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Abstract— growing field of research [1], [4]. Considering mod-

The use of multiple cameras in vehicles becomes ern SFM techniques, single cameras can also be used
more and more attractive as hardware prices decrease for egomotion estimation [5]. Most important for all
rapidly. Multiple camera sensors can be used to cover tiocular reconstruction tasks is the knowledge of
larger areas of the environment of a vehicle and for the camera parameters, that are the intrinsic (focal

3D scene reconstruction using stereo or structure from | th. principal voint and | distorti dth
motion techniques. To be able to merge the sensor ength, principal point and lens distortion) an € ex-

data in a common coordinate frame, it is necessary trinsic (rotation and translation) parameters. Extrin-
to know the relative positions and orientations of the ~Sic parameters describe the geometric relationship be-
cameras. However, as camera configurations may have tween the cameras. Common calibration techniques
non-overlapping fields of view due to cost or design fail because of the non-overlapping FOV. The cam-
reasons, no point correspondences between the cam-eras do not see the same scene and hence no cor-
era images can be used. Instead, we apply @ motion- roqn4nding image features can be used. This paper

based technique that allows general, in especially non- adresses the online calibration without using any pat-
overlapping camera configurations. By estimating the ganyp
tern or known scene structure.

ground parameters in an intermediate step, we over-
come the typical problems of purely planar motion. Fi-

nally we are able to estimate all 6 Euclidean calibration
parameters between each camera pair.

This contribution outlines a concept to perform an on-

line calibration of multiple cameras on a mobile plat-

form with non-overlapping fields of view. Results with

simulated data are presented.

II. RELATED WORK AND PROPOSEDSOLUTION

Lamprecht et al. [3] use well-known patterns from
the scene, e. g. traffic signs, to determine the extrinsic
parameters of two non-overlapping cameras in a ve-
o o _ _ hicle. The drawback of this approach is that the local-

Index Terms— Extrinsic Calibration, Online Cali- i, 4ion of the pattern must be very precise to perform
bration, Non-overlapping Views. . . ) . .

a precise calibration. Once a pattern is detected in a
camera it must be stored and redetected in the other
cameras where the object may occur projectively dis-
torted or from a completely different view.

More and more cameras are mounted on mobil& purely motion-based approach was proposed by Es-
robots to improve their situation awareness. Canguivel et al. [2]. They only use the trajectories of the
eras are also in use in modern advanced driver assisngle cameras to determine the extrinsic configura-
tant systems to provide additional environmental intion. Similar to [3] this approach needs a robust ego-
formation or to give warnings in critical situations tomotion estimation and could be used offline as well
the driver. Structure from motion techniques (SFMgas online. Unfortunately, the algorithm strongly de-
are widely used to reconstruct the three-dimensionpkends on the rotational motion and hence the quality
structure of the surrounding scene. This contribusf the calibration suffers from the almost planar mo-
tion focuses on a multiocular camera configuration otion of regular ground vehicles.

a moving platform with sparsely or non-overlappingRuland et al. [7] proposed an extrinsic calibra-
fields of view (FOV). tion method for a two camera system with non-
3D scene reconstruction with multiple cameras is averlapping views and fixed camera height. So the
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problem of planar motion was solved by simply fix-The approach of local optimization, propagation and

ing the longitudinal translation parameter. Howeveglobal fusion can be applied for both motion and ex-

they did not present a scalable solution for multi camirinsic parameter estimation. Therefore a module’s

era applications. calibration process is devided into a motion and a cal-

Pagel et al. [6] proposed a general, scalable solutidoration step.

of calibrating multi camera rigs with non-overlappingThe whole algorithm can be outlined as follows:

views by propagating and merging the motion and 1) Local motion estimation

calibration parameters. But they left the problem of 2) Local motion propagation (which is the local

planarly moving cameras still unsolved, too. guess of the other motions)

Our goal is to determine the extrinsic calibration pa- 3) Global motion estimation (which is the fusion

rameters of a set of multiple cameras on a moving  of the propagated local motions)

platform. The intrinsic parameters are assumed to 4) Ground plane estimation

be known. As the proposed calibration procedure is 5) Local estimation of theV — 1 transformations

based on the cameras’ motion, there is also need for  describing the position and orientation of the

an accurate motion estimation. Each camera is em-  other modules in the ground plane

bedded into a module that serves as a calculation unitg) Local calibration propagation (which is the lo-

and hence manages the motion and calibration states. cal guess of all remaining extrinsics)

Furthermore we are interested in a global state esti-7) Global fusion of the local calibration guesses

mation. Global in this context means, that the states 8) Merging the transformations to get the final 6

of all other modules are considered when a single mo-  dof extrinsic Euclidean transformations

dule’s state is estimated. In contrast, when a module’s

state is calculated only based on the local sensor data, lIl. GEOMETRIC MODEL

it is calledlocal. All local estimations in this contri- . .

bution are performed with an extended Kalman filter, In this Section we shortly present the parameters
p X .

A global overall optimization for all calibration and that are necessary to describe the complete geometric

motion parameters is likely to fail because of the Iarggtrqcul”e of a movin dgtﬁamelra;_rlg. Bo_tth the fTOtlon of
dimension of the resulting state vector. Fgrcam- asingie camera and the reiative position ot two cam-

eras there ar& motion vectors andV(N — 1)/2 ex- eras can be congidered as a Euclidean transformation.
trinsic transformation parameters to estimate. As 'ghe transfprma.tlon_ between two camera T”Od““es.
Eucliden transformation can be described with thre%ndM j attimet is given by the transformation matrix
rotational and three trans!ational parameters, such a R, ti

global model would resultin@: (N +N (N —1)/2)- T = ( ol 1 )

dimensional state vector. Axd

The concept of propagating and merging spatial rang (r,, r,,r,) € R3*3 is a rotation matrix with
formation parameters and its uncertainties was aRTR — RRZ = I andt € R? is a translation vector.
ready used by Smith and Cheeseman [8]. This cofrhe motion of camera/; between two time steps
cept can be transferred to our calibration purposegngy + 1 is given by

Instead of calculating the global state of a whole cam-

era rig with a single Kalman filter that uses all sensor 0, — ( W; v; >

measurements simultaneously, the local state of each ! o" 1 id

module is calculated first. Then, by using the initial

extrinsic calibration and motion parameters, the lowith rotation matrix W (w,,w,,w.) € R3** and

cal motions and extrinsic parameters as well as tHganslation vector € R3.

corresponding errors can be propagated for the othéhe transformation into the ground plagg can be
modules. Afterwards the (local) propagations and urélescribed with three parameteys , r,, , 7., . The
certainties can be fused to get a global estimatiofivo rotational parameters make the camera parallel
Such an approach is much more effective in prado the plane and the translational component fits the
tice because of its scalabilty and the lower compusamera into the plane. In the ground plane, the ex-
tational cost per module. Our approach also ensuré#sic transformation is given by

that the communication bandwidth between the mo-

; R, t..
dules is kept low. /o i i
P TZ] ( OT] 1 >4><4



in a RANSAC-like procedure. The RIEKF also re-
fines the measurement during the iteration process.
The Kalman filter here has two big advantages:

First, it can be easily extendended with other sensor
sources (e. g. odometry data) or motion estimation
approaches (e. g. fundamental matrix factorization)

camy(k) by adjoining them to the prediction step. And second

Gy(h and most important, the Kalman filter provides an un-
certainty of the current estimation in form of a covari-
ance matrix that is necessary for the propagation and
fusion step.

Fig. 1. Basic geometric constellation for a 2-camera figis
the extrinsic calibration matriX) is the camera motion ar@ are B

e e . Motion Propagation
the transformations into the ground plane. Transformations in the pag

ground plane are labeled with a prime. After each camera module has estimated its own
egomotion (Fig. 2a), we can now determine the mo-

with R/(0,7,0), t = (£,,0, )T and fuon parameters of all qther modules_by u5|_ng_the cal-
ibration parameters (Fig. 2b). Even in the initial case

Ti; = Gi(k) - Tl - G\ (k). (1) When the extrinsic parameters are still unknown, the

uncertainty can be set extremely high so that only
The cameras’ motions in the ground plane are thehe local estimations fall into account. Finally, each
given by module can calculate a local estimation of the global
model by considering uncertainties of the calibration
O =G (k—1)- Q- Gi(k) (2) and egomotion estimations (Fig. 2c). The propaga-
with tion step is described in detail in Pagel et al. [6].
i ol 1 s C. Global Motion Fusion

From the local propagation we have an estimation
of each camera motion from each of themodules
(Fig. 2d). TheseV estimations per motion are now
merged to one. The fusion of the stateand covari-

A. Local Motion Estimation ancesX can be done in a pairwise manner following

Motion or egomotion estimation purely based orthe approach of Smith & Cheeseman [8]:
camera data is also known aisual odometry Here,
a modified version of the motion estimation approach *¥
of Pagel [5] is used. The motion parameters of
single camera are estimated via a robust iterated ex-
tended Kalman filter (RIEKF) as proposed by Dang =% -%-(+ %) -2 (5)
et al. [1]. As in [1], the motion parametefl of mo-
dule M; are determined by minimizing the epipolar
constraint, the trifocal constraint and the projection V. CALIBRATION
error within the function

All these relations are shown in Fig. 1.

IV. CAMERA MOTION

=x1+ 31 (T + )t (x0—x1) (4

As is illustrated in Fig. 1 the extrinsic transforma-

hmot (2, 2) (3) ton and the motion transformations are related by
-7 l7.0.
with respect td); and measuremeat= (..., z;,...)7. Tij = T8y (6)
A single measurement is given by = (v,2)7,

, . : +  Which leads to
wherev is an optical flow triplev = (x1,x2, X3)

andz is the depth of the respeptive scene ppintan (I—W)tij = vi — Rijiv;. @)

be precalculated by triangulating andxs using the

calculated motion of the previous time step. The rofo be able to determing from this equation,
bust preprocessing step detects measurement outliesne conditions must be fulfilled as was shown by



A. Ground Estimation

Once the motion parameters are known, we can
estimate the 3D coordinates of the point correspon-
dences we already used for the motion estimation in
section IV-A. The transformation of a camera into
a plane can be modeled by only three parameters:
b. tg,sTgs> Tg.- We estimate these parameters again with
a RIEKF. Input data are 3D points calculated from the
flow vectors and the cameras’ motions. Again, the ro-
bust preprocessing is quite important, because only
3D points that lie in the ground plane should be con-
sidered. The Kalman filter estimates the three param-
eters by forcing th& -component of the 3D points to
d. be zero. Witht,, ,7,,,7r,. we can determine the ho-

Fig. 2. a. Each modul performs a local motion estimation with mogeneous x 4-transformationss; at imek:
Ke?l'mén filter using theplocal sensor daka Extrinsic calibration a]n usual tr_afﬁc Scen_es there will always be scenes
parameters are taken into accountEach modul determines the Where no image points on the ground floor can be
motions of the other modules based on the extrinsic parametegglcted (imagine a side looking camera closely pass-
via state and error propagation. Hence, thererarguesses for jng a row of parking cars). Fortunately, there is no
each of theV motions.d. The \V local guesses of each module’s ¢ 1 estimate the calibration parameters the whole
motion are fused to a global estimation using the DKF approach. .
time, as we assume the parameters to be fixed (the pa-
rameter changes of the extrinsic configuration is con-
sidered to be long-term changes). When no ground
parameters can be estimated, the parameter prediction
is just an identity function (the same principle works
for the extrinsic parameters when the rotational mo-
tion is less than a given threshold).

Tsai & Lenz [9]. First of alLbW; # I, otherwise
(I—W3) = 0. Furthermore, a8V, is a rotation ma-
trix, we havedet(I—- W) = 0, so we need more than

lational component of the extrinsic parameters. Angsround Plane

as was shown be Tsai & Lenz [9] all motions must not Once the motion parameters and the current and

be coplanar. . .
P the previous ground transformation parameters are

This has some implications for our algorithm. As W& Lown. the problem of estimating the 6 dof extrin-

want to run the calibration continously, we need t%ic parameters is reduced to estimating 3 parameters

build up a history of motions. This is achieved by ac-

. . tz, t.,ry. These are the extrinsic parameters in the
cumuilating the [astl motions fronﬂ(k) o Q(k_h?’ ground plane which describe the homogeneous trans-
h = 1,..., H. Though the accumulation of motions

lead to bigger rotational magnitudes, but also the esf_ormationT’. Now we transform the motiori3; into
] - /I -1 — . .. .
mation errors are propagated and can cause roble?hg ground pIaneﬂ_Z- 7.Gj. (k .1). 2 - G;(k).
o p_ P g P e parameter estimation is again implemented as an
for the extrinsic estimation. S& should be chosen

carefully. In our implementation we choé — 10 RIEKF. The measurements are the accumulated mo-
Y. f imprer — - tions. The constraint function enforces the trans-
All motions with rotation angles< e are not con-

) ; P formation equationg”, = Q.77 . to be fulfilled.
sidered in the calibration step. The (mostly) copla- g K bW

nar motion of street vehicles affects that the longituc Extrinsic Parameter Propagation and Global Fu-
dinal component of the translation vector cannot bgjgn
determined. For that reason we perform an interme- ,; 4 . point, after theN' — 1 Kalman filter runs

dlatg processing step where we gstlmate the transf%rélch modulé/; hasN — 1 estimations of the calibra-
mations from the camera coordinate systems to t

. rfl%n arameterd”. within the ground plane. These
ground plane. Once these transformations are kno P Y g P

L Lo OWR» _ 1 transformations are sufficient to calculate the
the extrinsic calibration problem can be solved in ?emaining transformations as follows:

2D-plane and reduces to an estimation of only 3 pa-

all 1—1rt !l
rameters. =1 Ty =TTy (8)



side looking camera. The simulated optical flow vec-
tors are disturbed witlr = 0.5 pixels. The length

of the history was choseff = 10. Initially all pa-
rameters were set to zero. The motion was chosen to
be of almost constant velocity and linear increasing
yaw rate (Fig. 6). This special motion allows to see at
which angle the estimation process starts converging.

Fig. 3. a. Local estimations of the extrinsic parameters between

moduleM; and M;; using a Kalman filter and the local sensor —
data. b. Determination of the remaining calibration parameters
by state and error propagation based on the locally estimated cal-
ibration data.
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Fig. 6. Simulated motion track.

Fig. 4. a. After propagation, there exist = 1,..., N local ;ze_
guesses for each of thé(NV — 1) /2 extrinsic transformationd.
The N local guesses of each transformation are fused to a glob -

transformation using the DKF approach. S e — -7
These aré N — 1)(N — 2)/2 additional calculations. L ETRSEREEAIRERREACACIGEERA R ERRRGEg5Te80RRE
As a result, each module has a local guess for ea | ,

B T

of the N (N — 1)/2 extrinsic parameters between the

cameras. This means On_th('_:‘ other hand that there_ @f&. 7. Resulting extrinsic parameters (top: translation; bottom:

N guesses for each extrinsic camera transformatieétation). The dotted lines indicate the correct parameter values.

(Fig. 4a). The covariances are propagated according

to [6]. Fig. 7 shows that the lateral translational parame-
To merge thes&/ estimates per camera pair we cariers begin converging approx. at frame 165 and reach

again proceed just ||ke in eq_ 4 and eq_ 5 (F|g 4b) the final Values at appI’OX. frame 760. The I’O'[ation
parameters converge quite faster, as their esrimation

does not depend on the rotational motion. At frame
_ _ 165 the current yaw rate was stitl 1°. But the mini-

To get the 6 dof Euclidean transformation that demym rotation angle depends always on the size of the
tion that contains all 3 translational and 3 rotationathe estimation of the parametgy mostly depends
parameters is the given by on the ground estimation in section V-A and hence

1 are not much influenced by the estimation process de-
Tiy = G (k) - T3; - G (k). ) scribed in section V-B.

D. Merging the Transformations

VI. EXPERIMENTAL RESULT VIlI. CONCLUSION AND FUTURE WORK

We tested our implementation with simulated data. We presented a purely vision-based approach for
We chose a two camera rig with one front and onealibrating multiple non-overlapping cameras in a
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Fig. 5. Estimated motion parameters with ground truth (left: cam1; right: cam2; top: translation; bottom: rotation.

planarly moving vehicle. As the geometric structure[s] F. Pagel, "Robust Monocular Egomotion Estimation Based

of the whole system and hence the estimation task

(6]

is quite complex, our approach accounts for the un

certainties of the calibration and motion parameters

Additionally to [6] an intermediate ground estimation

on an IEKF”,IEEE Canadian Conference on Computer and
Robot Vision2009.

F. Pagel, D. Willersinn, "Motion-based Online Calibra-
tion for Non-overlapping Camera ViewsEEE Intelligent
Transportation Systems Conferen2610.

step was introduced, so that even for planar motion$/] T. Ruland, H. Loose, T. Pajdla, L. Kruger, "Hand-Eye Au-

all 6 parameters of en extrinsic transformation can
be estimated. The results with a simulated test cas
shows that a minimum yaw rate is necessary to make

the parameters converging to the real parameter val-

ues.

9]

In the near future we are going to test the proposed ap-
proach with real data. Especially robustness and con-

vergence capabilities are of special interest, but also

the behaviour ofN > 2 cameras. Therefore more

simulated test cases will be designed and evaluated.
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