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Development of battery cells at Fraunhofer ISE
Current focus topics
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m Solid state battery cells:
Simplified processing technologies
based on smart glass know-how at
Fraunhofer ISE
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Battery system technology at Fraunhofer ISE
Research and development at a glance

Formation of battery cells: Last production step, essential for performance
and life time of lithium-ion cells

Cell / module / system tests and analyses: Performance, aging, reliability,
functional safety, post mortem

Modeling and simulation: From detailed aging and thermal models for life
time prediction to performance models for system analyses

Battery module and system development: From small home storage
applications to large hybrid systems

Battery management: From algorithms for state estimation and operating
control strategies to hardware implementation

Thermal management: From passive to high efficient active methods with
model predictive control for optimized operation

Integration in energy systems: From interface specification and energy
management systems to implementation

Quality assurance, safety and certification: Accompanying of product
developments and implementation projects (e.g. commercial PV battery
systems) via cooperation with renowned partners

= Fraunhofer

ISE



Independent engineering services of Fraunhofer ISE
Along the whole project life time

Planning phase
- Evaluation of project idea
- Potential analysis

- Definition of project
requirements

- Identification of
challenges

- Identification of risks

- Identification of
chances and benefij

Implementatio hase
- Commissioning tests

- Ongoing quality
monitoring

ppment phase

imulation based system
design and optimization

- Elaboration of specifications

- Support in component
selection and system setup

- Laboratory tests - Frequent reporting

- Consultancy in product selection _support in

- Neutral contact point for Decommissioning
financial and insurance sector

- Identification of component
and system failures

- Identification of
optimization potential

- Consultancy in terms of
- Consultancy for construction recycling
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Overview of global electrical energy storage trends

Services and
benefits

Source: F. Gattiglio: Battery
energy storage in the EU,
ees conference, Munich 2017.
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Overview of global electrical energy storage trends
Example Germany: PV self consumption / self sufficiency

Estimated number of newly installed Home PV-battery systems in Germany

# of units

60000 -

20000

40000 -

30000 -

20000 -

10000 -

2015 2016 2017 2018 2019 2020

B Number of new battery systems with new PV installations B Number of new battery systems with retrofit installations

Note: assumptions: new annual PV installations 2015-2020: 1.4 GWp. Source: year 2015: Federal Network Agency, Kfw Speichermonitoring 2016; year 2016: preliminary
projection by ISEA RWTH Aachen; years 2017-2020; own calculation and estimate, 2017

Source: A. Brautigam: Business models for energy storage in Germany and hot spot markets, ees conference, Munich 2017.
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Overview of global electrical energy storage trends
Example USA: Solar firming (PV power plants)

W Stabilization of solar output for 5 min
ramp rate grid regulation
M Approach with ultracapacitors

Input form Net output smoothed to
1. SOlararray «  Onehour Elm)n ramplrate

Tirme {min)

* >
Raw Solar Power Smoothed Solar Power

Source: K. McGrath: Increasing the value of PV: Integration ultracapacitors with renewables, NAATBatt storage workshop July 10, 2014.
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Overview of global electrical energy storage trends
Example Italy: Batteries for grid support

e e
—_

*Economic crisis and subsequent
loss of many big consumers (i.e.
national demand decreased 7%
from 340 TWh to 318 TWh)

s Aggressive policy of incentives
promoting RES + imminence of
grid parity

*Short time to fortify and develop
the grid to support new scenarios

* Fast and massive growth of RES:
—Rise in congestion-related curtailments
(i.e. 2010 ~500 GWh lost)
—Rise in demand for non-spinning
reserve
» Traditional power plants running at
minimum load:
— Loss of inertia in smaller insular
systems (i.e. Sicily and Sardinia)

The Context #Terna

Y oy I

Optimize integration of RES and
increase flexibility of national
grid (i.e. smarter grid)

— Loss of available frequency reserves

o /N \ j
Solutions
1°* Phase Storage Lab 2" Phase ;
r Ty s ™)\ -
Fas g -~y |
e =4 y e Lo i [ ,"ﬁl N/’}jﬁ\ In the South of Italy on the 150 kV Backbone:
He i = o — ~ “Benevento 2 - Celle San Vito”
. w=Qptimize RES =l ((;f‘:ﬂs‘::‘a ‘}
- Integration and  Wcckindeald R
s - '__‘__ ._\_ _increase system’s \
| | sicily:  |[sicily: \ (
8 MW 12 Mmw =
L In the South of Italy on the 150 kV Backbone: = - =l
3s - “Benevento 2 - Bisaccia 380" o flag
- =
Flumeri N\
Total to be deployed in 2" phase 24MW [ mw o t@;—“
L-Sca;ﬂpilelja e AP
Cumulative ESS Deployment 40 MW I for low inertiding - ’I [ Cumulative ESS Deployment 35 MW ]

Source: A. Tortora, Terna Group, Energy Storage World Forum, Rome, 2015.
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Overview of global electrical energy storage trends
Example Germany: Primary control power

Total large-scale batteries in Germany

Power capacity [MW]
200 400
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A0 150
60
100
40
5 50
0 0
2012-2015 2016 2017 2018
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*preliminary figures;
Note: no claim for completeness
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e®%

2 ©

@ . Li-lon

. Hybrid: Li-lon + X

e . Li-lon second life

‘ Lead-acid

@ battery capacity in MW

Source: A. Brautigam: Business models for energy storage in Germany and hot spot markets, ees conference, Munich 2017.
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Key factors affecting bankability of renewable energy +
storage projects
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Efficiency

Quality assurance for residential PV battery systems
System testing — Analyses of efficiencies

Energy Conversion Efficiency path of PV2AC (naysac)

100%
95%
g oo
Test system (Labview) with data programmable é oo
acquisition (Gantner / Janitza) AC load ©
B0
PV Simulator: [
16 kW ~ E 5%
1000V DC — | A= 0 01 0,2 03 04 05 06 07 08 09
PV -> GRID Normalized rated AC power of inverter (kW)

—=SystemA/D  —@=SystemB =—@=System

PV -> BAT

Grid

Energy Conversion Efficiency path of PV2BAT (Npyan)
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=8—System A —@=3ystemB —@=3ystem( =—@=S5ystemD —9—System A —@=SystemB —@=SystemC =@ System D

~ Fraunhofer

ISE



Quality assurance for residential PV battery systems
System testing — Analyses of effectiveness
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Quality assurance for larger PV battery systems
Power plants, commercial applications and mini-grids

Concept and range of services

ANALYSES OF LOAD PROFILES

QUALITY MONITORING

L
14 ~ Fraunhofer
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Project example: Commercial PV battery system
Analysis of load profile and PV generation profile

Load (bakery):

. 120 :
. . T T T
g; g T\L;I\TVT/IO” Weekly Time Series of Load and PV Power
a Power [kW] " |
® Max. power: -— | | Load Consumption PV Generation
118 kW : | | %
PV example: i ‘ —t ‘
m Size: 20 e B B a2 5 4
150 kWp 1 . "'. : 3 ¢
B Production: $ '
135 MWh 60 “
40 E i
. o % od
0 1 2 3 4  Day of Week [Monday... Sunday] 7
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Project example: Commercial PV battery system
Simulation based system analysis and design

Load (bakery):
B Consumption:

335 MWh/a Grid
® Max. power: Connection
118 kW
Integration of a PV Prio 3a: Feeding-in Prio 3b: Purchasing
system and a lithium-ion from PV to Grid from Grid to Load
battery storage:
W Variation of PV PV System Prio 1: Direct Self Cunsumptmn
system size (Modules + ; Load
B Variation of battery Inverter) from PV to Load
storage size
Prio 2a: Charging Prio 2b: Dlscharglng
from PV to Storage from Storage to Load
Storage
(Battery System +
Inverter)
16 —
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Project example: Commercial PV battery system
Simulation based system analysis and design

Levelized cost of energy

Main parameters: 0,24 : : : : : : - - - - - -
Levelized cost of consumed electricity -e-PV: 500 kWp; Batt: 200 kWh
B PV system: ~=-PV: 500 kWp; Batt: 500 kWh
840 €/kW =0.17 ... 0.22 €/kWh; composed of: : p; Batt:
P PV tion: 0.052 €/kWh -=-PV: 1 MWp; Batt: 200 kWh
B Battery system: v generation: = / ~-PV: 1 MWp; Batt: 500 kWh
600 €/kWh 0.22 Grid feed-in tariff: 0.10 €/kWh —PV: 2 MWo. Batt: 200 kWh
' Grid end-user tariff: 0.30 €/kWh : p; Batt:
m Battery inverter: = Electricity Storage: 0.17 ... 0.29 €/kWh ~-PV: 2 MWp; Batt: 500 kWh
215 €/kw ] .
w, 3
® Interest rate: /
3 %/a 0,20 o + /=\ ° /
- /- & & i
0,13 I - * >
0.16 C/POPt ~7h Battery: Capacity/Power [kWh/kW = h]
B 2 4 6 8 10 12 14
17
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Project example: Commercial PV battery system
Simulation based system analysis and design

Levelized cost of electricity storage

0,30

Levelized cost of electricity storage

0,28 -

0,26 -

0,24

—~-PV: 260 kWp; Batt: C/P = 7h
~=-PV: 320 kWp; Batt: C/P = 7h
-e-PV: 400 kWp; Batt: C/P = 7h
-e-PV: 700 kWp; Batt: C/P = 7h
-=-PV: 1 MWp; Batt: C/P=7h
--PV: 2 MWp; Batt: C/P=7h

0,22

0,20

0,18 °

Battery capacity [kWh
0,16 ] y capacity [kWh]

0 500 1000 1500 2000
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Project example: Commercial PV battery system

Simulation based system analysis and design

Levelized cost of consumed electricity

0,30
Levelized cost of consumed electricity
=0.17 ... 0.22 €/kWh; composed of:
0,28 7 PV generation: 0.052 €/kWh
Grid feed-in tariff: 0.10 €/kWh
0.26 Grid end-user tariff: 0.30 €/kWh

'Electricity Storage: 0.17 ... 0.29 €/kWh

0,24

[€/kWh]

0,22

0,20

-e-PV: 260 kWp; Batt: C/P =7h
~+-PV: 320 kWp; Batt: C/P =7h
--PV: 400 kWp; Batt: C/P =7h
~»-PV: 700 kWp; Batt: C/P = 7h
--PV: 1 MWp; Batt: C/P=7h
-=-PV: 2 MWp; Batt: C/P=7h

0,18

0,16 -

Battery capacity [kWh]

0 500 1000 1500

2000
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Project example: Commercial PV battery system
Simulation based system analysis and design

Battery storage: Aging as a function of usable storage capacity and PV power

75% -

70%

65%

[% of initial value]

60%

55%

Storage degradation: Decreased capacity after 20 years

=

—-PV: 260 kWp; Batt: C/P = 7h
~=-PV: 320 kWp; Batt: C/P = 7h
--PV: 400 kWp; Batt: C/P =7h
-e-PV: 700 kWp; Batt: C/P = 7h
--PV: 1MWp; Batt: C/P=7h
--PV: 2 MWp; Batt: C/P=7h

Battery capacity [kWh]

500 1000 1500 2000
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Project example: Commercial PV battery system
Simulation based system analysis and design

Battery storage: Annual average storage efficiencies

95%
Storage efficiency: Annual average --PV: 2 MWp; Batt: C/P=7h
--PV: 1MWp; Batt: C/P=7h
9% -=-PV: 700 kWp; Batt: C/P = 7h
S -e-PV: 400 kWp; Batt: C/P =7h
939 — -=-PV: 320 kWp; Batt: C/P = 7h
o -
-=-PV: 260 kWp; Batt: C/P =7h
92% -
91% 1
p
p
90% ,
p
89%
Battery capacity [kWh]
500 1000 1500 - 2000
21 =
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Project example: District storage
Simulation based system design

DSO

Optimization criteria: ————

Minimization of grid dependency -
Physically not only accumulated

system — “Weinsberg"”

_____ Boarder of
property
A PV system
AC-D(Mm) 142 kW,
ACID?

I. Current sensor
+

AC-ID3

M CHP unit
+ ACIDS + 6 -12 kW,
IAC—IDﬁ IAC-ID4 €

Heat pump 25,
35 and 45 kW,

Battery storage 120 kW / 150 kWh

22

E®2  Z Fraunhofer

Partner ISE



Project example: District storage system - “Weinsberg”
Monitoring: Accumulated annual electrical energies

Simulation Monitoring 2015/ 2016

3%

2%

PV direct x 1.20

PV via storage x0.75

CHP direct x 0.80 |:>
CHP via storage x 0.30
Grid fraction x 2.00

Reasons for differences:
» Problems with air conditioning 2 To high temperatures in operation room - Shut-down of

CHP unit and battery inverter
> Necessary maintenance interval of CHP unit in winter (!)
» End-users do not behave 100 % as predicted (!)
23 E® = Fraunhofer

Part
artner ISE
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Project example: District storage system - “Weinsberg”
Monitoring: Analysis of storage operation

120% -

Battery storage

-~ Normalized charge per

day [% of Cy]
=+ Normalized discharge

| per day [% of C]

Al
\\1 { Daily average energy

efficiency [%]

100% -

80% -

60% -

Annual average values:

B Charging with 67 %

40% - * of nominal capacity

B Discharging with 54 %
of nominal capacity

20% - - .
B Energy efficiency: 81 %
. } Calendar week
OA) XXXXXXXXXXXXXXXXXXXXXXXXX L\" 2015/2016
27 29 31 33 35 37 39 41 43 45 47 49 51 53 02 04 06 08 10 12 14 16 18 20 22 24 26
24 m -—
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Project example: Mini-grid — Industrial site in Egypt
Simulation based system analysis for PV integration

M Load: M 2 Diesel generators:
» Peak: 420 kW » 350 kW
» Annual consumption: 1120 MWh » 120 kw

Diesel savings with battery as spinning reserve

50 r r 1 T T T . T
Without battery

— *9 With 350 kW, 90 kWh battery | | -
O\O i k) e
& 30 - . N .
C .
>
8 b
E 20_ _._ -
L
a)

) HI I

- I | I
10 20 3

0 40 50 60 70 80 90 100
Photovoltaic nominal system power in percentage of load peak [%]
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Project example: Mini-grid — Uganda
Simulation based system analysis for

PV integration

B Example Uganda
B Load:

» Peak load: 200 kW

» Annual consumpt.: 574 MWh

B PV Diesel hybrid system:

» PV system (incl. power electronics): 1.5 Euro/Wp
» Battery system: 220 Euro/kWh

> Diesel: Invest 273 $/kW: Fuel 1$/l: Maintenance: 0.7 $/h

Levelized cost of electricity

Z
0,40€ I~ i ) . —
T \PrOJeCt life time: 20 years !!! ——PV Diesel hybrid system
0,35€
- 1
E \
2 0730¢
=
Ll \\
0'25€ i \\—_‘/
0,20€W="'1 —t+—tt++t+—+—+—+—+—+—+++++++++++++++++—++—++++—t+
0% 10% 20% 30% 40% 50% 60% 70% &80% 90% 100%
Solar share
26 -
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Services towards certification
From product development to project implementation

Strategic partnership of Fraunhofer ISE and VDE Renewables

Product design

and project planning

= Analyses of load profiles

m Technical advice with focus on
product design and optimization

= Simulation-based system design
and component dimensioning

= Yield pradiction

= Recommendations
on component selection

Testing and project
development

= Economic feasibility studies
using simulation-based system
analyses

® Characterization of components
= Performance testing

m Lifecycle testing

m Conformity testing

m Electrical safety and EMC testing
® Benchmark tests

= Environmental simulation

= Abuse tests

® United Nations Transport Test

Certification
and implementation

= Certification of whole energy

storage systems

= System testing

= Certification and compliance of
grid interconnected components

= Ongoing quality monitoring

Testing and certification for batteries
and energy storage systems

From product development to project implementation

Z Fraunhofer VDE
ISE RENEWABLES

27
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Conclusions

W Large-scale integration of fluctuating renewable energies in power supply
systems require storage (grid-connected and isolated mini-grid applications)

B Battery storage systems:
» Modularity — Solutions from a view kWh to the Multi-MWh class

» Advanced solutions along the whole value chain of the power supply
(behind-the-meter and before-the-meter)

B Integration of battery storage requires several steps of quality assurance
enabling bankable projects:

» From detailed analyses of load pattern to system simulation and
application specific system design

» From characterization of components and systems in the laboratory to
system testing in the field as well as quality monitoring

B Field experiences with “new” battery technologies still show huge
optimization potential - Component and system level

B Renewable energy shares in power supply systems, e.g. mini-grids:

» Economic optimum strongly depends on the considered project life-time
(Levelized cost of energy computation)

28

\

~ Fraunhofer

ISE



Thanks for your attention !!!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Matthias Vetter

www.ise.fraunhofer.de
matthias.vetter@ise.fraunhofer.de
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