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Abstract—
The use of multiple cameras in vehicles becomes

more and more attractive as hardware prices decrease
rapidly. Multiple camera sensors can be used to cover
larger areas of the environment of a vehicle and for
3D scene reconstruction using stereo or structure from
motion techniques. To be able to merge the sensor
data in a common coordinate frame, it is necessary
to know the relative positions and orientations of the
cameras. However, as camera configurations may have
non-overlapping fields of view due to cost or design
reasons, no point correspondences between the cam-
era images can be used. Instead, we apply a motion-
based technique that allows general, in especially non-
overlapping camera configurations. By estimating the
ground parameters in an intermediate step, we over-
come the typical problems of purely planar motion. Fi-
nally we are able to estimate all 6 Euclidean calibration
parameters between each camera pair.
This contribution outlines a concept to perform an on-
line calibration of multiple cameras on a mobile plat-
form with non-overlapping fields of view. Results with
simulated data are presented.

Index Terms— Extrinsic Calibration, Online Cali-
bration, Non-overlapping Views.

I. I NTRODUCTION

More and more cameras are mounted on mobile
robots to improve their situation awareness. Cam-
eras are also in use in modern advanced driver assis-
tant systems to provide additional environmental in-
formation or to give warnings in critical situations to
the driver. Structure from motion techniques (SFM)
are widely used to reconstruct the three-dimensional
structure of the surrounding scene. This contribu-
tion focuses on a multiocular camera configuration on
a moving platform with sparsely or non-overlapping
fields of view (FOV).
3D scene reconstruction with multiple cameras is a

growing field of research [1], [4]. Considering mod-
ern SFM techniques, single cameras can also be used
for egomotion estimation [5]. Most important for all
multiocular reconstruction tasks is the knowledge of
the camera parameters, that are the intrinsic (focal
length, principal point and lens distortion) and the ex-
trinsic (rotation and translation) parameters. Extrin-
sic parameters describe the geometric relationship be-
tween the cameras. Common calibration techniques
fail because of the non-overlapping FOV. The cam-
eras do not see the same scene and hence no cor-
responding image features can be used. This paper
adresses the online calibration without using any pat-
tern or known scene structure.

II. RELATED WORK AND PROPOSEDSOLUTION

Lamprecht et al. [3] use well-known patterns from
the scene, e. g. traffic signs, to determine the extrinsic
parameters of two non-overlapping cameras in a ve-
hicle. The drawback of this approach is that the local-
ization of the pattern must be very precise to perform
a precise calibration. Once a pattern is detected in a
camera it must be stored and redetected in the other
cameras where the object may occur projectively dis-
torted or from a completely different view.
A purely motion-based approach was proposed by Es-
quivel et al. [2]. They only use the trajectories of the
single cameras to determine the extrinsic configura-
tion. Similar to [3] this approach needs a robust ego-
motion estimation and could be used offline as well
as online. Unfortunately, the algorithm strongly de-
pends on the rotational motion and hence the quality
of the calibration suffers from the almost planar mo-
tion of regular ground vehicles.
Ruland et al. [7] proposed an extrinsic calibra-
tion method for a two camera system with non-
overlapping views and fixed camera height. So the



problem of planar motion was solved by simply fix-
ing the longitudinal translation parameter. However
they did not present a scalable solution for multi cam-
era applications.
Pagel et al. [6] proposed a general, scalable solution
of calibrating multi camera rigs with non-overlapping
views by propagating and merging the motion and
calibration parameters. But they left the problem of
planarly moving cameras still unsolved, too.
Our goal is to determine the extrinsic calibration pa-
rameters of a set of multiple cameras on a moving
platform. The intrinsic parameters are assumed to
be known. As the proposed calibration procedure is
based on the cameras’ motion, there is also need for
an accurate motion estimation. Each camera is em-
bedded into a module that serves as a calculation unit
and hence manages the motion and calibration states.
Furthermore we are interested in a global state esti-
mation. Global in this context means, that the states
of all other modules are considered when a single mo-
dule’s state is estimated. In contrast, when a module’s
state is calculated only based on the local sensor data,
it is called local. All local estimations in this contri-
bution are performed with an extended Kalman filter.
A global overall optimization for all calibration and
motion parameters is likely to fail because of the large
dimension of the resulting state vector. ForN cam-
eras there areN motion vectors andN(N − 1)/2 ex-
trinsic transformation parameters to estimate. As a
Eucliden transformation can be described with three
rotational and three translational parameters, such a
global model would result in a6 ·(N +N(N−1)/2)-
dimensional state vector.
The concept of propagating and merging spatial trans-
formation parameters and its uncertainties was al-
ready used by Smith and Cheeseman [8]. This con-
cept can be transferred to our calibration purposes.
Instead of calculating the global state of a whole cam-
era rig with a single Kalman filter that uses all sensor
measurements simultaneously, the local state of each
module is calculated first. Then, by using the initial
extrinsic calibration and motion parameters, the lo-
cal motions and extrinsic parameters as well as the
corresponding errors can be propagated for the other
modules. Afterwards the (local) propagations and un-
certainties can be fused to get a global estimation.
Such an approach is much more effective in prac-
tice because of its scalabilty and the lower compu-
tational cost per module. Our approach also ensures
that the communication bandwidth between the mo-
dules is kept low.

The approach of local optimization, propagation and
global fusion can be applied for both motion and ex-
trinsic parameter estimation. Therefore a module’s
calibration process is devided into a motion and a cal-
ibration step.
The whole algorithm can be outlined as follows:

1) Local motion estimation
2) Local motion propagation (which is the local

guess of the other motions)
3) Global motion estimation (which is the fusion

of the propagated local motions)
4) Ground plane estimation
5) Local estimation of theN − 1 transformations

describing the position and orientation of the
other modules in the ground plane

6) Local calibration propagation (which is the lo-
cal guess of all remaining extrinsics)

7) Global fusion of the local calibration guesses
8) Merging the transformations to get the final 6

dof extrinsic Euclidean transformations

III. G EOMETRIC MODEL

In this Section we shortly present the parameters
that are necessary to describe the complete geometric
structure of a moving camera rig. Both the motion of
a single camera and the relative position of two cam-
eras can be considered as a Euclidean transformation.
The transformation between two camera modulesMi

andMj at timet is given by the transformation matrix

Tij =
(

Rij tij

0T 1

)
4×4

.

R(rx, ry, rz) ∈ R3×3 is a rotation matrix with
RTR = RRT = I andt ∈ R3 is a translation vector.
The motion of cameraMi between two time stepsk
andk + 1 is given by

Ωi =
(

Wi vi

0T 1

)
4×4

,

with rotation matrix W(ωx, ωy, ωz) ∈ R3×3 and
translation vectorv ∈ R3.
The transformation into the ground planeGi can be
described with three parameterstygi

, rxgi
, rzgi

. The
two rotational parameters make the camera parallel
to the plane and the translational component fits the
camera into the plane. In the ground plane, the ex-
trinsic transformation is given by

T ′
ij =

(
R′

ij t′ij
0T 1

)
4×4



Fig. 1. Basic geometric constellation for a 2-camera rig.T is
the extrinsic calibration matrix,Ω is the camera motion andG are
the transformations into the ground plane. Transformations in the
ground plane are labeled with a prime.

with R′(0, r′y, 0), t′ = (t′x, 0, t′z)
T and

Tij = Gi(k) · T ′
ij ·G−1

j (k). (1)

The cameras’ motions in the ground plane are then
given by

Ω′
i = G−1

i (k − 1) · Ωi ·Gi(k) (2)

with

Ω′
i =

(
W′

i v′i
0T 1

)
4×4

.

All these relations are shown in Fig. 1.

IV. CAMERA MOTION

A. Local Motion Estimation

Motion or egomotion estimation purely based on
camera data is also known asvisual odometry. Here,
a modified version of the motion estimation approach
of Pagel [5] is used. The motion parameters of a
single camera are estimated via a robust iterated ex-
tended Kalman filter (RIEKF) as proposed by Dang
et al. [1]. As in [1], the motion parametersΩi of mo-
dule Mi are determined by minimizing the epipolar
constraint, the trifocal constraint and the projection
error within the function

hmot(Ωi, z) (3)

with respect toΩi and measurementz = (..., zi, ...)T .
A single measurement is given byzi = (v, z)T ,
wherev is an optical flow triplev = (x1,x2,x3)T

andz is the depth of the respective scene point.z can
be precalculated by triangulatingx1 andx2 using the
calculated motion of the previous time step. The ro-
bust preprocessing step detects measurement outliers

in a RANSAC-like procedure. The RIEKF also re-
fines the measurement during the iteration process.

The Kalman filter here has two big advantages:
First, it can be easily extendended with other sensor
sources (e. g. odometry data) or motion estimation
approaches (e. g. fundamental matrix factorization)
by adjoining them to the prediction step. And second
and most important, the Kalman filter provides an un-
certainty of the current estimation in form of a covari-
ance matrix that is necessary for the propagation and
fusion step.

B. Motion Propagation

After each camera module has estimated its own
egomotion (Fig. 2a), we can now determine the mo-
tion parameters of all other modules by using the cal-
ibration parameters (Fig. 2b). Even in the initial case
when the extrinsic parameters are still unknown, the
uncertainty can be set extremely high so that only
the local estimations fall into account. Finally, each
module can calculate a local estimation of the global
model by considering uncertainties of the calibration
and egomotion estimations (Fig. 2c). The propaga-
tion step is described in detail in Pagel et al. [6].

C. Global Motion Fusion

From the local propagation we have an estimation
of each camera motion from each of theN modules
(Fig. 2d). TheseN estimations per motion are now
merged to one. The fusion of the statesx and covari-
ancesΣ can be done in a pairwise manner following
the approach of Smith & Cheeseman [8]:

xF = x1 + Σ1 · (Σ1 + Σ2)−1 · (x2 − x1) (4)

and

ΣF = Σ1 −Σ1 · (Σ1 + Σ2)−1 ·Σ1. (5)

V. CALIBRATION

As is illustrated in Fig. 1 the extrinsic transforma-
tion and the motion transformations are related by

Tij = Ω−1
i TijΩj (6)

which leads to

(I−Wi)tij = vi −Rijvj . (7)

To be able to determinet from this equation,
some conditions must be fulfilled as was shown by



Fig. 2. a. Each modul performs a local motion estimation with a
Kalman filter using the local sensor data.b. Extrinsic calibration
parameters are taken into account.c. Each modul determines the
motions of the other modules based on the extrinsic parameters
via state and error propagation. Hence, there areN guesses for
each of theN motions.d. TheN local guesses of each module’s
motion are fused to a global estimation using the DKF approach.

Tsai & Lenz [9]. First of all,W1 6= I, otherwise
(I−W1) = 0. Furthermore, asW1 is a rotation ma-
trix, we havedet(I−W1) = 0, so we need more than
just one single motion to be able to estimate the trans-
lational component of the extrinsic parameters. And
as was shown be Tsai & Lenz [9] all motions must not
be coplanar.
This has some implications for our algorithm. As we
want to run the calibration continously, we need to
build up a history of motions. This is achieved by ac-
cumulating the lastH motions fromΩ(k) toΩ(k−h),
h = 1, ...,H. Though the accumulation of motions
lead to bigger rotational magnitudes, but also the esti-
mation errors are propagated and can cause problems
for the extrinsic estimation. SoH should be chosen
carefully. In our implementation we choseH = 10.
All motions with rotation angles< ε are not con-
sidered in the calibration step. The (mostly) copla-
nar motion of street vehicles affects that the longitu-
dinal component of the translation vector cannot be
determined. For that reason we perform an interme-
diate processing step where we estimate the transfor-
mations from the camera coordinate systems to the
ground plane. Once these transformations are known,
the extrinsic calibration problem can be solved in a
2D-plane and reduces to an estimation of only 3 pa-
rameters.

A. Ground Estimation

Once the motion parameters are known, we can
estimate the 3D coordinates of the point correspon-
dences we already used for the motion estimation in
section IV-A. The transformation of a camera into
a plane can be modeled by only three parameters:
tgy , rgx , rgz . We estimate these parameters again with
a RIEKF. Input data are 3D points calculated from the
flow vectors and the cameras’ motions. Again, the ro-
bust preprocessing is quite important, because only
3D points that lie in the ground plane should be con-
sidered. The Kalman filter estimates the three param-
eters by forcing theY -component of the 3D points to
be zero. Withtgy , rgx , rgz we can determine the ho-
mogeneous4× 4-transformationsGi at timek.
In usual traffic scenes there will always be scenes
where no image points on the ground floor can be
selcted (imagine a side looking camera closely pass-
ing a row of parking cars). Fortunately, there is no
need to estimate the calibration parameters the whole
time, as we assume the parameters to be fixed (the pa-
rameter changes of the extrinsic configuration is con-
sidered to be long-term changes). When no ground
parameters can be estimated, the parameter prediction
is just an identity function (the same principle works
for the extrinsic parameters when the rotational mo-
tion is less than a given threshold).

B. Local Extrinsic Parameter Estimation in the
Ground Plane

Once the motion parameters and the current and
the previous ground transformation parameters are
known, the problem of estimating the 6 dof extrin-
sic parameters is reduced to estimating 3 parameters
tx, tz, ry. These are the extrinsic parameters in the
ground plane which describe the homogeneous trans-
formationT ′. Now we transform the motionsΩi into
the ground planeΩ′

i = G−1
j (k − 1) · Ωj · Gj(k).

The parameter estimation is again implemented as an
RIEKF. The measurements are the accumulated mo-
tionsΩ′

i. The constraint function enforces the trans-
formation equationsT ′

ij = Ω′−1
i T ′

ijΩ
′
j to be fulfilled.

C. Extrinsic Parameter Propagation and Global Fu-
sion

At this point, after theN − 1 Kalman filter runs,
each moduleMi hasN−1 estimations of the calibra-
tion parametersT ′

ij within the ground plane. These
N − 1 transformations are sufficient to calculate the
remaining transformations as follows:

T̂ ′
jl = T ′−1

ij T ′
il = T ′

jiT
′
il (8)



Fig. 3. a. Local estimations of the extrinsic parameters between
moduleMi andMj 6=i using a Kalman filter and the local sensor
data. b. Determination of the remaining calibration parameters
by state and error propagation based on the locally estimated cal-
ibration data.

Fig. 4. a. After propagation, there existk = 1, ..., N local
guesses for each of theN(N −1)/2 extrinsic transformations.b.
TheN local guesses of each transformation are fused to a global
transformation using the DKF approach.

These are(N − 1)(N − 2)/2 additional calculations.
As a result, each module has a local guess for each
of theN(N − 1)/2 extrinsic parameters between the
cameras. This means on the other hand that there are
N guesses for each extrinsic camera transformation
(Fig. 4a). The covariances are propagated according
to [6].

To merge theseN estimates per camera pair we can
again proceed just like in eq. 4 and eq. 5 (Fig. 4b).

D. Merging the Transformations

To get the 6 dof Euclidean transformation that de-
scribes the extrinsic configuration of the cameras we
have to merge the transformations. The transforma-
tion that contains all 3 translational and 3 rotational
parameters is the given by

Tij = G−1
i (k) · T ′

ij ·Gj(k). (9)

VI. EXPERIMENTAL RESULT

We tested our implementation with simulated data.
We chose a two camera rig with one front and one

side looking camera. The simulated optical flow vec-
tors are disturbed withσ = 0.5 pixels. The length
of the history was chosenH = 10. Initially all pa-
rameters were set to zero. The motion was chosen to
be of almost constant velocity and linear increasing
yaw rate (Fig. 6). This special motion allows to see at
which angle the estimation process starts converging.

Fig. 6. Simulated motion track.

Fig. 7. Resulting extrinsic parameters (top: translation; bottom:
rotation). The dotted lines indicate the correct parameter values.

Fig. 7 shows that the lateral translational parame-
ters begin converging approx. at frame 165 and reach
the final values at approx. frame 760. The rotation
parameters converge quite faster, as their esrimation
does not depend on the rotational motion. At frame
165 the current yaw rate was still< 1◦. But the mini-
mum rotation angle depends always on the size of the
history H as the rotation angles are accumulated for
the local parameter estimation in the ground plane.
The estimation of the parameterty mostly depends
on the ground estimation in section V-A and hence
are not much influenced by the estimation process de-
scribed in section V-B.

VII. C ONCLUSION AND FUTURE WORK

We presented a purely vision-based approach for
calibrating multiple non-overlapping cameras in a



Fig. 5. Estimated motion parameters with ground truth (left: cam1; right: cam2; top: translation; bottom: rotation.

planarly moving vehicle. As the geometric structure
of the whole system and hence the estimation task
is quite complex, our approach accounts for the un-
certainties of the calibration and motion parameters.
Additionally to [6] an intermediate ground estimation
step was introduced, so that even for planar motions
all 6 parameters of en extrinsic transformation can
be estimated. The results with a simulated test case
shows that a minimum yaw rate is necessary to make
the parameters converging to the real parameter val-
ues.
In the near future we are going to test the proposed ap-
proach with real data. Especially robustness and con-
vergence capabilities are of special interest, but also
the behaviour ofN > 2 cameras. Therefore more
simulated test cases will be designed and evaluated.
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