
 1

© Fraunhofer ESK 2019.

Published by the Safety-Critical Systems Club. All Rights Reserved

1{mario.trapp|gereon.weiss}@esk.fraunhofer.de

Towards Dynamic Safety Management

for Autonomous Systems

Mario Trapp and Gereon Weiss 1

Fraunhofer ESK

Munich, Germany

Abstract Safety assurance of autonomous systems is one of the current key chal-

lenges of safety engineering. Given the specific characteristics of autonomous

systems, we need to deal with many uncertainties making it difficult or even im-

possible to predict the system’s behaviour in all potential operational situations.

Simply using established static safety approaches would result in very strict worst-

case assumptions making the development of autonomous systems at reasonable

costs impossible. This paper therefore introduces the idea of dynamic safety man-

agement. Using dynamic safety management enables a system to assess its safety

and to self-optimize its performance at runtime. Considering the current risk re-

lated to the actual context at runtime instead of being bound to strict worst-case

assumptions provides the essential basis for the development of safe and yet cost-

efficient autonomous systems.

1 Introduction

Safety assurance of autonomous systems is still an open challenge. Autonomous

systems operate in open contexts so that it is not possible to anticipate all relevant

operational situations. Moreover, safety managers are still struggling with the

assurance of AI-based algorithms, which are an essential prerequisite for facilitat-

ing autonomous systems. Considering open contexts and the non-deterministic,

non-linear behaviour of AI, this leads to intrinsic and extrinsic uncertainties,

which make it impossible to anticipate the system’s behaviour a-priori. Having

said that, it is clear that applying conventional safety approaches based on static

worst-case assumptions would not lead to reasonable results. Doubtlessly, there is

a long list of open challenges concerning safety assurance of autonomous systems,

but as long as such conservative static worst-case assumptions completely bound

our space of options, we will not be able to find any reasonable solution for safety

assurance of autonomous systems at all.

2 Mario Trapp, Gereon Weiss

Therefore, it is necessary to loosen the ties of static worst-case assumptions by

moving from static safety management to dynamic safety management. This

means that instead of considering possible and hypothetical situations from a

worst-case perspective at design time, the system evaluates its current risk at

runtime for the concrete given context at this particular given point in time - con-

sidering its operational context as well as its own quality state. To this end, we

combine approaches from model-based safety engineering on the one hand, and

the self-adaptive systems community on the other hand. This paper briefly intro-

duces the basic concepts of dynamic safety management. Even though the con-

cepts are applicable to different application domains, we will refer to ideas and

examples from the automotive domain to simplify matters throughout the remain-

der of this article.

2 Adaptive Fail-Operational Architectures

In order to have some flexibility at runtime, we need to implement adaptive fail-

operational architectures as shown in Figure 1. We will not discuss these architec-

tures in this article in detail. It is important to note that we do not have one fixed,

static functionality, but that the system can adapt itself to various different config-

urations. Such an adaptation can encompass different types of changes in an ex-

plicit, reproducible way.

Fig. 1. Basic Concept of Fail-Operational Architectures

For instance, the system can dynamically re-deploy software components to dif-

ferent hardware nodes or dynamically adapt its structure (e.g. by using different

sensors, different algorithms etc.). An adaptation of single parameters of the algo-

rithms allows for fine-grain system adaptations. One major aspect of such an ar-

chitecture is dynamic safety management, which includes identifying and as-

sessing the current situation and planning adaptation strategies for optimizing the

Towards Dynamic Safety Management for Autonomous Systems 3

system’s performance while preserving its safety. To this end, monitoring needs to

derive information about the context and about the system. Examples of moni-

tored information for a vehicle are given on the left-hand side of Figure 1. Based

on this monitoring, dynamic safety management utilizes dynamic adaptation as

described above for switching the system configurations. Safety-configurations

ensure that the system can preserve its safety in any given situation. An isolation

mechanism, such as a virtual safety cage (Heckemann et al.) or similar concepts

(Weiss et al. 2018), ensures that performance configurations can be used for opti-

mizing the systems performance without endangering its safety, as the system can

move to an adequate safety configuration whenever necessary.

3 The Basic Concept

In order to facilitate safety assurance of autonomous systems, we employ the idea

of safety-awareness and dynamic safety management as illustrated in Figure 2.

Instead of anticipating any foreseeable situation and assuming the worst case at

design time, we enable the system to reason about the actual given situation at

runtime using different sources of runtime information. Perception systems and

vehicle observer models of driver assistance systems provide lots of information

about the system’s environmental context. Internal monitors, such as error detec-

tion, provide a lot of information about the system’s internal (quality) state. Usual-

ly, this information is available as an integral part of the functionality. In order to

use it for dynamic safety management, we need to transform this information to a

higher semantic level, which we refer to as safety awareness (cf. Fig. 2).

Fig. 2. Basic Idea of Dynamic Safety Management

4 Mario Trapp, Gereon Weiss

For creating safety-awareness, we make safety models, which safety managers

usually use during design time, available at runtime. Namely, as a first step, we

use models of the hazard analysis and risk assessment (HARA) and safety concept

models, which provide a modular, contract-based representation of safety re-

quirements. Using external context sensing, we enable the system to reason about

the current operational situation. While the default perception functionality as it is

required for realizing autonomy focuses on high precision, but with a low integri-

ty, it is sufficient to realize a low-precision but high-integrity perception as input

for dynamic safety management. By mapping this perception information to HA-

RA models at runtime, the system becomes “context-aware” enabling it to reason

about its current operational situation from a safety point-of-view. In conse-

quence, the system can identify those safety goals that are still of relevance in the

current runtime situation. Since the required integrity of a safety goal results from

the worst case of all possible operational situations, regarding the currently likely

situations at runtime furthermore reduces the required integrity levels. By doing

so, we can dynamically loosen the safety constraints to those safety goals with

those integrity levels, that are actually of relevance in the current runtime situa-

tion. Of course, this requires that the decision logic must be at the highest integrity

level. Compared to considering worst-case situations, this provides us with much

more freedom for optimizing the system’s functional performance while preserv-

ing its safety.

Besides this context-awareness, it is important to consider the system’s internal

state. In order to realize this “self-awareness”, we map available monitoring in-

formation to modular safety concepts, i.e. the safety requirements, at runtime. By

this means, the system can reflect monitoring information at the level of safety

requirements, i.e. which safety requirements are fulfillable in the current runtime

situation. In order to enable dynamic adaptation, we model safety concepts using

safety-contracts. Using safety-contracts, single modules specify which safety

guarantees they are able to provide under the assumption that their context (e.g.

other components, platforms etc.) fulfills the module’s safety demands. Instead of

a single static concept, the modules may have different configurations. Depending

on which demands are fulfilled, the module selects the best possible configuration

and will provide the corresponding set of safety guarantees. Therefore, the system

has several degrees of freedom to adapt itself for optimizing its performance while

preserving safety.

This optimization is the core of dynamic safety management. Using the HARA

at runtime, the system gets the currently relevant goal space, i.e. which safety

goals are actually relevant in the actual given runtime situation. Using self-

awareness by mapping monitors to safety requirements, the system gets its current

capability space. Using the goal space and the capability space as available opti-

mization space, the system can optimize itself and assure its safety at runtime.

Towards Dynamic Safety Management for Autonomous Systems 5

4 Dynamic Safety Management

If we use this general idea as a basis to derive a framework for dynamic safety

management, we derive the elements illustrated in Figure 3. Dynamic safety man-

agement follows the basic ideas of a MAPE-K cycle known from self-adaptive

systems (Kephart and Chess 2003). A MAPE-K cycle consists of five basic steps:

Monitor, Analyze, Plan, and Execute. All of these steps use shared Knowledge,

which – in our case – is represented by safety models at runtime (SM@RT)

(Trapp and Schneider 2014), namely HARA-models at runtime (H@RT) and

safety concept models at runtime (SC@RT). By doing so we follow the basic

ideas of models@run.time (Blair et al. 2009) (Cheng et al. 2014). Using these

models as our representation of shared knowledge, monitoring enables the system

to become aware of its current quality state and the state of its environment. As

mentioned above, we consider a) self-awareness, i.e. the system uses internal

monitors such as error detections and maps the results to the SC@RT for reflect-

ing the current state in terms of fulfillment of safety requirements. Moreover, we

facilitate b) context-awareness, i.e. the system uses safe perception mechanisms to

monitor its operational situation and to map it to the H@RT for reflecting the

current situation in terms of safety-related risk.

Fig. 3. Dynamic Safety Management Framework

In the second step, the analysis, the system uses the results observed in the

monitoring step for assessing the current safety risk using a dynamic risk assess-

ment approach based on the H@RT (cf. Section 4.1), and for assessing the sys-

tem’s current safety state using a dynamic safety assessment approach based on

the SC@RT (cf. Section 4.2). In the planning step, the system uses the available

6 Mario Trapp, Gereon Weiss

optimization space derived during the risk and safety assessment steps for opti-

mizing its performance (self-optimization) without violating any safety goals

(self-assurance). Finally, the system reconfigures itself in the execute step (Ruiz et

al. 2015).

The remainder of this paper focuses on the analysis and the planning part. To this

end, we focus on the concepts used in the automotive domain even though the

approach can be applied to other domains as well.

4.1 Dynamic Risk Assessment

As mentioned before, dynamic risk assessment is a core element of dynamic safe-

ty management as part of the analysis step. Using perception information about

the system’s context and HARA models at runtime, we enable the system to ana-

lyze the current risk of the actual situation at runtime, instead of being bound to

static worst-case assumptions.

Regarding a hazard analysis and risk assessment according to ISO 26262 (ISO

2018), we are interested in hazardous events, i.e. the coincidence of a hazard (e.g.

“an unintended acceleration of more than 2m/s² for more than 1s”) and an opera-

tional situation (e.g. “wet winding country road”). That means that the operational

situation has a tremendous impact on the risk. In a HARA, safety managers con-

sider

 the exposure E, i.e. the likelihood that the system might be exposed to an oper-

ational situation,

 the controllability C, i.e. the likelihood that the driver or any other person

could mitigate a hazardous event in spite of a system failure, and

 the severity S, i.e. the severity of harm the safety manager expects in case that

the hazardous event occurs.

Based on these hazardous events, they derive safety goals, i.e. the top-level safety

requirements, whose integrity level depends on the risk assessment of all hazard-

ous events covered by the goal.

Actually, we have different possibilities for shifting the HARA to runtime to

yield a H@RT (cf. Figure 4). Selecting one of these possibilities is usually a trade-

off decision between flexibility on the one hand and “assurability” on the other

hand. For all possible approaches, first, the system must become aware of its cur-

rent context (context awareness). To this end, we use the situations defined in the

HARA during design time as starting point and characterize them by different

parameters that can be monitored at runtime - such as speed, weather conditions,

traffic context (urban, country road, highway, etc.), or road structure (straight,

winding, etc.). There are various different ways to determine the situation using

those parameters.

Towards Dynamic Safety Management for Autonomous Systems 7

A possible approach is using Fuzzy logic (Klir and Yuan 1995) (Zadeh 1996).

Using different measureable values, we map the current situation to linguistic

terms. Using different inference rules, we can then derive a likelihood that the

system is in a specific situation at the current point in time at runtime. It is not

necessary to get precise probabilities. Instead, it is sufficient to use classes of

likelihood as we use them in design time analyses, too. This simplification is par-

ticularly noteworthy, as it is important to limit the necessary context information

to a set of required and sufficient information since we need this information with

a sufficiently high integrity. Since autonomous systems are already equipped with

numerous sensors for much higher precision, such a coarse-grained derivation of

situations with enough confidence seems feasible, e.g. through cross-validation.

Fig. 4. Dynamic Risk Assessment

The table on the right hand side of Figure 4 shows different alternatives and

how the system can use this context awareness for a dynamic risk assessment. In

the simplest case shown in the first row, we simply replace the exposure parame-

ter by the runtime likelihood to be in an operational situation considered in a haz-

ardous event. If this likelihood is below a certain threshold, the system neglects

this hazardous event during dynamic risk assessment. By doing so, many safety

goals can be considered irrelevant for the current situation or, at least, their integ-

rity level can be reduced.

If we accept more freedom, the system can additionally reassess the controlla-

bility as well as the severity parameters depending on the situation-specific pa-

rameters such as speed or weather conditions (cf. line 2). By this means, the sys-

tem might further reduce the integrity level. As a further degree of freedom, it is

additionally possible to adapt parameters of safety requirements (cf. line 3).

Eventually, as a final, alternative step, it is possible to leave the established

way of creating HARAs. Instead of identifying and assessing single hazardous

events in the sense of a combination of hazards and operational situations, a situa-

tion can be described as a vector of single characteristic parameters. Instead of

fixed, static assessments for each hazardous event, (continuous) functions deter-

8 Mario Trapp, Gereon Weiss

mine the parameters. By this means, we yield a high degree of flexibility. On the

other hand, however, this makes safety assurance much more difficult compared

to the minor modifications of established HARAs as described before.

4.2 Dynamic Safety Assessment

Besides the dynamic risk assessment, which primarily focuses on the system’s

external context, it is additionally important to regard the system’s internal safety

state in a dynamic safety assessment. To this end, we employ dynamic variabili-

ties defined in dynamic safety concepts. Instead of defining one single solution of

how to assure the system’s safety, a dynamic safety concept captures different

alternatives. However, it is important that the safety concept is not decoupled from

the system design.

We use the mechanisms derived from engineering self-adaptive systems. Each

component may take various different configurations. A configuration may repre-

sent different algorithmic or structural variants of the component’s realization at

runtime. Additionally, adaptive parameters provide some additional freedom at

runtime. From safety engineering, we use the ideas of model-integrated safety

engineering (Domis and Trapp 2009) (Domis et al. 2009). This means that the

safety models such as safety concepts are directly integrated into functional mod-

els. Thus, each component of a system’s architecture has its own modular safety

concept. When the engineer composes the single components to a system, the

underlying tools (semi-) automatically compose modular safety concepts to an

overall system-level safety concept as well. Combining both approaches, we de-

fine modular safety concepts for each configuration of each component. In fact,

defining variability in our safety concept might lead to additional configurations in

a component since different safety concepts might require different realizations of

a component. In principle, this extends the idea of modular, conditional runtime

safety certificates ConSerts (Schneider and Trapp 2010) and Digital Dependability

Identities DDI (Schneider et al. 2015). Each modular safety concept therefore

defines a safety contract consisting of safety guarantees and safety demands. Since

adding configurations to modules increases the complexity and impedes an effi-

cient safety analysis, it is important to provide probabilistic analysis techniques

considering system configurations (Adler et al. 2007).

Towards Dynamic Safety Management for Autonomous Systems 9

Fig. 5. Mapping of monitors to contract-based safety concepts

As shown in Figure 5, we map system monitors and diagnostics such as error

detections, power supply monitors, or any other available runtime status monitor

to the components’ configurations. Depending on these monitors, the system eval-

uates which configurations are available from a functional point of view and from

a safety point of view. To this end, the system primarily evaluates the demands

defined in the safety contracts. Additionally, it is necessary to evaluate any as-

sumption defined in the safety concepts (Wei et al.). This requires a formalization

of demands and assumptions. For this particularly purpose, it is however sufficient

to provide a mapping function to runtime monitors. By step-wise aggregation of

the components’ safety contracts, the system becomes aware which safety re-

quirements of the underlying safety concepts and eventually which safety goals

are still fulfillable. By this means, we consequently yield a dynamic capability

space.

4.3 Self-Assurance and Self-Optimization

By combining both, the risk assessment results and the safety assessment results,

the system gets a dynamic safety space. The dynamic risk assessment provides a

list of safety goals that need to be fulfilled at the current point in time. Using this

input, the system can reduce the capability space provided by the safety assess-

ment to those configuration sets that fulfill the currently demanded safety goals

with the required integrity. Within this safety space, the system can optimize its

performance by selecting a safe configuration set that optimizes the system’s per-

formance goals.

If we summarize this (cf. Figure 6), on the left hand side, we have the goal

space, comprising the required safety goals as well as the performance goals. On

the right hand side, we have the system’s current capability space.

10 Mario Trapp, Gereon Weiss

Fig. 6. Optimization trade-off

Those spaces span the frame for a context dependent optimization. This optimiza-

tion can be focused on design time or runtime. The more aspects we (pre-) opti-

mize during design time, the more efficient the runtime framework will be and the

simpler will be the assurance of the runtime framework. However, this purely

static approach significantly decreases the flexibility because a design time opti-

mization does not cover unanticipated situations. To increase flexibility, we need

to shift the optimization or parts of the optimization to runtime. Runtime optimiza-

tion is very flexible but decreases system performance and makes safety assurance

more difficult. Therefore, a reasonable mix between design time and runtime op-

timization is a trade-off decision that might be taken differently for different sys-

tems and settings.

An example is the definition of pre-defined contexts the system will operate in.

One can model and pre-verify these context models at design time. Thus, a de-

signer only needs to define the system’s required software applications and their

requirements, e.g. with respect to timing behaviour and reliability. The resulting

model can be formulated as an optimization problem, which can be solved effi-

ciently during design time yielding optimized configurations, which in turn meet

the defined requirements. In this case, the optimization task of the runtime system

mainly is to determine the present context and selecting the appropriate configura-

tion. Since this mapping and the selection can be implemented very efficiently, it

enables a fast adaptation that is essential for real-time cyber-physical systems.

5 Conclusion

By integrating self-adaptation and safety management, dynamic safety man-

agement paves the way to consider the actual case instead of the worst case. This

provides the necessary freedom to build safe and yet cost-efficient autonomous

systems. One may assume that this approach may reduce the safety margin. How-

ever, if we assume that a sound situation detection is given with a sufficient integ-

rity and that static analyses ensure that it is valid to neglect a safety goal in specif-

Towards Dynamic Safety Management for Autonomous Systems 11

ic situations, then we will only neglect irrelevant safety goals that are not of rele-

vance for the actual situation at runtime.

Even though there has been work on runtime certification and dynamic safety

assurance for quite a while now (Trapp and Schürmann 2003) (Rushby 2007), the

field is still at the very beginning. Particularly the assurance of adaptive systems

still poses many open challenges (de Lemos et al. 2013) (de Lemos et al. 2017).

For successfully using dynamic safety management in the future, it is necessary to

rethink established safety principles. However, we are convinced that simply try-

ing to evolve conventional approaches is not an alternative since they will not

scale and would require too expensive and/or technically infeasible solutions.

Simply relaxing safety demands is no alternative either. Although autonomous

systems such as self-driving cars might – in total – reduce the number of acci-

dents, it is in our opinion not an option to accept that lives depend on systems

whose safety cannot be guaranteed just for the sake of technical progress.

Dynamic safety management might provide a reasonable means to combine in-

telligence and safety in spite of their apparently contradicting nature.

References

Heckemann et al. (2011). Safe Automotive Software. In Proceedings of International Conference

on Knowledge-Based and Intelligent Information and Engineering Systems. Springer.

Weiss G, Schleiss P, Schneider D, Trapp M (2018) Towards integrating undependable self-

adaptive systems in safety-critical environments. Proceedings of the 13th International Con-

ference on Software Engineering for Adaptive and Self-Managing Systems. ACM.

Kephart J.O. and Chess D.M. (2003). The vision of autonomic computing. IEEE Computer 36, 1

(Jan 2003), 41–50. https://doi.org/10.1109/MC.2003.1160055

Trapp M, Schneider D. (2014). Safety assurance of open adaptive systems–a survey. In: Mod-

els@Run.Time (pp. 279-318). Springer.

Blair G, Bencomo N., France R. B. (2009). Models@run.time. IEEE Computer, vol. 42, no. 10,

(pp. 22-27), IEEE.

Cheng B et al. (2014) Using Models at Runtime to Address Assurance for Self-Adaptive Sys-

tems. Models@run.time, 101–136. Switzerland: Springer International Publishing.

Ruiz A, Juez G, Schleiss P, Weiss G. (2015). A safe generic adaptation mechanism for smart

cars. In proceedings of IEEE 26th International Symposium on Software Reliability Engineer-

ing (ISSRE) (pp. 161-171), IEEE.

ISO/FDIS 26262-8:2018(E), Road vehicles — Functional safety, ISO

Klir G and Yuan B (1995). Fuzzy sets and fuzzy logic (Vol. 4). New Jersey: Prentice hall.

Zadeh L. A. (1996). Fuzzy logic= computing with words. IEEE transactions on fuzzy systems,

4(2), 103-111. IEEE.

Domis D and Trapp M (2009). Component-Based Abstraction in Fault Tree Analysis. In Pro-

ceedings of International Conference on Computer Safety, Reliability, and Security, pp. 297-

310, Springer, Berlin, Heidelberg.

Domis et al. (2009). Safety Concept Trees. In Proceedings of Reliability and Maintainability

Symposium. IEEE.

Schneider D and Trapp M (2010). Conditional Safety Certificates in Open Systems. In Proceed-

ings of the first workshop on critical automotive applications: robustness & safety. ACM.

Schneider et al. (2015). WAP: Digital Dependability Identities. In proceedings of IEEE 26th

International Symposium on Software Reliability Engineering ISSRE. IEEE.

Wei R et al. (2018). On the need for transitioning model-based assurance cases from design time

to runtime. In proceedings of 13th Workshop on Models@run.time. CEUR-WS.org

12 Mario Trapp, Gereon Weiss

Adler R et al. (2007). Determining configuration probabilities of safety-critical adaptive systems.

In Proceedings of Advanced Information Networking and Application Workshops. IEEE.

Trapp M and Schürmann B (2003) On the Modeling of Adaptive Systems. International Work-

shop on Dependable Embedded Systems. CMU

Rushby J (2007) "Just-in-Time Certification," 12th IEEE International Conference on Engineer-

ing Complex Computer Systems (ICECCS). IEEE.

de Lemos R et al. (2013) Software engineering for self-adaptive systems: a second research

roadmap. In: de Lemos R, Giese H, Müller HA, Shaw M, editors. Software engineering for

self-adaptive systems II. Lecture notes in computer science, vol. 7475. Springer

de Lemos R et al. (2017): Software Engineering for Self-Adaptive Systems. Re-search Challeng-

es in the Provision of Assurances. In Rogério de Lemos, David Garlan, Carlo Ghezzi, Holger

Giese (Eds.): Software Engineering for Self-Adaptive Systems III. Assurances. Cham:

Springer International Publishing.

