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Abstract

A probabilistic method to predict the crack formation in polycrystalline materials with a random microstruc-
ture under cyclic loading is developed. In particular, transgranular crack growth in 3D grain structures generated
randomly by the Voronoï process is considered. The potential crack extension planes in the individual grains are
dependent on the different grain orientations and the crystal structureof the considered material. Under cyclic
loading fatigue cracks initiate and propagate along the slip planes of the crystal structure. For this reason, an
energy-based criterion is used in order to describe the successive material damage under cyclic loading which
is completely projected into the crack extension planes and finally causes thecrack propagation. Subsequently,
the computation of the crack path in a number of randomly generated grainstructure models provides a raw
data base in order to determine probability distributions of the number of cycles up to a pre-defined crack depth.
As an input for many fracture mechanics evaluation concepts which arebased on an assumed incipient crack
depth, the number of cycles and the corresponding scatter band width upto a postulated incipient crack depth
is of great interest.
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1 Introduction

Many materials in structural components in operating stateare subject to cyclic loading. Since even deformations
in the elastic range cause material fatigue, there is a greatinterest for development of methods for accurate
lifetime prediction starting from crack initiation to finalfracture. Due to their different damage behaviors, it is
necessary to distinguish between short and long crack growth. The linear elastic fracture mechanics evaluation
concepts can only be applied to long cracks because the microstructural influence which is very important for
short crack initiation and propagation cannot be taken intoaccount. For description of the incipient cracking,
methods are required reproducing the microstructural mechanisms, as the movement of dislocations along slip
planes in consideration of the crystal structure (Lankford[16], McEvily [18], Hussain [14]).

In Christ et al. [9] three different groups of models to predict short crack growth are identified. Beside models
based on an empirical approach to consider grain boundary effects (Hobson [13], Brown [8]) resp. based on
discrete dislocations (Doquet [10], Wilkinson [28]), particularly mechanism-based models considering plastic
deformation at the crack tip are important for the present study. Based on models of Bilby et al. [6] and Navarro
and de los Rios [20], Schick et al. [22] developed a slip band crack model in order to predict short crack propa-
gation and its scatter in a random grain structure. Further 2D probabilistic methods for short crack propagation
in polycrystalline materials are described by Bolotin and Belousov [7], Kraft and Molinari [15] and Meyer et
al. [19].

With the increase of computing power the generation and using of much more complex 3D models to pre-
dict the degradation and failure in polycrystalline materials is possible. A two-scale approach of Benedetti and
Aliabadi [4] shows how the implementation of microstructural submodels improve the component assessment
on the macroscopic level. The special feature in the method of Rimoli and Ortiz [21] is the explicitly resolved
crack propagation path by the computational mesh. Simonovski and Cizelj [24] show that using a cohesive-type
contact instead of cohesive elements for modeling the grainboundaries in a polycrystalline structure yield to a

∗Corresponding author. Tel: +49-761-5142-458, Fax: +49-761-5142-401, E-mail: carla.beckmann@iwm.fraunhofer.de

1



significant higher numerical stability. With a 3D phase-field model Abdollahi and Arias [2] represent a different
approach with the advantage that the interaction of severalmicrostructural mechanisms can be considered.

Complex crystal plasticity approaches are implemented in the 3D models of Lin et al. [17], Proudhon et
al. [23] and Wan et al. [27], but the extremely high computation times prohibit an efficient lifetime prediction
in the application of component assessments. For this reason, Gulizzi et al. [12] represent a method to reduce
extensively the computational cost of polycrystalline micro simulations. The same objective pursue Benedetti
et al. [5] by a reduction of the degree of freedoms in their polycrystalline models using a 3D grain-boundary
formulation for small strains crystal plasticity.

In the present study, as an extension of Schick et al. [22], a stochastic finite element method based on mi-
crostructural characteristics, as grain size distributions and crack growth along slip planes, is developed in order
to predict not only the number of cycles up to an incipient crack depth but also to identify the corresponding scat-
ter band width with a numerically efficient approach. This model is a benefit as an input for fracture mechanics
concepts for fatigue assessment, using a postulated incipient crack, because the initial crack depth to be used as
a starting point for these concepts as well as the lifetime upto this starting point can be integrated much more
accurately.

2 Fatigue and damage definition

Material damage due to fatigue caused by cyclic mechanical loading is a typical damage mechanism for metallic
materials. In particular, for components in operating state it is crucial that material fatigue may arise out of
cyclic loading far below the macroscopic material yield strength. On the microstructural level, the clash of grains
with different orientations and the presence of inhomogeneities, such as inclusions, lead to stress concentrations.
Consequently, material fatigue due to microplastic yield caused by movement of dislocations along activated
slip planes under cyclic loading occurs. In this relation, the grain boundaries constitute a barrier so that crack
nucleation arises due to an irreversible accumulation of dislocations. By further cyclic loading the crack growth
is induced at the most severe pile-up to the completely material failure.

Based on this damage mechanism Tanaka and Mura [25] developed a model of damage accumulation consid-
ering that in particular slip band cracks are expected for high shear stress values. In the case of uniaxial stress the
maximum shear stress occurs if the normal of the slip plane and the slip direction are inclined at45◦ to the stress
axis.

In the present study the failure on material level is described by the continuum damage equation

σ = (1−D)σ̄ (1)

with the scalar damage parameterD, the stress tensorσ and the effective undamaged stress tensorσ̄. A schematic
representation of the damage degradation referred to Eq. (1) is pictured in Fig.1(a) with the elasticity modulusE,
the yield stressσ and the equivalent plastic strain̄εpl0 at the onset of damage and at failureε̄

pl
f resp. As plotted in

Fig. 1(b), the value of the damage parameter isD = 0 for the undamaged state and achieves its maximumD = 1
for complete material failure. The influence of an increasing damage parameter on the material yield curve is
sketched in Fig.1(c).

For the additional field variableD, an additional field equation is required. This equation is provided in terms
of the damage evolution equation. Using a load-cycle based approach, the damage degradation per cycle

∂D

∂N
=

k1

L
∆wk2 (2)

is defined by an energy-based criterion (Abaqus [1]) with thedissipated microplastic energy∆w per load cycle
N , the model-dependent characteristic lengthL and the material constantsk1 andk2. In this context, the term
microplasticity refers to a plastic deformation occurringbelow the static yield limit due to cyclic dislocation
movements with plastic strains far below their elastic counterparts.

In Fig. 2(a) the microplastic effect is sketched in an exaggerated manner in order to show that for modeling
a micro yield curve is necessary because fatigue is a material failure process taking normally place in the macro-
scopically elastic range. The damage degradation is reproduced in the model by accumulation of the dissipated
energy per cycle. As sketched in Fig.2(b), the energy amounts in each of the cycles differ in their values because
not only the local loading is varied over the time but also thematerial yield curve continuously changes in depen-
dence on the damage parameter. However, it can be assumed that the dissipated energy amounts in a sequence of
cycles is approximately equivalent.
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Fig. 1: Damage degradation (a), damage parameter (b) and yield curve (c).
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Fig. 2: Microplastic yield (a) and dissipated hysteresis energy per cycle (b).

3 Crack extension model

For computation of the load-cycle-dependent crack growth and its scatter finite element models are generated
randomly. The scatter in the size of the grains is reproducedby using the Voronoï process in Laguerre geome-
try [26] which is a randomized space division algorithm. A 2Dsketch in Fig.3(a) illustrates this approach. The
first step is the random generation of nucleation points inside a square with the edge lengthl. In order to obtain
structures which correlate to given grain size distributions an environment defined by a radiusri in which no other
nucleation point is allowed to exist is assigned to each nucleation points(i). In order to obtain a periodic com-
putational model for the microstructure these nucleation points are copied into the surrounding neighborhood.
Subsequently, the grain belonging to nucleation points(i) is defined by

Ω
g(p) =

{

xi |xi ∈ R
3, rL(xi, x

s(p)
i ) ≤ rL(xi, x

s(q)
i ), q 6= p

}

, p, q = 1, 2, ... , n (3)

with the distancerL(xi, x
s(p)
i ) =

[

(

rE(xi, x
s(p)
i )

)2

− (r(p))
2

]
1

2

in Laguerre geometry and the Euclidean

distancerE(xi, x
s(p)
i ) as the set of spatial points, for which the Laguerre distancerL to the respective nucleus

s(p) is smaller than for all other nuclei. A 3D grain structure after meshing with tetrahedral finite elements is
shown in Fig.3(b).

Due to the fact that a periodic structure is given (Fig.3a), it is possible to shift volume fractions of grains in
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Fig. 3: Voronoï process (a), periodic grain structure (b), crack extension model (c) and grain with crack extension
plane (d).

such a way that in contrast of the meshed model in Fig.3(b) a rectangular-shaped model, as shown in Fig.3(c),
can be obtained. Furthermore, the meshing is adapted in sucha way that the region near the grain boundaries is
represented by layers of finite elements. Moreover, for computation of transgranular crack growth, crack exten-
sion planes inside individual grains are necessary (Fig.3(d)). For this reason, a finite element mesh reproducing a
number of parallel potential crack extension planes is implemented in each grain. The orientation of these planes
is chosen in such a way that for each grain in the model the mostcritical orientation for the randomly determined
crystalline orientation and the prescribed external loading direction is obtained.

To simplify the model, the fatigue damage under cyclic loading is modelled using a Dugdale [11] and Baren-
blatt [3] type model (Fig.4(a)) with successively projected crack extensions planes.For this reason, initially all
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Fig. 4: Dugdale-Barenblatt plastic zone model (a), orientation of the cubic system in space (b), primary slip
systems in a body-centered cubic system (c) and primary slipsystems in a face-centered cubic system (d).

finite elements in the model obtain elastic material properties with the exception of the finite elements in the crack
extension plane in the largest grain close to the surface. Toreproduce the fatigue damage, these elements have
from the start of the computation elastic-plastic materialproperties in terms of a micro yield curve (Fig.2(a))
and can be damaged successively (Section 2). As soon as the crack front gets close to the grain boundaries,
elastic-plastic material properties are allocated to the most critical crack extension plane in the neighbored grain
in order to make a further crack propagation possible.

As described in Section 2, a fraction of energy is dissipatedin each cycle and causes the material damage. Due
to the fact that the amount of dissipated energy is nearly thesame for several cycles, one cycle in the computation
may represent a number of cycles in a real fatigue test in order to perform the computations in a numerical
efficient way.

4 Probabilistic approach

For computation of the load-cycle-dependent crack growth and its scatter it is assumed that the heterogeneous
microstructure significantly affects the rate of crack growth. For this reason, a probabilistic approach is applied
which is based on the determination of the probabilities of occurrence for the spatial orientation of the crack
extension planes. As an example the primary slip systems of abody-centered cubic system (bcc) and a face-
centered cubic system (fcc) are shown in Fig.4(c) resp. Fig.4(d). By rotation of the cubes in space (Fig.4(b))
all possible orientations of the crystal structure are sampled and the critical slip plane direction of the considered
crystal structure referring to crack growth under the present loading direction is determined. With this procedure

5



aa(I)a(II) a(III)a(IV) a(V) amax

F( )a

1

0

p(IV)

p(II)

p(V)

p(I)
p(III)

0 NN(III)N(IV) N(I)N(II) N(V)

F(N)

1

0

p(IV)

p(II)

p(V)

p(III)
p(I)

0
a) b)

Fig. 5: Probabilities of occurrence for the potential orientations of the crack extension planes (a) and probability
distribution of the number of cycles up to a pre-defined crackdepth (b).

the probabilities of occurrence for arbitrarily oriented crack extensions planes in space, as sketched in Fig.5(a),
can be determined.

Considering that the results obtained in the numerical analysis of one of the microstructural modes (i. e. the
crack dimensions for a prescribed cycle number under a specific external load case) have the same probability
as the probability of occurrence of the underlying microstructure, the probability distributions for the respective
output properties are obtained. For this purpose, the results (e. g. the numberN of cycles required to reach a
prescribed crack deptha) are rearranged into ascending order (Fig.5(b)). Each datum is provided with its individ-
ual probability of occurrencep (coinciding with the probability of occurrence of the underlying microstructure).
Subsequently, the cumulative probability for the respective datum is obtained as the sum

F (Ni) =
∑

j

pj with Nj ≤ Ni (4)

of the individual probabilitiespi of all results which are smaller than the considered datumNi. In a similar
manner, the probability distributions for the crack depth at a prescribed numberN of cycles can be computed.

The benefit of this method is that the results of the models with differently oriented crack extension planes
can be weighted with their real probability of occurrence (Fig. 5(b)). This is an advantage to an equally weighted
assessment because it can be assumed that crack extension planes which have a strongly deviating orientation
referring to the most critical direction for crack growth supply results which may underestimate the considered
material properties on the macroscopic level in a very largenumber of cases.

5 Example

For illustration of the developed stochastic finite elementmethod the scatter in the crack growth in a polycrys-
talline grain structure under cyclic load is considered. Inorder to keep the numerical effort within acceptable
bounds, the number of models to be computed is limited to eight models representing the entire range of possible
grain or crack orientations. The size of the models is450µm × 450µm× 200 µm and a random grain structure
consisting of 45 grains in each model are generated with the Voronoï process in Laguerre geometry. The average
equivalent sphere diameter of the grains is60µm and the scatter band is35µm to 100µm.

The periodic grain structure is cut in such a way that the largest grain is located in the center of the model
because large crack extension planes are particularly critical for crack initiation. For this reason, it is defined that
the crack always starts from the upper resp. lower surface depending on which side the considered grain has the
larger extension in direction of depth. The surfaces of the eight models with the most critical crack extension
plane in each case are plotted in Fig.6. Elastic material properties with a Young’s modulus ofE = 210GPa and
a Poisson ratio ofν = 0.3 are allocated to all finite elements. For simplicity isotropic elastic behavior is used,
assuming that the orientation of the crack planes is the dominant anisotropy effect in fatigue crack formation and
initial propagation. Compared to the anisotropy induced bythe crack orientation, the elastic anisotropy usually
is of minor importance. The finite elements in the crack extension plane are assigned with plastic material
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Fig. 6: Surfaces of the finite element models with crack extension planes.

properties in terms of a microplastic fitted yield curve for structural steel. The cyclic loading is applied uniaxially
in x-direction with a stress ratio ofR = 0.1. Moreover, one loading cycle in all the models is consistentto 1 · 104

cycles in a real experimental fatigue test and the model is fixed in one point so a constraint in y- and z-direction
is non-existent. Noted at this point that periodic boundaryconditions are little useful since in this case the model
would be a model for a periodic multi-crack array. The grain orientations are arbitrarily and a body-centered
crystal structure is assumed. The corresponding probabilities of occurrence for the models A to H are shown
in Fig. 7. It is pointed out that the models are distributed over the whole range of possible orientations. This
legitimate to do the computations on the base of the low number of eight generated models.

In Fig. 8 the computation of the crack extension in model E is shown as an example. As in all other models
the finite elements close to the surface in the crack extension plane are deleted in order to obtain a more realistic
surface with a roughness of around10µm. The crack extension under a loading with a stress amplitudeof
300MPa is plotted in Fig.8(b), as a projection into a plane perpendicular to the loading direction. In addition to
the typical semi-elliptical crack growth, it can be observed in Fig.8(b) that after reaching the grain boundaries of
the first grain, the crack does not extend into all neighboring grains, but the further crack growth takes place in
particularly favorable crack extension planes, which are characterized by their large size and preferred orientation.

The typical crack propagation in the direction of depth is shown in Fig.8(c). First, there is a slow rate of
crack growth near the surface, then it increases rapidly inside the grain and slows down when approaching the
grain boundary. After crossing this barrier anew a fast crack extension can be observed. Close to the next grain
boundary the crack growth decelerates again.

For analysis of the scatter in the crack growth behavior, thecrack growth across the first grain is computed
for all models loaded with three different stress amplitudes of100MPa, 200MPa and300MPa. The resulting
cycle-dependent crack growth in depth direction for the different models and loading amplitudes is plotted in
Fig. 9.

It can be observed that the number of cycles to achieve an equivalent crack depth increases towards lower
stress amplitudes. Furthermore, there is a significant scatter in the results for the identical external loading
conditions. In particular, the higher cycle numbers for model E are conspicuous. An explanation is given in
Fig. 7 in combination with Fig.6. The angle between the normal vector of the crack extension plane and the
loading direction is unfavorable in consideration of crackgrowth. Only in model A the angle is even worse,
but Fig.6 shows that close to the surface the crack extension plane in model E is much more disadvantageous
than in model A and all other models. Nevertheless, such cases may occur and are included in the probability
distributions in Fig.10(a). In this diagram the results of the eight models are weighted according to Fig.7. The
plotted distributions show impressively the scatter in thenumber of cycles which are necessary to obtain a crack
depth of25µm resp. 50µm for the different loading conditions. In particular, the results for the computation
with the highest stress amplitude across one grain identifya scatter band width for the numberN of cycles by a
power of ten. Executing a simulation over a number of grains,it can be expected that the spreading in the results
increases because arrangements of grains can occur with different crystallographic orientations which are more
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or less critical related to crack propagation.
Alternatively, the crack depth in all models is determined for the number of cycles in which the first model

achieves a crack depth of25µm resp.50µm. The corresponding crack depth distributionsF (a) for the different
stress amplitudes are plotted in Fig.10(b) to (d). Such assessments are of interest in many fracturemechanics
evaluation concepts which determine the further crack growth on the base of a postulated incipient crack. The
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present stochastic finite element method is able to predict the number of cycles which is necessary to obtain a
crack with the postulated crack depth under cyclic loading and the corresponding scatter band width.

6 Conclusions

The present contribution proposes a stochastic finite element method predicting macroscopic fatigue crack prop-
agation properties and the corresponding scatter on the base of a heterogeneous microstructure. As an example,
transgranular fatigue crack growth in grain structures generated with the Voronoï process in Laguerre geometry
is considered. The orientation of the grains is chosen randomly, but the most critical slip plane direction in each
grain is determined considering the crystalline structureof the material. Depending on the probabilities of oc-
currence for the differently oriented crack extension planes the results for the individual models are weighted in
order to obtain probability distributions of the most important fatigue crack formation properties as the number
of cycles up to a pre-defined crack depth or in the other way round crack depth distributions for a prescribed
cycle number. The considered example shows impressively the influence of the random microstructure with its
different grain sizes and orientations on the macroscopic material behavior in term of significant scatter band
widths.
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