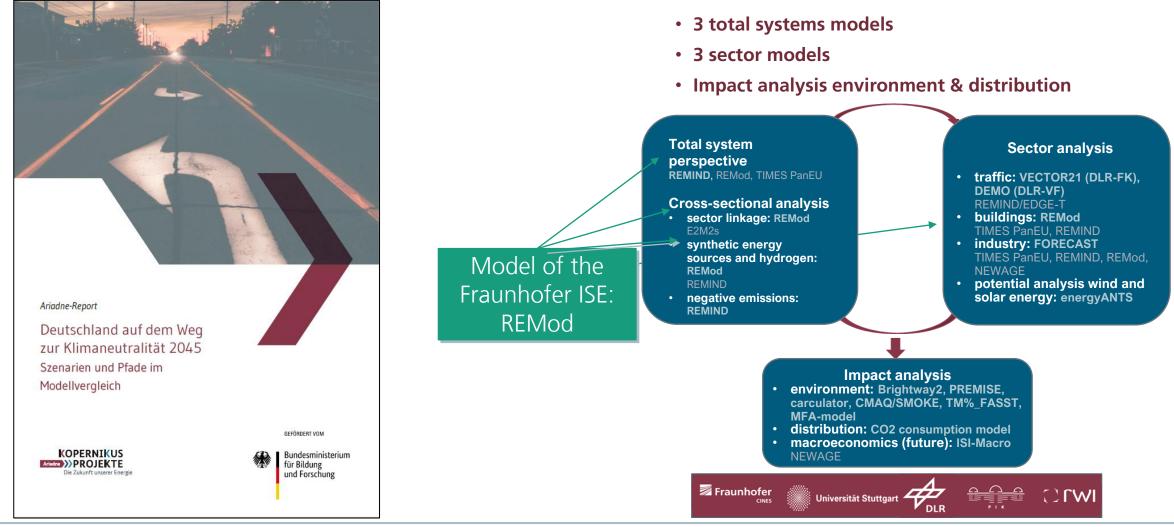


Insights from the German modeling project ARIADNE: Scenarios and pathways for Germany on its way to climate neutrality in 2045

Dr. Christoph Kost (ISE), Gunnar Luderer, Claudia Günther (PIK)



TNO innovation for life

Insights from the German modeling project ARIADNE: Scenarios and pathways for Germany on its way to climate neutrality in 2045

https://ariadneprojekt.de/publikation/deutschland-auf-dem-weg-zur-klimaneutralitat-2045-szenarienreport/

Advantages of common database and analysis packages

			_			
<) → ୯ ŵ	A https://data.ece.iiasa.ac.at/kopernikus/#/login?redirect=%2Fworkspaces	🖂 🗧	7 7	2 III\ (D (\$	2
Kopernikus Sco	enario Explorer hosted by IIASA		License	Abou	t AP	ß
	nal Institute for rstems Analysis					
	^{cat} KUS Scenario Explorer					
© IIASA and the Kop	KUS Scenario Explorer		Log	in		
© IIASA and the Kop	EXUS Scenario Explorer errikus projects 2021 ble is protected by EU Sui generis database rights.	Use	Log	in		

Data exchange

Paste	X Cut Copy Form	calbri et Painter B / S	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-16 • 18 21 (what you want to do	भ
-	Cipboard		Font. 1. Alignment 1. For Office are ready to be installed, but first we need to close some apps.	Number 11 Update now	Syles Cells Editing	
•••	POMILS	ATAICALL SPACE	The office are ready to be reserved, out that we need to done some appro-	opuse non		
012		* 1 × ×	fr Mt CD2/yr			
-	Tier	- Category	- Variable		Defetion	
	1	demography	Population	mallion	Tetal population	-
	1	espeony	Consumption	billion ExPOSIN/y	Total consumption of all goods, by all somewhere in a region	
	1	economy	40P[MER		(62P at market exchangerate	
	1	emissions (CC2)	Emissions (CO2	Art coa/yr	total arthropogenic CD2 environs, net of safton doxide removal, incl. ULUO	
	1	emissions (CCI)	Emissions (CC2) Energy and Industrial Pricessian	NR C02/#1	Fosti CCI emissions from energy use on supply and demand side (PCC category 1A, 18) and from industrial proces	ses (PCE catego
	1	amissions (CCZ)	Emissions (CC2) Industrial Provisions	AR COB/yr	CCC emissions from industrial processes (PCC categories 24, 8, C, E)	
-	1	entioticns (CC2)	Emissions CC2 Energy	INF COD/pr	Fouri CO3 emissions from energy you on supply and demand side (PCC category 1A, 18), ref. of regulive emissions	
	1	emissions (CC2)	Emilanums/CO2/Energy institutions	Mt coa/yr	Fouri CC2 emissions from energy use on supply and demand side (PCI sategory 1A, 18), net of negative enclusion	
	-	emissions (CC2)	Emsecus (CC2)Energy Demand	ARC03/p	Ficuit CC2 emissions from fuel conduction in inducting (IPC2 sategory SA2, residential, convinci al, institutional re	
-	-	emissions (CC2) emissions (CC2)	Ensurems (CC2)Energy inti Bunkers (Demand Ensurems) CC21Energy (Demand Undustry	Micco2/er	Fraul CCJ emissions from fuel sombuttor in industry (IPCC sategory IA2), residential, commocial, institutorial se	
-		emissions (CC2)	Imisioni CO2Energy Demand Residential and Commental	MICCOLV	Peculi CC2 emissions from fuel conduction in inductry (IPCC sategory 3A2), net of regarise encisions from Bioener Fermi CC2 emissions from fuel conduction in recelential, commercial, includional sectors (IPCC sategory 1846, 34	
		emosions (CC2)	Instants (CO) Inergy Denard Resources and Universe Instants (CO) Inergy Senard Transportation	MICCODIN	regime LC2 emissions from fuel construction in residential, construction, includional accord proc. (allegory 1444, 14 Scient) CC2 emissions from fuel construction in transportation sector (IRCC rategory 143), excluding pipeline emission	
	-	amazane (CCD)	Instations (202) Every Comune Burkers	MR CODIN	Sense CC2 emissions from fael conduction from international buriant/JRCC safegory 18.hz and 18.htl	and the country
	-	Americana 10/20	Emissions (CCO(Energy (Temand (Bunkers) Existion	an coalur	firmit (11) aminians from Earl stochastion in transportation sattor humans - datation (01) rategory 13 ha)	
	1	environme (CRIE)	Immasive (CD2) Energy (Demand (Burliers (Navigation	AR-COB/µi	Result CC3 emusters here fuel conduction in transportation packer butkers. Receptor (MCC sategory 1/0/d)	
	1	amissions (CE2)	Smissions (CO2) Energy (Demand (Other Sector	MICOR/y	Feasi CC2 amounts from had combaction or office among supply sectors (please provide a deficition of other sea	Pages on Disa name
	4	ameasons (CC2)	Americanoni (002) Amergy Bucarly	MH CODI/yr	Facul CC2 emission from fuel combustion and fugitive emission from fuels electricity and hear production and d	
	3	emissions (CC2)	Greaters CC2 Energy Surph Electricity	Art C00/yr	Possi CC2 emissions have electricity end CMP production and distribution (IPCC salegory (Alar and (Alari), net of n	regative encap
	4	amissiona (OGE)	Enstations(CO2)Energy (Scoply)(Electricity and Ineal	MI-008/yr	Provid CC2 emissions from electricity and CMP production and distribution (IPCC satingory SALer and SALer) and from	is heat private to
	1	emissions (CC2)	Emission CC2[Energy/Suiphy/Hydrogen	MICOS/yr	Picnel CC2 emissions from electricity and CMP production and distribution (IPEC sategory (Alasi and (Alasi), net of n	
	1	artstusions (CC2)	Envision CC2 Energy Supply Gases	Art-COS/yr	Point CC2 emission from fael combustion and fugitive emissions from faels gausous fuel extraction and processo	
		entitudions (COR)	Restations/CC018rengy (huse/s/reat)	MLCOB/gr	Insise CC2 emissions here heat production and distribution (IFCC category \$45.4x1), net of regative emissions from	mosnergy with

IAMC template

The IAMC template for timeseries data

A community standard for compiling scenario results

The integrated-assessment community (IAMC) developed a tabular scenario data format

 $\Rightarrow\,$ Used in IPCC Reports (AR5, SR15), Horizon 2020 projects, ...

 \Rightarrow Adopted by ~50 teams globally

1		А	В	С	D	E	F	G	н	
	1	Model	Scenario	Region	Variable	Unit	2005	2010	2015	
	2	MESSAGE	CD-LINKS 400	World	Primary Energy	EJ/y	462.5	500.7		

The Horizon 2020 project openENTRANCE is implementing an extension to cover sub-annual time resolution.

-

n python

#pyam_iamc

PYAM

pyam: a Python package for scenario analysis

An open-source package to facilitate streamlined processing, validation and assessment of scenario results

Aim: develop a package of useful functions for scenario analysis & visualization following best practice of collaborative scientific software development

Features:

- ⇒ Scenario processing workflow (I/O, units, ...)
 ⇒ Analysis & validation
- ⇒ Categorization & quantitative indicators
- ⇒ Visualization features & plotting library

Documentation: pyam-iamc.readthedocs.io

More information:

Community supported by S Groups:0 # slack pyam-iamc.readthedocs.io

GitHub

pyam: analysis and visualization of

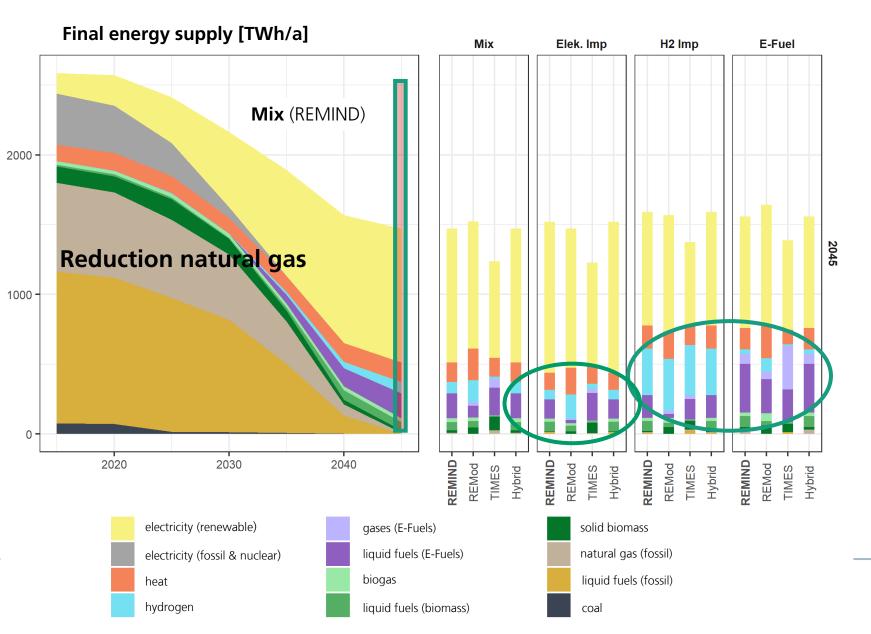
Documentation hosted by

Read the Docs

integrated assessment scenarios

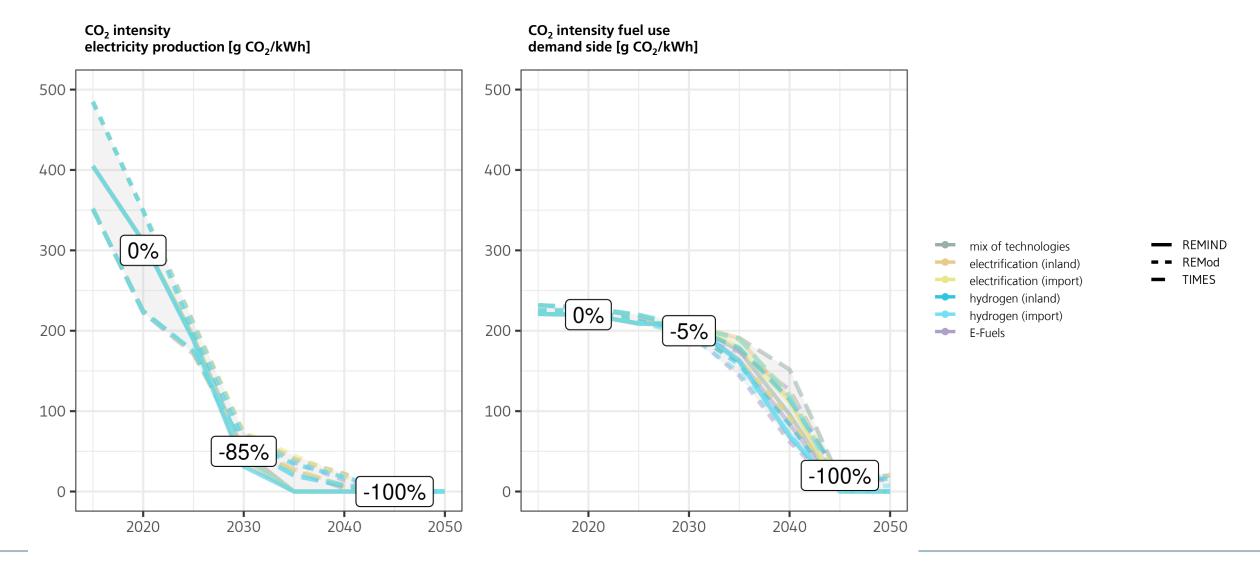
Apache 2.0 O pytest passage docs passage o

 Scientific reference: M. Gidden and D. Huppmann (2019). Journal of Open Source Software 4(33):1095. doi: 10.21105/joss.01095

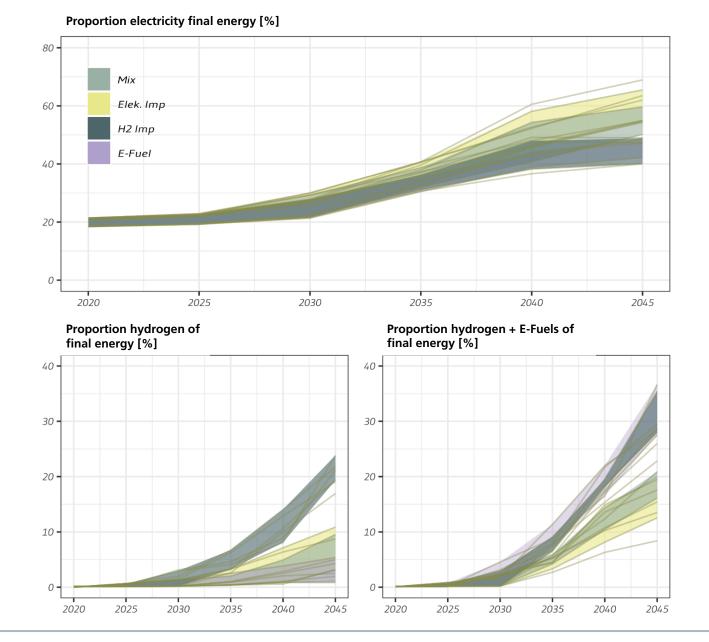


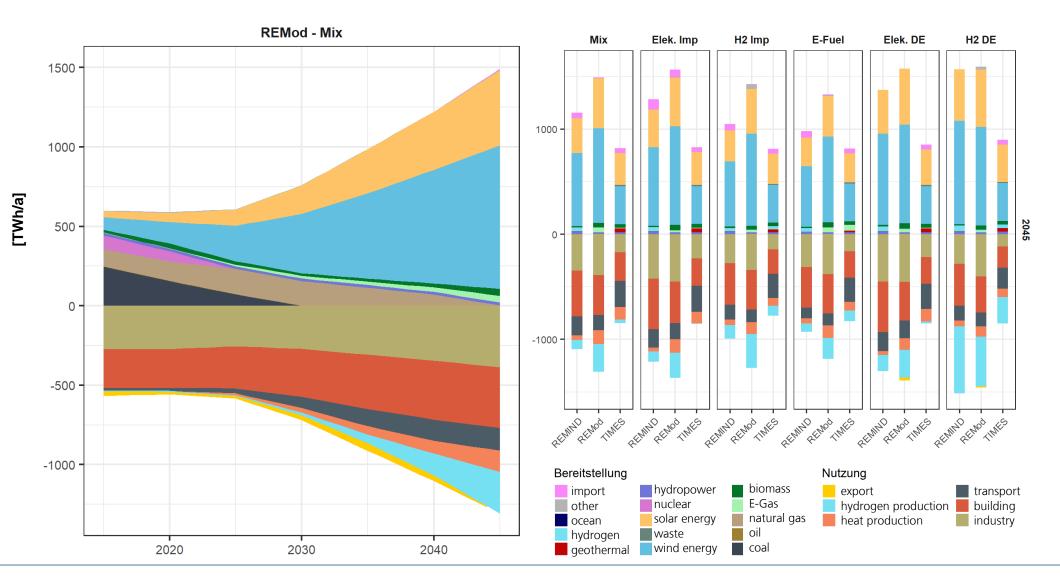
Scenarios

Scenario Name	Scenario Description	EE-Importe (2045)		
Technology mix	Mix Technology mix between electrification, hydrogen and synfuels in final energy use	Total import potential for RE based energy carrier of 250-350 TWh/a in 2045.		
Direct Electrification	Priority of direct electrification, Variants Elek. Imp (higher RE-Importe)	Elek. Imp Total import potential for RE based energy carrier in 2045 of ca. 230-360 TWh/a , with 50-100 TWh electricity		
	Elek. DE (lower RE-Importe)	Elek. DE: Less import potential of ca. 130-200 TWh in 2045 leads to higher local use of RE		
Hydrogon	Priority of direct use of hydrogen, Variants H2 DE (lower RE-Importe) H2 Imp (higher RE-Importe)	H2 Imp: Total import potential for RE based energy carrier in 2045 of ca. 350-580 TWh, with 250-400 TWh hydrogen		
		H2 DE: Less import potential of ca. 150-190 TWh, with 100 TWh hydrogen) leads to higher local use of RE and Power-to-X		
Synthetic E-Fuels	E-Fuel Priority for use of synthetisc E-fuels	: Total import potential for RE based energy carrier in 2045 of 470-600 TWh , with ca. 400 TWh E-Fuels		


Model comparison: final energy

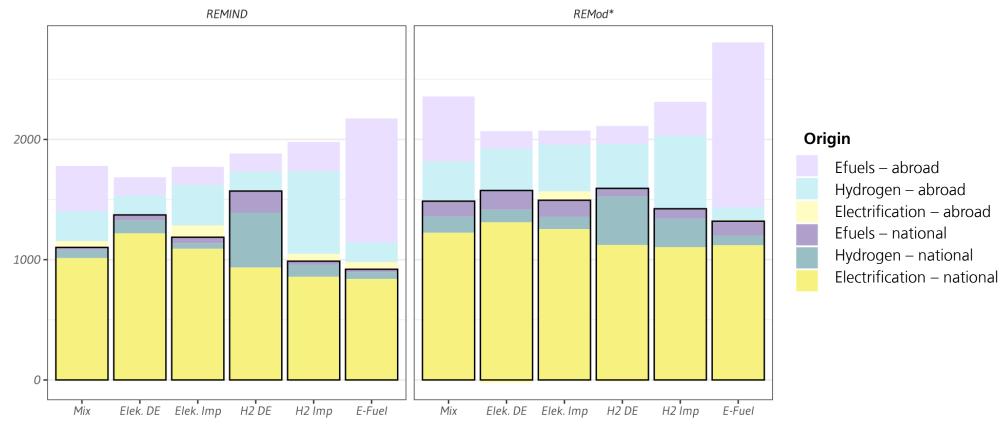
- Proportional share of fossil fuels on final energy: (incl. material use): <3%</p>
- Final energy demand:- 34-59% compared to 2019
- Percentage of electricity of final energy: 40-69%
- Proportion hydrogen and E-Fuels: 8-37%


CO₂ intensity electrical vs. non-electrical energy supply

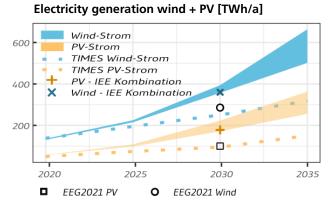

Direct and indirect electrification

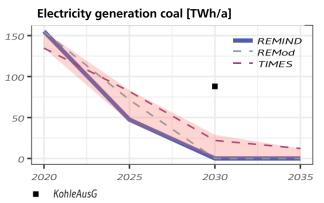
- Proportion electricity: 40-69% of final energy
- Proportion hydrogen/E-Fuels:
 8-37% of final energy
- 300-400 TWh H2/E-Fuels also in electrification scenarios

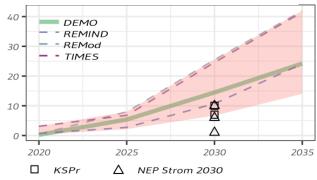
Electricity supply and usage



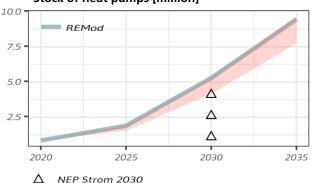
Electricity demand from renewables


National and international

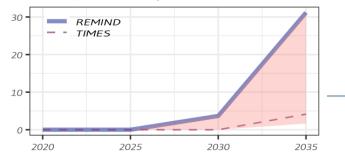

Electricity in TWh



Transformational mile stones until 2030

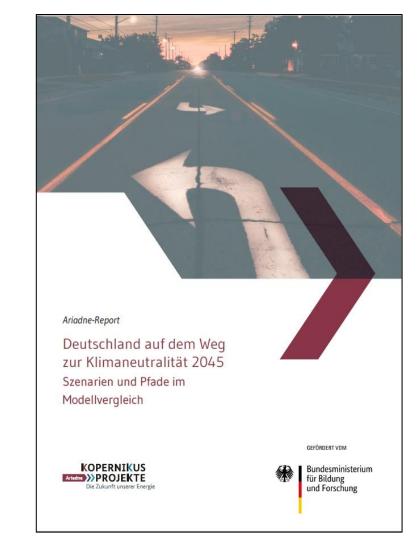


Stock of electrical vehicles [million]



Hydrogen and P2Heat demand [TWh/a]

CO2 capture and mitigation [MtCO2/a]


- Electricity demand rises in most scenarios for 23-34% until 2030
- Threefold increase of electricity production from wind and PV
- (Nearly) complete phase-out of coal-fired electricity generation
- Orient new procurements and investments in the demand sectors transport, industry, buildings towards compatibility with climate neutrality
- Expansion of infrastructures: electricity grids, hydrogen grids, charging infrastructure emobility, CO2 storage

Take aways

Insights from the German modeling project ARIADNE: Scenarios and pathways for Germany on its way to climate neutrality in 2045

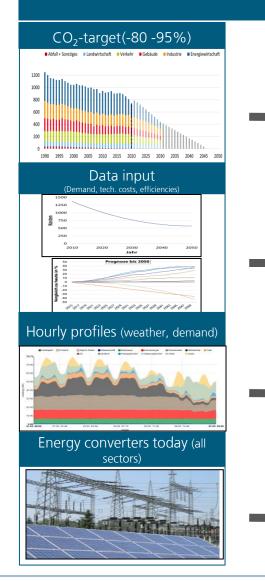
- Large German project for energy system analysis to consolidate energy pathways
- Data and evaluation platform created -> huge benefits on result evaluation
- System and sector models are interlinked, simulation and optimization models are used
- > High efforts to reach climate neutrality in each sector
- Size of project and wide use of different model leads to large impact on energy policy in Germany

https://ariadneprojekt.de/publikation/deutschland-auf-dem-weg-zur-klimaneutralitat-2045-szenarienreport/

Thank you!

Dr. Christoph Kost Head of Group Energy Systems and Economics Fraunhofer ISE Christoph.Kost@ise.fraunhofer.de

et »ap



REMod – Cross-sectoral energy system model

Core of the model

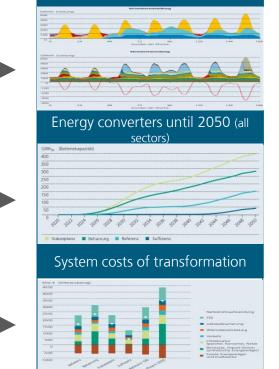
Hourly optimization. Non-linear. All energy sources, converters, storages and consumption sectors. Target function: Minimization of total system costs **Boundary conditions**: Security of supply and CO₂ emissions # Wind Wind turbine B -议 **Run-of-River PP** Vehicle batter PV plants Transport 0 38 Hydropower Geothermics Stationary battery F Environmental heat Solar thermal energy £ No Electricity Biomass Electrolysis Pumped storage PF **M** GAS Biofuel (3) Process heat Electricity Gas Power-to-liquid 103 Synthetic (H₂) Conventional PP = cHydrogen СНР К **Building heat** 38 Coal and oil Fuel cell Gas Heat Biomass 6 Nuclear PP Natural gas Liquid Fuels ßi

Heat

B

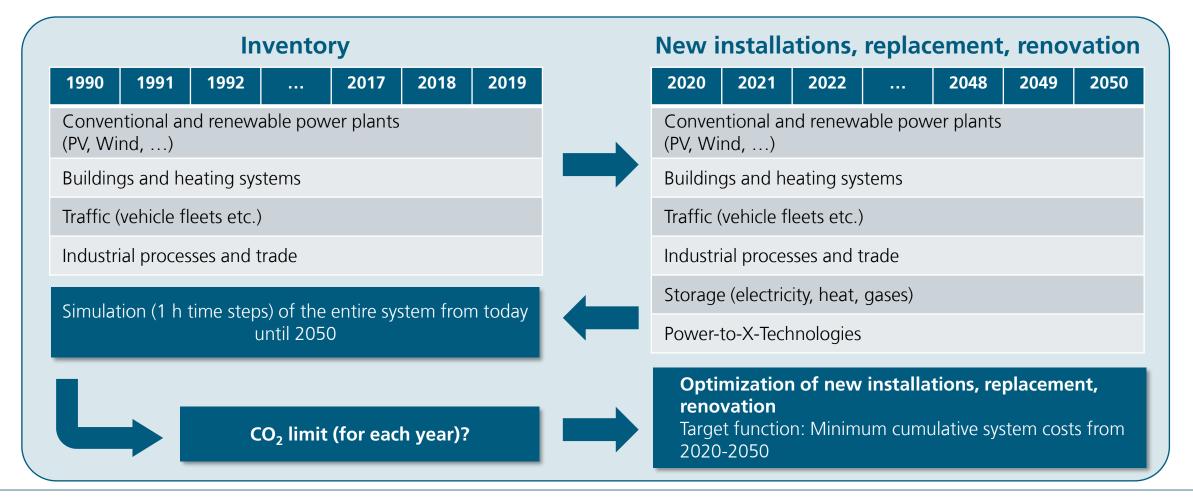
Nuclear

Hydrogen

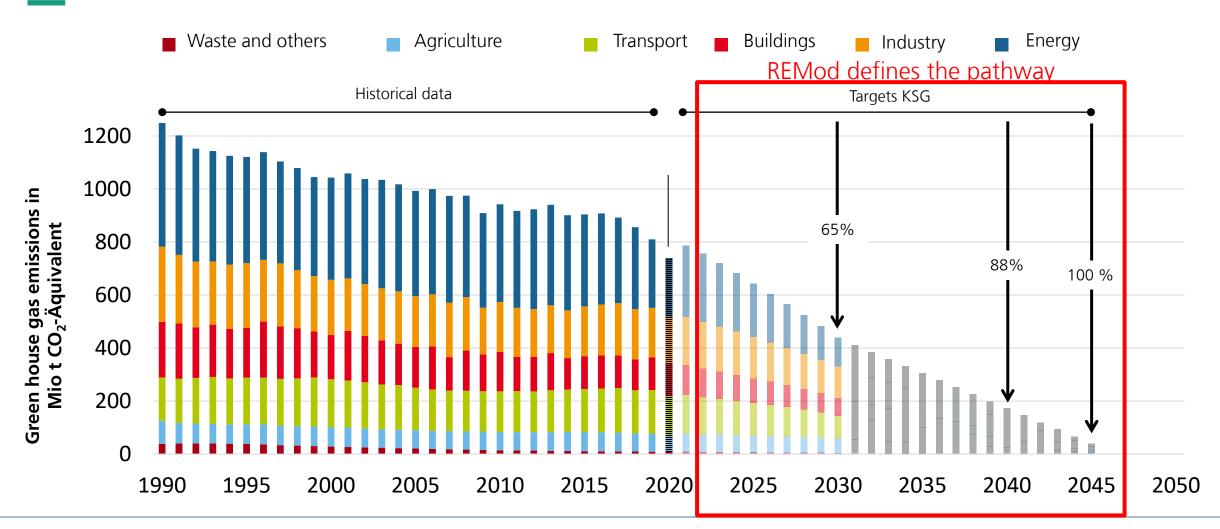

Electricity

Coal

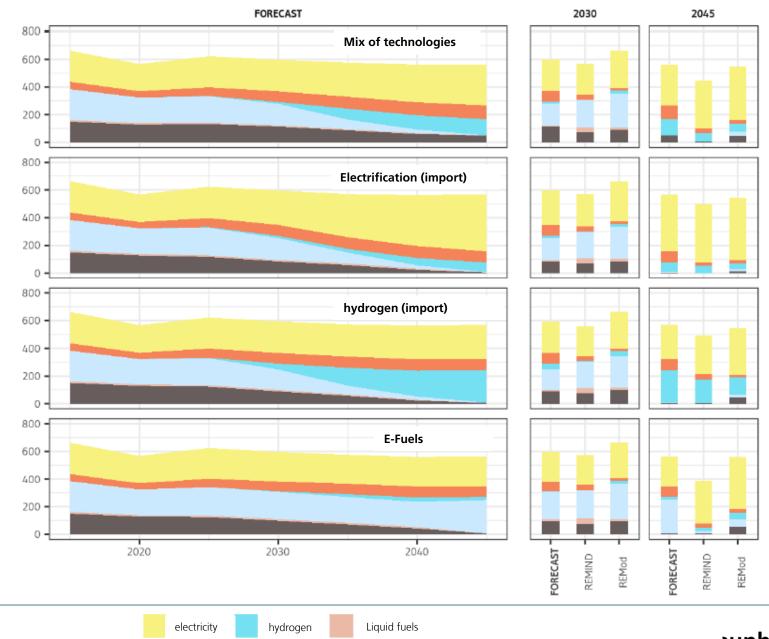
Decarbonisation per sector



Sector-coupled operating results



Methodology Energy System Model REMod

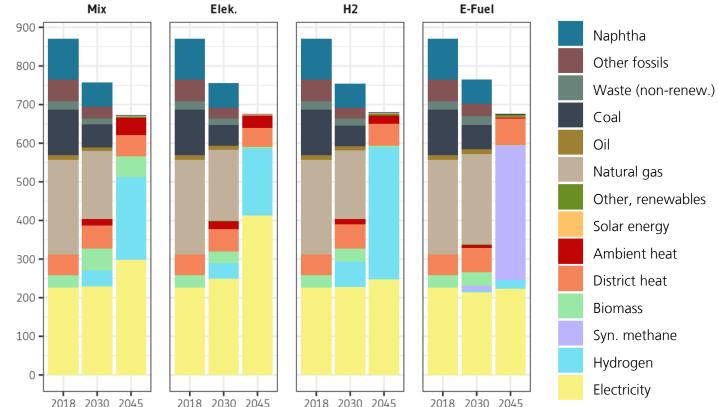

Greenhouse gas emissions

Historische Daten und VJS: Vorjahreschätzung (VJS) der deutschen Treibhausgas-Emissionen für das Jahr 2020. Umweltbundesamt, 15.3.2021

Development of final energy within the industrial sector

Solid fuels

heat


gases

Final energy industrial sector [TWh/a]

aunhofer

The INDUSTRIAL TRANSITION requires high amounts of CO₂-neutral energy sources, but also other measures

- In addition to energy and material efficiency, circular economy and CCU/S
- > New CO2-neutral processes:
 - > steel, ammonia, methanol/olefins
 - ~170 TWh H2-demand in 2045 distributed over few sites
- Extensive use of CO2-neutral energy sources in remaining process (electricity, hydrogen, synthetic methane)
- Generation of CO2-neutral H2 and PtG outside of the industrial sector changes the picture

Industrial energy demand (energetical and material) (2018-2045, TWh). Source: Fraunhofer ISI-FORECAST Model.

Final energy consumption [TWh]