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Abstract   Safety assurance of autonomous systems is one of the current key chal-

lenges of safety engineering. Given the specific characteristics of autonomous 

systems, we need to deal with many uncertainties making it difficult or even im-

possible to predict the system’s behaviour in all potential operational situations. 

Simply using established static safety approaches would result in very strict worst-

case assumptions making the development of autonomous systems at reasonable 

costs impossible. This paper therefore introduces the idea of dynamic safety man-

agement. Using dynamic safety management enables a system to assess its safety 

and to self-optimize its performance at runtime. Considering the current risk re-

lated to the actual context at runtime instead of being bound to strict worst-case 

assumptions provides the essential basis for the development of safe and yet cost-

efficient autonomous systems. 

1 Introduction 

Safety assurance of autonomous systems is still an open challenge. Autonomous 

systems operate in open contexts so that it is not possible to anticipate all relevant 

operational situations. Moreover, safety managers are still struggling with the 

assurance of AI-based algorithms, which are an essential prerequisite for facilitat-

ing autonomous systems. Considering open contexts and the non-deterministic, 

non-linear behaviour of AI, this leads to intrinsic and extrinsic uncertainties, 

which make it impossible to anticipate the system’s behaviour a-priori. Having 

said that, it is clear that applying conventional safety approaches based on static 

worst-case assumptions would not lead to reasonable results. Doubtlessly, there is 

a long list of open challenges concerning safety assurance of autonomous systems, 

but as long as such conservative static worst-case assumptions completely bound 

our space of options, we will not be able to find any reasonable solution for safety 

assurance of autonomous systems at all. 
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Therefore, it is necessary to loosen the ties of static worst-case assumptions by 

moving from static safety management to dynamic safety management. This 

means that instead of considering possible and hypothetical situations from a 

worst-case perspective at design time, the system evaluates its current risk at 

runtime for the concrete given context at this particular given point in time - con-

sidering its operational context as well as its own quality state. To this end, we 

combine approaches from model-based safety engineering on the one hand, and 

the self-adaptive systems community on the other hand. This paper briefly intro-

duces the basic concepts of dynamic safety management. Even though the con-

cepts are applicable to different application domains, we will refer to ideas and 

examples from the automotive domain to simplify matters throughout the remain-

der of this article. 

2 Adaptive Fail-Operational Architectures 

In order to have some flexibility at runtime, we need to implement adaptive fail-

operational architectures as shown in Figure 1. We will not discuss these architec-

tures in this article in detail. It is important to note that we do not have one fixed, 

static functionality, but that the system can adapt itself to various different config-

urations. Such an adaptation can encompass different types of changes in an ex-

plicit, reproducible way. 

 

 
Fig. 1. Basic Concept of Fail-Operational Architectures 

 

For instance, the system can dynamically re-deploy software components to dif-

ferent hardware nodes or dynamically adapt its structure (e.g. by using different 

sensors, different algorithms etc.). An adaptation of single parameters of the algo-

rithms allows for fine-grain system adaptations. One major aspect of such an ar-

chitecture is dynamic safety management, which includes identifying and as-

sessing the current situation and planning adaptation strategies for optimizing the 
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system’s performance while preserving its safety. To this end, monitoring needs to 

derive information about the context and about the system. Examples of moni-

tored information for a vehicle are given on the left-hand side of Figure 1. Based 

on this monitoring, dynamic safety management utilizes dynamic adaptation as 

described above for switching the system configurations. Safety-configurations 

ensure that the system can preserve its safety in any given situation. An isolation 

mechanism, such as a virtual safety cage (Heckemann et al.) or similar concepts 

(Weiss et al. 2018), ensures that performance configurations can be used for opti-

mizing the systems performance without endangering its safety, as the system can 

move to an adequate safety configuration whenever necessary.  

3 The Basic Concept 

In order to facilitate safety assurance of autonomous systems, we employ the idea 

of safety-awareness and dynamic safety management as illustrated in Figure 2. 

Instead of anticipating any foreseeable situation and assuming the worst case at 

design time, we enable the system to reason about the actual given situation at 

runtime using different sources of runtime information. Perception systems and 

vehicle observer models of driver assistance systems provide lots of information 

about the system’s environmental context. Internal monitors, such as error detec-

tion, provide a lot of information about the system’s internal (quality) state. Usual-

ly, this information is available as an integral part of the functionality. In order to 

use it for dynamic safety management, we need to transform this information to a 

higher semantic level, which we refer to as safety awareness (cf. Fig. 2).  

 

 
Fig. 2. Basic Idea of Dynamic Safety Management 
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For creating safety-awareness, we make safety models, which safety managers 

usually use during design time, available at runtime. Namely, as a first step, we 

use models of the hazard analysis and risk assessment (HARA) and safety concept 

models, which provide a modular, contract-based representation of safety re-

quirements. Using external context sensing, we enable the system to reason about 

the current operational situation. While the default perception functionality as it is 

required for realizing autonomy focuses on high precision, but with a low integri-

ty, it is sufficient to realize a low-precision but high-integrity perception as input 

for dynamic safety management. By mapping this perception information to HA-

RA models at runtime, the system becomes “context-aware” enabling it to reason 

about its current operational situation from a safety point-of-view. In conse-

quence, the system can identify those safety goals that are still of relevance in the 

current runtime situation. Since the required integrity of a safety goal results from 

the worst case of all possible operational situations, regarding the currently likely 

situations at runtime furthermore reduces the required integrity levels. By doing 

so, we can dynamically loosen the safety constraints to those safety goals with 

those integrity levels, that are actually of relevance in the current runtime situa-

tion. Of course, this requires that the decision logic must be at the highest integrity 

level. Compared to considering worst-case situations, this provides us with much 

more freedom for optimizing the system’s functional performance while preserv-

ing its safety. 

Besides this context-awareness, it is important to consider the system’s internal 

state. In order to realize this “self-awareness”, we map available monitoring in-

formation to modular safety concepts, i.e. the safety requirements, at runtime. By 

this means, the system can reflect monitoring information at the level of safety 

requirements, i.e. which safety requirements are fulfillable in the current runtime 

situation. In order to enable dynamic adaptation, we model safety concepts using 

safety-contracts. Using safety-contracts, single modules specify which safety 

guarantees they are able to provide under the assumption that their context (e.g. 

other components, platforms etc.) fulfills the module’s safety demands. Instead of 

a single static concept, the modules may have different configurations. Depending 

on which demands are fulfilled, the module selects the best possible configuration 

and will provide the corresponding set of safety guarantees. Therefore, the system 

has several degrees of freedom to adapt itself for optimizing its performance while 

preserving safety. 

This optimization is the core of dynamic safety management. Using the HARA 

at runtime, the system gets the currently relevant goal space, i.e. which safety 

goals are actually relevant in the actual given runtime situation. Using self-

awareness by mapping monitors to safety requirements, the system gets its current 

capability space. Using the goal space and the capability space as available opti-

mization space, the system can optimize itself and assure its safety at runtime. 
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4 Dynamic Safety Management 

If we use this general idea as a basis to derive a framework for dynamic safety 

management, we derive the elements illustrated in Figure 3. Dynamic safety man-

agement follows the basic ideas of a MAPE-K cycle known from self-adaptive 

systems (Kephart and Chess 2003). A MAPE-K cycle consists of five basic steps: 

Monitor, Analyze, Plan, and Execute. All of these steps use shared Knowledge, 

which – in our case – is represented by safety models at runtime (SM@RT) 

(Trapp and Schneider 2014), namely HARA-models at runtime (H@RT) and 

safety concept models at runtime (SC@RT). By doing so we follow the basic 

ideas of models@run.time (Blair et al. 2009) (Cheng et al. 2014). Using these 

models as our representation of shared knowledge, monitoring enables the system 

to become aware of its current quality state and the state of its environment. As 

mentioned above, we consider a) self-awareness, i.e. the system uses internal 

monitors such as error detections and maps the results to the SC@RT for reflect-

ing the current state in terms of fulfillment of safety requirements. Moreover, we 

facilitate b) context-awareness, i.e. the system uses safe perception mechanisms to 

monitor its operational situation and to map it to the H@RT for reflecting the 

current situation in terms of safety-related risk.  

 

 

 
Fig. 3. Dynamic Safety Management Framework 

 

In the second step, the analysis, the system uses the results observed in the 

monitoring step for assessing the current safety risk using a dynamic risk assess-

ment approach based on the H@RT (cf. Section 4.1), and for assessing the sys-

tem’s current safety state using a dynamic safety assessment approach based on 

the SC@RT (cf. Section 4.2). In the planning step, the system uses the available 
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optimization space derived during the risk and safety assessment steps for opti-

mizing its performance (self-optimization) without violating any safety goals 

(self-assurance). Finally, the system reconfigures itself in the execute step (Ruiz et 

al. 2015). 

The remainder of this paper focuses on the analysis and the planning part. To this 

end, we focus on the concepts used in the automotive domain even though the 

approach can be applied to other domains as well. 

 

4.1 Dynamic Risk Assessment 

As mentioned before, dynamic risk assessment is a core element of dynamic safe-

ty management as part of the analysis step. Using perception information about 

the system’s context and HARA models at runtime, we enable the system to ana-

lyze the current risk of the actual situation at runtime, instead of being bound to 

static worst-case assumptions. 

Regarding a hazard analysis and risk assessment according to ISO 26262 (ISO 

2018), we are interested in hazardous events, i.e. the coincidence of a hazard (e.g. 

“an unintended acceleration of more than 2m/s² for more than 1s”) and an opera-

tional situation (e.g. “wet winding country road”). That means that the operational 

situation has a tremendous impact on the risk. In a HARA, safety managers con-

sider  

 the exposure E, i.e. the likelihood that the system might be exposed to an oper-

ational situation,  

 the controllability C, i.e. the likelihood that the driver or any other person 

could mitigate a hazardous event in spite of a system failure, and  

 the severity S, i.e. the severity of harm the safety manager expects in case that 

the hazardous event occurs.  

 

Based on these hazardous events, they derive safety goals, i.e. the top-level safety 

requirements, whose integrity level depends on the risk assessment of all hazard-

ous events covered by the goal. 

Actually, we have different possibilities for shifting the HARA to runtime to 

yield a H@RT (cf. Figure 4). Selecting one of these possibilities is usually a trade-

off decision between flexibility on the one hand and “assurability” on the other 

hand. For all possible approaches, first, the system must become aware of its cur-

rent context (context awareness). To this end, we use the situations defined in the 

HARA during design time as starting point and characterize them by different 

parameters that can be monitored at runtime - such as speed, weather conditions, 

traffic context (urban, country road, highway, etc.), or road structure (straight, 

winding, etc.). There are various different ways to determine the situation using 

those parameters. 
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A possible approach is using Fuzzy logic (Klir and Yuan 1995) (Zadeh 1996). 

Using different measureable values, we map the current situation to linguistic 

terms. Using different inference rules, we can then derive a likelihood that the 

system is in a specific situation at the current point in time at runtime. It is not 

necessary to get precise probabilities. Instead, it is sufficient to use classes of 

likelihood as we use them in design time analyses, too. This simplification is par-

ticularly noteworthy, as it is important to limit the necessary context information 

to a set of required and sufficient information since we need this information with 

a sufficiently high integrity. Since autonomous systems are already equipped with 

numerous sensors for much higher precision, such a coarse-grained derivation of 

situations with enough confidence seems feasible, e.g. through cross-validation. 

 

 
Fig. 4. Dynamic Risk Assessment 

 

The table on the right hand side of Figure 4 shows different alternatives and 

how the system can use this context awareness for a dynamic risk assessment. In 

the simplest case shown in the first row, we simply replace the exposure parame-

ter by the runtime likelihood to be in an operational situation considered in a haz-

ardous event. If this likelihood is below a certain threshold, the system neglects 

this hazardous event during dynamic risk assessment. By doing so, many safety 

goals can be considered irrelevant for the current situation or, at least, their integ-

rity level can be reduced. 

If we accept more freedom, the system can additionally reassess the controlla-

bility as well as the severity parameters depending on the situation-specific pa-

rameters such as speed or weather conditions (cf. line 2). By this means, the sys-

tem might further reduce the integrity level. As a further degree of freedom, it is 

additionally possible to adapt parameters of safety requirements (cf. line 3). 

Eventually, as a final, alternative step, it is possible to leave the established 

way of creating HARAs. Instead of identifying and assessing single hazardous 

events in the sense of a combination of hazards and operational situations, a situa-

tion can be described as a vector of single characteristic parameters. Instead of 

fixed, static assessments for each hazardous event, (continuous) functions deter-
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mine the parameters. By this means, we yield a high degree of flexibility. On the 

other hand, however, this makes safety assurance much more difficult compared 

to the minor modifications of established HARAs as described before. 

4.2 Dynamic Safety Assessment 

Besides the dynamic risk assessment, which primarily focuses on the system’s 

external context, it is additionally important to regard the system’s internal safety 

state in a dynamic safety assessment. To this end, we employ dynamic variabili-

ties defined in dynamic safety concepts. Instead of defining one single solution of 

how to assure the system’s safety, a dynamic safety concept captures different 

alternatives. However, it is important that the safety concept is not decoupled from 

the system design. 

We use the mechanisms derived from engineering self-adaptive systems. Each 

component may take various different configurations. A configuration may repre-

sent different algorithmic or structural variants of the component’s realization at 

runtime. Additionally, adaptive parameters provide some additional freedom at 

runtime. From safety engineering, we use the ideas of model-integrated safety 

engineering (Domis and Trapp 2009) (Domis et al. 2009). This means that the 

safety models such as safety concepts are directly integrated into functional mod-

els. Thus, each component of a system’s architecture has its own modular safety 

concept. When the engineer composes the single components to a system, the 

underlying tools (semi-) automatically compose modular safety concepts to an 

overall system-level safety concept as well. Combining both approaches, we de-

fine modular safety concepts for each configuration of each component. In fact, 

defining variability in our safety concept might lead to additional configurations in 

a component since different safety concepts might require different realizations of 

a component. In principle, this extends the idea of modular, conditional runtime 

safety certificates ConSerts (Schneider and Trapp 2010) and Digital Dependability 

Identities DDI (Schneider et al. 2015). Each modular safety concept therefore 

defines a safety contract consisting of safety guarantees and safety demands. Since 

adding configurations to modules increases the complexity and impedes an effi-

cient safety analysis, it is important to provide probabilistic analysis techniques 

considering system configurations (Adler et al. 2007). 
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Fig. 5. Mapping of monitors to contract-based safety concepts 

 

As shown in Figure 5, we map system monitors and diagnostics such as error 

detections, power supply monitors, or any other available runtime status monitor 

to the components’ configurations. Depending on these monitors, the system eval-

uates which configurations are available from a functional point of view and from 

a safety point of view. To this end, the system primarily evaluates the demands 

defined in the safety contracts. Additionally, it is necessary to evaluate any as-

sumption defined in the safety concepts (Wei et al.). This requires a formalization 

of demands and assumptions. For this particularly purpose, it is however sufficient 

to provide a mapping function to runtime monitors. By step-wise aggregation of 

the components’ safety contracts, the system becomes aware which safety re-

quirements of the underlying safety concepts and eventually which safety goals 

are still fulfillable. By this means, we consequently yield a dynamic capability 

space. 

4.3 Self-Assurance and Self-Optimization 

By combining both, the risk assessment results and the safety assessment results, 

the system gets a dynamic safety space. The dynamic risk assessment provides a 

list of safety goals that need to be fulfilled at the current point in time. Using this 

input, the system can reduce the capability space provided by the safety assess-

ment to those configuration sets that fulfill the currently demanded safety goals 

with the required integrity. Within this safety space, the system can optimize its 

performance by selecting a safe configuration set that optimizes the system’s per-

formance goals. 

If we summarize this (cf. Figure 6), on the left hand side, we have the goal 

space, comprising the required safety goals as well as the performance goals. On 

the right hand side, we have the system’s current capability space.  
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Fig. 6. Optimization trade-off 

 

Those spaces span the frame for a context dependent optimization. This optimiza-

tion can be focused on design time or runtime. The more aspects we (pre-) opti-

mize during design time, the more efficient the runtime framework will be and the 

simpler will be the assurance of the runtime framework. However, this purely 

static approach significantly decreases the flexibility because a design time opti-

mization does not cover unanticipated situations. To increase flexibility, we need 

to shift the optimization or parts of the optimization to runtime. Runtime optimiza-

tion is very flexible but decreases system performance and makes safety assurance 

more difficult. Therefore, a reasonable mix between design time and runtime op-

timization is a trade-off decision that might be taken differently for different sys-

tems and settings. 

An example is the definition of pre-defined contexts the system will operate in. 

One can model and pre-verify these context models at design time. Thus, a de-

signer only needs to define the system’s required software applications and their 

requirements, e.g. with respect to timing behaviour and reliability. The resulting 

model can be formulated as an optimization problem, which can be solved effi-

ciently during design time yielding optimized configurations, which in turn meet 

the defined requirements. In this case, the optimization task of the runtime system 

mainly is to determine the present context and selecting the appropriate configura-

tion. Since this mapping and the selection can be implemented very efficiently, it 

enables a fast adaptation that is essential for real-time cyber-physical systems. 

5 Conclusion 

By integrating self-adaptation and safety management, dynamic safety man-

agement paves the way to consider the actual case instead of the worst case. This 

provides the necessary freedom to build safe and yet cost-efficient autonomous 

systems. One may assume that this approach may reduce the safety margin. How-

ever, if we assume that a sound situation detection is given with a sufficient integ-

rity and that static analyses ensure that it is valid to neglect a safety goal in specif-
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ic situations, then we will only neglect irrelevant safety goals that are not of rele-

vance for the actual situation at runtime.  

Even though there has been work on runtime certification and dynamic safety 

assurance for quite a while now (Trapp and Schürmann 2003) (Rushby 2007), the 

field is still at the very beginning. Particularly the assurance of adaptive systems 

still poses many open challenges (de Lemos et al. 2013) (de Lemos et al. 2017). 

For successfully using dynamic safety management in the future, it is necessary to 

rethink established safety principles. However, we are convinced that simply try-

ing to evolve conventional approaches is not an alternative since they will not 

scale and would require too expensive and/or technically infeasible solutions. 

Simply relaxing safety demands is no alternative either. Although autonomous 

systems such as self-driving cars might – in total – reduce the number of acci-

dents, it is in our opinion not an option to accept that lives depend on systems 

whose safety cannot be guaranteed just for the sake of technical progress. 

Dynamic safety management might provide a reasonable means to combine in-

telligence and safety in spite of their apparently contradicting nature.  
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