

Proceedings of the

Software Product Lines Doctoral Symposium

Baltimore, MD, USA - August 22, 2006

In conjunction with the
10th Software Product Lines International Conference - SPLC

SPLC-SPLCSPLC-

Editors
Isabel John
Fraunhofer IESE, Germany
Len Bass
Software Engineering Institute (SEI), USA
Giuseppe Lami
ISTI - Italian National Council of Researches

IESE-Report No. 104.06/E
Version 1.0
August 14, 2006

A Publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Introduction

Different from other software engineering techniques, product-line engineering
arose from practical experience in industry. But as with every successful tech-
nique product line engineering can also be considered only a real standard ap-
proach when it is not only applied in practice but also widely researched and
especially taught in academia. Practice and academia are the two sides of the
same coin. While industry sets the requirements, academia prepares the practi-
tioners of tomorrow. The SPLC doctoral symposium provides a platform for
young researchers to present their work to an international audience and dis-
cuss it with each other and with experts in the field.

The SPLC doctoral symposium originates from the successful experience of the
past two editions of the SPLYR (Software Product Lines Young Researchers)
workshop held in conjunction with SPLC ’04 and SPLC ’05.

Experienced researchers will comment on the presented work and give feed-
back for further development, research goals, methods, and results to provide
useful guidance in completion of the dissertation research.

This event is a unique opportunity for the presenting young researchers and
doctoral students to receive invaluable expert feedback, make contact with
other researchers in the field, professionally present their work, and become
familiar with other approaches and future research topics.

The doctoral symposium addresses research activities in the field of software
product lines (SPLs). The peculiarity of this doctoral symposium is that it is ad-
dressed specifically to young researchers with original ideas and initiatives in the
SPL field.

Although it mainly addresses PhD work in progress, we also encouraged the
submission of other work in progress such as master's degree or diploma the-
ses.

Different from the standard procedure of other doctoral symposiums and work-
shops, we have no blind peer reviews. Each student was assigned to one or two
product line experts who reviewed the proposal and discussed pros and cons of
the work with the student. We would like to thank our reviewers and panelists

Copyright © Fraunhofer IESE 2006 5

• Birgit Geppert - Avaya Labs, USA

• Andre van der Hoek - University of California, USA

• Kyo Kang - POSTECH, Korea

• David Weiss - Avaya Labs, USA

for reviewing the proposals and for the effort they spent. Submissions were
evaluated according to the relevance, originality, and feasibility of the work.

Having no blind reviewers provides a unique opportunity for the participating
young researchers to get in contact with their reviewers and to receive valuable
input for their work and presentation even before the actual symposium day.

We believe that with this symposium each of the participants will get valuable
feedback for the further development of their work.

Keywords : Software Product Lines, Software Product Line Young Researchers Workshop,
Proceedings, SPLYR.

Copyright © Fraunhofer IESE 2006 6

Copyright © Fraunhofer IESE 2006 7

Organization

The doctoral symposium is associated with the 10th International Software
Product Line Conference (SPLC 2006), 21-24 August 2006, Baltimore, Mary-
land, USA.

Workshop Chairs :

• Isabel John
Fraunhofer IESE
Fraunhofer-Platz 1, D-67663 Kaiserslautern
john@iese.fraunhofer.de

• Len Bass
Software Engineering Institute (SEI)
Carnegie Mellon University,
Pittsburgh, USA
ljb@sei.cmu.edu

• Giuseppe Lami
Istituto di Scienza e Tecnologie dell'Informazione "Alessandro Faedo"
Area della Ricerca CNR di Pisa, Via G. Moruzzi 1
Giuseppe.Lami@isti.cnr.it

Reviewers / Panelists:

• Birgit Geppert - Avaya Labs, USA

• Andre van der Hoek - University of California, USA

• Kyo Kang - POSTECH, Korea

• David Weiss - Avaya Labs, USA

Workshop website and email:

 http://www1.isti.cnr.it/SPL-DS-2006

SPL-DS@isti.cnr.it

mailto:john@iese.fraunhofer.de
mailto:Giuseppe.Lami@isti.cnr.it

Copyright © Fraunhofer IESE 2006 9

Table Of Contents

Introduction 5

Organization 7

Table Of Contents 9

Symposium Program 11

1 Rick Rabiser
Facilitating the involvement of Non-Technicians in
Product Configuration 13

2 Timo Asikainen
Methods for Modelling the Variability in Software
Product Families 23

3 Nan Frederik Mungard
Feature Model Based Product Derivation in Software
Product Lines 31

4 Marcilio Mendonca, Toacy Oliveira, Donald Cowan
Collaborative and Coordinated Product Configuration 43

5 Karen Cortes Verdin, Cuauhtemoc Lemus Olalde
Aspect Oriented Product Line Architecture (AOPLA) 55

6 Uirá Kulesza, Carlos José Pereira de Lucena
An Aspect-Oriented Approach to Framework
Development 67

Copyright © Fraunhofer IESE 2006 10

Symposium Program

Tuesday, 22 August 2006, 9:00 – 15:15

9:00 Introduction

9:15-10:00 Rick Rabiser

Facilitating the involvement of Non-Technicians in Product Configu-
ration

10:00-10:30 Coffee

10:30-11:15 Timo Asikainen

 Methods for Modelling the Variability in Software Product Families

11:15-12:00 Nan Frederik Mungard

 Feature Model Based Product Derivation in Software Product Lines

12:00-13:00 Lunch

13:00-13:45 Marcilio Mendonca, Toacy Oliveira, Donald Cowan

Collaborative and Coordinated Product Configuration

13:45-14:30 Karen Cortes Verdin, Cuauhtemoc Lemus Olalde

Aspect Oriented Product Line Architecture (AOPLA)

14:30-15:15 Uirá Kulesza, Carlos José Pereira de Lucena

An Approach to Framework Implementation and Instantiation using
Aspect-Oriented Programming

For each paper, 20 minutes talk and 25 minutes discussion are
planned.

Copyright © Fraunhofer IESE 2006 11

Copyright © Fraunhofer IESE 2006 12

1 Rick Rabiser
Facilitating the involvement of Non-Technicians in Product Con-
figuration

Copyright © Fraunhofer IESE 2006 13

Facilitating the Involvement of
Non-Technicians in

Product Configuration

Rick Rabiser1

Christian Doppler Laboratory for Automated Software Engineering
Johannes Kepler University, 4040 Linz, Austria

rabiser@ase.jku.at

Abstract. A key objective of product line engineering is to accelerate the con-
figuration of products to different customer needs. Deriving products from a
software product line remains challenging, even for experienced software engi-
neers. However, the configuration process typically also involves non-
technicians such as sales people with only little understanding of the underlying
technical software solution. The complexity of today’s software systems makes
it difficult and error-prone for non-technicians to participate in this task. In the
ongoing PhD research, carried out in cooperation with our industry partner
Siemens VAI, we are developing and validating a tool-supported approach fa-
cilitating the involvement of non-technicians in product configuration.

1 Introduction and Motivation

Product line engineering (PLE) aims at reducing cost and time-to-market by increas-
ing productivity through leveraging reuse of artifacts and processes in particular do-
mains [20]. Software product lines consist of core assets such as features, architec-
tural elements, and solution components. Central to PLE is the explicit modeling and
management of commonalities and variability [15].

When deriving a certain product the core assets need to be properly customized
and configured. This process involves technical staff as well as sales staff. However,
the integration of product configuration by non-technicians and technical product
configuration by developers is still weak. Also, there is a lack of integrated tools
combining sales knowledge and product knowledge.

Several research areas have already addressed the issue of making technical prod-
uct knowledge amenable to non-technicians. For example, recommender systems [1]
have been successfully applied in e-commerce [22]. Such systems demonstrate how
complex products and services can be presented to non-technicians in an intuitive

1 PhD Student, 1st year

14

manner. By taking decisions (e.g., about desired features) customers can customize a
product to their needs.

The ongoing research is carried out in cooperation with Siemens VAI, the world’s
leading engineering and plant-building company for the iron, steel, and aluminum
industries. The domain of interest is Siemens VAI’s automation software capabilities
for continuous casting in steel plants. The focus of this PhD research is to develop an
approach that enables the involvement of non-technicians (i.e., sales people) in con-
figuring products. As quite typical in industry product configuration in sales proc-
esses is only weakly integrated with the actual technical product configuration carried
out by developers. This increases the effort for developers who currently derive prod-
ucts from the product line in a rather manual way.

Current research in PLE emphasizes support for engineers [3,20]. The ongoing
PhD research focuses on supporting sales people in their interaction with customers
while at the same time lowering the configuration workload of developers through
automation. The aim is to develop an automated approach generating a valid product
configuration based on high-level decisions of sales people and customers. The vision
is that non-technicians can already do a significant part of the configuration while
developers are relieved from error-prone and burdensome configuration tasks. The
approach integrates concepts from PLE, recommender systems, and product configu-
ration [21].

The remainder of this paper is structured as follows: Section 2 presents related
work. Section 3 outlines the domain of interest and describes challenges in the current
sales and product configuration process of our industry partner. Section 4 specifies
research issues and objectives. Section 5 explains the proposed approach. Section 6
describes the PhD research method. Section 7 concludes the paper by describing the
current status of work and future research to be done.

2 Related Work

A significant amount of research has been carried out in software product line engi-
neering. A good overview is given in [20]. For example, Deelstra et al. [9] have de-
veloped a framework of terminology and concepts regarding product configuration.
The authors present a case study carried out in two large industrial organizations.
Their findings confirm that in most cases technicians are burdened with doing the
configuration work because of the deep technical knowledge necessary. Halmans et
al. [13] emphasize the need of communicating the variability of a software product
line to customers and also show how to represent this information. Of particular in-
terest for the ongoing research is also the work of Czarnecki et al. [8]. The authors
discuss a tool-supported approach for feature modeling and feature-based configura-
tion. One of their aims is to further improve the user interaction model and the usabil-
ity for non-technicians [7]. In [16], Kang et al. have introduced a product line asset
development method that focuses on using marketing and product plans as a key
design driver. Such plans describe what features belong to certain products and how
the features will be delivered to customers now and in the future. Therefore they

15

directly influence product configuration and further involve non-technicians in this
process.

Other research areas have also addressed product derivation. For example, the field
of product configuration in the artificial intelligence community aims at automating
the configuration of technical products in short time and with few errors [4]. Systems
supporting this automation are called product configurators. They are based on prod-
uct models and well-defined rules describing how to configure individual products
and how to find valid configurations. Configuration systems have been successfully
applied in a wide range of industrial environments [2]. Examples are reported from
mechanical or electronic systems [17, 18]. However, product configurators for tradi-
tional (non-software) products often concentrate on the back-end technical aspects
and neglect the non-technician perspective [4].

In the product configuration community approaches appeared for automatically
building knowledge bases from already existing product models. For example, in [12]
the authors describe an approach for generating a valid knowledge base for configu-
ration from a UML product model. Although this approach is outside the scope of
software product line engineering it is interesting and relevant for our ongoing re-
search.

Recommender systems [1] have been successfully applied in e-commerce [22] and
provide a good example of how complex products and services can be presented to
non-technicians. Such systems enable customers to take decisions about desired fea-
tures and allow customizing a product but typically do not directly support the techni-
cal product configuration. Certain types of recommender systems, namely advisor
systems, have been successfully used for generating personalized, intelligent sales
advisory applications. A commercially successful example is the Advisor Suite [14].

3 Case Study

The domain of this PhD research is Siemens VAI’s automation software for continu-
ous casting, in particular the level 2 automation (cl2). This software provides capa-
bilities for process monitoring, material tracking, and process optimization (e.g., for
the cooling process). It serves as a layer between the level 1 automation (machine-
oriented automation) and the level 3 enterprise resource planning. Despite its size of
more than 1.3 million LOC (mainly Java) it is highly configurable, extendable, and
customizable to specific customer needs through a state-of-the-art component-based
architecture. The architecture consists of about 80 different subsystems which can be
connected via so-called adaptors. Adaptors are developed to pass information be-
tween defined subsystems; they are often called connectors in literature, e.g., [19].
The adaptor concept leads to a great degree of variability. As adaptors can also be
connected to other adaptors the number of possible connections is very high. Siemens
VAI ships 20+ cl2 software solutions per year customized to specific customer needs
with a staff of only 35 software engineers. A thorough analysis of the current sales
and product configuration process of Siemens VAI (Fig. 1) revealed several chal-
lenges [11]:

16

Fig. 1. Current sales and product configuration process

Knowledge is distributed. Knowledge about the customers’ requirements is typi-
cally only available in the minds of sales people. Knowledge about the technical
solution is only available in the minds of the developers. This makes it difficult to
define and understand the complex dependencies among features and between fea-
tures and architectural elements. Sales people without architectural knowledge are
often unable to predict the consequences of their decisions which can result in the
selection of an inconsistent set of features. Knowledge distribution is also an issue
among developers. Due to the size of the cl2 software system it is impossible even for
experienced developers to understand all subsystems at the same level of detail.

Weak communication links between sales and development. Sales people of our
industry partner use comparably simple office tools such as spreadsheets and docu-
ments to communicate the features of the cl2 software product line to the customers
or internally. However, as typical in industry, no explicit links are established be-
tween the architectural knowledge and the features of the system. It can happen that
sales people do not get information about the latest features or feature modifications
from the developers. There can also be delays in informing developers about cus-
tomer requirements and feature requests.

Lack of tool support for product configuration. Sales people pass the information
about selected features to the developers which then manually configure the product
based on existing software components. Because of missing tool support for this
configuration and because in many cases the sales people do not have the necessary
knowledge about the technical solution errors can occur which have to be dealt with
on level of the technical configuration.

4 Research Issues and Objectives

Based on a review of existing literature and the challenges reported by our industry
partner we decided to address two research issues in our work:

(1) Weak integration of product configuration by non-technicians and technical
product configuration by developers. The configuration of products by sales staff is
mainly driven by customer needs and not based on the underlying technical solution.
The technical configuration of products is mainly based on technical aspects with the
risk of neglecting customer requirements.

17

(2) Lack of integrated tools combining sales knowledge and product knowledge.
Existing tools for the configuration of complex industrial products mainly focus on
product knowledge and neglect the sales perspective. Tools building on sales knowl-
edge do not support the technical product configuration.

Our research objectives for addressing these issues are as follows:

(1) Development of interactive tools supporting non-technicians and involving
them in the configuration process. Our vision is that non-technicians can largely
configure a product with only little intervention necessary from the developers. Inter-
active wizards will be devised that support the sales process and allow sales people to
provide the information required for automated configuration. The wizards will also
support the sales people in their interaction with the customers during sales meetings
by presenting relevant decisions to them.

(2) Integration of sales process with technical product configuration. To integrate
the sales process with the technical product configuration the interactive wizards need
to be integrated with product configuration tools. Thereby the generation of configu-
rations based on information gathered with the help of the interactive wizards will be
possible. This will help to relieve developers in the configuration work. In order to
allow the integration all developed tools need to be based on the same knowledge.

5 Approach

In order to improve support for non-technicians and to automate product configura-
tion we need to integrate concepts from product line engineering, recommender sys-
tems and product configuration [21]. The envisioned approach is depicted in Fig. 2.

Fig. 2. Envisioned sales and product configuration process with support for non-technicians

The important knowledge (e.g., customer requirements, architectural knowledge, and
feature knowledge) has to be documented explicitly in a knowledge base together

18

with rules of how to use and apply it to avoid knowledge gaps and redundant data
entry. All tools will use this knowledge base to ensure their integration. The knowl-
edge contained in a product line variability model – a model describing the common-
alities and the variability of core assets together with the decisions that need to be
taken to choose on certain variants – will be formalized and mapped onto a repository
with rules describing how to use the data contained. A similar approach has already
been proposed by Felfernig et al. [12] in a different domain. The integrated product
line variability model is being built by another PhD researcher in our team [10]. Fur-
thermore the knowledge base will contain sales knowledge such as customer proper-
ties and requirements.

Sales people will be supported in their interaction with customers through interac-
tive, personalized wizards. A wizard generator tool will build these wizards for each
sales process to address different customer properties. The wizard generator applica-
tion uses the product line knowledge contained in the knowledge base. The generated
sales support wizards consider the dependencies among features (e.g., the ordering of
decisions) and the relationships between features and the underlying technical solu-
tion. The consequences of the decisions the sales people take will be explained by the
wizards while simultaneously checking underlying technical constraints.

In a second stage information entered by sales people will be used by a configura-
tion tool to automatically generate an initial product configuration, e.g., property files
for linking certain subsystems into the product. The generated configuration can then
be refined by the developers to create the final product.

6 Research Method

As this kind of research strongly relies on interaction with and feedback from non-
technicians we will pursue an iterative approach informed by the spiral approach [5].
The implemented prototypes will be tested by sales people in real-world scenarios to
ensure feasibility, usability, and scalability. Based on their feedback risks will be
identified. A likely risk is the willingness of sales people to learn and use new tools.
More specifically, our work plan includes the following tasks:

Literature and tool survey. A thorough literature review is being conducted in PLE
and other relevant areas. Furthermore, already existing tools supporting similar goals
are analyzed.

Analysis and modeling of existing sales process. An analysis of the sales process is
necessary to understand the existing challenges. Existing documents (i.e., feature lists
currently used by sales staff) are analyzed and discussed with process owners. An-
other plan is to participate in sales meetings to understand their dynamics. Taking into
account the well-known effect that people tend to behave differently when they are
under observation the results of such participation have to be handled with care. Ei-
ther way, an analysis will help in validating the assumptions made in the preliminary
analysis and allow explicitly defining and documenting the sales process as a pre-
requisite for developing proper tools.

Tool prototyping. Different tool prototypes will be devised supporting non-
technicians in the sales and product configuration process. A candidate solution is a

19

wizard generator tool to automatically build customized, personalized wizards sup-
porting the interaction process between sales staff and customers. These generated
wizards will reflect the sales process in their user interface and present the complex
product line knowledge to the customers. Furthermore, a product configuration tool
will be developed to automatically generate product configurations based on the in-
formation gathered with the help of the wizards. As an alternative, we are currently
exploring whether group support systems (i.e., GroupSystems2) can help in present-
ing product line knowledge to different stakeholders and gathering knowledge from
them, especially from non-technicians.

Validation. It has to be assured that the approach and the developed tools are effec-
tive and efficient in real-world scenarios. It is however difficult to measure the effec-
tiveness and efficiency of our anticipated approach. The effectiveness certainly re-
lates to the time it takes to build the final configuration deployed to the customer. The
efficiency could be compared to the efficiency of current sales processes; however,
we are currently unaware whether the data needed for such analysis is available and
accessible. Therefore, qualitative measurements gained in interviews with sales peo-
ple are possible a more promising source.

7 Status of Work and Future Research

In this paper we presented ongoing PhD research with the goal of developing and
validating an approach to facilitate the involvement of non-technicians such as sales
people in product configuration. Our goal is to narrow the void between the product
configuration in sales processes and the actual technical configuration of products in
industrial contexts. Tools that combine sales knowledge and product knowledge can
further help in bridging the gap between sales staff and technicians (i.e., developers),
possibly resulting in a faster and less error-prone product configuration process.

In a first iteration a literature and tool survey and a preliminary analysis of the
sales process have been conducted leading to the research issues and objectives de-
scribed in Section 4. The literature and tool survey showed that the concepts used by
the Advisor Suite [14] and other knowledge-based recommender systems [6] are
promising in the context of the ongoing research, i.e., especially regarding the inter-
action process between sales staff and customers. Our analysis of the sales process,
also described in [11], revealed the issues described in Section 3. The author will
participate in sales meetings in the near future and analyze more feature lists to get a
better understanding of the complex sales processes of our industry partner.

Based on the product line variability model devised by another PhD re-
searcher [10] an initial knowledge base will be created together with a first prototype
of a sales support wizard. Also, a first product configuration system prototype will be
built that uses the knowledge base on the one hand and the information gathered by
the wizard on the other hand to demonstrate the concepts of non-technician support
for product configuration. The plan is to provide our industry partner with first proto-
types in the next few months to receive feedback.

2 www.groupsystems.com

20

Acknowledgements

I gratefully acknowledge the support of this research by Christian Doppler For-
schungsgesellschaft in the Christian Doppler Laboratory for Automated Software
Engineering. I also want to thank our industry partner Siemens VAI for support and
feedback.

References

1. Adomavicius, G. and Tuzhilin, A.: Toward the Next Generation of Recommender Systems:
A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowl-
edge and Data Engineering, 17(6):734-749 (2005).

2. Ardissono, L., Felfernig, A., Friedrich, G., Goy, A., Jannach, D., Petrone, G., Schäfer, R.,
Zanker, M.: A Framework for the Development of Personalized, Distributed Web-Based
Configuration Systems. AI Magazine, 24(3): 93-108 (2003).

3. Birk, A., Heller, G., John, I., Schmid, K., von der Masen, T., Müller, K.: Product Line
Engineering: The State of the Practice. IEEE Software, 20(6):52-60 (2003).

4. Blecker, T., Abdelkafi, N., Kreutler, G., Friedrich, G.: Product Configuration Systems:
State of the Art, Conceptualizations, and Extensions. In: Hamadou, A.B., Gargouri, F.,
Jmail, M. (eds.): Génie logiciel & Intelligence artificielle. Eigth Maghrebian Conference on
Software Engineering and Artificial Intelligence (MCSEAI), Proceedings. Centre de Publi-
cation Universitaire, Tunis (2004), pp. 25-36.

5. Boehm, B.: Spiral Development: Experience, Principles, and Refinements. Special Report,
CMU/SEI-2000-SR-008 (2000).

6. Burke, R.: Knowledge-based Recommender Systems. In: Kent, A. (ed.): Encyclopedia of
Library and Information Science. Marcel Dekker, New York, USA (2000).

7. Czarnecki, K. and Kim, C.H.P.: Cardinality-Based Feature Modeling and Constraints: A
Progress Report. OOPSLA’05 Workshop on Software Factories, San Diego, California,
USA (2005).

8. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using Feature Models. In:
Nord, R. (ed.): 3rd International Conference on Software Product Lines (SPLC 2004), Pro-
ceedings. Springer, Boston, Massachusetts, USA (2004), pp. 266-283.

9. Deelstra, S., Sinnema, M., Bosch, J.: Product derivation in software product families: a
case study. The Journal of Systems and Software, 74:173-194 (2003).

10. Dhungana, D.: Integrated Variability Modeling of Features and Architecture in Software
Product Line Engineering. 21st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE’06) Doctoral Symposium, Tokyo, Japan (2006).

11. Dhungana, D., Rabiser, R., Grünbacher, P., Prähofer, H., Federspiel, C., Lehner, K.: Archi-
tectural Knowledge in Product Line Engineering: An Industrial Case Study. 32nd Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA), Cav-
tat/Dubrovnik, Croatia (2006).

12. Felfernig, A., Friedrich, G., Jannach, D.: Uml as domain specific language for the construc-
tion of knowledge-based configuration systems. International Journal of Software Engi-
neering and Knowledge Engineering, 10(4):449-469 (2000).

13. Halmans, G. and Pohl, K.: Communicating the variability of a software-product family to
customers. Informatik – Forschung und Entwicklung, 18(3/4):113-131, Springer, Berlin,
Germany (2004).

21

14. Jannach, D.: Advisor Suite – A Knowledge-Based Sales Advisory System. 16th European
Conference on Artificial Intelligence (ECAI 2004), Proceedings. IOS Press (2004), pp.
720-724.

15. Kang, K.C., Lee, J., Donohoe, P.: Feature-Oriented Product Line Engineering. IEEE Soft-
ware, 9(4):58-65, IEEE CS (2002).

16. Kang, K.C., Donohoe, P., Koh, E., Lee, J., Lee, K.: Using a Marketing and Product Plan as
a Key Driver for Product Line Asset Development. 2nd Software Product Line Conference
(SPLC2), Proceedings, San Diego, USA. Springer Lecture Notes in Computer Science,
2379:366-382 (2002).

17. Krebs, T., Hotz, L., Günter, A.: Knowledge-based Configuration for Configuring Com-
bined Hardware/Software Systems. 16th Workshop on Planen, Sheduling und Konfiguri-
eren, Entwerfen (PuK 2002), Proceedings. Freiburg, Germany (2002).

18. Männistö, T., Soininen, T., Sulonen, R.: Modelling configurable products and software
product families. International Joint Conference on Artificial Intelligence (IJCAI 2001),
Proceedings. Seattle, Washington, USA (2001).

19. Medvidovic, N. and Taylor, R.: A Classification and Comparison Framework for Software
Architecture Description Languages. IEEE Transactions on Software Engineering,
26(1):70-93 (2000).

20. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering: Founda-
tions, Principles and Techniques. Springer, Berlin, Germany (2005).

21. Rabiser, R., Dhungana, D., Grünbacher, P.: Integrating Knowledge-Based Product Con-
figuration and Product Line Engineering: An Industrial Example. 17th European Confer-
ence on Artificial Intelligence (ECAI 2006) Workshop on Configuration, Riva del Garda,
Italy (2006).

22. Schafer, J.B., Konstan, J., Riedl, J.: Recommender Systems in E-Commerce. 1st ACM
Conference on Electronic Commerce (EC’01), Proceedings. ACM Press (1999).

22

2 Timo Asikainen
 Methods for Modelling the Variability in Software Product Fami-
lies

Copyright © Fraunhofer IESE 2006 23

Methods for Modelling the Variability in Software

Product Families1

Timo Asikainen

Helsinki University of Technology, Software Business and Engineering Institute,

P.O. Box 9210, FI-02015 TKK, Finland
timo.asikainen@tkk.fi

Abstract. Variability is the ability of a system to be efficiently extended,

changed, customised or configured for use in a particular context. There is an

ever-growing demand for variability of software. Software product families are

an important means for implementing software variability. A software product

family may contain very large numbers of individual products. Consequently,

methods for representing the variability and efficiently reasoning about it are

needed. This thesis studies such methods: the goal of the thesis is to define a

solid conceptual basis for modelling the variability in software product fami-

lies, and to provide the concepts formal semantics in such a way that reasoning

on the models is possible using existing inference tools. Major parts of the

work have already been completed and documented in a number of publica-

tions.

1 Introduction

Variability is the ability of a system to be efficiently extended, changed, customised

or configured for use in a particular context [1]. There is a growing demand for vari-

ability of software, and a significant research interest in the topic, as exemplified by

the workshops and special issues devoted to it, see, e.g., [2]. Products that incorporate

variability are useful for various purposes: for example, such products can address

multiple user segments, allow price categorisation, support various hardware plat-

forms and operating systems, offer different sets of features for different needs, and

cover different market areas with different languages, legislation, and market struc-

ture. Addressing these concerns without variability would be very difficult, if not

impossible.

Software product families, or software product lines, as they are also called, have

become an important means for implementing variability [3]. A software product

family may contain very large numbers of individual products. Consequently, meth-

ods for representing the variability and efficiently reasoning about it are needed.

This thesis aims at developing methods for modelling the variability in software

product families. The most important modelling concepts and constructs in the meth-

ods developed stem from existing methods used for representing the variability in

1 PhD work, 4th year

24

software product families. However, the methods introduced in the thesis are pro-

vided with a more solid conceptual foundation and richer sets of modelling concepts.

The remainder of this position paper is structured as follows. Next, in Section 2 we

provide a brief overview of the related previous work. The research problem is de-

fined in Section 3, along with research questions and goals. Thereafter, in Section 4

we discuss the results achieved so far. An outline for further work follows in Sec-

tion 5.

2 Previous work

This section provides an overview of the previous work on modelling variability in

software product families and identifies an area of research in which more work is

needed.

Numerous methods for modelling the variability in software product families have

been proposed. In general terms, a decision model specifies the decisions that must be

made to produce an individual product in the family and the order of these deci-

sions [4]. Such decisions are often termed variation points.

A practically important class of variability modelling methods is based on model-

ling the common and variable features of a product family. An example of such a

method is FODA (Feature Oriented Domain Analysis) [5]. A number of methods for

modelling variability in product family architectures have been reported; Koalish [6]

and xADL 2.0 [7] are examples of such methods. Arguably, variability models based

on features or architecture can be considered to be instances of decision models: both

of these span a set of decisions that must made in order to produce an individual

product in the family. Domain-specific languages may also be used to express vari-

ability in software product families [8].

Variability has also been studied in the domain of traditional products, i.e. me-

chanical and electrical ones. This domain of research is called product configuration,

or configuration for short, and it studies how a general design of a product can be

modified in prescribed ways to produce product individuals that match the specific

needs of customers [9]. In contrast to methods for modelling variability in software

product families, the results achieved in product configuration domain include a num-

ber of conceptualisations of the domain [10, 11]. The conceptual work done in the

domain has lead to a large number of successful applications [9, 12, 13].

Although there are a relatively large number of studies on variability of software,

there is still need for further research on the topic. The conceptual foundation of the

modelling methods is in many cases unclear: in many methods, the concepts and their

interrelations are not defined at all, or in an unsatisfactory manner; conceptual work

similar to that done in the product configuration domain could alleviate this condi-

tion. The semantics of the modelling concepts is in most cases not rigorously defined.

Many practically relevant aspects have not been studied in depth. Configuration of

individual systems over multiple stages [14] or binding times is widely acknowledged

to be an important topic. Yet most existing methods for modelling variability do not

account for multiple binding times. Constraint languages used in expressing depend-

encies between different decisions or variation points are either simplistic, including

25

only constraints of the form A requires B and A excludes B, or described cursorily,

e.g., by referring to existing constraint languages, such as OCL [15], without studying

the applicability of these languages to variability modelling in any detail. Also, we do

not know any feature modelling methods that would account for the evolution, i.e.,

changes over time, of variability models.

3 Research Problem, Questions, and Method

The research problem is the study and development of methods for modelling the

variability and commonality in software product families. In more detail, the thesis

aims at answering the following research questions.

1. What concepts are suited to modelling variability and commonality in soft-

ware product families?

2. What is the formal or rigorous semantics of these concepts?

3. What kind of languages can be built on these concepts?

4. What kind of tools can support the use of these languages and methods?

Related to the fourth point, there should be support for two tasks: the modelling

and the configuration task. The former pertains to creating a model of the variability

in a software product family. The latter, in turn, pertains to finding a configuration,

i.e., a description of an individual product in the family, matching a given set of re-

quirements at hand.

The research method applied in this thesis is a constructive one [16]. In short, ap-

plying the constructive research method pertains to building an artefact that solves a

domain problem in order to create knowledge about how the problem can be solved

and the solution artefact compares with previous solutions to the same problem.

4 Results achieved

In this section, we provide an overview of the results achieved so far.

The results achieved so far can be classified based on the underlying modelling

concepts; a distinction between results on feature modelling, architecture description,

and results integrating these two views can be made.

Forfamel is a method for modelling the variability in software product families

from a feature point of view. The conceptual basis of Forfamel is defined in [17].

Forfamel includes the definition of the concepts of the method, and their informal but

rigorous semantics. Forfamel synthesises a number of existing feature modelling

methods, which gives it a solid foundation. Further, it previous work on features with

a number of concepts and constructs from the product configuration domain. For-

famel is provided with formal semantics by translating it to Weight Constraint Rule

Language (WCRL) [18], a general purpose knowledge-representation language simi-

lar to logic programs [19]. Although general-purpose, WCRL has been designed to

allow the easy representation of configuration knowledge about non-software prod-

ucts and shown to suit this purpose [20]. This suggests that WCRL is a reasonable

26

choice for the knowledge representation formalism of our approach as well. Further,

an inference system smodels2 operating on WCRL has been shown to have a very

competitive performance compared to other problem solvers, especially in the case of

problems including structure [18].

Further, [21] shows how an existing prototype product configurator, WeCo-

Tin [22], can be used to provide tool support for modelling and configuring the fea-

tures of a software product family; it should be noticed that the feature modelling

concepts studied in this paper are not those of Forfamel, but another synthesis from

previous feature modelling methods. The configurator provides support for both the

modelling and configuration task. The paper shows that existing tools, originally

intended for describing the physical structure of non-software products, can be ap-

plied to software products.

As for architecture description, [23] contains an analysis of three architecture de-

scription languages (ADLs), and compares them with a configuration ontology origi-

nally developed for non-software products [10]. The outcome is that the ontology is

able to capture most, but not all of the concepts of the ADLs. Hence, [23] shows that

configuration modelling concepts provide a basis on which architecture-based model-

ling methods for configurable software product families can be built on, but is not as

such applicable to modelling architectures.

Further, [24] contains the definitions of a conceptualisation, i.e., a domain ontol-

ogy, called Koalish for modelling architecture of configurable software product fami-

lies. In more detail, Koalish is based on Koala [25], a component model and architec-

ture description language (ADL), developed at Philips Consumer Electronics. Koala

is, to the best of the author’s knowledge, the only ADL that has been applied in the

industry. Hence, its practical success gives Koalish a solid foundation. Koalish ex-

tends Koala with concepts and constructs for modelling variability. Finally, similarly

as for Forfamel, Koalish is provided with formal semantics by translating it to

WCRL.

The definition of a language based on Koalish is contained in [6]; this language is

likewise called Koalish. In addition, an approach for managing configurable software

product families is outlined. The approach is based on providing tool support for the

modelling and deployment tasks. The modelling task was defined in Section 3 above.

The deployment task, in turn, consists of the configuration task and the additional

steps required to turn the description of an individual product into a concrete product.

Together, the language and the outlined process form a solid basis on which tools

supporting architecture-based configurable software product families.

Kumbang [26] is an approach integrating Forfamel and Koalish. Thus, Kumbang

enables modelling variability simultaneously from a feature and an architecture point

of view and the interrelations between these two views using constraints. The work

includes a UML (Unified Modeling Language) stereotype illustrating the modelling

concepts of Kumbang and those of UML. A number of case products inspired by

real-life software product families have been modelled using Kumbang by our re-

search team. Kumbang provides a sufficient level of support to capture the intent of

2 See http://www.tcs.hut.fi/Software/smodels/

27

the product families. The cognitive effort required to create the models has been

moderate.

Finally, Kumbang Configurator is a prototype tool that supports the configuration

task for Kumbang, and hence also Forfamel and Koalish, models [27]. The configura-

tor includes an implementation of the Kumbang. The configurator has performed well

when applied to the case software product families mentioned in the previous para-

graph.

5 Further work

This section discusses further work needed to complete the thesis. It is still unclear

which extensions will be included in the thesis; it is unlikely that all of them would be

included.

Further work should take place in three main areas. First, it is possible to extend

the conceptual basis with new modelling concepts and constructs. Second, theoretical

studies can be carried out to add rigour to the possibly extended modelling concepts.

Finally, empirical studies can be carried out to demonstrate the practical applicability

of Kumbang.

There are a number of possible ways to extend the conceptual basis of Kumbang.

An essential extension is to define a constraint language to be used with Kumbang:

constraints are needed to specify dependencies both within a single view and between

views. Such a constraint language should resemble existing languages such as the

Object Constraint Language (OCL) [15] or xPath (see http://www.w3.org/TR/xpath)

and should be an integral part of the modelling method in the sense that it is both

possible to check the constraints and efficiently search for a configuration that satis-

fies the constraints in the configuration model.

It is also possible to extend Kumbang with concepts and constructs for modelling

the evolution of software product families, similarly as has been done in

xADL 2.0 [7].

An issue often discussed in conjunction with variability are binding times: a con-

figuration is not produced during a single step but during multiple steps where the

output of the previous step serves as an input for the following steps [14]. However,

the notion of binding times and their semantics has not yet been thoroughly studied or

understood. Hence, augmenting the modelling methods developed in the thesis could

both improve their usefulness and contribute to the area of research.

Another possibility is to extend the modelling concepts in such a way that the user

would define the views used in a particular model. That is, the set of views in the

modelling method would not be fixed to, e.g., a combination of feature and architec-

tural views. Instead, the number of views, the properties of each view, and the possi-

ble interrelations between views could be specified to match the particular require-

ments of the domain at hand. This extension is motivated by the fact that the number

and characteristics of the views required to model the variability in a software product

family depends on the particular domain and family at hand. It seems that no single

set of views suits all domains.

28

An example of a practical domain with more than two views is car periphery sys-

tems at Robert Bosch GmbH [28]. In this domain, four views are used: the environ-

ment in which the device is located, the features of the software, the architecture of

the physical device in which the software is embedded in, and the architecture of the

software itself and how it is deployed to physical components.

To make the theoretical foundation of Kumbang, or an extended method more

solid, the method could be provided with even more rigorous formal semantics than

has been done so far for Kumbang. Such semantics could also be used to perform

theoretical complexity analysis and other relevant properties of the methods.

Demonstrating the practical applicability of the results requires testing the methods

empirically with real software product families in real software development contexts.

The tests should concern both their expressive power and usability. The same

method, applied to a sufficiently wide range of different kinds of configurable soft-

ware product families, can also be used to analyse their scope of applicability.

References

1. Svahnberg, M., van Gurp, J., Bosch, J.: A Taxonomy of Variability Realization Tech-

niques. Software - Practice and Experience 35(8) (2006) 705-754

2. Bosch, J.: Software Variability Management (introduction to special issue on software

variability management). Science of Computer Programming 53(5) (2004) 255-258

3. Clements, P. C. and Northrop, L.: Software Product Lines - Practices and Patterns. Addi-

son-Wesley, Boston (MA) (2001)

4. Weiss, D. and Lai, C. T. R.: Software Product Line Engineering: A Family Based Software

Development Process. Addison-Wesley, Boston (MA) (1999)

5. Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., Peterson, S. A.: Feature-Oriented

Domain Analysis (FODA) - Feasibility Study. CMU/SEI-90-TR-21, Software Engineering

Institute, Carnegie Mellon University (1990)

6. Asikainen, T., Soininen, T., Männistö, T.: A Koala-Based Approach for Modelling and

Deploying Configurable Software Product Families. In: Proceedings of the 5th Interna-

tional Workshop on Product Family Engineering (PFE-5). Lecture Notes in Computer Sci-

ence 3014. Springer (2003) 225-249

7. Dashofy, E., van der Hoek, A., Taylor, R. M.: A Comprehensive Approach for the Devel-

opment of Modular Software Architecture Description Languages. ACM Transactions on

Software Engineering and Methodology 14(2) (2005) 199-245

8. Tolvanen, J.-P., Kelly, S.: Defining Domain-Specific Modeling Language to Automate

Product Derivation: Collected Experiences. In: Obbink, J. Henk and Pohl, Klaus (eds.):

Proceedings of the 9th International Software Product Line Conference (SPLC 2005)

(2005) 198-206

9. Soininen, T., Stumptner, M.: Introduction to Special Issue on Configuration. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing 17(1-2) (2003) 1-2

10. Soininen, T., Tiihonen, J., Männistö, T., Sulonen, R.: Towards a General Ontology of

Configuration. Artificial Intelligence for Engineering Design, Analysis and Manufacturing

12(4) (1998) 357-372

11. Felfernig, A., Friedrich, G., Jannach, D.: Conceptual Modeling for Configuration of Mass-

Customizable Products. Artificial Intelligence in Engineering 15(2) (2001) 165-176

12. Faltings, B., Freuder, E. C.: Special Issue on Configuration. IEEE Intelligent Systems 14(4)

(1998) 29-85

29

13. Darr, T., Klein, M., McGuinness, D. L.: Special Issue on Configuration Design. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing 12(4) (1998) 293-397

14. Czarnecki, K., Helsen, S., Eisenecker, U. W.: Staged Configuration through Specialization

and Multilevel Configuration of Feature Models. Software Process: Improvement and Prac-

tices 10(2) (2005) 143-169

15. Object Management Group: OCL 2.0 Specification. ptc/2005-06-06 (2005)

16. Kasanen, E., Lukka, K., Siitonen, A.: The Constructive Approach in Management Ac-

counting Research. Journal of Management Accounting Research 5(1993) 243-264

17. Asikainen, T., Männistö, T., Soininen, T.: A Unified Conceptual Foundation for Feature

Modelling. In: Proceedings of the 10th International Software Product Line Conference

(SPLC 2006) (2006)

18. Simons, P., Niemelä, I., Soininen, T.: Extending and Implementing the Stable Model Se-

mantics. Artificial Intelligence 138(1-2) (2002) 181-234

19. Asikainen, T. Modelling Methods for Managing Variability of Configurable Software

Product Families. Licentiate thesis, Helsinki University of Technology, Department of

Computer Science and Engineering. (2004)

20. Soininen, T., Niemelä, I., Tiihonen, J., Sulonen, R.: Representing Configuration Knowl-

edge with Weight Constraint Rules. In: Proceedings of the AAAI Spring 2001 Symposium

on Answer Set Programming: Towards Efficient and Scalable Knowledge Representation

and Reasoning (2001)

21. Asikainen, T., Männistö, T., Soininen, T.: Using a Configurator for Modelling and Config-

uring Software Product Lines Based on Feature Models. In: Männistö, Tomi and Bosch,

Jan (eds.): Proceedings of Software Variability Management for Product Derivation - To-

wards Tool Support, a workshop in SPLC 2004. Helsinki University of Technology, Espoo,

Finland (2004) 24-35

22. Tiihonen, J., Soininen, T., Niemelä, I., Sulonen, R.: A Practical Tool for Mass-Customising

Configurable Products. In: Proceedings of the International Conference on Engineering De-

sign (ICED'03), Stockholm, Sweden (2003)

23. Asikainen, T., Soininen, T., Männistö, T.: Towards Managing Variability Using Software

Product Family Architecture Models and Product Configurators. In: van Gurp, Jilles and

Bosch, Jan (eds.): Proceedings of Software Variability Management Workshop. IWI pre-

print 2003-7-01. University of Groningen, Groningen, The Netherlands (2003) 84-93

24. Asikainen, T., Soininen, T., Männistö, T.: A Koala-Based Ontology fro Configurable Soft-

ware Product Families. In: Configuration Workshop of 18th International Conference on

Artificial Intelligence (IJCAI) (2003)

25. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The Koala Component

Model for Consumer Electronics Software. IEEE Computer 33(3) (2000) 78-85

26. Asikainen, T., Männistö, T., Soininen, T.: Kumbang: A Domain Ontology for Modelling

the Variability in Software Product Families. Advanced Engineering Informatics (accepted

for publication) (2006)

27. Myllärniemi, V., Asikainen, T., Männistö, T., Soininen, T.: Tool for Configuring Product

Individuals from Configurable Software Product Families. In: Männistö, Tomi and Bosch,

Jan (eds.): Proceedings of Software Variability Management for Product Derivation - To-

wards Tool Support, a workshop in SPLC 2004. Helsinki University of Technology, Espoo,

Finland (2004) 106-109

28. Thiel, S., Ferber, S., Fischer, T., Hein, A., Schlick, M.: A Case Study in Applying a Prod-

uct Line Approach for Car Periphery Supervision Systems. In: Proceedings of In-Vehicle

Software 2001 (SP-1587) (2001) 43-55

30

3 Nan Frederik Mungard
Feature Model Based Product Derivation in Software Product Lines

Copyright © Fraunhofer IESE 2006 31

Feature Model Based Product Derivation in
Software Product Line Engineering

Nan Frederik Mungard

Software Systems Engineering
University of Duisburg-Essen

45117 Essen, Germany
nan.mungard@sse.uni-due.de

Abstract. Given a feature model, the initial activity of application en-
gineering is to determine a set of features that form the configuration
of the application. With very large feature models this process becomes
tedious, as a great amount of selections have to be made. This paper dis-
cusses the challenges to product derivation and lays out requirements for
product derivation. As a solution a new model is proposed and realized
as a prototype. The model defines a clear terminology for the process and
is adaptible to different application scenarios; e.g. staged configuration.

1 Introduction

A widely used notation for modelling domain knowledge of software product lines
(SPLs) is feature modelling, first introduced by Kang et al. [KCH+90]. A feature
model uses features, domain relations, and dependencies to express the concepts
and the variability of the domain. Based on the feature model the application
engineers have to derive a consistent and fully bound selection of features that
form the configuration. Consistent means that the semantic of the feature model
is not violated. Fully bound means that the variability of the feature model is
completely resolved.

In my diploma thesis at the Research Group Software Construction, RWTH
Aachen, I focussed on the process of deriving a configuration from a feature
model. My research interest was to describe and analyze this process. In the
following, I present my work.

Limitations The evolution of feature models is not considered in this paper. Also
only a very basic feature modelling notation is used which does not encompass
cardinalities, attributes, and complex dependencies.

1.1 Outline

This paper is organized as follows. In Section 2 the challenges of product deriva-
tion in general and with regard to feature models are discussed. In Section 3 a
model for product derivation is introduced. In Section 4 different applications of

32

the model are proposed. Section 5 describes this work’s approach to validation
and the realized prototype. An overview of related work is given in Section 6.
Section 7 summarizes the work.

2 Motivation

At the Software Product Lines Conference 2005 Jan Bosch described the key
challenges product derivation faces today. “The basic problem of product deriva-
tion is the enormous size of software product lines in industrial settings. [...] The
number of variation points easily ranges in the thousands and may even exceed
ten-thousand in some product families.”[Bos05]. Additionally, he criticized that
the process too heavily depends on experts.

The obvious consequence of large SPLs is that product derivation cannot be
considered as a single user problem. Instead a scenario where several stakeholders
cooperate, each contributing their expertise to specific parts of the derivation,
is far more realistic. In order to cooperate, responsibilities, roles, and rights are
needed; a process has to be defined. A second consequence of large SPLs is that
the importance of efficiency increases. E.g.: While selecting features in a list of
some 100 entries might be considered reasonable, the same is not true for a list
of 10.000 entries.

The problem of the dependency on experts might simply be discarded as
being another consequence of the size of current SPLs. Clearly, the size of a
SPL influences its complexity, as the number of possible configurations grows
exponentially. However, the question has to be raised whether all of the experts’
knowledge has been captured. Especially procedural knowledge, i.e. how to do
something, is often overlooked.

The challenges identified above apply to product derivation using feature
models, too. Furthermore it is important to note that a feature model cannot
capture procedural knowledge.

I identified further challenges that apply to feature model based product
derivation and current tools:

– Terminology The terminology of the product derivation process is not de-
fined. The most prominent example is the use of the word configuration
which refers either to the process or the result of the process. Another ex-
ample is that most papers do not state who is responsible for what. E.g.:
Who sets up the stages or product sets?

– Product Hierarchy and Context While in [KCH+90] great effort is
placed on creating a complete hierarchy of the features of the domain, the
modelling of the hierarchy of the products of the domain is neglected. Of
course, this is done on purpose as the commonalitites and differences of
products are expressed through the feature selection. But as pointed out by
[RW05] similar feature selections do not have to have similiar rationales.

– Not a Uniform Process Feature model based product derivation is not
a uniform process. E.g.: A sales person should have different rights than a

33

domain engineer. A software product line can or cannot allow for a delta in
the derived configurations.

– Conflict and Inference Conflict prevention and inference are useful mech-
anisms, but they should be handled with care. Inference may lead a user to
overlook problems in the configuration, when the system informs him, that
the configuration is done. Conflict prevention “only conceal[s] the basic issues
of disagreement rather than resolve them”[Mar99]. In general, the question
has to be raised whether a product derivation tool for software product lines
is an expert system. Or whether the user is the expert whom the system
supports (decision support system).

– Not enough abstraction When several users cooperate an additional ab-
straction layer is needed to separate the user decisions from the configuration
values. This way, redundant or conflicting decisions of differenzt users can
be documented without being lost.

3 Product Derivation Model

To address the above mentioned challenges I developped a model for product
derivation. The main task was to define a terminology for the artefacts of product
derivation. In the following, the artefacts as well as their relations and dynamics
are described.

Basically, the product derivation process consists of derivation decisions where
a user defines assignments for one or more features (see Figure 1). He can either
include or exclude a feature. By applying the given assignments to the semantics
of the feature model a mapping of each feature to a status can be determined.
A feature can be included or excluded from the configuration. Open means that
no assigments cause either the inclusion or exclusion of the feature. If different
assignments include and exclude a feature, the status of the feature is inconsis-
tent.

Configuration

/undone : bool

value : Value

Assignment

feature

1

*
Feature

selected

deselected

«enumeration»

Value

/undone : bool

Derivation Decision

1

/decisions

*

assignments *

status : Status

Mapping

* /mappings

* feature

bound

unbound

not bound

inconsistent

«enumeration»

Status

*caused by

Feature Model

features

*

Fig. 1. Storing of Values

34

A configuration is edited by performing derivation steps (s. Figure 2). The
basic step is the feature step. It represents the choice to assign a value to the
associated feature. Through collections several steps can be grouped together.
If the grouping is ordered it is a sequence, if not it is a selection.

When a derivation step is performed the choices represented by the derivation
step can be made. A performed feature step allows to either include or exclude
a feature from the configuration. Performing a sequence means that the ele-
ments of the sequence are performed sequentially. A performed selection allows
to simultaneously perform all its elements.

Afterwards the derivation step has to be finalized in order to apply the new
assignments to the configuration. This is only possible if the target of the deriva-
tion step was met. The target can either be unchanged or fully specialized. A
feature step is fully specialized if the feature is either included or excluded. A
collection is fully specialized if all the targets of its elements are satisfied. The
result of a finalized derivation step is a derivation decision. The decision stores
all assignments made.

Derivation decisions can be undone. An undone derivation decision is not
removed from the configuration, as it still represents an expressed user second
type of undo is to undo a value for a feature. Undoing a value means that each
assignment of the value to the given feature is ignored. An undone decision or
assignment is signalled by the undone attribute.

Configuration Types In this model two general types of configurations are
differentiated (see Figure 3). Workpieces are configurations that can be edited,
i.e. on which derivation steps can be performed. Baselines are configurations that
represent a lasting result of the derivation process and that cannot be altered.
Baselines again fall into two types. Products are consistent and fully bound con-
figurations. They form the basis of the application design and implementation.
A master is a branching point in the derivation process. The most prominent
master configuration is the platform.

Each configuration holds a set of derivation steps. Every editor of a config-
uration can perform its derivation steps. This allows for a configuration based
reuse of derivation steps.

name : string

Collection

target

Derivation Step
Feature Step

/elements*

Sequence

Selection/undone : bool

Derivation Decision

/undone : bool

value : Value

Assignment

1assignments *

*

step*

*

step

*

elements {ordered} *elements *

Fig. 2. Derivation Steps

35

Configuration

Workpiece

Baseline

MasterProduct

master

0..1

derived from*

Derivation Step

steps

Platform

Fig. 3. Hierarchy of configurations

In Figure 4 the transformations of configurations are shown. A workpiece is
created by deriving it from a master. It is a copy of the master and can be edited.
When an important point in the derivation has been reached a snapshot of the
workpiece can be taken. The snapshot is again a copy. It is always possible to
create another master. This way a master can be used to store temporary results
and create new starting points for product derivation. To create a new product,
however, the workpiece has to be fully bound and it has to be consistent.

 : Platform Derive

 : Workpiece

Edit

Take Snapshot

 : Master

 : Product

[complete]

Fig. 4. Transformations of Configurations

Roles During product derivation a user can play several roles. Each user who
participates in the product derivation is a participant. Each configuration has
a derivation manager who administrates the configuration. This encompasses
adding and removing the participants and defining derivation steps for the con-
figuration. Workpieces can have an editor who is able to perform derivation
steps leading to derivation decisions (see Figure 5). Every participant of a mas-
ter configuration can derive new workpieces. The deriving participant is then
automatically assigned as editor of the workpiece. Afterwards the derivation
manager of the workpiece assigns the following editors.

Each user has a set of derivation steps for personal use, that he/she can apply
to different workpieces. The derivation steps of the user allow for a user based
reuse of derivation steps.

36

Configuration

Workpiece

User

participant

1..* *

derivation manager 1 *

editor0..1

*

/undone : bool

Derivation Decision

/decisions

*

target

Derivation Step

steps

*

Fig. 5. Roles

To taylor the process to the specific requirements of a given situation the
model relies on derivation parameters. A derivation parameter characterizes a
user’s role and access during product derivation. Besides the following six deriva-
tion parameters, more differences between derivation processes are thinkable and
will be considered in my future work.

– Access Region: The access region refers to the features for which the user
can execute derivation steps. Possible values are: derivation manager, partial,
empty. For partial access a set of features has to be defined for which the
user has access. The value derivation manager implies that the user has the
access region of the derivation manager.

– Undo: Undo determines what decisions a user can undo. Values are: own,
team, derivation manager. Team refers to all decisions of current partici-
pants. Derivation manager is analogous to access region.

– Conflict Prevention: Conflict prevention specifies if the system should
actively prevent the user from making assginments that lead to conflicts or
not. Possible values are: full, own, none. Own means that conflicts are only
prevented between decisions the user has taken himself.

– Inference Information: Inference Information defines what information
the user receives during product derivation about the computed state of the
configuration. Possible values are: full, own, none. Own means that the user
is only informed about inferred values resulting from his own decisions.

– Own Steps: If own steps is enabled a user can freely select between steps
provided for by the configuration and his own steps. If not, the user is limited
to the steps provided for by the configuration.

– Instance Manager: A derivation manager of a master configuration can
specify who becomes instance manager if a new workpiece configuration is
instantiated by a participant.

The derivation manager has to set all derivation parameters for each partici-
pant of the product derivation other than himself. The derivation parameters of
the derivation manager are set by his precursor and cannot be changed.

4 Application Scenarios

In this section a few application scenarios that can be supported with the model
are introduced. They show different approaches to product derivation.

37

– Toolbox: Experts store the derivation steps they consider useful in order to
reuse them. If they have a specific order in which they resolve the variability
of the feature model, they create an appropriate sequence. If they are inter-
ested in a specific view on the feature model they sets up a corresponding
selection.

– Prescription: The domain experts want to make sure that the sales staff
performs specific steps when contacting the client for the first time. They
set up a master for the sales staff with a sequence containing all relevant
derivation steps. As target he chooses fully bound for the derivation step and
its elements. Furthermore they forbid own steps for the sales staff. Whenever
the sales staff instantiates a new workpiece they are limited to using the given
sequence.

– Staged Configuration: A derivation manager can perform a staged config-
uration simply by setting the undo and access region derivation parameters
of the participants accordingly.

– Voting: Several users are asked to record their selections for a specific set
of features. The set of features is given in the form of a sequence. They
are not informed about inferred values at all. Conflict prevention is also
disabled. Afterwards all records are compared. Voting is a classical approach
for finding a decision in a group.

– Joined Optimization: Several experts cooperate during the derivation.
They are responsible for different aspects and their decisions have the same
priority. They are only informed about the system state resulting from their
own decisions. Afterwards existing conflicts in the configuration are solved
together.

– Flat Hierarchy: A flat hierarchy can also be realized in the given model.
All users are participants of the platform configuration. They are assigned
as instance managers and all other derivation parameters are set to the least
restrictive value.

The flat hierarchy scenario on the one hand and e.g. the joined optimization
szenario on the other hand, indicate the ability of the process to scale.

5 Approach to Validation

In order to demonstrate the concepts I realized a prototype. In the following the
prototype is described and the next steps for validation are discussed.

Prototype The prototype was created within RequiLine [vdML03] using the
C# programming language. It differentiates between master, product, and work-
piece configuration. Through derivation parameters and the definition of deriva-
tion steps, the process can be adapted to specific situations. Edit and undo are
seperated. If a user can use own steps, the system provides a generic derivation
step that corresponds to his access region. The undo can be performed on a
decision and a value base. In Figure 6 a screenshot of the edit window is shown.

38

Fig. 6. Screenshots of the Prototype: Performing Derivation Steps

Inference Engine The inference engine was implemented according to the al-
gorithms described in [Bat05]. However, some modifications were necessary. An
additional feature state inconsistent was introduced to encompass conflicting as-
signments. Any clause that contains an inconsistent feature is not evaluated by
the engine. In order to allow for undo a reset operation was needed. It operates
by recalculating all values based solely on the stored premises.

A problem I identified was conflict resolution. In my model a feature can
have multiple assignments, resulting in multiple causes for a given mapping.
Furthermore the derivation parameters can severely restrict a user in resolving
a given conflict. Therefore the task of conflict identification and resolution is
substantially more complicated.

Next steps On basis of the prototype extensive user studies are due. The
initial focus should be the evaluation and improvement of the GUI and of the
functionality of the prototype. If the initial phase is successful, the improved
prototype should be applied in an industrial setting to demonstrate its usefulness.

6 Related Work

To cope with large SPLs Reiser and Weber propose the usage of product sets
[RW05]. A product set represents a property and has sets of included and ex-
cluded features associated to it. By assigning a configuration to a product set the
features are included and excluded according to the associated feature sets. The
authors point out, that while product sets might contain the same features, there
could still be the need to differentiate between them based on their rationales.

Another contribution comes from the ConIPF project [Con06]. Although the
ConIPF approach to product derivation is not based on feature models they raise

39

important points, especially the importance of procedural knowledge. They pro-
pose the usage of strategies which contain configuration steps [KWR03]. Each
strategy is annotated with a priority and a precondition. During product deriva-
tion the strategy with the highest priority whose precondition is fulfilled is exe-
cuted.

Czarnecki, Helsen and Eisenecker introduce the concept of staged configura-
tion [CHE04]. In staged configuration the product derivation consists of stages
performed by different users. In each stage the user specializes the feature model,
that is, the user reduces its variability. The decisions taken in former stages can-
not be undone in later stages. This process is repeated until all variability has
been eliminated. Multi-level configuration is an extension of staged configuration
[CHE05]. Here the product derivation consists of executing levels in a predefined
order. Each level has a feature model that describes the choices a user can take.
The choices of earlier levels additionally limit the choices in later ones.

Existing Tools Most current tools in the field of feature model product deriva-
tion, e.g. [CAK+05,psG04], offer a tree view that corresponds to the feature
model. The user interactively includes and excludes features. The system then
calculates the inferred values and displays them. They differentiate between user
and system decisions, but not between different user decisions. Undo is per-
formed directly on the values of the configuration. Procedural knowledge cannot
be stored. Furthermore most settings are global and not user or configuration
specific. [psG04] has a conflict resolver and inference is optional. Additionally
it offers filters that can be used to store specific views of the feature model.
[CAK+05] supports staged configuration.

7 Conclusion

In this paper the case for new requirements for feature based product derivation
has been made. Product derivation in large software product lines is a multiuser
process. It should be supported by a well defined process with clear roles and
rights. The process should be adaptable to the needs of specific projects. Con-
figurations should not be edited directly, but computed based on the given user
input. Also the question of reuse should be handled systematically.

To support this claim a process and prototype have been realized and an
approach to validation has been layed out. Mappings are computed based on
decisions. Collections are a simple and intuitive way to store procedural knowl-
edge. Reuse has been defined on a user and on a configuration level. The deriva-
tion parameters are examples of potential and important differences in product
derivation processes. Additionally, a clear vocabulary for the process has been
presented.

Future Work The derivation decisions could be used to allow for a merge ap-
proach as proposed in [CHE05]. Evolution could be supported by the derivation

40

hierarchy which represents a clear path to propagate changes. If and how evolu-
tion decisions taken for a master configuration apply to its derived configurations
could be included in the model as derivation parameter.

Acknowledgements I would like to thank Thomas von der Maßen, Alexander
Nyssen, and Prof. Lichter of the Research Group Software Construction, RWTH
Aachen, for supporting me with my diploma thesis.

References

[Bat05] Don S. Batory. Feature models, grammars, and propositional formulas. In
Obbink and Pohl [OP05], pages 7–20.

[Bos05] Jan Bosch. Software Product Families in Nokia. In Obbink and Pohl [OP05],
pages 2–6.

[CAK+05] Krzysztof Czarnecki, Michal Antkiewicz, Chang Hwan Peter Kim, Sean
Lau, and Krzysztof Pietroszek. fmp and fmp2rsm: eclipse plug-ins for mod-
eling features using model templates. In Ralph Johnson and Richard P.
Gabriel, editors, OOPSLA Companion, pages 200–201. ACM, 2005.

[CHE04] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged con-
figuration using feature models. In Robert L. Nord, editor, SPLC, volume
3154 of Lecture Notes in Computer Science, pages 266–283. Springer, 2004.

[CHE05] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configu-
ration through specialization and multi-level configuration of feature models.
Software Process: Improvement and Practice, 10(2):143–169, 2005.

[Con06] Conipf - configuration in industrial product families, 2006.
http://www.conipf.org/ [Online; accessed 20-July-2006].

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasi-
bility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

[KWR03] Thorsten Krebs, Thomas Wagner, and Wolfgang Runte. Recognizing user
intentions in incremental configuration processes. In Proceedings of Config-
uration - IJCAI 2003 Workshop, pages 44–50, August 2003.

[Mar99] George M. Marakas. Decision support systems in the twenty-first century.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1999.

[OP05] J. Henk Obbink and Klaus Pohl, editors. Software Product Lines, 9th Inter-
national Conference, SPLC 2005, Rennes, France, September 26-29, 2005,
Proceedings, volume 3714 of Lecture Notes in Computer Science. Springer,
2005.

[psG04] pure-systems GmbH. Technical White Paper: Variantenmanagement mit
pure::variants, 2004.

[RW05] Mark-Oliver Reiser and Matthias Weber. Using product sets to define com-
plex product decisions. In Obbink and Pohl [OP05], pages 21–32.

[vdML03] Thomas von der Maßen and Horst Lichter. Requiline: A requirements en-
gineering tool for software product lines. In Frank van der Linden, editor,
PFE, volume 3014 of Lecture Notes in Computer Science, pages 168–180.
Springer, 2003.

41

Copyright © Fraunhofer IESE 2006 42

4 Marcilio Mendonca, Toacy Oliveira, Donald Cowan
Collaborative and Coordinated Product Configuration

Copyright © Fraunhofer IESE 2006 43

Collaborative and Coordinated Product Configuration

Marcilio Mendonca1, Toacy Oliveira2, Donald Cowan1

1School of Computer Science, University of Waterloo

Waterloo, Ontario, Canada
2 Departamento de Computação, PUC-RS

Porto Alegre, RS, Brasil

{marcilio,dcowan}@csg.uwaterloo.ca, toacy@inf.pucrs.br

Abstract. Product configuration is a key activity of product engineering that
regards the constrained combination and parameterization of product line
assets as a means to achieve correct software specification. Current product
configuration approaches frequently rely on the application engineer to
translate user requirements into correct configuration choices. This process is
error-prone and risky as requirements may lead to conflicting decisions at
configuration time. Indeed, we deem that an important aspect of product
configuration has long been neglected: its collaborative nature. In our research,
we advocate that product configuration is enhanced by a collaborative
perspective, providing that conflicting scenarios are properly handled. We
propose an approach to support collaborative and coordinated product
configuration by promoting processes to first-order elements for the explicit
guidance of configuration decisions. We provide insights on important
coordination issues and introduce an algorithm to derive process models from
annotated feature models to illustrate the approach's feasibility.

Classification: Ph.D., 3rd year.

1 Introduction

Product configuration is a key activity of product engineering that regards the
constrained combination and parameterization of product line assets as a means to
achieve correct software specification. As configurability is a critical issue in product
family approaches proper variability management is required. Feature modeling [5]
has been well accepted as a technique to capture and represent commonalities and
variabilities of product families. Since its inception in 1990, feature models have
been enhanced and widely supported [1][4][9][6] motivated by the need for improved
automation of production processes. Today, it is common practice to make use of
mappings to link features to components of domain-specific languages as means to
support automated product generation [1][4].

However, as feature models are experienced in practical scenarios important
shortcomings start to arise. First, product configuration is turning into a complex
process requiring people with different knowledge, skills and authority to coordinate
efforts towards a common goal, i.e., the specification of a valid software

44

configuration. In [2], some contexts in which product configuration is performed in
stages (or collaboratively) are depicted. Nonetheless, current approaches to product
configuration mostly rely on the role of the product engineer to properly interpret and
translate user requirements into configuration choices. This process is error-prone
and may also lead to decision conflicts as the requirements of different stakeholders
may be found incompatible at configuration time. Second, although feature models
are normally regarded as hierarchical structures with a fairly simple semantic, in
practice they resemble graphs as opposed to trees as a consequence of complex
feature dependencies. For instance, semantic feature dependencies have been largely
exploited in the realm of feature interactions [18][9]. In practice, major
consequences are the increased complexity of product configuration and the need for
proper coordination of configuration decisions especially when a collaborative
perspective is envisioned.

In this paper, we present our research on product configuration. The research aims
at investigating alternatives to enhance the configuration process. In particular,
motivated by the problems earlier mentioned, we are interested in enabling a
collaborative and coordinated product configuration scenario. In such scenario,
product configuration is achieved when a group of decision makers (e.g.
stakeholders) coordinate their (sometimes conflicting) decisions towards a commonly
agreed configuration model1. We incorporated analysis of such conflicting scenarios
in order to properly address coordination issues. The approach relies on process
models to describe configuration steps and their order of execution, and also includes
an algorithm to derive process models from annotated feature models2. We expect
our approach to be fully applicable as process engines can be used as a runtime
environment allowing for the execution of generated process model.

 The main contributions of our research include: a new perspective on product
configuration that promotes collaboration and coordination throughout the
configuration process; various insights on important product configuration issues
including decision conflicts and decision propagation; an algorithm to derive process
models from annotated feature models; the development of a support tool that
demonstrates the feasibility of the approach in a practical context.

The remainder of this paper is organized as follows. Section 2 provides
background and related work on product configuration and software processes. In
section 3, we present our approach to collaborative and coordinate product
configuration. Section 4 discusses the current status of our research. We conclude the
paper and discuss the next steps in our research in section 5 and provide references in
section 6.

2 Background and Related Work

Product Configuration: various approaches to product family engineering have
recognized the importance of feature models in supporting product engineering
activities, in special, product configuration [5][7][2][1][4]. Kang et al. [5] introduced
feature modeling as a domain analysis technique in FODA to represent variability in

1 The configuration model stores the product decisions [20] made in the configuration process.
2 Annotated feature models can also be seen as decision models [20].

45

product families. Since then, various enhancements have been proposed to feature
modeling in an attempt to boost software automation [1][4]. For instance, in FArM
[4] and in generative programming [1], mappings to link configuration models to
domain-specific languages are suggested as a means to improve automated code
generation. In [8], Griss acknowledged that product configuration can be a complex
and coordination-demanding process by stating that “…as a product is defined by
selecting a group of features, a carefully coordinated and complicated mixture of
parts of different components are involved”. The complexity of product configuration
caused by feature interaction problems was extensively discussed in the literature
[18] [9]. Gurp et al. [9] addressed feature interaction as a problem of decomposition
in which “…the sum of parts is larger than the individual parts”, i.e., features may
overlap and expose complex dependencies. Thus, for Gurp it is natural to refer to
feature models as feature graphs. Calder et al. [18] made a comprehensive survey on
feature interaction problems using telecommunication systems as motivational
examples. Czarnecki et al. [2] points out various contexts in which product
configuration is achieved collaboratively (the author named it staged configuration).
In staged configuration, mechanisms such as specialization and multi-level
configuration are used to progressively eliminate configuration options. After a
certain number of stages a configuration model is derived reflecting the collaborative
decisions made. How conflicting decisions are handled is left open.

Software Processes: the idea of software processes as a means to reduce costs
and raise software quality is relatively old. In 1987, Osterweil stated that “software
processes are software too” [14] suggesting that similarly to software applications
processes could be modeled, implemented, tested and more importantly executed. In
this sense, executable process models allow not only for the description of
collaborative scenarios but also for their automation. When applied to the realm of
business, processes are referred to as business processes. Business processes
generalize the notion of software processes [13] thus developed technology might
also fit well in the software process world. For instance, BPMN [16] is a business
process modeling notation that can be used to describe process models. BPMN
models can be executed when transformed to other formats such as BPEL [15]
models. In our approach, we plan to use BPMN to describe derived process models
and BPEL-related technology as an execution environment for such models.

3 Approach

In the next section, we provide a set of definitions and concepts that might prove
useful in understanding our approach.

3.1 Concepts and Definitions

Decision: During product configuration, a decision is made when an originally
undecided feature, i.e., without any decision state defined, is voluntarily selected or
unselected. In principle, decisions are to be made in a top-down fashion following the
hierarchical structure of feature models. Thus, decisions made on level-1 enable or
disable decisions on subsequent levels. In Fig. 1-A a feature diagram is shown

46

containing a concept (C), mandatory (F11, F12) and optional features (F13, F14) as
well as alternative (F23, F24), inclusive-or (F21, F22), and exclusive-or features
(F25, F26). The diagram follows the notation described in [1] and also includes
group cardinalities to facilitate understanding. If feature F13 is unselected then level-
2 features F23 and F24 will be unselected and consequently not present in the final
configuration. Features may also expose constraining dependencies such as requires
and excludes. If a feature A requires a feature B it means that if A is selected then the
selection of B is also required. It also means that if B is unselected then A must be
unselected too. In the example, if feature F22 is selected then so will feature F23 and
if feature F23 is unselected then feature F22 should also be unselected.

requires

C

F11 F13

F23 F24F22F21

F12
[1..*] [0..1]

F14

F25 F26

[1]

requires

(A)
requires

C

F11 F13

F23 F24F22F21

F12

[1..*] [0..1]

F14

F25 F26

[1]

requires

(B)

Fig. 1. Example of a Feature Model (A) and a Configuration Model (B)

Decision Conflicts: Because feature models can become graphs as opposed to trees
they are likely to contain conflicting decisions. We say a decision conflict occurs
when two or more features contain explicit or implicit dependencies that make them
rely on the decision state (e.g. selected, unselected) of each other. For instance, in
Fig. 1-B, a decision conflict occurred when feature F22 was selected but feature F23
was intentionally unselected. In this case, the conflict can be resolved either by
selecting feature F23 or by unselecting feature F22. However, a careful examination
will reveal that the problem is much more complex than it appears because of
implicit dependencies. Features F23 and F24 are alternative features thus only one
can be selected. However, unselecting feature F24 also means unselecting feature
F25 because of the require dependency. Therefore, features F22 and F24 as well as
F22 and F25 are mutually exclusive even though this dependency is not shown
explicitly but rather was derived from other dependencies. In general, decision
conflicts occur when dependent features hold inconsistent decision states.
Decision Propagation: Decision propagation is the process of propagating a decision
throughout the feature model based on feature dependencies. For example, the
decision to select feature F22 in Fig. 1-B should be propagated allowing features F23
and F13 to be selected as well as features F24 and F25 to be unselected. As expected,
decision propagation only occurs in feature models containing feature dependencies
otherwise decisions can always be made in a top-down fashion. Decision propagation
is a recursive process. For every feature where a decision has to be made
automatically by means of decision propagation it is necessary to identify which
other features may also be affected. We identified at least three scenarios in which
decisions propagate: i) within a group of alternative, inclusive-or, and exclusive-or
features depending on the group cardinality; ii) the ancestor’s path of a feature; iii)

47

the descendants of a feature. For example, when a decision is propagated to select a
feature within a group of alternative or exclusive-or features all other features will be
automatically unselected. When propagation occurs in an inclusive-or feature group
the cardinality of the group has to be taken into account and be deducted by one. In
the case of ancestors, all features that are at lower levels and in the path of a feature
where decision propagation was applied will also apply decision propagation. In the
case of descendants, only mandatory features may apply decision propagation as
optional features remain as open decisions. An example of a group decision
propagation occurred when feature F24 was automatically selected (because of
feature F25 selection) demanding feature F23 to be unselected. As another example,
ancestor feature propagation may occur when feature F24 selection triggers feature
F13 selection. In this case, decision propagation follows a bottom-up approach which
is opposite to the regular top-down flow of decisions in a feature model.
Decision sets: A decision set (DS) encompasses a group of features that will be
decided by decision makers playing specific roles (see examples of DSs in Fig. 2).
The union of all DSs forms the feature model. DSs are key components to enable
collaboration throughout product configuration. A valid DS must comply with the
following rules: i) contains at least one open decision; ii) contains a single root node;
iii) contains all grouped features of the same feature group; iv) do not overlap open
decisions with other decision sets
Decision roles: Decision roles (DR) are the means to assign configuration decisions
to different people involved in the product configuration process. DRs are linked to
one or more decision sets. The person playing a particular decision role is responsible
for making decisions on all attached decision sets (see Fig. 2).

requires

C

F11 F13

F23 F24F22F21

F12
[1..*] [0..1]

F14

F25 F26

[1]

requires

DS-B DS-C DS-D

DS-A
DR-X {DS-A,DS-B}

DR-Y {DS-C}

DR-Z {DS-D}

Fig. 2. Feature model annotated with different decision sets and decision roles

Conflict Resolution: Conflict resolution relates to the strategy adopted for resolving
decision conflicts. In a proactive perspective potential conflicts are anticipated and
solved beforehand (pessimistic approach) whereas in a reactive perspective conflicts
are solved iff they occur (optimistic approach).
Priority Scheme for Decision Conflicts: In order to properly solve decision conflicts a
priority scheme has to be specified. For each potential conflict scenario priorities are
assigned to participant decision roles in order to define their decision-power. For
instance, for a web portal system product line the project manager role can be
assigned the highest priority followed by the database manager role in a conflict

48

scenario that involves the selection of the database system for a particular web portal
instance. Therefore, if there is a disagreement on the database system chosen the
project manager’s decision will prevail.

3.2 Collaborative Product Configuration

Our approach is depicted in Fig. 3. The first step (Fig. 3, top arrow) indicates the
derivation of software processes from annotated feature models. That is, the feature
model is decorated with decision sets and decision roles, and then a transformation
process takes place producing a process model. As mentioned in the previous section,
process derivation may result in decision conflicts that require decision makers to
define the precedence of the conflicting decision sets. Decision sets without
dependencies will be forked while conflicting sets will be ordered sequentially
according to a specified precedence.

Fig. 3. Overview of the Approach

The second step (Fig. 3, bottom arrow) represents product configuration, in the

case, as a collaborative and coordinated process. The process model produced in step
1 can be executed by a process engine allowing decision makers to operate
simultaneously over feature models yet in a coordinated manner. In the end, a valid
configuration model is produced since all feature model constraints were enforced in
the process model. In the following, we provide an overview of the transformation
algorithm to derive process models (represented by the process derivation ellipse in
Fig. 3).

Algorithm: From annotated feature models to process models

1. Reads and validates input data (feature model, decision sets, and decision roles).
2. Identify and resolves decision conflicts.

a. Identifies conflicting decision sets.

49

b. Applies decision propagation to expand conflicting decision sets.
c. Shows the list of conflicting sets to the user.
d. Updates decision sets precedence’s table based on the priority scheme.

3. Builds the process model.
a. Navigates hierarchically over the feature model (top-down). If found

decision sets have no conflicting decisions, specifies precedence: upper-
level precedes lower-level; builds a process step for each decision set
found. Otherwise: specifies precedence according to user inputs and
builds a process step for each decision set.

b. Builds transitions between decision sets: fork for independent sets and
sequence for dependent sets.

c. Specify pre/post conditions for each step. Pre-condition: for each
process step checks whether the corresponding decision sets still have
open decisions. Post-condition: for each process step makes sure that
corresponding decision sets have no open decisions left.

d. Assign decision sets to decision roles
e. Generate the process model

4. Validates generated process model.

The algorithm begins by reading and validating the inputs, i.e., the feature model, the
decision sets and the decision roles. Following this step, decision conflicts are
searched and if decision sets are found conflicting, the user is presented with
necessary information to specify the desired precedence. At this time, the user is
prompted to indicate which decisions should prevail. Then, the process model starts
to be assembled. A hierarchical navigation over the decision sets is performed in
order to determine sequential and parallel sets. Conflicting decision sets are ordered
to reflect the precedence indicated by the user. Then, transitions are specified with
pre and post-conditions, and decision sets are assigned to decision roles. Finally, a
process model is produced and validated, and the process is finalized. The users in
this context are the decision makers involved in conflicting decisions.

Example: applying our approach on the annotated feature model of Fig. 2

In Fig. 2, a feature model is decorated with decision sets DS-A, DS-B, DS-C, and

DS-D and the decision roles DR-X, DR-Y and DR-Z. Decision sets were properly
assigned to decision roles (represented by the curly brackets in the figure). It is
important to notice that the specification of decision sets and decision roles is flexible
allowing organizations to (re)arrange the sets in a way that is appropriate to their
needs. Let us now discuss step-by-step how a process model is derived using the
annotated feature model described in Fig. 2 as the input.

First, the feature model and all decision sets and decision roles are validated.
Then, conflicting features and decision sets are discovered as illustrated in Table 1
(first and second columns). The features F22 and F23 as well as features F24 and F25
expose dependencies. Hence, decision sets DS-B and DS-C as well as DS-C and DS-
D represent conflicting sets.

50

Table 1. Decision conflicts and decision propagation

Conflicting
Features

Conflicting
Decision Sets

Propagated
Features

Propagated
Decision Sets

F22, F23 DS-B, DS-C F13, F24, F14, F25, F26 DS-D, DS-A

F24, F25 DS-C, DS-D F14, F26, F13, F23, F22 DS-A, DS-B

In the next step, decision propagation is applied to find implicit feature

dependencies. As shown in Table 1 (third and forth columns), the dependency
between features F22 and F23 is propagated and features F13, F24, F14, F25, and
F26 are found implicitly connected. The same process of decision propagation is
applied to features F24 and F25 and an expanded conflicting list is found as also
shown in Table 1. Notice that feature F11 is left out since it is mandatory for all
family members thus there’s no need to propagate a decision to select or unselect this
feature. The user is then presented with a high-level interface3 for conflict resolution.
Based on the user choices a precedence list is defined. In our example, the six
possible precedence lists are: {DS-A,DS-B,[DS-C],(DS-D)}, {DS-A,DS-B,[DS-
D],[DS-C]}, {DS-A, [DS-C], DS-B, [DS-D]}, {DS-A,[DS-C],[DS-D],DS-B}, {DS-
A,[DS-D],DS-B,[DS-C]}, and {DS-A,[DS-D],[DS-C],DS-B}. Square brackets
indicate optionality, i.e., previous decisions may automatically resolve subsequent
open decisions. Parentheses indicate that the decision set contains no open decisions
as a consequence of previous decisions made.

Fig.4. BPMN Process Model for Collaborative Product Configuration

Finally, note that decision set DS-A decisions precedes all others as the set is in

the same tree of decisions as the others yet in a higher level in the feature model
hierarchy. Fig. 4 illustrates an output BPMN process model representing a
collaborative and coordinated product derivation process as the user has indicated the
decision set’s precedence list as follows: {DS-A, [DS-C], [DS-D], DS-B}. As BPMN

3 The user interface for conflict resolution is still under development. Currently, precedence is

defined by selecting a valid precedence list.

51

models can be mapped to BPEL executable models [17] we expect produced process
models to be fully executable by BPEL engines.

4 Research to Date

We started our research studying the use of process languages in the context of
object-oriented application frameworks. In particular, we ran and reported a case
study on the use of RDL [10] to describe the instantiation steps of the REMF
framework [11]. We then proposed extensions to the RDL process language to
support aspect-oriented frameworks [12]. However, motivated by the applicability of
our background in a more advantageous context, i.e., software configuration, and
encouraged by preliminary successful results on staged configuration [2], we decided
to concentrate our efforts on enabling collaborative product configuration scenarios.
More specifically, we developed an approach to enable collaborative and coordinated
product configuration as shown in this paper. Currently, a preliminary version of the
algorithm to derive process models from annotated feature models have been
developed in Java along with data structures to represent feature models,
configuration models, decision sets, decision roles, and process models. The
immediate goal was to produce a simple tool to assess our approach through case
studies. The rules for defining decision sets are the same as those presented in this
paper though they may be subject of change to reflect future work. We are now
developing a new version of our tool to provide a more elaborated user interface and
to allow process models to be exported to different formals, e.g. BPEL [15] models.

5 Conclusion and Future Work

In this paper we presented our research on product configuration. The research
proposed an approach to foster a collaborative and coordinated product configuration
process. In the approach, feature models were decorated with decision sets and
decision roles and then transformed into process models that may be executed by
process engines. Important coordination issues were discussed including feature
interaction, decision conflicts and decision propagation.

Future works include the i) specification of a metal-model for validating annotated
feature models; ii) support for optimistic conflict resolution strategies; iii) support for
complex feature dependencies (e.g. A requires X or Y xor Z); iv) embedment of the
approach into existing product line methods as those mentioned in [21]; v)
enhancements to the support tool including its conversion to an Eclipse [19] plug-in,
the specification of a user interface for decision conflict resolution, and the
development of a visual editor for drawing and annotating feature models (possibly
by extending existing tools [3]); vi) run various case studies to assess our approach,
in special its scalability.

52

6 References

1. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and
Applications, Addison-Wesley, 2000, ISBN 0-201-30977-7.

2. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration through Specialization
and Multi-Level Configuration of Feature Models, Software Process Improvement and
Practice, 10(2), 2005.

3. Antkiewicz, M., Czarnecki, K.: FeaturePlugIn: Feature Modeling Plug-In for Eclipse,
OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop, 2004.

4. Sochos, P., Riebisch, M., Philippow, I.: The Feature-Architecture Mapping (FArM)
Method for Feature-Oriented Development of Software Product Lines, ECBS, pp. 308-
318, 13th Annual IEEE International Symposium and Workshop on Engineering of
Computer Based Systems (ECBS'06), 2006.

5. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis
(FODA) feasibility study, SEI, CMU, Pittsburgh, PA, Tech. Rep. CMU/SEI-90-TR-21,
Nov. 1990.

6. Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E., Huh, M.: FORM: A Feature-Oriented
Reuse Method with Domain-Specific Reference Architectures. Annals of Software
Engineering, 5 (1998) 143-168

7. Deelstra, S., Sinnema, M., Bosch, J., A Product Derivation Framework for Software
Product Families, Lecture Notes in Computer Science, Vol. 3014, 2004, p. 473 – 484

8. Griss, M. L: Implementing Product line Features with Component Reuse, in Proceedings
of 6th International Conference on Software Reuse, Vienna, Austria, June 2000.

9. Gurp, J. V., Bosch, J., Svahnberg, M.: On the Notion of Variability in Software Product
Lines, wicsa, p. 45, Working IEEE/IFIP Conference on Software Architecture
(WISCA'01), 2001.

10. Oliveira, T. C., Alencar, P. S., Filho, I. M., de Lucena, C. J., and Cowan, D. D. 2004.
Software Process Representation and Analysis for Framework Instantiation. IEEE Trans.
Softw. Eng. 30, 3 (Mar. 2004), 145-159.

11. Mendonca, M., Alencar, P. S., Oliveira, T. C., and Cowan, D. D.: Assisting Framework
Instantiation: Enhancements to Process-Language-based Approaches, Technical Report
CS-2005-025, School of Computer Science, University of Waterloo, Sept 2005.

12. Mendonca, M., Alencar, P. S., Oliveira T. C., and Cowan, D. D.: Assisting Aspect-
Oriented Framework Instantiation: Towards Modeling, Transformation and Tool
Support, OOPSLA Companion, 2005, San Diego, US.

13. Henderson, P.: Software Processes are Business Processes too, Third International
Conference on the Software Process, IEEE Comp. Soc. Press, Reston, USA, 1994.

14. Osterweil, L.: Software Processes are Software too. In Proceedings of the Ninth
International Conference on Software Engineering. IEEE Computer Society, Washington,
DC, 1987, pp. 2-13.

15. BPEL: Business Process Execution Language for Web Services
Internet site: http://www-128.ibm.com/developerworks/library/specification/ws-bpel/

16. BPMN: Business Process Modeling Notation
Internet site: http://www.bpmn.org/index.htm

17. White, S. A.: Mapping BPMN to BPEL Example, IBM Corporation
http://www.bpmn.org/Documents/Mapping%20BPMN%20to%20BPEL%20Example.pdf

18. Calder, M., Kolberg, M., Magill, M.H.; Rei-Marganiec, S.: Feature Interaction A Critical
Review and Considered Forecast. Elsevier: Computer Networks, Vol. 41/1 (2003)

19. Eclipse Platform: http://www.eclipse.org/
20. Krueger, C.: Software Product Lines web site (www.softwareproductlines.com)
21. Matinlassi, M.: Comparison of software product line architecture design methods: COPA,

FAST, FORM, KobrA and QADA, Software Engineering, 2004. ICSE 2004. pp. 127- 136.

53

Copyright © Fraunhofer IESE 2006 54

5 Karen Cortes Verdin, Cuauhtemoc Lemus Olalde
Aspect Oriented Product Line Architecture (AOPLA)

Copyright © Fraunhofer IESE 2006 55

56

�

�

57

�

�

�

�

�

�

�

58

59

60

61

62

63

64

65

Copyright © Fraunhofer IESE 2006 66

Copyright © Fraunhofer IESE 2006 67

6 Uirá Kulesza, Carlos José Pereira de Lucena
An Aspect-Oriented Approach to Framework Development

An Aspect-Oriented Approach to Framework Development

Uirá Kulesza, Carlos José Pereira de Lucena

Computer Science Department, Software Engineering Laboratory

Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Brazil

{uira, lucena}@inf.puc-rio.br

Abstract. In this work, we propose an approach which aims to improve the

extensibility of object-oriented frameworks using aspect-oriented programming.

Our approach proposes the definition of extension join points in the framework

code, which can be extended by means of a set of extension aspects. These

aspects are responsible to implement optional, alternative and integration

features in the framework. Additionally, we also propose a generative model

which allows to instantiate automatically the variabilities of a framework and

its respective extension aspects.

Classification: PhD 3rd Year.

1 Introduction

Object-oriented (OO) frameworks [8] represent nowadays a common and important

technology to implement software families and product lines. They enable modular,

large-scale reuse by encapsulating one or more recurring concerns of a given domain,

and by offering different variability and configuration options to the target

applications. In the framework based development, applications are implemented by

reusing the architecture defined by the frameworks and by extending their respective

variation points or hot-spots [8]. Hence, the adoption of the framework technology

brings in general significant productivity and quality in the development of

applications. Besides their advantages, some researchers [5, 6, 17, 18] have recently

described the inadequacy of OO mechanisms to address the modularization and

composition of many framework features, such as, optional [5], alternative and

crosscutting composition features [17, 18]. The limited modularity provided by the

OO mechanisms brings difficulties to configure many framework features for specific

needs, thus impeding the framework adaptation and reuse [5, 6, 17, 18] in different

scenarios.

Aspect-oriented software development (AOSD) [9, 14] has been proposed as a

technology which aims to offer enhanced mechanisms to modularize crosscutting

concerns. Crosscutting concerns are concerns that often crosscut several modules in a

software system. AOSD has been proposed as a technique for improving the

separation of concerns in the construction of OO software, supporting improved

reusability and ease of evolution. Recent work [1, 15, 16, 18, 19, 20, 22, 29] has

explored the use of aspect-oriented (AO) techniques to enable the implementation of

68

flexible and customizable software family architectures. In these research works,

aspects are used to modularize crosscutting variable (optional or alternative) and

integration features.

In this work, we propose an approach which aims to improve the extensibility of

object-oriented frameworks using aspect-oriented programming (AOP). Our approach

proposes the definition of extension join points (EJPs) in the framework code, which

can be extended by means of variability and integration aspects. These aspects are

responsible to implement optional, alternative and integration features in the

framework. Since the aspects can be automatically unplugged from the framework

code, our approach makes easier to customize the framework to specific needs.

Additionally, we also propose a generative model which allows to automatically

instantiate specific customizations of an object-oriented framework with its respective

extension aspects according to user needs.

The remainder of this paper is organized as follows. Section 2 presents background

by detailing framework modularization problems addressed by our approach. Section

3 gives an overview of our approach for framework development with aspect-oriented

programming based on the specification of EJPs. Section 4 describes the

implementation of the JUnit framework using our framework development approach.

Section 5 describes the generative model used to instantiate automatically the

variabilities of a framework and its respective extension aspects. Section 6 discusses

related work. Finally, Section 7 summarizes our contributions and provides directions

for future work.

2 Modularization Problems in OO Frameworks

Despite the well-known benefits of OO frameworks in implementing program

families, recent research has exposed the inadequacy of framework technology in

modularizing features with particular properties, such as optional [5] and crosscutting

composition [23, 24] features. In this section, we briefly revisit research work that

describes the inadequacy of object-oriented mechanisms to modularize specific

framework features. These issues hinder the framework instantiation process to meet

specific user needs. As a result, framework reuse can become unmanageable or even

impracticable. Next, we describe these two problems of framework feature

modularization.

Modularizing Optional Framework Features. Batory et al [5] address the issues

of the framework technique in modularizing optional features. An optional feature is a

framework functionality that is not used in every framework instance. According to

such research, developers typically deal with this problem either by implementing the

optional feature in the code of concrete classes during the framework instantiation

process, or by creating two different frameworks, one addressing the optional feature

and the other one without it. As a result, many framework modules are replicated just

for the sake of exposing optional features, thus leading to “overfeatured” frameworks

[6], in which several instance-specific functionalities can be present.

69

By analyzing a number of available frameworks (such as JUnit and JHotDraw), we

note that the most widespread practice in implementing framework optional features

is the use of inheritance mechanisms to define additional behavior in the framework

classes. In the JUnit framework, for example, inheritance relationships are used to

define a specific kind of test case as well as additional and optional extensions to test

cases and suites.

Crosscutting Feature Compositions in Frameworks Integration. Mattsson et al

[23, 24] have analyzed the issues in integrating OO frameworks and proposed several

OO solutions. Their research relates the composition of two frameworks to the

composition of a new set of features (represented as a framework) in the structure of

another framework. For example, suppose we need to extend the JUnit framework to

send specific failures that occur to software developers. A specific test failure report

could be send by e-mail to different software developers, every time a specific and

critical failure happens. Imagine we have available an e-mail framework to support

our implementation. The problem here is how we could implement this functionality

in the JUnit framework. It involves the integration of the JUnit and the e-mail

framework. This composition could be characterized as crosscutting since we are

interested to send a failure report by e-mail during the execution of the tests.

Based on a case study [18] with feature compositions involving four OO

frameworks of varying complexity and addressing concerns from distinct horizontal

and vertical domains [7], we have concluded that the framework integration solutions

presented by Mattson et al [23, 24] are invasive and bring several difficulties to the

implementation, understanding, and maintenance of the framework composition code.

Our analysis has shown that 6 out of 9 solutions described by those authors have poor

modularity and a crosscutting nature, requiring invasive internal changes in the

framework code.

3 An Approach to Extending OO Frameworks with Aspects

This section gives an overview of our framework development approach. Our

approach deals with the framework modularization problems presented previously

(Section 2) by using AOP and the notion of extension join points (EJPs). EJPs also

support the disciplined specification of additional opportunities for framework

extensions. Section 3.1 presents the proposed approach by describing the concept of

EJPs. Section 3.2 describes different uses of aspects to improve framework

extensibility. Section 3.3 presents the achieved benefits. Section 3.4 discourses about

the EJP implementation in AspectJ language. Finally, Section 3.5 presents the

application of the approach to the JUnit framework.

3.1 Extension Join Points

In our approach, an OO framework specifies and implements not only its common

and variable behavior using OO classes, but it also exposes a set of extension join

points (EJPs) which can be used to also extend its functionality. The idea of EJPs is

70

inspired by Sullivan et al’s work [28, 11] on specification of crosscutting interfaces

(XPIs). Similar to XPIs, EJPs establish a contract between the framework classes and

a set of aspects extending the framework functionality. However, unlike XPIs, EJPs

are adopted as a means to increase the framework variability and integrability. Thus,

we propose to use the XPI concept in the context of framework development. EJPs

can be used to three different purposes:

(i) to expose a set of framework events that can be used to notify or to facilitate

a crosscutting integration with other software elements (such as, frameworks or

components);

(ii) to offer predefined execution points spread and tangled in the framework into

which the implementation of optional features can be included;

(iii) to expose a set of join points in the framework classes that can have different

implementations of a crosscutting variable functionality.

In this context, EJPs document crosscutting extension points for software

developers that are going to instantiate and evolve the framework. They can also be

viewed as a set of constraints imposed on the whole space of available join points in

the framework design, thereby promoting safe extension and reuse. A key

characteristic of EJPs is that framework developers and users do not need to learn

totally new abstractions to use them, as they can mostly be implemented using the

mechanisms of AOP languages, such as AspectJ.

3.2 Framework Core and Extension Aspects

Our approach promotes framework development as a composition of a core structure

and a set of extensions. A framework extension can be: (i) the implementation of

optional or alternative framework features; or (ii) the integration with an additional

component or framework. The composition between the framework core and the

framework extensions is realized by different types of aspects. Each aspect defines a

crosscutting composition with the framework by means of its exposed EJPs. Next, we

describe the main elements of our approach:

(i) framework core – implements the mandatory functionality of a software

family. Similar to a traditional OO framework, this core structure contains the frozen-

spots that represent the common features of the software family and hot-spot classes

that represent non-crosscutting variabilities from the domain addressed;

(ii) aspects in the core – implement and modularize existing crosscutting

concerns or roles in the framework core. They represent the traditional use of AOP to

simplify the understanding and evolution of the framework core;

(iii) variability aspects – implement optional or alternative features existing in

the framework core. These elements extend the framework EJPs with any additional

crosscutting behavior;

(iv) integration aspects – define crosscutting compositions between the

framework core and other existing extensions, such as an API or an OO framework.

These elements also rely on the EJPs specification to define their implementation.

Figure 1 shows the design of an OO framework with aspects following our

approach. As we can see, both variability and integration aspects can only act in the

EJPs provided by the framework and they must respect all the constraints defined by

71

them. This brings systematization to the framework extension and composition with

other artifacts.

Framework Core

Hot Spots

Hot Spot Instances

Frozen Spots
EJPs

EJPs
<<crosscuts>>

Integration

Aspect

Aspect

Framework

or API

<<calls>>

Variability

Aspects

Aspect

<< uses >>

<<crosscuts>>

<<uses>> <<uses>>

Aspect

Legend:

Class

Aspect

Aspect with EJPs

Framework Core

Hot Spots

Hot Spot Instances

Frozen Spots
EJPs

EJPs
<<crosscuts>>

Integration

Aspect

Aspect

Framework

or API

<<calls>>

Variability

Aspects

Aspect

<< uses >>

<<crosscuts>>

<<uses>> <<uses>>

Aspect

Legend:

Class

Aspect

Aspect with EJPs

Figure 1. Elements of our Framework Development Approach

3.3 Benefits

Table 1 describes the benefits brought by each type of aspect in our framework

development approach. It also indicates how the core, variability, and integration

aspects address each of the modularization problems in framework development and

evolution. As pointed out in the table, the use of internal framework aspects also has a

positive impact on the framework variability and integrability. They facilitate the

specification of EJPs because core aspects promote modularization of the internal

class roles. Therefore, they offer additional join points to be exploited in extension

scenarios.

3.4 EJPs Implementation

We have explored the use of AspectJ [3] language to specify the framework extension

join points. The EJP codification in AspectJ language brings the following advantages

to the framework extension process: (i) it enables the developer to expose a set of join

points that are spread in the framework in a single aspect, that can be used to extend

the framework functionality with integration and variability aspects; and (ii) it allows

the representation of many constraints – that must be satisfied when extending those

join points – in a way that they will not just be stated but they will be enforced during

compilation and runtime.

Each EJP is represented by an aspect comprising a set of AspectJ pointcut

descriptors that represents the set of extension join points of a framework. The EJP

constraints which regulate the relationships between the framework, EJPs and

extension aspects (mentioned in Sections 3.1 and 3.2) are represented, in our

approach, by separate aspects. We are defining a methodology to specify different

72

kinds of contracts which define the constraints between the elements of our approach.

We have classified these contracts in the following categories: (i) framework internal

contracts - contracts between the framework and its EJPs whose purpose is to assure

that framework refactorings and evolution do not affect the functionality of its

extension aspects; and (ii) framework extension contracts - contracts between the

EJPs and its extension aspects to assure that each extension aspect respects constraints

and invariants of the framework.

We have used different mechanisms of AspectJ to implement the EJPs contracts.

AspectJ offers both static and dynamic mechanisms that can be used to specify them.

When choosing mechanisms for each contract type, we prefer static mechanisms

(such as declare parents, declare error and declare warning constructions) to dynamic

ones (such as advice execution). This allows to verify many of the contracts before

the complete installation of the software. Due to space limitation, we do not present in

detail in this paper our categorization of contracts as well as their implementation in

AspectJ. For a complete description, please refer to [15].

Table 1. Framework Development Approach Elements

Approach Element

Benefits

Modularization

Problem Addressed

Aspects in the Core

- Simplify the understanding and

evolution of the framework core

• Modularize existing crosscutting

concerns or roles in the framework

core.

- Facilitate the design of EJPs

Crosscutting

Roles and Concerns

Extension Join

Points

- Systematize the framework extension

and composition by promoting safe

framework reuse

• Enable the composition between

framework core and extensions.

• Encapsulate the framework and

exposes only proper join points.

Tight Coupling

between Core and

Extensions

Variability Aspects

- Facilitate the framework reuse and

extension.

• Modularize optional and alternative

framework features.

• Make it possible to plug and unplug

optional or alternative features.

Optional or

Alternative Features

Integration Aspects

- Facilitate the framework reuse and

composition.

• Modularize the framework

composition with other extensions.

• Make it possible to plug and unplug

crosscutting framework composition.

Crosscutting

Framework

Compositions

73

3.5 Case Studies

Our approach has emerged from our experience in different domains, through a

process of continuous interaction and refinement between case studies and the

approach itself. In this context, the approach was employed in the development of

frameworks in the following domains: (i) JUnit testing framework [15, 16]; (ii) J2ME

games [1, 15, 16]; (iii) multi-agent systems (MASs) [19]; and (iv) measurement

support for product quality control [18]. Next section details the JUnit framework

case study. For a more detailed description of the implementation of EJPs and

framework extensions for our case studies, please refer to [15, 16].

4 JUnit Case Study

This section illustrates the use of the proposed approach in the context of the JUnit

framework. Although JUnit presents a well-modularized architecture, we have found

some modularization problems [21] hindering its future extension/evolution. In the

context of other complex and large-scale frameworks, these problems can cause

architecture erosion after a while. Due to space limitation, we have briefly mentioned

JUnit problems in Section 2.

The main purpose of the JUnit framework is to allow the design, implementation

and execution of the unit tests in Java applications. According to the JUnit

framework, each unit test is responsible for exercising one class method in order to

assure that it performs as expected. The JUnit main functionalities are: the definition

of test cases or suites to be executed; the execution of a selected test case or suite; and

the collection and presentation of the test results. However, different extensions

(optional features) can be implemented to add new functionalities into the JUnit

framework core. Some examples of simple extensions are the following: (i) enable

JUnit to execute each test suite in a separate thread, and wait until all tests finish; (ii)

enable JUnit to run each test repeatedly. In order to implement this extension we need

to observe the event when each test method runs; and (iii) introduce some additional

behavior before or after the test case or suite.

These extensions need to observe JUnit internal events, which are spread over

JUnit classes. The modularization of these extensions using OO mechanisms is

addressed by complex class hierarchies which bring difficulties to the understanding

and evolution of the framework core and of each extension. In other words, such

extensions are not well modularized in the OO design. In our approach, an EJP was

used to expose such key events that are not adequately captured by the OO design and

that are useful for crosscutting compositions scenarios. Figure 2 presents an EJP,

called TestExecutionEvents, which exposes the following join points from the

JUnit: (i) test case execution; (ii) test suite execution; and (iii) initialization of test

runners. Some of these join points were discovered by checking them against these

anticipated crosscutting extension scenarios. Based on this first set of discovered join

points, we could foresee other relevant events that may be of interest when extending

JUnit.

After codifying the TestExecutionEvents EJP, we can implement different

variability aspects, as presented in Figure 2, to add the testing extensions into the

74

JUnit EJPs, such as: (i) to run test cases or test suites repeatedly (RepeatAllTest

aspect); (ii) to execute them in separate threads (ActiveTestSuite aspect); and (iii)

to introduce some additional behavior before or after the test case or suite

(TestCaseDecorator and TestSuiteDecorator aspects). We reuse the join

points exposed in the aspect TestExecutionEvents to implement each of them. It

is also possible to codify aspects to affect just specific test cases or suites defined to

test an application. Finally, the JUnit EJPs can also be used to compose it with other

OO frameworks. Figure 2 shows, for example, the MailNotification integration

aspect responsible for monitoring the test execution, building specific test reports and

sending them by e-mail to specific developers. An email framework could be

composed with the JUnit framework to provide that functionality by means of an

integration aspect. The implementation of this functionality in the original OO design

requires the introduction of invasive code in the TestSuite and TestCase classes in

order to notify the classes responsible to implement and integrate it with the email

framework.

Figure 2. Elements of our Framework Development Approach

5 An AO Generative Model to Framework Instantiation

The result of the implementation of a software family or product line architecture

using our framework development approach is a set of artifacts (classes, aspects, etc)

which addresses the commonalities and variabilities for a specific domain. Many of

the classes and aspects specified for the architecture will be instantiated only if they

are necessary to implement an individual application or product. The manual selection

and configuration of these elements can become a complex process which can make

impracticable the use of the approach. To facilitate the instantiation of the framework

and its aspect extensions, we proposed an aspect-oriented generative model [17, 20]

which enables the automatic configuration of the framework based on requests from

application developers.

75

Our AO generative model [17, 20] follows the general structure presented by

Czarnecki and Eisenecker [7]. However, we propose the extension of that generative

model to support the instantiation and customization of AO architectures. It allows

configuring and generating specific crosscutting and non-crosscutting variabilities.

Our generative model is composed by the following elements:

(I) a feature model – this model works as a configuration domain-specific

language (DSL) responsible to specify and collect the features to be instantiated in the

software family architecture. It is used to collect information to configure both the

crosscutting and non-crosscutting variabilities. A set of crosscutting relationships

between features is used to help the customization of aspects pointcuts.

(II) an AO architecture – it defines the main components of a software family

architecture. This architecture defines a set of variabilities which need be customized

to define a complete application. Crosscutting variabilities are implemented as aspects

in this architecture. Each component of the architecture is specified as a set of classes,

aspects and templates. The latter ones define elements that will be customized during

the instantiation of the architecture. The implementation of the architecture is

supported by our framework development approach based on EJPs (Section 3). Thus,

our approach provide guidelines to implement these AO architectures by means of a

base OO framework and a set of aspects which define optional and alternative

crosscutting features existing in the OO framework;

(III) a configuration model – it specifies the mapping between the features

existing in the crosscutting feature model and the components (or their respective sub-

elements, such as, class, aspect or templates) of the AO architecture. The

configuration model is used to support the decision of which components must be

instantiated and what customizations must be realized in those components

considering a specific application.

There are several activities involved in the process of development of the elements

of our generative approach [17, 20]. These activities are organized under the

perspectives of domain implementation1 and application engineering. The domain

implementation involves: (i) the implementation of the software family architecture

following the guidelines of our framework extension approach; (ii) the representation

of the architecture variabilities in a feature model; and (iii) the specification of a

configuration model which defines the mapping between features and architecture

elements (classes, aspects, etc). In application engineering, developers request an

instance of the AO architecture by specifying all desired variabilities. This request is

composed of two activities: (i) choice of variabilities in a feature model instance; and

(ii) choice of valid crosscutting relationships between features. This latter step is used

to enable the customization of aspect pointcuts. A tool uses the information collected

by these steps and the configuration model to generate an instance of the AO

architecture.

1 This work only covers the domain implementation phase [7] from domain engineering. The

domain analysis and design are out of scope of the thesis.

76

6 Related Work

Feature oriented approaches (FOAs) have been proposed [27] to deal with the

encapsulation of program features that can be used to extend the functionality of

existing base program. Batory et al [5] argue the advantages that feature-oriented

approaches have over OO frameworks to design and implement product-lines. Mezini

and Ostermann [25] have identified that FOAs are only capable of modularizing

hierarchical features, providing no support for the specification of crosscutting

features. These researchers propose CaesarJ [26], an AO language that combines

ideas from both AspectJ and FOAs, to provide a better support to manage variability

in product-lines. The work of those authors has a direct relation to our work, since we

believe that the design of product-line architectures may benefit from the composition

and extension of different frameworks using integration and variability aspects.

Zhang and Jacobsen [29] propose the Horizontal Decomposition method (HD), a

set of principles guiding the definition of functionally coherent core architecture and

customizations of it. The core is customized with aspects implementing orthogonal

functionality. Unlike our approach, which uses EJPs to achieve bi-directional

decoupling of the core from its extensions in the framework context, HD has a

principle explicitly embracing obliviousness, whereby the core should be completely

unaware on the aspects.

Our concept of EJPs is inspired by Sullivan et al’s work [28] on specification of

crosscutting interfaces (XPIs). XPIs abstract crosscutting behavior, isolating aspect

design from base code design and vice-versa. Continuing this work, Griswold et al

show how to represent XPIs as syntactic constructs [11]. EJPs play a similar role to

XPIs, but specifically in the context of framework development, by exposing a set of

framework events for notification and crosscutting composition, and by offering

predefined execution points for the implementation of optional and alternative

features. In the specification of the semantic part of EJPs, however, we have defined a

different methodology to specify the constraints which regulate the relationships

between the framework, EJPs and extension aspects [15].

Framed Aspects [22] is an approach that combines AOP and frame technology to

facilitate the automatic customization of applications. Aspects are used to modularize

crosscutting concerns and frames enables the parameterization and configuration of

variabilities encountered in aspects. The role played by frame technology in the

Framed Aspects is addressed in our approach by the use of aspect code templates. Our

code templates can be customized by a code generator (Section 5) based on

information collected by feature models. Framed Aspect approach does not propose

explicitly guidelines to the modularization of framework features using AOP, as we

do using EJPs and extension aspects.

7 Conclusions and Future Work

Object-oriented frameworks represent nowadays a relevant technology to implement

software family architectures since they can specify some part or the entire SPL

architecture by offering different variability and configuration options. However,

several obstacles have been identified which bring difficulties to the framework reuse

and composition when implementing software family architectures. In this work, we

77

proposed an approach for the design and implementation of OO frameworks with

aspects which aims to improve their extensibility and integrability (Section 3). Our

approach addresses the modular implementation of framework optional features and

enables framework crosscutting composition with other OO extensions. The

exposition of only specific framework extension join points (EJPs) brings

systematization to the process of extension and composition of the framework. EJPs

enable the framework systematic extension by means of extension aspects. We have

already developed some case studies that demonstrate the benefits brought by the

approach. Additionally, we have defined an aspect-oriented generative model which

facilitates the instantiation and configuration of the framework and its respective

extension aspects (Section 5).

This paper described a doctoral work in progress. Follow we present the next

activities that are being developed as part of this work:

(i) we will continue the evaluation of the approach in the development and

refactoring of object-oriented frameworks. In these new case studies, we plan to

realize quantitative studies [10] to compare the approach against the use of OO

techniques and other approaches [22, 25, 27, 29] with respect to traditional software

metrics. These new case studies will allow to derive more conclusive results and data

about the benefits from our approach. In these new case studies, we also intend to

investigate how our approach can deal with feature interaction problems [28];

(ii) we also intend to derive a more systematic implementation method which

offers more detailed steps and guidelines to the implementation and instantiation of

extensible OO frameworks with aspects using our approach;

(iii) we are currently implementing a tool, as an Eclipse plug-in, which supports

the generative model presented in the paper based on existing technologies [2, 3, 4].

(iv) finally, we plan to explore the extension of current domain analysis and design

methods [7] to support the early modeling of extension join points and framework

extension aspects. In particular, we are interested to investigate the synergy between

the use case extensions points proposed by Jacobson [27] and our extension join

points during the proactive development of product lines architectures.

Acknowledgements. This research is partially sponsored by FAPERJ (grant No. E-

26/151.493/2005) and CNPq (grants No. 140252/03-7). The authors are also

supported by the ESSMA Project under grant 552068/02-0.

References

1. V. Alves, P. Matos, L. Cole, P. Borba, G. Ramalho. “Extracting and Evolving Mobile Games

Product Lines”. Proceedings of SPLC'05, LNCS 3714, pp. 70-81, September 2005.

2. M. Antkiewicz and K. Czarnecki. FeaturePlugin: Feature modeling plug-in for Eclipse,

OOPSLA’04 Eclipse Technology eXchange (ETX) Workshop, 2004.

3. AspectJ Team. The AspectJ Programming Guide. http://eclipse.org/aspectj/.

4. F. Budinsky, et al. Eclipse Modeling Framework. Addison-Wesley, 2004.

5. D. Batory, R. Cardone, and Y. Smaragdakis, Object-Oriented Frameworks and Product-

Lines. 1st Software Product-Line Conference (SPLC), pp. 227-248, Denver, August 1999.

6. W. Codenie, et al. “From Custom Applications to Domain-Specific Frameworks”,

Communications of the ACM, 40(10), October1997.

7. K. Czarnecki, U. Eisenecker. Generative Programming: Methods, Tools, and Applications,

Addison-Wesley,2000.

78

8. M. Fayad, D. Schmidt, R. Johnson. Building Application Frameworks: Object-Oriented

Foundations of Framework Design. John Wiley & Sons, September 1999.

9. R. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented Software Development. Addison-

Wesley, 2005.

10. A. Garcia, C. Sant’Anna, E. Figueiredo, U. Kulesza, C. Lucena, A. Staa. Modularizing

Design Patterns with Aspects: A Quantitative Study. Proc. 4th Intl. Conference on Aspect-

Oriented Software Development, Chicago USA, March 2005.

11. W. Griswold, et al, "Modular Software Design with Crosscutting Interfaces", IEEE

Software, Special Issue on Aspect-Oriented Programming, January 2006.

12. M. Jackson, P. Zave, “Distributed Feature Composition: A Virtual Architecture For

Telecommunications Services”, IEEE Transactions on Software Engineering, October 1998.

13. I. Jacobson. “Use Cases and Aspects – Working Seamlessly Together”. Journal of Object

Technology, pp. 7-28, Vol. 2, Number 4, August 2003.

14. G. Kiczales, et al. Aspect-Oriented Programming. Proc. of`ECOOP’97, Finland, 1997.

15. U. Kulesza, R. Coelho, A. Neto, V. Alves, A. Garcia, C. Lucena, A. von Staa, P. Borba.

“Implementing Framework Crosscutting Extensions with EJPs and AspectJ”, Proceedings of

ACM SIGSoft XX Brazilian Symposium on Software Engineering (SBES´2006),

Florianópolis, Brazil, October 2006.

16. U. Kulesza, V. Alves, A. Garcia, C. Lucena, P. Borba. Improving Extensibility of Object-

Oriented Frameworks with Aspect-Oriented Programming, Proceedings of ICSR'2006,

Springer Verlag, LNCS 4038, pp. 231-245, Torino, Italy, June 2006..

17. U. Kulesza, A. Garcia, F. Bleasby, C. Lucena. “Instantiating and Customizing Product Line

Architectures using Aspects and Crosscutting Feature Models”. Proceedings of the

Workshop on Early Aspects, OOPSLA’2005, October 2005, San Diego.

18. U. Kulesza, A. Garcia, C. Lucena. “Composing Object-Oriented Frameworks with Aspect-

Oriented Programming”, Technical Report, PUC-Rio, Brazil, April 2006.

19. U. Kulesza, A. Garcia, C. Lucena, A. von Staa. “Integrating Generative and Aspect-

Oriented Technologies”, Proceedings of ACM SIGSoft Brazilian Symposium on Software

Engineering (SBES’2004), pp. 130-146, Brasilia, Brazil, October 2006.

20. U. Kulesza, C. Lucena, P. Alencar, A. Garcia. “Customizing Aspect-Oriented Variabilites

using Generative Techniques”. Proceedings of International Conference on Software

Engineering and Knowledge Engineering (SEKE'06), pp. 17-22, San Francisco, July 2006.

21. U. Kulesza, C. Sant´Anna, C. Lucena. “Refactoring the JUnit framework using aspect-

oriented programming”, OOPSLA´2005 Companion, Poster Session, pp. 136-137, San

Diego, October 2005.

22. N. Loughran, A. Rashid. “Framed Aspects: Supporting Variability and Configurability for

AOP”. Proceedings of ICSR’2004, pp. 127-140, 2004.

23. M. Mattson, J. Bosch, M. Fayad. Framework Integration: Problems, Causes, Solutions.

Communications of the ACM, 42(10):80–87, October 1999.

24. M. Mattsson, J. Bosch. Framework Composition: Problems, Causes, and Solutions. In [7],

1999, pp. 467-487.

25. M. Mezini, K. Ostermann: “Variability Management with Feature-Oriented Programming

and Aspects”. Proceedings of FSE’2004, pp.127-136, 2004.

26. M. Mezini, K. Ostermann. “Conquering Aspects with Caesar”. Proc. of AOSD’2003, pp.

90-99, March 17-21, 2003, Boston, Massachusetts, USA.

27. Y. Smaragdakis, D. Batory. Mixin Layers: An Object-Oriented Implementation Technique

for Refinements and Collaboration-Based Designs, ACM TOSEM, 11(2): 215-255 (2002).

28. K. Sullivan, et al. Information Hiding Interfaces for Aspect-Oriented Design, Proceedings

of ESEC/FSE´2005, pp.166-175, Lisbon, Portugal, September 5-9, 2005.

29. C. Zhang, H. Jacobsen. “Resolving Feature Convolution in Middleware Systems”.

Proceedings of OOPSLA’2004, pp.188-205, Vancouver, BC, Canada, October 2004..

79

80

Document Information

Title: Proceedings of the Software
Product Lines Doctoral Sympo-
sium

Date: August 14, 2006

Report: IESE-Report No. 104.06/E
Status: Final
Classification: Public

Copyright 2006, Fraunhofer IESE.
All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmit-
ted, in any form or by any means including, without
limitation, photocopying, recording, or otherwise,
without the prior written permission of the publisher.
Written permission is not needed if this publication is
distributed for non-commercial purposes.

	Symposium Program
	Rick Rabiser �Facilitating the involvement of Non-Technician
	Timo Asikainen� Methods for Modelling the Variability in Sof
	Nan Frederik Mungard�Feature Model Based Product Derivation
	Marcilio Mendonca, Toacy Oliveira, Donald Cowan�Collaborativ
	Karen Cortes Verdin, Cuauhtemoc Lemus Olalde�Aspect Oriented
	Uirá Kulesza, Carlos José Pereira de Lucena �An Approach to

