FRAUNHOFER INSTITUTE FOR CERAMIC TECHNOLOGIES AND SYSTEMS IKTS

Dr.-Ing Stefan Megel, PD Dr.-Ing. Matthias Jahn

Online GLOBAL TECHNICAL CONFERENCE 2020 FUEL CELL Technology 30/06/2020

The Fraunhofer-Gesellschaft at a glance

Fraunhofer IKTS in figures

Total

Personnel (full-time equivalents)	
Overall budget in million €	60
Industrial revenues in million €	21.2

(Latest update: December 31, 2018)

Institute Director: Prof. Dr. Alexander Michaelis

Fraunhofer IKTS Current research projects

Fraunhofer IKTS Current research projects

Fuel cells and high-temperature electrolysis development and testing from the component to the system.

Ceramic component variety – manufactured using the additive manufacturing process "Fused Filament Fabrication".

Power-to-X

Membrane reactor for methane and methanol synthesis, developed with MUW-SCRENN TEC GmbH.

3D printed tools – cost-effective and inexpensive with Fused Filament Fabrication.

Wastewater without pharmacenticals residues

SOEC A KEY FOR POWER-TO-X PROCESSES

Dr.-Ing Stefan Megel, PD Dr.-Ing. Matthias Jahn

Online GLOBAL TECHNICAL CONFERENCE 2020 FUEL CELL Technology 30/06/2020

Fundamentals SOFC and SOEC

SOFC - Fuel cell

SOEC - Electrolysis

Electrolysis a key technology for the reduction of industrial CO₂-emissions

- Carbon Capture and Utilization (CCU)
 - Use of unavoidable CO₂-Emissionen e.g. from lime works, biomass, waste...
 - Coupling of electrolysis and synthesis
 - \rightarrow High potential for e-fuels

- Carbon Direct Avoidance (CDA)
 - Substitution of coal
 - Use of renewable hydrogen for the reduction of iron ore in steel industry
 - \rightarrow Steel production with lower CO₂ footprint

Electrolysis-based synthesis processes

Electrolysis: Available technologies

Alkaline electrolysis

- Established in industry
- Corrosive media, Low current density
- 4.2–5.9 kWh/Nm³ H₂
- CAPEX: 1000-1200 €/kW (2030: <1000 €/kW)*</p>

PEM electrolysis

- Demo/Industrial scale
- Lower lifetime
- 4.2–5.6 kWh/Nm³ H₂
- CAPEX: 1800-2300 €/kW (2030: <1000 €/kW)*</p>

Solid oxide electrolysis

- Lab/Demo scale
- Temperature ~800 °C
- 3.0–4.5 kWh/Nm³ H₂ + CO
- CAPEX: >2000 €/kW (2030: ~1000 €/kW)*

Electrolysis: Solid Oxide Electrolyser

- Higher efficiency in electrolysis at higher temperatures
- Electrolysis can be supported by additional heat (T*∆S)
- Co-Electrolysis is possible
 P_{el} comparable CO₂ and steam electrolysis at 700-900°C
- \rightarrow Direct production and design of syngas

Electrolysis: Solid Oxide Electrolyser

- Why Co-Electrolysis?
 - No separate reactor for water gas shift is necessary

- Syngas contents depends on inlet gas and operation parameter
- → Generation of target syngas composition possible

Electrolysis-based synthesis processes

Solid Oxide Electrolyser: Cell development

Development and manufacturing of long-term stable cells

Electrolyte supported cells

Performance map 10 cell stack

Reformate: H₂O/CO₂=4.4; H2/CO=3.3 @75% FU

- -100 W/cell are necessary
 @600 mA/cm², 800°C, 75% FU
- Thermoneutral operation at 750°C 350 mA/cm² 800°C 600 mA/cm²

Performance map 10 cell stack

Reformate: H₂O/CO₂=4.4; H2/CO=3.3 @800°C

No big difference in FU variation

Performance map 10 cell stack

Reformate: $H_2O/CO_2 = 4.4$; $H_2/CO = 3.3 @800^{\circ}C$ vs H_2O_SOEC

HvdroMetha

Long term test 10-cell stack: Gas: 20 % H₂ in 80 % H₂O + Co-electrolysis H/C=2 η_{FU} =75 % T_An_i=T_Cat_i=T_furnace=830°C Air: 30 Nl/min 300 1000 H₂O SOEC Co electrolysis PM 200 950 aria **Current density in mACm²** -200 -300 -400 -200 100 900 H₂O_{ein} CO_{2,ein} 850 ပ္ H_{2,ein} 27% CO CO Temperature in 800 13% 750 27% 700 650 600 -600 550 STROM **ALS ROHSTO** -700 500 3000 1000 2000 4000 5000 0 Time in h HydroMetha —Power —T_air_i —T_air_o -Current density degradation in steam and co-electrolysis comparable $\Delta P/P_0 = -0.5 \% / 1000 h (>5000 h)$ Δ ASR=17 m Ω cm²/1000 h \rightarrow

Solid Oxide Electrolyser: Stack development MK352

SOC-stack technology - MK35x

mPower GmbH, Winterbergstrasse 28, 01279 Dresden Product: MK35x CFY Stacks

Exclusive product licensing

- Covering market in Europe
- Expand to India

Technology Transfer to mPower GmbH

- Upscaling production
- Efficient processes

Solid Oxide Electrolyser: Stack modules

- Stacks with 10-40 cells are validated
- Stack modules for higher power available

Electrolysis-based synthesis processes

Fischer-Tropsch synthesis: Fundamentals

Highly exothermic reaction

$$2n H_2 + n CO \rightarrow \cdots (CH_2)_n \cdots + n H_2O \quad \Delta_R H^0 = -158,5 \frac{kJ}{mol}$$

Chemical reactions:

Paraffins	$(2n+1) H_2 + n CO \rightarrow C_n H_{2n+2} + n H_2 O$	Cobalt
Olefines	$2n H_2 + n CO \rightarrow C_n H_{2n} + n H_2 O$	
Alcohols	$2n H_2 + n CO \rightarrow C_n H_{2n+1}OH + (n-1) H_2O$	Iron

Fischer-Tropsch synthesis: Fundamentals

- State-of-the-art Fischer-Tropsch synthesis
 - Large plants using coal or natural gas as feedstock
 - Preferred products: gasoline, diesel, naphta

- Scalable, modular catalyst and reactor design
- Valuable products: waxes, higher alcohols, jet fuels

Fischer-Tropsch synthesis: Development at IKTS

- Preparation of iron- and cobalt-based Fischer-Tropsch catalysts
- Testing in terms of catalytic activity as well as stability
- Analysis of all product phases (gaseous, aqueous, oily and wax phase)

- Challenges:
 - Highly exothermic
 - Diverse product spectrum
 - Limited conversion

Fischer-Tropsch synthesis: Higher alcohols on iron-based catalysts

- Selectivity towards higher alcohols can be improved by catalyst promotion
- Alcohols as main products in the oily phase
- Product conditioning necessary

Carbon Capture and Utilization: Analysis

- Heat and by-product utilization crucial for process efficiency
- Waxes and liquid hydrocarbons considered as products

 \rightarrow 55% efficiency for production of alcohols

Carbon Capture and Utilization: Demonstrator

Lab-scale Power-to-Liquid plant

- Successful realization of a co-electrolysis based synthesis process on lab scale (1 kW_{el})
- Currently testing the influence of internal reforming

Co-electrolysis module

Fischer-Tropsch-reactor

Analytics and automation

Pre-heating and heat recuperation

Gas dosing

Carbon Capture and Utilization: Demonstrator

- Lime works
 - BMBF 2020-Project (HYPOS)
 - CO₂ -separation with membranes
 - Coupling of SOEC and FT-Process

ΗΥΡ

0

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Carbon Capture and Utilization: Economic evaluation

- Based on experimental and theoretical data economic feasibility was evaluated
- Calculation of capital expenditures (CAPEX) based on total cost of investment
- Operational expenditures are comprised of raw materials, electricity, materials, labor and maintenance

Conclusion

- Proofed stack technology MK35x for SOFC and SOEC
 - Available robust stacks
 - Wide temperature range 750°C-900°C
- Assembling to modules >2 kW_{el}
- Highly-efficient electrolysis-based synthesis processes
 - Methanation (not mentioned here)
 - Fischer-Tropsch catalysts with high selectivity developed
 - Lab plant of 1 kW_{el} SOEC coupled with Fischer-Tropsch reactor realized
- → Higher valued hydrocarbons as products from excess power and CO_2 is economic feasible
- → Problems of Hydrogen can be avoided by e-fuels

THANK YOU FOR YOUR ATTENTION

