ < δBC, the expression nδ log n is asymptotically
dominated by nδBC ; say starting from the constant n(δ). Choose δ#F to be any
number strictly between 0 and δBC. Then modify A such that it looks up the true
result of all (finitely many) instances of size less than n(δ#F) in a hard-coded
table. Then A is a BP-algorithm approximating the maximum cardinality of a
frequent set within nδBC as required.

Although the complexity assumption of this theorem is stronger than P 6= NP
it is still a widely believed standard assumption. Moreover, non-existence of an
α-approximation of the logarithm of a number implies non-existence of an 2α-
approximation to the actual number. Thus, we have strong evidence that there
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is no reasonable approximation algorithm for the general #-FREQUENT SETS
problem and in particular no fully polynomial approximation scheme.

That said, there may still be algorithms allowing a good approximation for
a wide range of practical relevant datasets. With this in mind, we are going to
construct a randomized approximation algorithm in the next section.

5. Monte Carlo Estimation

The perhaps simplest Monte Carlo approach for counting the number of frequent
set would be the following: Uniformly generate an element F ⊆ E, return 1
if F ∈ F , and return 0 otherwise. The expected value of this experiment is
|F| /2|E|. Thus, taking the mean of sufficiently many independent repetitions
and multiplying it by 2|E| is a correct randomized approximation scheme. It is,
however, not polynomial. This is due to the fact that |F| /2|E| can be as small
as 1/2n for an instance of size n. For such instances the expected number of
trials before the first 1 turn-out appears is not bounded by a polynomial in n.
But as long as the returned result is 0 the solution does not satisfy any relative
approximation guarantee and in particular not Equation (1).

5.1. Estimator

The standard solution to the problem above is to partition the result into a
number of factors, each of which having a reasonable lower bound (see Jerrum
and Sinclair, 1997). In our case such a partitioning can simply be done as follows.
For i ∈ {1, . . . , n} let

Fi = {F ⊆ Ei : |D[F ]| ≥ f}
be the family of frequent sets containing only elements from the first i items
(recall that we denote the i-prefix of a set F ⊆ E by Fi). With this we can
rewrite the quantity to compute |F| = |Fn| as the product

|Fs|
n∏

i=s+1

|Fi|
|Fi−1|

= |Fn| (2)

with some starting index s ∈ {1 . . . , n−1}. It follows directly from the definition
that for all i ≤ n it holds that Fi−1 ⊆ Fi. Let us denote the i-th reciprocal ratio
of the product in Equation 2 by

ri = |Fi−1| / |Fi| .
A constant non-zero lower bound for the ratios ri is implied by the following
observation: For distinct sets F 6= F ′ with F, F ′ ∈ Fi \ Fi−1 the sets F \ {i}
and F ′ \ {i} are distinct elements of Fi−1. Hence, |Fi \ Fi−1| can be mapped
injectively into |Fi−1| implying |Fi \ Fi−1| ≤ |Fi−1|, and thus it holds that

1 ≥ |Fi−1| / |Fi| = ri ≥ 1/2 . (3)

With this we can design a Monte Carlo algorithm as follows: Approximate each
of the ratios ri, count |Fs| for an appropriate s exhaustively, and then compute
|F| through Equation (2).

A trivial solution for counting the starting factor |Fs| is to set s = 0 resulting
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in |F0| = |{∅}| = 1. There are, however, better choices in practice as we will
discuss in Section 7.1. The ratios ri are approximated as follows: assume we can
sample a set F from Fi according to a distribution Di satisfying

|PF∼Di [F ∈ Fi−1]− ri| ≤ b (4)

Note that this condition is for instance satisfied by the uniform distribution U(Fi)
or by a distribution D having a total variation distance of at most b from the
uniform distribution, i.e., ‖D,U(Fi)‖tv ≤ b. The latter approach is commonly
referred to as almost uniform sampling. Let Zi denote the random variable that
takes on value 1 if F ∈ Fi−1 and 0 otherwise. Then

Z̄i = (Z
(1)
i + · · ·+ Z

(t)
i )/t

with t ≥ 1 and Z
(j)
i independent copies of Zi is a (biased) estimator of ri sat-

isfying
∣∣E[Z̄i]− ri∣∣ ≤ b. With this we can write our final estimator for |F| as

|Fs|Z−1 where Z denotes the product of all ratio estimators

Z = Z̄s+1 . . . Z̄n .

It is easy to see that if Z is ε-close to the product of all ratios ri then this
implies the same for the complete estimator |Fs|Z−1 and |F|, i.e., an algorithm
simulating it is a correct randomized approximation scheme. Moreover, as the
maximum bias b approaches 0 and the number of independent trials t of each
Bernoulli experiment Zi approaches infinity that guarantee will eventually hold.

5.2. Performance

In this subsection we discuss for what values of b and t an algorithm that sim-
ulates the estimator |F|Z−1 is a correct randomized approximation scheme for
|F| as specified by Equation 1.

We start with the bias b and the relative deviation it causes for the mean
of the ratio estimators Z̄i. It follows from the absolute deviation as specified in
Equation (4) and the lower bound of ri from Equation (3) that

(1− 2b)ri ≤ E
[
Z̄i
]
≤ (1 + 2b)ri .

This can be used to bound the deviation of Z’s mean from the product r =∏n
i=s+1 ri of all reciprocal ratios from Equation 2. Suppose we enforce a maxi-

mum absolute bias

b ≤ bias(n, s, ε) = ε/12(n− s).

Then using the independence of the random variables Zi and basic bounds of
the exponential function we can deduce:

E[Z] =

n∏
i=s+1

E
[
Z̄i
]
≤
(

1 +
ε

6(n− s)

)n−s
r ≤ exp

( ε
6

)
r ≤

(
1 +

ε

5

)
r

If in addition Z ≤ (1 + ε2/3)E[Z] we arrive at the required upper bound for the
deviation of Z from r

Z ≤
(

1 +
1

5
ε

)(
1 +

2

3
ε

)
r <

(
1 +

2ε

3
+
ε

5
+

2ε

15

)
r = (1 + ε)r
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and the lower bound follows similarly.
It remains to assure that Z is 2ε/3-close to its mean with probability at

least 3/4. The required number of trials t can be calculated by instantiating
Chebycheff’s inequality as follows

P
[
|Z − E[Z]| ≥ 2

3
εE[Z]

]
≤ 9V[Z]

4ε2E[Z]
2 . (5)

So a bound on this probability can be established by appropriately bounding the
ratio of Z’s variance to the square of its expectation. For the estimator of each
factor Z̄i we know that

V
[
Z̄i
]

E
[
Z̄i
]2 =

E
[
Z̄i
]

(1− E
[
Z̄i
]
)

tE
[
Z̄i
]2 =

1

t
(E
[
Z̄i
]−1 − 1)

≤ 1

t

((
1

2
− b
)−1

− 1

)
=

1 + 2b

t(1− 2b)

where the first equality uses the fact that Z̄i follows a normalized binomial
distribution, and the last inequality follows from Equations (3) and (4). Thus, if
we set the number of trials t to

t = trials(s, ε) =

⌈
10(n− s)(1 + 2b)

(1− 2b)ε2

⌉
we can deduce for the product:

V
[
Z̄s+1 . . . Z̄n

]
(E
[
Z̄s+1

]
. . .E

[
Z̄n
]
)2

=
E
[
(Z̄s+1 . . . Z̄n)2

]
(E
[
Z̄s+1

]
. . .E

[
Z̄n
]
)2
− 1 =

E
[
Z̄2
s+1

]
. . .E

[
Z̄2
n

]
(E
[
Z̄s+1

]
. . .E

[
Z̄n
]
)2
− 1

=

n∏
i=s+1

(
1 +

V
[
Z̄i
]

E
[
Z̄i
]2
)
− 1 ≤

(
1 +

1 + 2b

t(1− 2b)

)n−s
− 1

=
(
1 + ε2/10(n− s)

)n−s − 1 ≤ exp (ε2/10)− 1

≤ (ε2/9) .

Plugging this bound into Equation (5) it follows that Z is 2ε/3-close to its mean
with probability at least 3/4 as required.

Note that there is a tradeoff between the constant appearing in the minimum
number of trials and that in the bias bound. Thus, in case one can assure a stricter
bias bound for a similar cost it is worthwhile to recompute the corresponding
trial number.

6. Frequent Set Sampling

In the naive Monte Carlo algorithm sketched in the beginning of Section 5 the
necessary number of trials was prohibitive, while the required uniform sampling
from the power set did not pose a problem. Now the situation is different: The
required number of trials is polynomially bounded, but it is unclear how to
sample from the frequent set families Fi(D, f) for i = s + 1, . . . , n according
to a distribution Di satisfying Equation 4 for b = ε/12(n − s) as required for
estimating the factors ri. In fact a general sampling algorithm satisfying this
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condition—in particular uniform or almost uniform sampling algorithms—with
a worst-case polynomial running time cannot be expected to exist in the light of
Theorem 3 and the reduction of counting frequent sets to sampling them from
the previous subsection. Therefore we design a sampling algorithm that performs
well in practice while its worst-case convergence time is exponential.

6.1. Markov Chain

We approach this problem by setting F0 = ∅ and then repeatedly applying the
following randomized perturbation procedure Fj 7→ Fj+1:

1. set F ′ to Fj
2. uniformly draw an k ∈ {1, . . . , i}
3. if k ∈ F ′ set F ′ to (F ′ \ {k}); otherwise:

4. if (F ′ ∪ {k}) ∈ F then set F ′ to (F ′ ∪ {k}).
5. with probability 1/2 set Fj+1 to Fj ; otherwise: set Fj+1 to F ′

This procedure simulates one step of a Markov chain Mi on Fi with state tran-
sition probabilities

Pi(F, F
′) = 1/2i for F, F ′ ∈ F with |F∆F ′| = 1

where ∆ denotes symmetric difference. All “remaining” probability is assigned to
the self-loops, i.e., Pi(F, F ) = 1− |{F ′ ∈ F : |F∆F ′| = 1}| /2i. So the transition
probabilities and thus the corresponding state transition matrix Pi as well as the
reachability relation of Mi are symmetric.

Together with the fact that F is closed under taking subsets this implies
that Mi is irreducible because all states are reachable from ∅. Moreover, there
are non-zero self-loop probabilities for every state. This implies that Mi is also
aperiodic and together with irreducibility this means that Mi is ergodic.

For an ergodic Markov chain we know that there is a unique distribution π
that it converges to and that is stationary, i.e., Piπ = π. Since Pi is symmetric,
π must be the uniform distribution on Fi. Hence, simulating Mi for sufficiently
many steps can be used to sample a frequent set from Fi uniformly at random
as sufficient for satisfying Condition (4).

The question is, however, for how many steps l we have to simulate Mi until
P li (∅, ·) is “close enough” to the uniform distribution. The standard approach in
approximate counting (by almost uniform sampling) is to derive an upper bound
on the mixing time τ(ε/12(n−s)) and then use this upper bound to compute the
necessary number of simulation steps. The resulting distribution is guaranteed
to satisfy Condition (4) because the total variation distance from the uniform
distribution is an upper bound to the maximum bias b. As stated earlier, for our
problem this approach is infeasible: in line with Theorem 3, a good worst-case
bound to the mixing time τ cannot be expected. Indeed, we can observe the
following:

Proposition 4. For n ∈ N the Markov chain M2n with frequency threshold
f = 1 and D = {{1}, {2, . . . , n}, {n + 2, . . . , 2n}} on items E = {1, . . . , 2n} has
mixing time τ(ε′) of at least 2n−1 log(1/2ε′).

Proof. Let P(X) denote the power set of a set X. For n ∈ N the 1-frequent sets
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of the dataset given in the claim are

F = {{1}} ∪ P({2, . . . , n}) ∪ P({n+ 2, . . . , 2n})
with the cardinality |F| = 2n. It is a well-known fact (see for instance Randall,
2006) that the conductance of a Markov chain induces a lower bound on its
mixing time. The conductance of M2n is defined as

Φ = min{ΦS : S ⊆ F(D, 1), π(S) ≤ 1/2}
where ΦS = (1/π(S))

∑
x∈S,y∈F\S π(x)P (x, y) is the probability according to

the stationary distribution of leaving S given the current state is an element of
S. The mixing time is then bounded from below as follows:

τ(ε) ≥ 1

4Φ
log

1

2ε
. (6)

Now choose S = {{1}} ∪P({2, . . . , n}) \ {∅}. Then |S| = 2n−1 and consequently
π(S) = 1/2.

Φ ≤ ΦS =

∑
x∈S,y 6∈S π(x)P (x, y)

π(S)
= 2

∑
x∈{{1},...,{n}}

π(x)P (x, ∅)

= 2n
1

2n
1

2(2n)
=

1

2n+1

Plugging this bound into Equation 6 yields the claim.

Intuitively, the reason for the slow mixing time on these instances is that the
probability of crossing over from one of the two “blocks” P({2, . . . , n}) and
P({n+ 1, . . . , 2n− 1}) to the other is very low compared to their sizes.

6.2. Heuristic Step Bound

In order to circumvent the negative implications of Proposition 4 we will simulate
the Markov chain only for a heuristic number of steps—a number much smaller
than the best theoretical worst-case bound on the mixing time would yield. The
justification for this approach is twofold:

– The situation constructed in the proof of Proposition 4 is obviously rather
artificial and it is a reasonable assumption that most real-world datasets do
not possess such strictly separated blocks.

– The mixing time is equal to a guaranteed number of steps such that the total
variation distance is close to the uniform distribution. This distance, however,
is only an upper bound to the bias term, and, as we will see below, in practice
the bias can be much smaller than the total variation distance.

The heuristic for the number of steps we simulate the chain Mi is

steps(i, ε) = 2ε−1i ln i ,

i.e., we use P li (∅, ·) with l = 2ε−1i ln i in place of the distributions Di. This is of
the same order as the expected number of steps until each item has been drawn
at least once (coupon collector’s theorem)—a reasonable minimum requirement.
Clearly, there are other possible choices for steps(i, ε); in particular when there
is prior knowledge of the input dataset.
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(a) ‘chess’ (b) ‘connect’

(c) ‘bms webview-1’ (d) ‘pc60pa10’

Fig. 2. biases

We evaluated this heuristic using ε = 0.5 on several test datasets (see Sec-
tion 8 for a description of these datasets). The relative thresholds used and the
resulting numbers of frequent sets are 0.62/166581 (chess), 0.81/375384, (con-
nect), 0.03/420 (bms webview), and 0.2/22021 (pc60pa10 ), respectively. These
moderate state space sizes allowed us to explicitly compute the distributions
P t(∅, ·). Figure 2 shows the results. The exact resulting biases (blue crosses) are
compared to the required maximum bias b = 1/24n (blue line) for each of the
ratios ri. Also, these figures show the total variation distance from the uniform
distribution (red crosses). Indeed we can observe a significant gap between the
quantities for some of the factors. Consequently, the total variation distances
sometimes violate the maximum bias requirement while the actual biases do
always satisfy this condition.

To give an idea of how conservative the heuristic is we created another dia-
gram, which is presented in Figure 3. Here, the minimum number of steps that is
resulting in order to satisfy the bias requirement (red crosses) is compared to the
number of steps computed by the heuristic (green line). We can observe that the
heuristic is much less conservative for the first factors as it is for the later factors.
This is due to the fact that the heuristic number of steps does not depend on the
overall total number of factors while the maximum allowed bias does. Instead
the heuristic only depend on the index of the ratio to be approximated, which is
approaching the number of factors only for the later ratios. As we will see below
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(a) ‘chess’ (b) ‘connect’

Fig. 3. required steps

this is no problem for our method, because finally we will end up with a hybrid
counting algorithm that does not approximate the first factors at all.

7. Algorithmic Details and Improvements

The basic algorithm assembled from the partitioning from Section 5 and the
sampling from Section 6 has on overall time complexity of O

(
ε−3mn3 lnn

)
if

we denote by m the number of transactions |D| and account O(mn) for one
frequency check. While this time complexity does not depend on the number
of frequents sets as desired, it performs rather poorly with respect to the input
size. In this section we present several techniques that lead to a substantial
performance improvement in practice. That said, they do not affect the overall
asymptotic behavior.

A pseudocode incorporating all ideas is given with Algorithm 1. Note that the
requirement stated there is a little stronger than necessary in that it demands
the bias bound to hold for all ratios. In fact the bound is only needed for those
ratios ri that are actually approximated, i.e., for i > s, and usually s is chosen
larger than 0 (see Section 7.1).

7.1. Hybrid Counting

Our estimator requires a starting factor |Fs| that has to be counted exhaustively.
As indicated in Section 5.1 there are more effective choices for s than just choos-
ing |F0| = 1. This is due to the fact that exhaustive counting of Fs replaces the
estimation of the ratios r1, . . . , rs, each of which having a time complexity that
depends on the complete number of items n. In contrast exhaustive counting of
Fs only runs on a reduced dataset and has to enumerate at most 2s frequent
sets. This is more efficient as long as s is sufficiently small.

Deciding what choice for s will result in the minimum total running time
requires some analysis of the involved time complexities. For that we regard one
frequency check as unit step. For ease of notation we will drop all symbols that
are constant throughout one call of the algorithm from the parameter lists of
trials(·) and steps(·).
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Algorithm 1 Frequent Set Counting

Input : dataset D on items E = {e1, . . . , en},
frequency threshold f ∈ {1, . . . , |D|},
accuracy ε ∈ [0, 1]

Require:
∣∣∣PF∼P li (∅,·)[F ∈ Fi−1]− ri

∣∣∣ ≤ ε/12n with l = steps(i, ε)

Output : q with P[(1−ε) |F| ≤ q ≤ (1+ε) |F|] ≥ 3/4

main:

1. //exhaustive phase

2. s← argmins′≤n(2s
′
+ Tapx(s′))

3. S ← exhaustive(D|s, f)
4. while S < Tapx(s)− Tapx(s+ 1) do
5. S ← S + exhaustive(D[{s+ 1}] |s, f)
6. s← s+ 1

7. //approximative phase:
8. I ← ∅
9. for i = s+ 1, . . . , n do

10. ri ← 0
11. for k = 1, . . . , trials(s, ε) do
12. if i 6∈ sample(i) then ri ← ri + 1
13. ri ← ri/trials(s, ε)
14. return S

∏n
i=s r

−1
i

sample(i):

1. F ← ∅;
2. buffer ← generateRandString(steps(i, ε))
3. for j = 0, . . . , “last index of i in buffer” do
4. e← buffer[j]
5. if e ∈ F then
6. F ← F \ {e}
7. else if frequencyCheck(F, e) then
8. if j = “next to last index of i in buffer” then return F
9. F ← F ∪ {e}

10. return F

frequencyCheck(F, e):

1. L← node list of max{F ∪ {e}}
2. if |F | ≥ minI∈I |I| ∧ |L| > costEst(I, I) then
3. if F ∈ I then return true
4. if |D[F ∪ {e}]| ≥ f then
5. return true
6. else
7. I ← I ∪ {F ∪ {e}}
8. return false



Approximating the Number of Frequent Sets in Dense Data 17

Estimating ri requires at most trials(s)steps(i) frequency checks. On the other
hand, counting |Fs| exhaustively can take up to 2s frequency checks in case all
subsets of Es are frequent. This rough bound can be used to make an initial
choice for s by choosing it such that it minimizes the estimated overall running
time 2s + Tapx(s) with

Tapx(s) = trials(s)

n∑
i=s+1

steps(i)

denoting the expected time for approximating all remaining factors. Clearly,
more knowledge about the used implementations—in particular that of the ex-
haustive miner—is likely to lead to an improvement of this choice.

Additionally, we can further improve our choice of the starting index s. De-
note the index found by the considerations above as s∗. The loose a priori
bound used there can be improved once we have counted Fs∗ . We know that
|Fs∗+1 \ Fs∗ | ≤ |Fs∗ | (see Equation 3). Thus, in case

|Fs∗ | < Tapx(s∗)− Tapx(s∗ + 1)

we can increase s to s∗ + 1 and add |Fs∗+1 \ Fs∗ | counted exhaustively to |Fs|.
Clearly, as long as the above condition remains true for the new s it amortizes to
repeat this step. The resulting algorithm counts Fs for the final s “chunk-wise”
as

|Fs| = |Fs∗ |+ |Fs∗+1 \ Fs∗ |+ · · ·+ |Fs \ Fs−1| .
For the exhaustive counting tasks it is desirable to use one of the existing
highly optimized frequent set listing algorithm. Let D|i denote the dataset in
which all transactions have been restricted to the first i items. Observe that
|F(D[{s}] |s−1)| is equal to |Fs(D) \ Fs−1(D)|. Thus, one external call of the ex-
haustive miner with the dataset D[{s}] |s−1 suffices to compute the latter quan-
tity.

7.2. Basic Chain Simulation Speedups

The central part of the approximative phase of Algorithm 1 are the Markov
chain simulations. As a first optimization it is possible to do better than just
simulating Mi for i = s + 1, . . . , n naively. Instead, we first buffer the required
number steps(i, ε) of random items for a single random walk. Since the result F
of a random walk is only used to evaluate the Bernoulli experiment Zi of whether
item i is an element of F , we can simply stop the Markov chain simulation after
the last occurrence of i in the buffer, because afterwards the outcome of the
experiment cannot change anymore. Similar, if i was put into F due to the next
to last occurrence of i we can also stop the chain simulation at that point. Since
in this case the last occurrence of i will surely cause the item to be removed from
F again, we can directly report that result.

The really dominant operation, however, is the test of whether a set I =
F ∪{e} that is an augmentation of a frequent set F with a single item e remains
frequent. This corresponds to step 4 of the Markov chain (see Section 6). Since
this test has to be performed roughly every second step of each random walk, it is
crucial for the overall performance of our algorithm. In order to decrease the cost
of this operation, our implementation makes use of the data compression that is
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enabled by representing the dataset D as an fp-tree (Han and Kamber, 2000).
An fp-tree is a prefix tree T = (V,E, φ) where, in addition, there are node lists
Li containing all nodes corresponding to prefixes X ∈ V with maxX = i. Since
overlapping transactions share a prefix-branch, this usually achieves a significant
compression.

The frequency test for a set is done by selecting its least frequent item max I,
following its node list in the fp-tree, and adding the counts φ(X) of all nodes
X ∈ Lmax I = L with X ⊇ I, i.e., those corresponding to a prefix that contains
I. The traversal of the node list can be stopped already after an initial part
L′ ⊆ L in case the frequency state of I can already be determined by L′, that is
either if l =

∑
{φ(X) : X ∈ L′, X ⊇ I} ≥ f returning “true”, or if l+

∑
{φ(X) :

X ∈ L \ L′} < f returning “false” where the last sum can be computed by
|D[max I]| −

∑
{φ(X) : X ∈ L′}.

7.3. Infrequent Set Cache

Even with the representation of D by an fp-tree, frequency checks remain an
expensive operation. In order to reduce the computational effort for these oper-
ations one can store the infrequent sets that are visited throughout the various
random walks. The thus created cache can then be used to quickly check whether
I = F ∪{e} is a superset of an already visited infrequent set I ′—possibly avoid-
ing the expensive frequency check. This test is invoked in line 2 of the frequency
check procedure of Algorithm 1. Below we discuss how this step can be imple-
mented.

Let us denote the family of visited infrequent sets by I. Again it is useful to
represent this family by a prefix tree. A superset test can then be implemented
as a depth first search traversal of the tree that recurses only into child nodes via
edges corresponding to items that are contained in I. Moreover, we can ignore
edges corresponding to items e′ > e as long as the current node does not contain
item e. Below this edge we can only find sets not containing e, non of which
can be a subset of I. This is because we know that I \ {e} = F is frequent and,
thereby, can never be superset of an infrequent set.

It is, however, not always reasonable to perform this infrequency check. There
are candidate sets I that require only very few nodes in the fp-tree to be checked
using the standard frequency check; those with a relatively small max I. As we
assume the items to be ordered according to their frequency, these candidates
are in addition rather unlikely to be infrequent. In order to decide for what
candidate sets infrequency should be checked against I it is necessary to estimate
the expected look-up time. For that observe that the recursion depth of the DFS
is bounded by min{|I| , d} where d = maxI′∈I |I ′| is the depth of the prefix tree.
Moreover, in a node X with outgoing edges δ+(X) at level i the number of
recursive calls is limited by min{|I|− i, |δ+(X)|}. The overall cost for looking up
the set I in the cache I can then be estimated as follows:

costEst(I, I) =

min{|I|,d}∏
i=1

min{∆, |I| − i}

where ∆ is the average outdegree of the prefix tree representing I. This quantity
is compared to the number of nodes corresponding to max I in the fp-tree of D
in line 2 of the frequency check procedure of Algorithm 1.
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dataset up. qrt. median lw. qrt. max. fail

bms-pos 0.003 0.004 0.004 0.04 0
bms-web 0.002 0.003 0.003 0.04 0
chess 0.011 0.025 0.056 0.17 0
connect 0.02 0.047 0.081 0.21 0
mushroom 0.001 0.010 0.024 0.069 0
pumsb 0.017 0.041 0.080 0.314 0
pumsb-star 0.0001 0.006 0.013 0.083 0
pc60pa10 0.009 0.025 0.037 0.134 0

Fig. 4. relative deviation from exact solution

8. Evaluation

In this section we present experiments contrasting the Markov chain Monte
Carlo algorithm with counting via exhaustive enumeration. The experiments
are performed with respect to performance as well as accuracy (ε = 0.5 was
used throughout all experiments). As a representative exhaustive miner, we
used the modified FPgrowth (Han and Kamber, 2000) algorithm by Grahne
and Zhu (2003), whose C++ implementation is publicly available. This imple-
mentation has shown to rank among the fastest exhaustive miners in the com-
petitive workshop FIMI (Bayardo, Goethals and Zaki, 2004). In the following,
we will refer to this implementation as “FpZhu”. The benchmark datasets are
also taken from the FIMI repository supplemented by synthetic datasets gen-
erated according to the beginner’s guide process (Example 2) with different
choices for the probabilities pa and pc each of which with 5000 transactions.
We refer to these dataset as pc60pa10 and pc90pa10, because they are gener-
ated by instantiations of this general process with probabilities pa = 0.1 and
pc = 0.6respectively pc = 0.9. For Algorithm 1 we used a Java implementation
that is available online together with the artificial datasets (http://www-kd.iai.uni-

bonn.de/index.php?page=people details&id=16 or corresponding main page). During
the exhaustive phase the external miner called is again FpZhu. The experiments
were performed on an Intel Core 2 Duo E8400 with 3 GB of RAM running Win-
dows XP. All figures below use relative frequency thresholds.

8.1. Accuracy

We now report a series of accuracy experiments that are summarized in Figure 4.
Our algorithm was applied 100 times to each combination of one of eight test
datasets with one of four frequency thresholds, resulting in a total of 400 runs
per dataset. A run “fails” if the reported result deviates from the true number
of frequent sets by more than ε = 0.5, which we used as accuracy parameter
throughout all experiments. If the overall approximation guarantee holds we
expect the fraction of failed runs to be below 1/4 (Equation 1). As desired, this
was the case on all of the eight test datasets. In fact, we had no failed runs
among all experiments. Thus, the observed success rate was consistent with the
probabilistic approximation guarantee for all datasets, and in fact we experienced
much better error bounds. The table also shows the upper quartile (“up. qrt.”),
median (“median”), lower quartile (“lw. qrt.”), and maximum (“max.”) of the
experienced relative deviation.
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Fig. 5. accuracy on ‘chess’

These results may lead to the impression that the upper absolute bias bound
b and the number of trials t have been chosen to conservative in Section 5.1 and
less restrictive numbers would still yield the overall approximation guarantee.
But in fact this good performance is partially caused by mutual cancellation of
the actual bias terms, i.e., some of them are negative and some are positive.
Moreover, the number of trials t takes into account the worst-case ri = 1/2. For
the test datasets, however, many of the ratios ri are close 1.

Figure 5 shows accuracy results on chess in more detail. For different fre-
quency thresholds, it shows on a logarithmic scale the exact number of sets
(“exact count”) computed exhaustively, the upper and lower 0.5 deviation lim-
its (“upper limit” and “lower limit”), as well as the result of the randomized
algorithm in a series of 15 runs (“mcmc count”). The figure shows that in all
randomized runs, the approximated result lies in the desired deviation interval.
The figure does not contain the exact number of sets for the lowest thresholds,
because these could not be computed by the exhaustive miner.

We close this subsection by presenting approximated frequency plots com-
puted for four of the datasets. The results are shown in Figure 6 together with
the exact curve. They illustrate that the randomized algorithm provides an ad-
equate approximation of the exact plot, which was one motivating goal of this
study (see Section 2).

8.2. Runtime

Next, we compare the runtime of our randomized algorithm with that of FpZhu
on several datasets. We start with the results on chess, which are presented in
Figure 7(a). In order to give an idea of the quality of FpZhu we also added the
performance curve of an Apriori implementation (Bodon, 2003), which was an-
other contender in the FIMI workshop. But most important the diagram shows
that while on higher thresholds FpZhu is faster than our randomized algorithm,
the latter outperforms the exact algorithm when the threshold becomes smaller.
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(a) ‘pc60pa10’ (b) ‘connect’

(c) ‘pumsb’ (d) ‘mushroom’

Fig. 6. frequency plots

A similar behavior can be observed for connect (Figure 7(b)), pc60pa10 (Fig-
ure 7(c)), and pumsb (Figure 7(e)). On pc90pa10 (Figure 7(d)), which is ex-
tremely dense and as a result has a very high number of frequent sets, the ran-
domized approach outperforms the exhaustive miner on all threshold. In fact,
for all but the highest thresholds the runtime of the exhaustive miner becomes
unacceptable.

However, the sparser the dataset is the later the randomized algorithm catches
up to the exhaustive miner. On mushroom (Figure 7(f)) it is even dominated on
all thresholds. Hence, it heavily depends on the dataset’s density (the number
of frequent sets) whether the randomized or the exhaustive approach performs
better. This can roughly be explained and summarized as follows: While the
complexity of the Monte Carlo algorithm, in contrast to any exhaustive miner,
does not depend on the output size, it does not scale as well as the latter in the
input size (see also the discussion in Section 9).

We close the performance study with the comparison of Algorithm 1 to im-
plementations that a) do not use the infrequent set cache and b) that do neither
use hybrid counting nor the infrequent set cache. Figure 8 shows the impact of
these two speedups.
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(a) ‘chess’ (b) ‘connect’

(c) ‘pc60pa10’ (d) ‘pc90pa10’

(e) ‘pumsb’ (f) ‘mushroom’

Fig. 7. runtime comparisons

9. Conclusion

In this section we give a summarizing discussion of our study that emphasizes
both: its contributions as well as its current limitations. Thereafter we conclude
by presenting ideas for future research. In this course we outline promising di-
rections to overcome the said limitations.



Approximating the Number of Frequent Sets in Dense Data 23

(a) ‘pumsb’ (b) ‘connect’

Fig. 8. runtime using different improvements

9.1. Summary and Discussion

In this paper, we developed a randomized approximation scheme for counting
the number of frequent sets using the Markov chain Monte Carlo method. It
relies on sampling frequent sets in a way that satisfies a certain bias bound.
We gave a corresponding sampling procedure that, albeit meeting this bound,
in worst-case does so only after an exponential number of iterations. For that
reason we switched to a heuristic but polynomially bounded number of steps
that we validated on several test datasets. Although this heuristic approach
works well on these datasets, by applying it, the overall counting algorithm loses
its worst-case approximation guarantee. We have shown, however, by giving a
negative complexity result that a general polynomial algorithm with a good ap-
proximation guarantee is unlikely to exists. Moreover, we experienced very good
approximation rates on real-world and artificial dataset. In order to improve
the performance of our method we described several techniques that can signifi-
cantly speed up its running time when compared to a naive implementation. We
demonstrated that for dense datasets/low frequency thresholds the randomized
algorithm remains well applicable while exhaustive counting is infeasible.

Altogether our study should be regarded as an initial work on a computa-
tional problem that so far has seen little to no attention. As such its practical
applicability, for instance as a general preprocessing method to frequent set min-
ing, still suffers from serious limitations:

(1) The method scales very badly in the number of items, i.e., super-cubic, which
makes it already inapplicable on current personal computers as that number
approaches 1000.

(2) Even on datasets with a small number of items it is often outperformed by
exhaustive counting. Particularly this is the case for sparse datasets and/or
low frequency threshold.

While the first point appears to be inherent to the method and its circumven-
tion is likely to require fundamental additional ideas, the second can probably
be solved by some straightforward additions (see the paragraph about integrated
exhaustive counting below). Beside larger constant factors in its complexity the
relative weakness of the current implementation on some datasets/thresholds
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can be explained as follows: exhaustive mining is a systematic process that can
optimally make use of reduced data portions. In contrast, for randomized count-
ing it is inherent that the part of the data that is needed next is unpredictable.
Consequently, the randomized method suffers more from the size of the input
data (here, in particular from the number of transactions) than the exhaustive
method does.

9.2. Directions for Future Research

Integrated Exhaustive Counting In principle issue (2) above is addressed
by the hybrid counting technique presented in Section 7.1. But the approach of
“plugging in” any exhaustive miner in our current implementation is causing a
lot of unnecessary overhead by external calls and disk accesses. Clearly, this can
be tackled by an integrated and well implemented exhaustive counting algorithm
that, in addition, should have an internal enumeration order compatible to the
subfamilies F1,F2, . . . . Such an algorithm could pass on control to the approx-
imative algorithm as soon as the cost of the next search level would outweigh
the cost of approximating the next factor, thus finding an optimal starting index
s. It is likely that this improvement alone leads to a hybrid counting algorithm
that is never significantly outperformed by any exhaustive miner.

Improved Lower Bounds Finding better lower bounds for the means of the
random variables Z̄i respectively for the ratios of their variance to their squared
expectation would allow to reduce the required number of trials, and thus to
reduce the constants. This can either be done by monitoring these quantities
empirically in a sequential sampling fashion (cp. Scheffer and Wrobel, 2002) or
by an exhaustive analysis of certain parts of the input dataset. Specifically for
the task of computing the complete frequency plot, i.e., solving #-FREQUENT
SETS for all thresholds, one can acquire a lower bound for Fi(f)/Fi+1(f) already
while sampling from Fi+1(f − 1) during the run for threshold f − 1.

Better Scaling in the Number of Items One approach to achieve a better
scaling in the number of items is to reduce the data in a way that (approxi-
mately) preserves the number of frequent sets. An example for this is the sketch
matrix technique of Jin, McCallen, Breitbart, Fuhry and Wang (2009). Essen-
tially, this method performs a bi-clustering on the items and transactions, and
then approximates the number of frequent sets only based on statistics that are
computed for each bi-cluster.

Another approach is to redefine the partitioning such that not only one but
a block of k items is introduced at each level, i.e., Fi = {1, . . . , ik}. While this
results in weaker lower bounds per factor, which ideally should be addressed by
empirical estimates (see the paragraph above), it divides the number of factors
by k and consequently, also reduces the requirement on the maximum bias.

Using More Structural Properties It is important to point out that both,
the Monte Carlo framework as well as the Markov chain used for sampling, do not
specifically rely on the fact that F is the family of frequent sets of a transactional
dataset. Instead the top-level analysis only uses the property that F is closed
“downward”, i.e., under taking subsets. This is also true for most of the speedups
presented in Section 7. Thus, the major part of Algorithm 1 is applicable to other
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pattern mining tasks that use an anti-monotone interestingness predicate. On the
other hand this is a strictly more general problem as there are anti-monotone
set families (independence systems) that cannot concisely be represented as the
family of frequent sets of a transactional dataset (Sloan, Takata and Turán,
1998). Consequently, for the specific task of counting frequent sets a major route
for potential improvement is to investigate whether there are partitionings as well
as sampling methods that exploit more structural properties of the problem.

Beyond Frequent Sets On a more global scale, an important next step is to
investigate whether the randomized counting approach can be extended to other
pattern classes like closed sets or graph mining. The first one induces set systems
that are not closed downward, and the second is not even representable as sets at
all. Thus, a straightforward application of the techniques discussed in this paper
is impossible. This extension, however, promises to be both, challenging and
beneficial, as the cost of exhaustive mining generally increases with the pattern
complexity.
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