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Kurzfassung

Piraterie, Schmuggel und illegale Fischerei gefährden dieallgemeine Sicherheit auf Oze-
anen und Meeren. Um diese Bedrohungen einzudämmen, müssen kleine Boote auf aus-
gedehnten Gebieten entdeckt und beobachtet werden. Flugzeuggetragene Radarsysteme
können große Flächen überwachen und sind dieser Herausforderung daher gewachsen.
Aufgrund der niedrigen Radarquerschnittsfläche (RCS) der kleinen Boote, ist die Detek-
tion dieser Ziele jedoch immer noch ein ungelöstes Problem.Zusätzlich wird bei höher
fliegenden Plattformen durch den steigenden Streifwinkel mehr Leistung von der Rück-
streuung des Wassers, dem sogenannten Seeclutter, empfangen. Es müssen somit Ziele
mit einem niedrigen Signal-zu-Clutter plus Rausch Verhältnis (SCNR) detektiert werden.
Um ein geeignetes Verfahren zur Detektion von kleinen Bootenmit flugzeuggetragenen
Radarsystemen zu finden, wurden in dieser Arbeit reale Messdaten verarbeitet. Diese
wurden während mehrerer Experimente über der Nordsee mit dem mehrkanaligen Radar-
system PAMIR und einem kleinen kooperativen Boot aufgenommen. Die Analyse dieser
Daten zeigt zum einen, dass traditionelle Signalverarbeitungsmethoden nicht ausreichen,
um das Ziel zu entdecken. Zum anderen wird demonstriert, dass mit dem sogenannten
space-time adaptive processing (STAP) eine deutlich bessere Detektionsfähigkeit erre-
icht werden kann.
Es ist wünschenswert die zu erreichbare Detektionsleistung bei Anwendung von STAP
auf maritime flugzeuggetragene Radarsysteme im Voraus zu kennen. Da für diese Be-
rechnung aber die mehrkanaligen Eigenschaften des Seeclutters bekannt sein müssen,
wird in dieser Arbeit ein theoretisches und ein Simulationsmodell hergeleitet. Zusät-
zlich werden die Spektraldichtematrix, das Raum-Zeit-Filter und die Kanalkorrelation
des Seeclutters analysiert. Es wird verdeutlicht, dass durch die Bewegung des Wassers
und durch mehrere Streuerarten die mehrkanaligen Eigenschaften von Land- und See-
daten unterschiedlich sind. Eine wichtige Auswirkung ist die Verbreiterung der Kerbe
des Raum-Zeit-Filters bei Seedaten in Abhängigkeit vom Seegang.
Um die hergeleiteten Eigenschaften zu validieren, wurden insgesamt drei Messkam-
pagnen mit dem flugzeuggetragenen Radarsystem PAMIR durchgeführt, wobei reale
mehrkanalige Seedaten für unterschiedliche Dünnungsrichtungen, bei zwei unterschied-
lichen Streifwinkeln und bei deutlich unterschiedlichen Wetterbedingungen gesammelt
wurden. In dieser Arbeit wurden Berechnungen und Simulationen hergeleitet, die die Re-
produzierbarkeit der realen mehrkanaligen Eigenschaftendes Seeclutters bei verschiede-
nen Seegängen demonstrieren.





Abstract

Piracy, smuggling and illegal fishery threaten the overall security on oceans and seas.
These threats typically arise from small and agile boats andare distributed over large
areas. To control them, small maritime targets have to be detected and observed. Mar-
itime airborne radar systems are capable of monitoring large areas and are therefore suit-
able to accomplish this challenge. The detection of small boats, however, is still an
unresolved task due to the small radar cross section (RCS) of these boats. Additionally,
the RCS of sea clutter rises for high altitude platforms due to the higher grazing angle,
hence targets with low signal-to-clutter plus noise ratios(SCNR) have to be detected.
In order to investigate the appropriate processing to detect small boats from airborne
radars, data from experiments over the North Sea with the multichannel radar system
PAMIR and a small cooperative boat is evaluated in this thesis. This analysis demon-
strates on one hand that traditional processing is not sufficient to detect these maritime
targets, and on the other hand that with space-time adaptiveprocessing (STAP) superior
detection performance is achieved.
To apply STAP to a maritime airborne radar system, it is desirable to know its perfor-
mance in advance. To accomplish this, the multichannel characteristics of sea clutter have
to be understood. This thesis derives theoretical and simulation multichannel models by
analyzing the spectral density matrix, the space-time filter and the channel correlation of
sea clutter. Different multichannel properties for sea clutter compared to land clutter are
demonstrated, which are due to the varying motion of sea echoes and due to different
sea scattering types. An important implication of this difference is the broadening of the
space-time filter notch in dependence on the sea condition.
To confirm the predicted properties, three measurement campaigns with the airborne
radar system PAMIR were performed, where real multichannelsea data was acquired
for different swell directions, two different grazing angles and significantly varying sea
states. This thesis demonstrates the reproducibility of sea clutter multichannel characteri-
stics of real data for different sea conditions with the helpof calculations and simulations,
which are introduced in this analysis.
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Chapter 1

Introduction and Overview

Maritime radar systems can be traced back as far as 1904, whenChristian Hülsmeyer pre-
sented the first demonstration of a radar system by detectinga ship from the Hohenzollern
Bridge in Cologne. Ever since, maritime monitoring has been animportant application
of radar. During World War II it was noted that sea echo, oftenreferred to as sea clutter,
places severe limits on the detectability of ships [1]. Since then several attempts have
been made to find theoretical explanations for the behavior of sea clutter [2]. One goal
was to understand the physics of sea clutter by utilizing thestudies of oceanography.
In 1955 a breakthrough in this field was achieved by Crombie, where he evaluated the
Doppler spectrum of sea clutter collected with a HF-radar. This Doppler spectrum con-
tained two pronounced peaks at Doppler frequencies which corresponded to the phase
velocity of a water wave with the wavelength of one-half of the incident wavelength of
the radar system [3]. In [4] and [5] sea scattering was theoretically calculated with a
boundary perturbation approach. This calculation confirmed that contributions from the
sea surface are only received by the radar system from water waves whose wavelength
equals one-half of the radar wavelength divided by the cosine of the grazing angle. Fur-
ther, these results illustrated how the measured radar cross section (RCS) is directly re-
lated to the spatial sea surface spectrum, hence conclusions on the sea surface itself can
be made by measuring the RCS with a radar system.

State of the Art in Ocean Monitoring

The achieved results motivated several research activities in the area of ocean monitor-
ing with synthetic aperture radar (SAR) [6, 7, 8]. Particularly important topics in this
area are on one hand how water waves, which have much longer wavelengths than the
ones from which scattering is received, influence the measured RCS [9], [10], [11]. On
the other hand special interest was dedicated to how azimuthresolution of a SAR im-
age is limited due to the movement of sea scatterers, which ismeasured by the so-called
coherency time, defined as the time during which the echos from the scatterers stay co-
herent [12, 13, 14, 15].
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In 1987 Goldstein and Zebker proposed a new application of ocean monitoring with
radar systems [16]. They implied the ability to measure ocean surface currents by us-
ing interferometric SAR. This publication triggered a significant amount of experiments,
where the along track interferometry phase was used to estimate current velocities of a
certain area [17, 18, 19, 20]. In some experiments, however,the estimated current velo-
city did not correspond to the actual current velocity, which was measured with in-situ
measurements [21]. These deviations forced again to have a closer look at studies of
oceanography, where it was realized that several differentvelocities are present on the
sea surface. The sum of these velocities is measured by the Doppler shift, hence the
estimated velocity is not exclusively determined by the surface current [22].

State of the Art in Maritime Moving Target Indication

In parallel to the described research activities to monitorthe ocean surface with radar, a
different challenge regarding maritime radar systems emerged. Since the 90’s, a consider-
able threat due to piracy has evolved. Additionally, illegal fishing, killing of endangered
species, and smuggling of drugs have become a significant danger to the public. These
threats have in common that they operate on small and agile boats, hence targets with low
RCS have to be detected. Additionally, to monitor these boats over large areas, airborne
radar systems are of great interest. The moving high altitude platform causes, however, a
strong sea clutter return, which is spread over several Doppler frequencies.
While for maritime radar systems as demonstrated by ChristianHülsmeyer, where big
ships have to be detected from a stationary low platform, no challenging signal proces-
sing is needed, these methods are no longer sufficient if small boats have to be detected
within strong clutter. This motivated several research activities in the field of improving
the detection of small targets with maritime radar systems.In [23] cell-averaging tech-
niques were proposed to choose the threshold for a detector more appropriately and in
[24] and [25] detectors were derived which consider the different statistics of sea clutter
as compared to land clutter. Coherent single-channel data sets, where sea clutter was
filtered prior to the actual detection, were shown in [26] and[27]. To suppress the clutter
in [26], a temporal covariance matrix was estimated and in [27] the clutter was removed
in the Doppler domain.

Research Objectives

If a time adaptive filter is applied prior to the actual detection, targets with low signals are
at risk of being suppressed by the corresponding filter. To detect ground moving targets,
superior performance can be achieved for certain scenariosif space-time adaptive proces-
sing (STAP) is utilized rather than time adaptive processing only [28, 29, 30]. For small
maritime targets the STAP performance is however not known,because to our knowl-
edge such experiments were not carried out yet. For this workwe were able to collect
multichannel sea data with the radar system PAMIR [31], where a small cooperative boat
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was present inside the observed scene. One objective of thiswork is to use the acquired
data to evaluate if the performance of space-time adaptive processing is superior to time
adaptive processing only.
To apply STAP to a maritime radar system, it is desirable to know in advance which
theoretical performance of STAP can be expected for that system. This allows for ex-
ample to decide if the additional cost of building a multichannel system is justified or
how the parameters of a multichannel system have to be chosento achieve the desired
performance. To evaluate the STAP performance for a radar system, the multichannel
properties of the clutter have to be known. For land clutter the multichannel characte-
ristics were derived in [32] and [33], allowing to calculateor simulate measures which
model the STAP performance. In [34] simulations were performed for a displaced phased
center antenna (DPCA) for a clutter type whose velocity is unequal to zero, and in [35]
different multichannel characteristics were observed forsea clutter as compared to land
clutter. A conclusive model to describe the multichannel properties of sea clutter is how-
ever still missing, but for maritime radar systems such a model is essential if STAP is to
be applied.
The objective of the presented work is therefore to derive a theoretical multichannel
model for sea clutter. The multichannel statistical description of land clutter is revised to
include the properties of sea clutter. To understand the nature of sea clutter, once again
studies of oceanography and physics of sea scattering have to be applied. To verify the
theory, simulations of multichannel sea data sets are performed and analyzed. A spe-
cialty of this work is the availability of real multichannelsea data, which was collected
with the PAMIR system. Sea data sets are available for different grazing angles, different
swell directions, and different sea states. To our knowledge such experiments were not
performed before. These data sets allow to compare the performed simulations with real
data and analyze how well they match. To emphasize the difference between land and
sea clutter, also simulations and experiments of a homogeneous land scene are presented.
The goal of this work is to gain further insight into the multichannel properties of sea
clutter and to create a theoretical and simulation model, where the multichannel charac-
teristics match the ones of real data for different sea conditions. The purpose of such a
model is the possibility to predict STAP performance for future maritime radar systems.
The properties of sea clutter change significantly for different sea states. A meaningful
statement of the STAP performance to suppress sea clutter can therefore only be made
in dependency of some parameters of the sea surface. Furtherobjectives of this work are
therefore to determine these parameters as well as to estimate them from real multichan-
nel data. An additional application of these estimations isto obtain information about the
sea surface, allowing to perform some monitoring of the ocean conditions.

Major Contributions

The main contributions of this work are:

• Derivation of statistical multichannel sea clutter properties.
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• Treatment of clutter physics and oceanography to explain the impact of sea clutter
nature on multichannel measures and application of this knowledge for moving
target indication (MTI) of maritime targets.

• Creation of a mathematical basis to calculate the multichannel properties of sea
clutter and predict the MTI performance over water.

• Acquisition and analysis of real multichannel sea data and its comparison to si-
mulated sea data to demonstrate the reproduction of multichannel properties for
different sea states and swell directions.

• Validation of theoretically derived statistical measureswith real data and demon-
stration of different land and sea clutter properties.

• Theoretical derivation and simulation of the impact of wavebreaking on multi-
channel properties and confirmation with real data.

• Development of an estimator for the radial sea scatterer velocity variance to gain
information about the sea state and to predict the MTI performance.

• Demonstration of the need to use space-time adaptive processing (STAP) to detect
small maritime targets reliably using real sea data with a cooperative boat.

Previous Publications of Thesis Results

Some results have been presented at various conferences. In[36] different multichannel
properties of sea clutter compared to land clutter are demonstrated. STAP performance
in dependence of the swell direction is analyzed in [37]. Single channel and multichan-
nel processing is applied to real sea data with a small cooperative boat in [38], where
a significant improvement of the signal-to-clutter plus noise ratio (SCNR) with STAP
is shown. The multichannel properties of sea clutter are derived in [39] and in [40] the
channel correlation of different sea data sets is evaluatedand compared to a theoretically
calculated channel correlation. A journal paper has been submitted [41], where the mul-
tichannel properties of sea clutter are derived, the impactof wave breaking is analyzed
and validation with real data is performed.

Thesis Outline

This work is organized as follows: In chapter 2 the radar fundamentals, which were used
for this analysis, are summarized. The specialties of airborne radar systems are outlined
and the multichannel properties of land clutter are described. The characteristics of sea
clutter are presented in chapter 3. Here for one the oceanographic aspects of describ-
ing water waves and the sea surface are specified, and for another some results of the
physics of the received echo from the sea surface are summarized. Chapter 4 describes
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the PAMIR system and the experiments, which were performed with the PAMIR sys-
tem to collect multichannel land and sea data. Additionally, some first evaluations of
sea clutter are presented. The theoretical multichannel model for sea clutter is derived
in chapter 5. In this chapter, the impact of sea clutter characteristics on multichannel
properties is theoretically evaluated. Several measures,which are important to model the
STAP performance, are altered to consider the nature of sea clutter. To validate the pro-
posed model, simulations are performed in chapter 6. Several multichannel measures of
simulated and real land and sea data sets are compared and analyzed, where the sea data
is evaluated for several different sea conditions. In chapter 7 an experiment with a small
cooperative boat is described, the collected data is evaluated, and a comparison of the
detection performance between space-time adaptive and time adaptive processing only is
demonstrated. Chapter 8 gives a conclusion and an outlook of the presented work.





Chapter 2

Radar Fundamentals

The statistical properties of multichannel land clutter are summarized in this chapter to
be revised in the following chapters to consider the properties of sea clutter. Section 2.1
establishes the signal model of a coherent single channel radar system. This signal model
is extended to multichannel radar systems in section 2.3. The need to use multichannel
systems for moving target indication (MTI) with airborne radar systems is illustrated in
section 2.2.

2.1 Signal Model

Consider a coherent microwave pulsed radar system, as described in [42], which trans-
mits the signals0(t) in the baseband frequency domain. The received normalized signal
reflected by a single object in the baseband frequency domaincan then be described as

s(t, T ) = D(u(T ))s0

(

t − 2r(T )

c

)

exp

{

−j2πfr
2r(T )

c

}

. (2.1)

Herefr denotes the carrier frequency,c is the speed of light, andr(T ) is the distance from
the platform of the radar system to the object, from which an echo is received. The two
time scales are described by the fast timet, which is the sampling time of one received
pulse, and the slow timeT , which denotes the pulse-to-pulse time. The antenna gain
is considered by the two-way antenna patternD(u(T )), whereu(T ) is the line-of-sight
vector (LOS vector).
The signal is assumed to be range compressed, and only one range resolution cell is
considered. Withfr = c

λr
, whereλr is the carrier wave length of the radar system, and

the described assumptions, the baseband range compressed signal equals

s(T, u(T )) = D(u(T )) exp
{

−j
4π

λr

r(T )
}

. (2.2)

In the following analysis, only a short time interval is investigated, which allows to as-
sume a constant LOS vector during the observed coherent processing interval (CPI). To
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Figure 2.1: Radar geometry

consider moving objects, the distancer(T ) is defined as

r(T ) = r0 + vrelT , (2.3)

wherevrel is the constant relative radial velocity

vrel = uH (vc − vp) , (2.4)

with vc being the velocity vector of the echo, in the following referred to as clutter, andvp

the platform velocity vector. If the relative radial velocity is nonzero, then the phase of the
signal described in equation (2.2) changes with time. This implies a varying frequency,
which is defined as the Doppler frequency. Using the stop and go approximation [43],
which states that the velocity of an object does not change between transmitting and
receiving a pulse, the Doppler frequency can be calculated as

F(vrel) =
1

2π

d

dT

(

−4π

λr

r(T )
)

=
1

2π

d

dT

(

−4π

λr

(r0 + vrelT )
)

= − 2

λr

vrel. (2.5)

Figure 2.1 visualizes the geometry which is used in this analysis. The distance vectorr
can be calculated from the platform position vectorxp and the clutter position vectorxc

asr = xc − xp. The LOS vector is a unit vector, which equals

u =
xc − xp

||xc − xp|| . (2.6)

Using polar coordinates, this vector can also be expressed as

u = (cos ϕ cos θ, sin ϕ cos θ, − sin θ)T , (2.7)
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whereϕ is the azimuth angle andθ the grazing angle. Here the flat earth assumption is
used, the grazing angle is therefore equal to the depressionangle. The angle between
the x-axis and the LOS-vector is denoted byα. This is the so-called cone angle. The
relationship between the cone, azimuth and grazing angle iscos α = cos ϕ cos θ.
Using the assumption of a short CPI and equations (2.2) and (2.5), the normalized radar
clutter signal can be described as

s(T, u) = D(u) exp
{

−j
4π

λr

vrelT

}

= D(u) exp {j2πF(vrel)T} . (2.8)

Here the constant phase term due tor0 is neglected. Further, a linear array antenna is
assumed, where the antenna elements are positioned along the x-axis. This allows to
consider only the x-component of the LOS-vector, which is equal tou = cos ϕ cos θ.

2.2 MTI for Airborne Radar Systems

For a stationary radar, the relative radial velocity is onlynonzero if an echo from a moving
object is received. If, however, the radar system is mountedon an airborne platform, the
velocityvrel is in general nonzero due to the movement of the platform. Different objects
are then received at different Doppler frequencies, because they are viewed from different
directions. If the clutter velocity is assumed to be zero, asthis is the case for land clutter,
and the platform is defined to move along the x-axis of the chosen coordinate system, the
Doppler frequency can be stated as

F(u) =
2

λr

vpu. (2.9)

A distinct difference between a ground-based and an airborne radar system can be reali-
zed by analyzing the clutter power. The received clutter signal can be calculated by
integrating over all echo contributions of the observed area [2]. Here the integration is
performed in polar coordinates, where the substitutionu = cos ϕ cos θ is utilized. The
clutter signal is here calculated for a constant range and a small intervall of look directions
allowing to neglect terms resulting from the coordinate transformation from Cartesian to
polar coordinates. A small intervall of look directions is justified, because for moving
target indication (MTI) application with airborne radar systems, generally narrow beam
antennas are used. The resulting integral describing the clutter signal of an observed area
is therefore equal to

c(T ) =
∫

Ω
A(u)s(T, u) du. (2.10)

Heres(T, u) is the normalized radar clutter signal, which is described by equation (2.8),
Ω is a set of visible look directions andA(u) is the complex echo amplitude of the ground
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from directionu. If a wide range of look direction is considered,1√
1−u2

has additionally
to be included inside the integrand in equation (2.10). The impact of this term on the
subsequent derivations is however small. The complex echo amplitude is modeled as a
random variable. It is assumed to be zero mean and its variance is denoted byσ2

c . Due to
the randomness of the amplitude, the clutter signal is regarded as a stochastic process and
is assumed to be stationary. The Fourier transform of the clutter signal can be calculated
as

C(F ) =
∫ ∞

−∞

∫

Ω
A(u)D(u) exp {j2π(F(u) − F )T} du dT

=
∫

Ω
A(u)D(u)

∫ ∞

−∞
exp {j2π(F(u) − F )T} dT du

=
∫

Ω
A(u)D(u)δ(F − F(u)) du, (2.11)

whereδ(F − F(u)) is the Dirac delta function. For the Fourier transform the time length
is assumed to be infinite. In practice a long time length cannot be used for MTI applica-
tions. The outcome of the Fourier transform results then in asinc-function rather than a
Dirac delta function. As described in [44], windowing has tobe applied to mitigate this
effect. In this analysis a Hamming window is used.
The Dirac delta function states, that only those frequencies contribute to the clutter signal
which are equal to the Doppler frequency. Due to the unique relationship between the
Doppler frequency and the look direction from equation (2.9), the directional cosine is
equal to

u(F ) =
Fλr

2vp

. (2.12)

This implies that for each frequency only one look directionhas to be considered, which
reduces equation (2.11) to

C(F ) = A(u(F ))D(u(F )). (2.13)

The mean clutter power in the frequency domain can then be calculated as

Pc(F ) = E
{

CH(F )C(F )
}

= σ2
c |D (u(F ))|2 , (2.14)

whereE {·} is the expected value. Equation (2.14) shows that the clutter power is a
scaled version of the two-way antenna pattern. Clutter power, which is positioned in the
Doppler frequency range of± vp

Ltx
, whereLtx is the length of the transmit antenna, is

referred to as clutter band. In this interval the clutter power drops from maximum to -4
dB.
Figures 2.2(a) and 2.2(b) show simulated clutter plus target power for different Doppler
frequencies and different range bins. In figure 2.2(a) the simulation is performed for
a ground-based radar and in figure 2.2(b) for an airborne radar. The moving target is
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(a) Ground-based radar system

Doppler Frequency [Hz]

R
a
n
g
e
 B

in

 

 

−400 −200 0 200 400

1

50

100

150

200

N
o
rm

a
li
z
e
d
 P

o
w

e
r 

[d
B

]

−40

−30

−20

−10

0

(b) Airborne radar system

Figure 2.2: Simulated clutter plus target power

injected at range bin 100 and Doppler frequency 100 Hz. The purpose of these figures
is to demonstrate the difficulty of MTI with airborne radar systems as opposed to the
ground-based ones. Figure 2.2(a) shows that it is not difficult to detect the moving target
with a ground-based radar, because it has a from zero different Doppler frequency, while
the clutter is only located at 0 Hz. It is therefore an easy task to discriminate between
the clutter power and the power of the moving target. With an airborne radar system,
however, the clutter power is spread over several Doppler frequencies, because of the
clutter power distribution in dependency of the frequency,which is calculated in equation
(2.14). Here the moving target has to compete with echoes of the clutter, which are both
received at the same Doppler frequency. Figure 2.2(b) showsthat for airborne radar the
target cannot be detected without any processing, because it is masked by the clutter.
To detect moving targets reliably with airborne radar systems, an appropriate filter has
to be applied. With single-channel MTI the cell under test can only be compared to the
estimated mean power of the corresponding frequency. The best achievable filter for
single-channel radar systems is therefore equal to

w(F ) =
1

σ2
c |D(u(F ))|2 + σ2

n

. (2.15)

This filter is referred to as the time-adaptive filter (TAP). Noise is assumed to be white
Gaussian noise with varianceσ2

n. Equation (2.15) shows that the best achievable filter for
single-channel radar systems is approximately the inverseof the scaled two-way antenna
pattern. Hence targets, which are positioned inside the clutter band, are attenuated by
this filter. If the signal-to-clutter plus noise ratio (SCNR) of a slow target is low, it will
be suppressed by the TAP filter, preventing a detection. To reliably detect such targets,
multichannel radar systems have to be applied, which are described in the next section.
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2.3 Multichannel Processing

Figure 2.3: Multichannel radar system

The concept of multichannel systems is described in figure 2.3. A signal is received
with several channels, whose phase centers are separated. Each channel is a subaperture
with several elements, which form a phased array antenna. Asdenoted by figure 2.3,
the position of channeln is defined asxn andα is the angle between the x-axis and the
antenna look direction, whereu = cos α. The phase center positions of the channels are
assumed to be along the x-axis, and only linear arrays are considered.
Ideally, all channels receive the same echoes, hence the received reflectivity is assumed
to be identical for each channel. Due to the different phase center positions, the phase
of the received signal is however different for each channel. These phase differences are
considered by the direction-of-arrival vector (DOA vector). For channels aligned along
the x-axis, the DOA vector can be stated as

d(u) =
(

Dn(u) exp
{

j
2π

λr

xnu

})N

n=1

, (2.16)

whereDn(u) denotes the two-way antenna pattern of channeln and the number of avail-
able channels is equal toN . The phase center of the transmitting antenna is assumed to
be positioned at the origin of the coordinate system.
To describe the received signal of a multichannel system, the DOA vector has to be in-
corporated into the normalized radar clutter signal of equation (2.8)

s(T, u) = exp {j2πF(u)T} d(u). (2.17)

Here the Doppler frequency of an airborne radar system for land clutter is used. Note
that this signal is now a vector.
A filter is considered to be optimal if it maximizes the SCNR. Such a filter can be derived
by using the pre-whiten and match principle, which is described for example in [28]. The
pre-whiten and match principle is performed by first whitening the signal with the square
root of the clutter plus noise spectral density matrix, where this matrix is assumed to be
positive definite and Hermitian, and then matching the expected signal times the square
root of this spectral density matrix. The optimal filter in the frequency domain can be
stated as

w(u, F ) = C−1
z (F )d(u), (2.18)
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whereCz(F ) is the spectral density matrix of the clutter plus noise signal

Cz(F ) = Cc(F ) + Cn(F ). (2.19)

The noise vector is assumed to be white Gaussian and its spectral density matrix is there-
fore defined asCn(F ) = σ2

nIN×N , whereIN×N is the identity matrix with the dimensions
N × N andσ2

n is the noise variance.
Equation (2.18) shows that the filter is two-dimensional andsuppresses the clutter not
only in dependence of the frequency, but also in dependence of the look direction. With
this filter the SCNR of a target, which is received with the amplitudeat and from the look
directionut, can be calculated as

SCNR(F ) = |at|2dH(ut)C
−1
z (F )d(ut). (2.20)

A useful measure to evaluate the performance of a multichannel radar system to detect
targets after clutter suppression is the filter gain, which is introduced in [32]. This mea-
sure is here defined as

γ(u, F ) =
dH(u)C−1

z (F )d(u)

||d(u)||2 . (2.21)

To gain further insight into the properties of this measure,the spectral density matrix has
to be analyzed. To calculate the clutter spectral density matrix, as in [33], the properties
of land clutter are assumed. This matrix can be evaluated from the Fourier transform of
the clutter covariance matrix, which is equal to

Rc(τ) = E
{

c(T + τ)cH(T )
}

= E

{∫

Ω
A(u)s(T + τ, u) du

∫

Ω
AH(u′)sH(T, u′) du′

}

. (2.22)

The reflectivity is assumed to be spatially white, which reduces equation (2.22) to

Rc(τ) = E

{∫

Ω
A(u)AH(u)s(T + τ, u) sH(T, u) du

}

(2.23)

=
∫

Ω
E
{

A(u)AH(u)
}

s(T + τ, u) sH(T, u) du (2.24)

= σ2
c

∫

Ω
s(T + τ, u)sH(T, u) du. (2.25)

The Fourier transform of the covariance matrix equals

Cc(F ) = σ2
c

∫ ∞

−∞

∫

Ω
s(T + τ, u)sH(T, u) du exp {−j2πFτ} dτ

= σ2
c

∫

Ω
d(u)dH(u)

∫ ∞

−∞
exp {j2π(F(u) − F )τ} dτ du

= σ2
c

∫

Ω
d(u)dH(u)δ(F − F(u)) du. (2.26)
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As already described in section 2.2, due to the Dirac delta function, for each frequency
the integral is only nonzero at one look direction, which is given by equation (2.12).

Cc(F ) = σ2
c d(u(F ))dH(u(F )), (2.27)

as demonstrated in [33]. Equation (2.27) shows that the spectral density matrix is a rank
one matrix, because it is only spanned by the vectord(u(F )). The eigenvector of this
matrix is a multiple of this vector, and the eigenvalue is equal to

λ1(F ) = σ2
c ||d(u(F ))||2. (2.28)

Due to this property, the clutter is only located in a one-dimensional subspace.
To calculate the spectral density matrix in equation (2.27), it is assumed that a pulse repi-
tition frequency (PRF) is chosen, which is still sufficient toneglect alliasing, because
otherwise the clutter subspace dimension would increase, as described in [32]. It is ad-
ditionally assumed that a sufficient time length of the coherent processing interval (CPI)
in combination with windowing, spectral leakage can be neglected. If spectral leakage
has to be considered, an increase in the subspace dimension must be accounted for, as
discussed in [44]. Especially, there will arise an additional contribution to the second
eigenvalue which is dependent on the used Fourier filters in adeterministic waya and can
easily be compensated for.
Figure 2.4 shows the space-time filter gain of equation (2.21), calculated with the clutter
spectral density matrix described in equation (2.27). The filter gain indicates the amount
of power by which a received signal is attenuated for each frequency and each look di-
rection, where 0 dB means no attenuation. The displayed filter gain shows a notch along
a diagonal line. The received signal is only attenuated where the look direction corre-
sponds to the Doppler frequency given by equation (2.12).
A simulated filter gain atu = 0 is demonstrated in figure 2.5 to emphasize the difference
between a single-channel and a multichannel system. In thisfigure the blue line indicates
the best achievable filter with single-channel processing,and the green line shows the op-
timal filter evaluated with space-time adaptive processing(STAP). Both filters suppress
the clutter. The TAP filter, however, also attenuates the target power at all Doppler fre-
quencies of the clutter band. At significantly fewer frequencies, target attenuation needs
to be feared with a STAP filter.
In practice, the spectral density matrix of real data is not known and has to be estimated.
If the spectral density matrix equals the covariance matrixin the frequency domain, a
maximum likelihood estimator can be derived. The received target free signal is assumed
to be zero-mean and have a Gaussian distribution. Further, the different range bins are
expected to be independent and identically distributed, sothe maximum likelihood esti-
mator of the spectral density matrix can be calculated as

Ĉz(F ) =
1

L

L
∑

i=1

Z(ni, F )ZH(ni, F ). (2.29)
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Figure 2.4: Calculated space-time filter
gain with equations (2.21) and (2.27)
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Figure 2.5: Simulated filter gain atu = 0
for single- and multichannel systems

HereL is the amount of available range bins, andZ(ni, F ) denotes the received multi-
channel signal at range binni and frequencyF . The derivation of this estimator can be
found in [29].
The multichannel properties of land clutter are well known.For sea clutter, however,
they are still ill understood. To derive these properties, the general characteristics of sea
clutter have to be considered. They are described in the nextchapter.





Chapter 3

Sea Clutter

During the 1960s, a revolutionary thinking about the origins of sea clutter developed.
Several publications derived a direct relationship between clutter physics and oceano-
graphy ([9, 45, 1]), which suggests that an understanding ofmarine hydrodynamics is
crucial to model sea clutter. In section 3.1 this chapter provides therefore a basic intro-
duction to relevant topics of oceanography. The relationship between sea clutter physics
and oceanography is illustrated in section 3.2, where the magnetic scattering field re-
ceived by a radar from the sea surface is described. An important measure to evaluate the
clutter properties is the Doppler frequency, which is evaluated in section 3.3 for sea clut-
ter. Section 3.2 analyzes the scattering of capillary waves, but echoes are also received
from breaking waves. Section 3.4 describes the origin of these events and investigates its
scattering.

3.1 Water Waves

There are basically two types of surface water waves, capillary waves and gravity waves,
depending on whether surface tension or gravity is the dominant restoring force. Capil-
lary waves supply the surface fine structures, while gravitywaves make up the larger and
more visible surface elevations. Figure 3.1 visualizes thedescribed water wave types. In
order to arouse the surface to its fully developed or equilibrium state, the wind must blow
for a sufficient time over a sufficient distance. As the wind starts to blow over a smooth
sea surface, at first fluctuations of the atmospheric pressure induce capillary waves. With
increasing wind velocity, waves grow and gravity forces aresufficient to support the wave
motion, hence gravity waves develop.
The simplest way to mathematically describe gravity waves is by using the linear wave
theory (or Airy wave theory after its publisher [46]). Here the elevation function of a
regular single wave can be described as

η(x, t) =
Hs

2
cos

(

kH
s x − 2πfst

)

, (3.1)
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(a) Capillary waves (b) Gravity waves

Figure 3.1: Two types of water waves

Figure 3.2: Assumed model for water wave

whereHs is the height,fs the frequency andks the wave vector of the water wave. The
position vector in the x-y-plane is denoted byx = (x, y)T . The described wave is shown
in figure 3.2. Here the water depth is described byH. The coordinate system is chosen
in such a way that the elevation of the water wave is centered aroundz = 0.
This wave moves with a certain velocity, called the phase velocity

cp =
2πfs

||ks||
ks

||ks||
. (3.2)

However, also a velocity field is generated by this wave, due to which water particles,
and anything else which is on the wave, are also in movement. If the velocity field can
assumed to be irrotational, a velocity potential can be defined. The relationship between
the velocity field and the potential is that the velocity fieldequals the divergence of the
velocity potential. Assuming further that the flow is incompressible, the velocity poten-
tial can be used to form the Laplace equation. To solve the Laplace equation, appropriate
boundary conditions have to be defined. For this calculation, three boundary conditions
are determined. The first one is known as the bottom boundary condition. It states that
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Figure 3.3: Orbital velocity for deep water assumption. Particle moves along a constant
circle in dependency of the position on the gravity wave. Thewave moves in the right
direction.

the vertical velocity at the bottom has to be zero. The secondboundary condition applies
to the surface and is called the kinematic boundary condition. It results from the obser-
vation that water particles on the surface always stay on thesurface, if wave breaking is
not considered. The dynamic boundary condition, which is the third one, states that the
pressure at the surface must be equal to the atmospheric pressure. The pressure at the sur-
face is further calculated by using the Bernoulli equation. The calculation of the velocity
field from the Laplace equation and the described boundary conditions is a well known
problem, which is for example described in [47, 48, 49]. For the sake of completeness,
the boundary conditions are summarized in appendix A. With the described boundary
conditions, the velocity potential and hence the velocity field can be calculated as

vorb(x, z, t) =
πHsfs

sinh(||ks||H)











cosh(||ks||(z + H)) cos
(

kH
s x − 2πfst

)

cos ϕs

cosh(||ks||(z + H)) cos
(

kH
s x − 2πfst

)

sin ϕs

sinh(||ks||(z + H)) sin
(

kH
s x − 2πfst

)











,

(3.3)
whereϕs is the azimuth angle between the x-axis and the travelling direction of the
water wave. The integration of this velocity vector shows that the fluid elements move in
elliptical orbits. This velocity field is therefore usuallyreferred to as the orbital velocity.
If the water depth approaches infinity, the fractions with the hyperbolic functions reduce
to exp {||ks||z}.
If only waves atz = 0 are analyzed, the velocity vector reduces to

vorb(x, t) = πHsfs











cos
(

kH
s x − 2πfst

)

cos ϕs

cos
(

kH
s x − 2πfst

)

sin ϕs

sin
(

kH
s x − 2πfst

)











. (3.4)

This simplification is referred to as the deep water assumption. In practice, the deep wa-
ter assumption is used ifH ≥ λs

2
is valid, whereλs is the wave length of the water wave.

This assumption is applied in this analysis. Equation (3.4)shows that in deep water the
water particles move in closed orbital paths. This is demonstrated in figure 3.3, where
a particle moves along a constant circle in dependency of where it is positioned on the
water wave.
Water particles on real non-linear waves do not move in closed paths. There is a slow
mean drift in the propagation direction, which is called theStokes drift [50]. To consider
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Figure 3.4: First and second addend of phase velocity in dependency of the wave length

the capillary waves, the dynamic boundary condition has to be changed, where the pres-
sure on the surface is not considered to be constant any more,but is changed due to the
surface tension [51]. Then the modified dynamic and the kinematic boundary conditions
can be used to derive the dispersion relation for water waves

fs = ± 1

2π

√

g||ks|| +
ν

ρ
||ks||3, (3.5)

whereg is the gravity constant andν
ρ

= 74 · 10−6 Nm2

kg is the surface tension-to-density
ratio. Here also the deep water assumption is used, allowingto neglect the hyperbolic
functions. Equation (3.5) is very important, because it states a direct relationship between
the frequency and the wave length of a water wave. With equation (3.5) the magnitude
of the phase velocity can be calculated as

cp =

√

g

||ks||
+

ν

ρ
||ks||. (3.6)

For a certain wave length, the phase velocity consists of a contribution from a gravity
wave, which is the first addend, and a contribution from a capillary wave, given by the
second addend. In figure 3.4 both contributions are evaluated in dependency of the wave
length. This graph shows, that the contribution from a capillary wave is only significant
for wave lengths up to2 cm, while the contribution from a gravity wave can be neglected
for these wave lengths. A wave is therefore considered to be acapillary wave ifλs ≤ 2
cm is satisfied. Waves having wave lengths where both contributions are significant are
referred to as gravity-capillary waves.
A look at the sea reveals that the sea surface is random in space and time. A very useful
description of the sea surface can therefore be achieved by statistical measures. One
important measure is the spectral density of water waves

C̃w(F ) = E {H(F )H∗(F )} , (3.7)
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whereH(F ) is the Fourier transform of the elevation function at a fixed point

H(F ) =
∫ ∞

−∞
η(0, t) exp {−j2πFt} dt. (3.8)

Note that additionally the elevation function is assumed tobe a stationary stochastic
process, due to which

E {H(F )H∗(F ′)} = δ(F − F ′)C̃w(F ) (3.9)

is valid [52], whereδ(·) denotes the Dirac delta function. With the spectral densityof
water waves, many parameters describing the sea surface canbe calculated. An impor-
tant parameter for this analysis is the orbital velocity variance. Due to the deep water
assumption, the variances of the horizontal and vertical orbital velocity components are
assumed to be equal. The vertical velocity can be calculatedfrom the time derivative of
the elevation function, due to the kinematic boundary condition (see appendix A). The
orbital velocity variance at a fixed point is therefore equalto

σ2
orb = E

{

∂η(0, t)

∂t
· ∂η∗(0, t)

∂t

}

. (3.10)

Exploiting the inverse Fourier transform of the elevation function results in

σ2
orb = E

{

∂

∂t

∫ ∞

−∞
H(F ) exp {j2πFt} dF · ∂

∂t

∫ ∞

−∞
H∗(F ) exp {−j2πFt} dF

}

=
∫ ∞

−∞
(2πF )2E {H(F )H∗(F )} dF

=
∫ ∞

−∞
(2πF )2C̃w(F ) dF . (3.11)

For water waves usually only positive frequencies are observed [53]. Becauseη(0, t) is a
real function, also its covariance is real andC̃w(F ) is therefore an even function, which
allows to use the following definition

Cw(F ) =

{

2C̃w(F ) F ≥ 0
0 F < 0

. (3.12)

Equation (3.11) then reduces to

σ2
orb =

∫ ∞

0
(2πF )2Cw(F ) dF . (3.13)

To calculate the orbital velocity variance, the spectral density has to be known. Several
empirical spectral densities for wind waves are available,the most popular one being the
Pierson-Moskowitz spectrum [54]

Cpm(F ) =
2πκg2

(2πF )5
exp

{

−χ

(

g

2πFUw

)4
}

. (3.14)
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Hereκ andχ are constants withκ = 8.1 · 10−3 andχ = 0.74. The wind velocity is
denoted byUw, which is measured at 19.5 m. This spectrum is considered valid for
gravity waves and fully developed sea conditions. To calculate the velocity variance for
a given scene of the sea surface, an integration over the waves, which contribute to the
velocity variance, has to be performed [12]. The upper limitof this integration is not
critical [13], therefore only the lower limit has to be evaluated

σ2
pm =

∫ ∞

FL

(2πF )2Cpm(F ) dF , (3.15)

whereFL is the frequency of the longest wave which has to be taken intoaccount. Per-
forming the integration and using the gravity wave part of equation (3.5) to calculate the
wave length of the longest wave results in

σ2
pm =

√

π

χ

κ

4
U2

werf

(

g
√

χλL

2πU2
w

)

, (3.16)

where erf(·) is the error function. In general, however,λL is not known. IfλL → ∞ is
assumed, as was done in [55], equation (3.16) reduces to

σ2
pm =

√

π

χ

κ

4
U2

w. (3.17)

This equation corresponds to the highest possible orbital velocity variance for a certain
wind velocity, if the Pierson-Moskowitz spectrum is used.

3.2 Scattering from Sea Surface

To gain some insight into the physical properties of sea clutter, the scattering mechanisms
are described in this section. The detailed calculations ofthe sea surface scattering field
are for example performed in [56]. In this section some main results are summarized,
which are crucial for the assumptions and the understandingof the following analysis.
The scattering field can be calculated from the Stratton-Chu equations [57]. These equa-
tions can be derived from the Helmholtz equations, incorporating a Green’s function and
then simplifying the integrals with Green’s theorem of the second kind.
To simplify the calculation, it is assumed that water is a perfect conductor. The electrical
field on the sea surface is then zero, and the magnetic scattering field at the platform
positionxp can be stated as

Bs(xp) = −
∫∫

A

(n(xc) × B(xc)) × ∇G(xp, xc) dA. (3.18)

Heren(·) is the normal vector,B(xc) the magnetic field at the position of the scattering,
G(·, ·) the Green’s function,∇ the nabla operator, and× denotes the cross product. To
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calculate this field, the clutter position vector is chosen as xc = (x, y, η(x, y))T , where
η(x, y) is the elevation function of the sea surface at a certain timeinstant and is assumed
to be near the origin of the coordinate system. With this vector the normal vectorn(xc)
and the area elementdA can be calculated. For the following calculations, an appropriate
Green’s function has to be chosen. In this analysis the free space Green’s function is
applied. Additionally, the magnetic field at positionxc has to be known to calculate
the scattering magnetic fieldBs(xp). Here the Kirchhoff assumption is used, which
states that this magnetic field is twice the field which is transmitted by the radar system.
This assumption is only valid if the sea surface is almost a tangent plane, hence multi-
scatterings and shadowing effects can be neglected. Assuming only waves with small
amplitudes on the surface and utilizing the described evaluations, the magnetic scattering
field can be calculated as

Bs(xp) =
−B0 exp {jkr||xp||}

π||xp|| k2
rz

∫∫

A

η(x, y) exp {−2j(krxx + kryy)} dx dy. (3.19)

HereB0 is the amplitude vector of the magnetic field transmitted by the radar system and
kr = (krx, kry, krz)T defines the wave vector of this field. The detailed calculations to
derive equation (3.19) are summarized in appendix B and can also be found in [58].
If the area over which the integration is performed can assumed to be big enough, the in-
tegral in equation (3.19) is a two-dimensional spatial Fourier transform of the sea surface
elevation function, which is defined as

H(kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
η(x, y) exp {−j(kxx + kyy)} dx dy. (3.20)

Therefore equation (3.19) can be rewritten as

Bs(xp) =
−B0 exp {jkr||xp||}

π||xp|| k2
rzH(2krx, 2kry). (3.21)

This equation is of major importance, because for one it states a direct relationship be-
tween the scattering, which is received by the radar, and thesea surface elevation. For
another, this equation shows that echoes are only received from water waves, whose wave
lengths are related to the radar wave length byλs = λr

2 cos θ
. Hence, there is a direct re-

lationship between the radar and water wave length. For X-band medium grazing angle
radar systems, scattering is received from water waves in the range ofλs = 1.5 cm -
2.1 cm. As described in the previous section, these water wave lengths correspond to
capillary waves. An important conclusion is therefore, that for the following analysis the
physical properties of capillary rather than gravity waveshave to be considered.
For medium grazing angles, the assumption that the sea surface is almost a tangent plane
and a perfect conductor is not valid. To derive satisfying solutions, multi-scatterings
have to be considered, for example by using the perturbationmethod, and boundary con-
ditions have to be applied. These calculations are performed in [4] and [5]. The results
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yield polarization dependent scatterings, which are also observed in experimental data
(see for example [2]). Furthermore, it is proposed in [9] and[45] that also the influence
of gravity waves has to be considered, because due to these waves the grazing angle and
the polarization changes locally. An overview of existing models to calculate scatterings
from the sea surface can be found in [59] and [60]. The modifiedcalculations of the
scattering field, however, do not change the fact that for X-band radars only echoes from
capillary waves are received.

3.3 Doppler Frequency of Sea Scatterers

While for land clutter the scatterers are assumed to be stationary, for sea clutter this
assumption is not valid. The scatterers are themselves in motion, hence a certain clutter
velocity has to be considered. It is assumed that echoes are received from capillary
waves, due to the results of the previous section. The capillary waves have themselves
a phase velocity, but they ride on gravity waves and are therefore additionally moved by
the surface, which is identified in section 3.1 to be the orbital velocity, but also currents
contribute to a further movement. The resulting velocity ofthe received scatterers at a
certain time instant is therefore a sum of several differentvelocities

vc(x) = vcur + cp + vorb(x). (3.22)

Herevcur denotes the velocity of any currents,cp is the phase velocity of the capillary
waves, which have the wave lengthλs = λr

2 cos θ
, andvorb(x) is the orbital velocity. The

current velocity is usually assumed to be constant. The magnitude of the phase velocity
of the capillary waves can be calculated as

cp = ±
√

1

4π

gλr

cos θ
+

ν

ρ

4π cos θ

λr

. (3.23)

For X-band radar and medium grazing angles, this velocity isaround±0.23 m/s. The
orbital velocity can be calculated from equation (3.4). This velocity varies for different
positions in dependence of where the capillary waves are positioned on the long waves.
In figure 3.5 the Doppler spectra of a stationary radar of landand sea clutter are presented
to visualize the difference. For land clutter, power is onlyreceived at 0 Hz, because the
clutter and platform velocities are zero. For sea clutter, however, echos from scatterers
with different velocities are received, and the clutter power is therefore spread over diffe-
rent Doppler frequencies. The scatterer velocity changes due to a varying orbital velocity.
The Doppler centroid is not at 0 Hz because of constant velocities and the constant shift
of orbital velocities [22]. Note that for HF radars, where the phase velocity of the waves
from which echoes are received is much higher, Doppler spectra with two peaks are ex-
pected. For microwave radars, however, the separation of the two peaks is quite small
and they are broadened due to orbital velocities, so that twopeaks are only visible for
certain conditions, as analyzed in [61].
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Figure 3.5: Normalized clutter power of a stationary radar system in dependency of the
Doppler frequency for land and sea clutter

3.4 Scattering from Breaking Waves

It is shown in several publications, like in [2] and [56], that the sea surface RCS deviates
from the scattering model derived for capillary waves. Thisobservation suggests another
scattering source, which is believed to be due to wave breaking.
Wave breaking occurs if the orbital velocity of the particles on the crest of a wave exceeds
the phase velocity of the wave. Then the crest outruns the form of the underlying wave,
causing wave breaking. This condition is called the kinematic breaking criterion. Further
breaking criteria are summarized in [62] or [63].
The scattering properties of breaking waves are different from the ones of capillary
waves. The Doppler shift of these scattering events is higher than the ones of scatterings
from capillary waves, because the velocity of these particles has to be in the order of
the phase velocity of the gravity wave. In [64] this is confirmed with experimental data,
where Doppler spectra of breaking events in a water tank are analyzed. The results show
a good fit between the radial velocity of these scatterers andcp cos θ. This observation
further suggests that the velocity of the described scatterers is mainly of horizontal na-
ture.
How the scattering properties of capillary and breaking waves relate to each other is
analyzed in [65]. This publication determines that scatterings of both wave types are in-
dependent of each other, due to which the resulting radar cross section of the sea surface
can be calculated as a sum of the separate contributions.
For medium grazing angles, it is proposed in [56] and [66] that scatterings from breaking
waves are mostly generated by the white foam which is presentafter such events. This
scattering type can be modeled analog to the scattering of capillary waves, but with a
much rougher surface, and is often referred to as whitecap scattering.
Wave breaking and its radar scattering is still ill understood and is an area of ongoing
research. A summary of current problems can be found in [67].
In this analysis the scatterers from breaking waves are referred to as “fast scatterers” and
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the scatterers from capillary waves are called “slow scatterers”, because the echoes of
breaking waves have much higher velocities.



Chapter 4

Experiments with PAMIR

Three measurement campaigns were performed with the radar system PAMIR in the con-
text of this thesis to validate the developed theory with real data. Section 4.1 summarizes
the main parameters of this system and provides an overview of its special features. The
radar and sea parameters and the flight paths of the corresponding experiments are illus-
trated in section 4.2. First evaluations of the collected data are provided in section 4.3,
where some differences between land and sea clutter are demonstrated.

4.1 PAMIR System

New processing methods need to be validated with real data. For this purpose a multi-
functional radar system, called PAMIR (Phased Array Multifunctional Imaging Radar)
was developed at FHR [31]. A picture of the PAMIR system is shown in figure 4.1. Ta-
ble 4.1 summarizes the main parameters of the PAMIR system. It is an airborne radar
system, where the Transall is the carrier platform. The system operates at X-band and
due to the phased array, the steering of the antenna beam in azimuth is performed elec-
tronically. This allows great flexibility to steer the antenna beam during an experiment.
Additionally, an IMU (Inertial Measuring Unit) and a DGPS (Differential Global Posi-
tioning System) are implemented inside the PAMIR system. Due to these devices, the
position and the orientation angles of the platform are known at any time instant. The
roll-pitch-yaw angles are considered by the steering of thephased array antenna, hence
the desired scene is always observed.
A special feature of the PAMIR system are the 9 autonomous andreconfigurable sub-
groups, of which the antenna consists. This allows to have upto 5 parallel receive anten-
nas, where the positions of the phase centers can be chosen flexibel. For interferometry
applications, an alignment in the across-track direction is selected, where up to 3 receive
antennas can be used. For MTI applications an along-track alignment is possible, where
also 3 receive antennas are available.
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Carrier platform Transall C-160
Polarization VV

Center frequency 9.45 GHz (X-Band)
Bandwidth Up to 3.6 GHz

Transmit power 240 W
Antenna Active phased array

Antenna length in azimuth 0.79 m
Steering angle ± 45◦

Number of receive antennas for MTI 3
Phase center separation 0.2656 m

Table 4.1: Main parameters of PAMIR system

Figure 4.1: PAMIR system
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4.2 Experiments

To validate the developed theory, several sets of multichannel data were collected with
the PAMIR system during several experiments. To compare themultichannel properties
of sea clutter with land clutter, an experiment over land wasperformed. This land data
was acquired near Nuremberg in Germany, as shown in figure 4.2, in March 2012. Sea
data was collected over the North Sea, near Heligoland. The water depth at the observed
scene was approximately 40 m. A total of three sea experiments were performed, where
the first two experiments took place in March 2012 and the lastone in October 2012. For
all sea experiments, the flight path was a square, where at each side of the square, data of
the same scene was collected. This allowed to observe the same sea clutter at different
swell directions in reference to the radar. The flight path ofthe third sea experiment
is shown in figure 4.3. Here the track of the plane was rotated by 30◦ from the north,
east, south and west direction. The track of the first two experiments was headed exactly
towards the north, east, south and west direction.
All experiments were performed in a spotlight mode and all three channels in along-track
direction were used to receive the data. For the sea experiments, it was possible to collect
the data with depression angles of15◦ and35◦. The radar parameters of the land and sea
experiments are summarized in table 4.2.

Figure 4.2: Flight path of land experiment
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Figure 4.3: Flight path of sea experiment

Land Experiment
Pulse repetition frequency (PRF) 3000 Hz

Range resolution 3.75 m
Nearest center slant range 6085 m

Platform velocity 100 m/s
Depression angle 20◦

Slant swath 4500 m

Sea Experiment
Pulse repetition frequency (PRF) 2000 Hz

Range resolution 3.75 m
Nearest center slant range 5222 m

Platform velocity 88m/s - 106 m/s
Depression angle 15◦/35◦

Slant swath 4500 m

Table 4.2: Radar parameters of performed experiments

The sea states varied quite strongly during the different data acquisitions over the North
Sea. The sea was quite smooth during the first experiment, slightly rougher during the
second one and very rough at the time of the last experiment. During the sea experi-
ments, several weather stations, which were located near the observed scene, were used
to collect information about the sea state. The weather stations recorded measured data
approximately once an hour. These weather conditions are summarized in table 4.3. The
wind and swell directions are evaluated in an east-north-upcoordinate system (ENU).
The significant wave height corresponds to the mean third maximum wave. The cur-
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Experiment 1
Significant wave height 0.3 m - 0.5 m

Mean water wave frequency0.18 Hz - 0.21 Hz
Wind velocity 2 m/s -4 m/s

Wind direction (ENU) 315◦

Swell direction (ENU) 295◦ - 298◦

Current velocity 0.1 m/s - 0.3 m/s
Current direction (ENU) 240◦ - 315◦

Experiment 2
Significant wave height 0.6 m - 0.8 m

Mean water wave frequency0.25 Hz - 0.27 Hz
Wind velocity 7 m/s -8 m/s

Wind direction (ENU) 0◦

Swell direction (ENU) 129◦ - 140◦

Current velocity 0.3 m/s - 0.5 m/s
Current direction (ENU) 315◦ - 350◦

Experiment 3
Significant wave height 2.3 m - 2.4 m

Mean water wave frequency 0.18 Hz
Wind velocity 10 m/s -14 m/s

Wind direction (ENU) 84◦ - 96◦

Swell direction (ENU) 77◦ - 95◦

Current velocity 0.3 m/s
Current direction (ENU) 350◦

Table 4.3: Weather conditions of sea experiments

rent velocities and directions were calculated by the BSH, Federal Maritime and Hydro-
graphic Agency of Germany. With this data, the sea conditions of the first experiment
can be assigned to sea state 2 on the Douglas Scale or 2 - 3 on theBeaufort Scale, the sea
conditions of the second experiment correspond to sea state3 on the Douglas Scale and
3 - 4 on the Beaufort Scale and during the last experiment, sea state 4 was reached on the
Douglas Scale and 5 - 6 on the Beaufort Scale.
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4.3 First Analysis

Figures 4.4 - 4.6 show the clutter power in the synthetic sum channel of different sea data
sets in dependence of the Doppler frequency and slant range.Here a coherent processing
interval (CPI) of 256 pulses is chosen to perform a Fourier transform, and 200 range bins
are selected where maximum clutter power is present. The visualized signal is normali-
zed to noise power and the centroid is shifted to 0 Hz.
Figure 4.4 shows two coherent processing intervals of the third experiment, collected
with a 15◦ grazing angle. The data set in figure 4.4(a) was collected while the plane was
flying on side 3 and in figure 4.4(b) data from side 4 is presented. Due to the collected
weather data, the sea surface is assumed to move up swell in reference to the radar at
side 3, and cross swell at side 4. The two CPIs in figure 4.4 are quite different. The
clutter power is much more inhomogeneous for the up swell direction as compared to the
cross swell direction. Additionally, in figure 4.4(a) many scatterers outside of the clutter
band are evident at positive Doppler frequencies. These scatterers are due to wave break-
ing, which is more frequently present in the up swell direction than in the cross swell
direction. More homogeneous sea clutter in the cross swell direction is for example also
observed in [56].
Figure 4.5 shows the clutter power of the third experiment collected with a grazing angle
of 35◦. Here higher clutter power is evident due to bigger resolution cells on the ground,
resulting from a higher grazing angle. Additionally, the radar cross section of sea clutter
is higher for higher grazing angles, as observed for examplein [68] or [69]. Again, figure
4.5(a) shows a data set at the assumed up swell direction, andfigure 4.5(b) shows a CPI
at the assumed cross swell direction. Also here the clutter power is more inhomogeneous
for the down swell direction, and several fast scatterers are evident. An analysis of the
clutter power for different grazing angles and different swell directions can be found in
[36].
In figure 4.6 two CPIs, collected from two different sides, of the first experiment are pre-
sented. Here a much lower clutter-to-noise ratio is evident. This is due to a lower RCS
of the sea scatterers for smoother sea surfaces, as for example is also observed in [70]
and [71]. The distribution of the clutter power is quite homogeneous for both data sets,
without any fast scatterers.
If the Doppler shift resulting from the movement of the platform is removed, the centroid
of land clutter is centered around 0 Hz. This is different forsea clutter, because here an
additional Doppler shift due to the movement of the scatterers is present. To evaluate this
Doppler shift, the Doppler frequency due to the platform velocity has to be calculated
from equation (2.9). This calculation can be performed, because the track and the roll-
pitch-yaw angles of the platform, which were present duringthe experiments, are known
from the IMU. With this information, the platform coordinate system can be rotated to
the earth coordinate system, where equation (2.9) can be applied. The mean radial velo-
city of the sea scatterers can then be calculated from the difference between the Doppler
frequency of the actual clutter power centroid and the Doppler shift due to the platform
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velocity. In this analysis the Doppler frequency of the centroid is estimated by corre-
lating the Doppler spectrum with a Gaussian function, whichhas the same bandwidth
as the Doppler spectrum, and searching for the maximum power. Note that radial sea
scatterer velocity can also be evaluated by using the along-track-interferometry phase, as
was done in several publications (for example [16, 20, 18]).
Figure 4.7 visualizes the estimated mean radial clutter velocity of sea data, collected du-
ring experiment 3. This experiment is chosen because the wind direction approximately
corresponds to the swell direction and because the different swell directions were best
captured during this experiment. The mean clutter velocityis evaluated dependent on the
azimuth angle between the x-axis (East direction) and the center position in ENU coor-
dinates. If the vectorxc = (xc, yc, zc)

T denotes the center coordinates of the observed
area, then this angle is defined as

ϕENU =















arccos
(

xc−xp√
(xc−xp)2+(yc−yp)2

)

, yc − yp ≥ 0

360◦ − arccos
(

xc−xp√
(xc−xp)2+(yc−yp)2

)

, yc − yp < 0
. (4.1)

Figure 4.7(a) shows the mean radial velocity of the sea scatterers at side 1. Here the
sea clutter is assumed to move in the down swell direction. The estimated radial clutter
velocity is always positive. In figure 4.7(c) this velocity is estimated for azimuth angles,
where the up swell condition is assumed. For these angles a negative velocity was esti-
mated for both grazing angles. Figures 4.7(b) and 4.7(d) show the estimated mean radial
clutter velocity for assumed cross swell conditions. Here the sign of the radial velocity
changes and the magnitude is around zero. The estimated radial sea clutter velocities
collected with different grazing angles mostly match each other. Differences between
different data sets are due to some randomness of the sea surface, changing sea condi-
tions between the data takes (the time difference between data acquisitions of same sides
but different grazing angles was around 1 hour), and the factthat the radial velocity is
dependent on the grazing angle.
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Figure 4.4: Clutter power in dependence of slant range and Doppler frequency, normali-
zed to noise power. Experiment 3, grazing angle15◦
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Figure 4.5: Clutter power in dependence of slant range and Doppler frequency, normali-
zed to noise power. Experiment 3, grazing angle35◦
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Figure 4.6: Clutter power in dependence of slant range and Doppler frequency, normali-
zed to noise power. Experiment 1, grazing angle15◦
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Figure 4.7: Estimated mean radial clutter velocity from Doppler centroid in dependence
of azimuth angle





Chapter 5

Theoretical Multichannel Analysis of
Sea Clutter

This chapter derives the multichannel properties of sea clutter. In sections 5.1 and 5.2
the multichannel statistical description of land clutter is revised to consider the different
characteristics of sea clutter. Section 5.3 demonstrates how the properties of sea clutter
affect the STAP performance. The multichannel model of sea clutter is used in section
5.4, to derive a theoretical description of the channel correlation. Section 5.5 considers
the influence of fast scatterers, which result due to wave breaking, on the multichannel
description of sea clutter and alters it.

5.1 Doppler Frequency

While the multichannel characteristics of land clutter are based on the assumption of
stationary scatterers, for sea clutter also the contribution of the radial component of its
own motion has to be considered. For microwave radars the varying scatterer velocities
are determined by orbital motion ([72, 59]), as described inchapter 3.3. By defining the
radial sea scatterer velocity for a certain position asvs = uHvorb, the Doppler frequency
of sea clutter can be stated as

F(u, vs) =
2

λr

(vpu − vs). (5.1)

Here the platform is assumed to move along the x-axis, as in chapter 2.2. Due to the ran-
dom nature of the sea surface,vs is considered to be a realization of the random variable
Vs(u), which varies in dependence of the look direction and its variance is denoted by
σ2

s . This implies that the Doppler frequencyF(u, Vs(u)) is itself of random nature.
If a small interval of azimuth angles is assumed, as described in chapter 2.2, the relation-
ship between the radial sea scatterer velocity variance andthe orbital velocity variance
can be stated as

σ2
s =

(

cos2(ϕ0 − ϕs) cos2 θ + sin2 θ
)

σ2
orb. (5.2)
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Figure 5.1: Geometry of described scenario to calculate Doppler frequency of sea clutter

The azimuth angle of the steering direction is denoted byϕ0. Here the random wa-
ter waves are considered as in [73]. The described geometry to calculate the Doppler
frequency is visualized in figure 5.1, and the orbital velocity variance properties are sum-
marized in chapter 3.1.

5.2 Cross-Covariance Matrix and Spectral Density
Matrix

To characterize the sea clutter signal, the Doppler frequency defined in equation (5.1) has
to be considered. The sea clutter signal then equals with equation (5.3) to

c(T ) =
∫

Ω
A(u) exp {j2πF(u, Vs(u))T} d(u) du

=
∫

Ω
A(u)s(T, u, Vs(u)) du. (5.3)

Here the normalized time-dependent radar clutter signals(T, u, Vs(u)) is dependent on
the radial sea scatterer velocity. It is therefore also of random nature.
To calculate the clutter cross-covariance matrix, the complex echo amplitude is modeled
as a spatially white and zero mean random variable with a random phase and the variance
σ2

c , as described in chapter 2.3. The correlation betweenVs(u) andA(u) is zero due
to the random phase. Since, no converse facts or suppositions are evident, we further
assume that the echo amplitude and the radial sea scatterer velocity can considered to be
independent, as it is done for example in [53] and [15]. If theclutter signal is a stationary
process, the cross-covariance matrix equals

Rc(τ) = E
{

c(T + τ)cH(T )
}

= σ2
c

∫

Ω
E
{

s(T + τ, u, Vs(u))sH(T, u, Vs(u))
}

du. (5.4)



5.2. Cross-Covariance Matrix and Spectral Density Matrix 39

Figure 5.2: Relationship between Doppler frequency and look direction for land and
sea clutter. For land clutter a certain Doppler frequency can be assigned to each look
direction. For sea clutter the Doppler frequency varies for the same look direction in a
random manner.

The sea clutter spectral density matrixCc(F ) can be calculated from the Fourier trans-
form of the clutter cross-covariance matrix as

Cc(F ) = σ2
c

∫

Ω
E
{

d(u)dH(u)δ(F − F(u, Vs(u)))
}

du. (5.5)

Due to the Dirac delta function, only those directions contribute to the integral for which
the frequency equals the Doppler frequency. For sea clutter, equation (5.1) has to be
inverted to calculate the directional cosine affecting the frequency F

u (F, Vs(u)) =
Fλr

2vp

+
Vs(u)

vp

. (5.6)

This equation shows the fundamental difference between land and sea clutter. Unlike for
land clutter, for sea clutter there is no unique relationship between the look direction and
the frequency. Due to the dependence of the look direction on the radial sea scatterer
velocity, it is itself a random variable for each frequency. The different meanings of the
look direction in reference to the frequency are visualized in figure 5.2. While for land
clutter to each look direction a Doppler frequency can be assigned independently of the
range bin, for sea clutter the Doppler frequency varies for the same look direction but
different range bins in a random manner. To further calculate the spectral density matrix,
a sea scatterer velocity distribution is assumed, which is independent ofu. Using the
integral form of the expected value and describing the sea scatterer velocity distribution
with pVs(vs), the spectral density matrix can be written as

Cc(F ) = σ2
c

∫

Ω

∫ ∞

−∞
d(u)dH(u)δ

(

F − 2vp

λr

u +
2

λr

vs

)

pVs(vs) dvs du. (5.7)
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For each frequencyF and each scatterer velocityvs, there is only one directional co-
sine, where the Dirac delta function is nonzero. The two-dimensional integral reduces
therefore to a one-dimensional one

Cc(F ) = σ2
c

∫ ∞

−∞
d

(

Fλr

2vp

+
vs

vp

)

dH

(

Fλr

2vp

+
vs

vp

)

pVs(vs) dvs

= σ2
c E

{

d

(

Fλr

2vp

+
Vs(u)

vp

)

dH

(

Fλr

2vp

+
Vs(u)

vp

)}

. (5.8)

It is assumed that all receive antennas have the same two-wayantenna patternD(·),
which allows to define the DOA vector as

d

(

u0(F ) +
Vs(u)

vp

)

= D

(

u0(F ) +
Vs(u)

vp

)

e

(

u0(F ) +
Vs(u)

vp

)

. (5.9)

Here for convenienceu0(F ) = F λr

2vp
is specified, and the phase vector is denoted by

e

(

u0(F ) +
Vs(u)

vp

)

=

(

exp

{

j
2π

λr

xn

(

u0(F ) +
Vs(u)

vp

)})N

n=1

. (5.10)

The directional cosineu0(F ) corresponds to the look direction of stationary scatterers.
To further calculate the spectral density matrix analytically, e

(

u0(F ) + Vs(u)
vp

)

is approx-
imated by the Taylor series as

e

(

u0(F ) +
Vs(u)

vp

)

≈ e (u0(F )) +
Vs(u)

vp

e′ (u0(F )) , (5.11)

wheree′ (u0(F )) corresponds to

e′(u0(F )) =
(

jxn
2π

λr

exp
{

j
2π

λr

u0(F )xn

})N

n=1

, (5.12)

andd′(u0(F )) = D(u0(F ))e′(u0(F )).
HereVs(u) is assumed to be zero mean. A non-zero mean has only a small impact on the
following derivations and is discussed later.
With the phase vector in equation (5.11) the spectral density matrix becomes

Cc(F ) ≈ σ2
c E
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(

e (u0(F )) +
Vs(u)

vp

e′ (u0(F ))

)

(

e (u0(F )) +
Vs(u)

vp

e′ (u0(F ))

)H










. (5.13)

In the following an antenna coordinate system is chosen, where the center of gravity of
phase center positions is at the origin. The vectorse(u0(F )) and e′(u0(F )) are then
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orthogonal to each other. To further analyze the properties of the sea clutter spectral den-
sity matrix, its basis is changed, where the set of vectors which form the new basis are
{

e(u0(F ))
||e(u0(F ))|| ,

e′(u0(F ))
||e′(u0(F ))|| , b3(F ), . . . , bN(F )

}

, whereb3(F ), . . . , bN(F ) are some vectors

which are orthonormal toe(u0(F ))
||e(u0(F ))|| and e′(u0(F ))

||e′(u0(F ))|| . This transformation is discussed in
appendix C and it shows that the sea clutter spectral density matrix in equation (5.13) is
a rank two matrix.
If a Gaussian distribution is assumed for the radial sea scatterer velocity and the abso-
lute squared value of the two-way antenna pattern is described by a Gauss function, the
eigenvalues ofCc(F ) can be evaluated around the Doppler centroid as

λ1(F ) ≈ σ2
c

σa
√

σ2
a + σ2

s

v2
p

||d(u0(F ))||2,

λ2(F ) ≈ σ2
c σ2

s

v2
p

σ3
a

(

σ2
a + σ2

s

v2
p

)(3/2)
||d′(u0(F ))||2, (5.14)

whereσ2
a is the width of the Gauss function. The main steps to calculate these eigenval-

ues are summarized in appendix C.

If the influence of the radial sea scatterer velocity on the amplitude modulation caused
by the two-way antenna pattern can be neglected, the distribution of the sea scatterer ve-
locity does not require consideration and the sea clutter spectral density matrix reduces
to

Cc(F ) ≈ σ2
c d (u0(F )) dH (u0(F ))

+
σ2

c σ2
s

v2
p

d′ (u0(F )) d′H (u0(F )) . (5.15)

This is a reasonable assumption, because the spectrum width is mainly determined by
the platform velocity for airborne radar systems. The vectorse(u0(F )) ande′(u0(F ))
correspond then to multiples of the eigenvectors of the clutter spectral density matrix.
The eigenvalues of this matrix can be calculated as

λ1(F ) = σ2
c ||d(u0(F ))||2,

λ2(F ) =
σ2

c σ2
s

v2
p

||d′(u0(F ))||2. (5.16)

Note that the sum of the eigenvalues in equation (5.16) does not coincide with the trace of
the spectral density matrix in equation (5.15). This is due to a first order Taylor approx-
imation. If the phase vector in (5.11) is approximated with three terms and theV 4

s (u)
v4

p
x4

n-
terms are neglected, then the eigenvalues can be calculated more appropriately, with their
sum matching the trace of the matrix. This calculation can be found in appendix D. The
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Figure 5.3: Approximated and numerically computed eigenvalue distributions in depen-
dence of the Doppler frequency. The eigenvalues are estimated from the numerically
computed spectral density matrix from equation (5.8) and analytically calculated from
the approximations in equation (5.16).

result of this longer derivation is however only a small additional contribution to the first
eigenvalue. The main multichannel properties are not changed by an additional term of
the Taylor series. In the main analysis a second order Taylorapproximation is therefore
not considered.
To consider a non-zero meanµs, the Taylor approximation in equation (5.11) has to be
performed aroundu0(F ) + µs

vp
, which results ine(u0(F ) + Vs(u)

vp
) ≈ e(u0(F ) + µs

vp
) +

(

Vs(u)
vp

− µs

vp

)

e′(u0(F ) + µs

vp
). The eigenvectors of the clutter spectral density matrix in

equation (5.15) are then multiples ofe(u0(F )+ µs

vp
) ande′(u0(F )+ µs

vp
) and the centroids

of the eigenvalue distributions are atu0(F ) + µs

vp
.

To analyze if the spectral density matrix from equation (5.8) can be approximated by
equation (5.13), the calculated eigenvalues are compared with numerically computed
ones. For the numerical computation, the integral in equation (5.8) is evaluated numeri-
cally by assuming a Gaussian distribution for the radial seascatterer velocity. In figure
5.3 the eigenvalues are calculated for different Doppler frequencies from equation (5.16),
where the influence of the sea scatterer velocity on the clutter Doppler spectrum is ne-
glected. In figure 5.3(a) the eigenvalues are computed with asea scatterer velocity vari-
ance ofσ2

s = 0.2 m2/s2 and in figure 5.3(b) withσ2
s = 0.5 m2/s2. Both figures validate

the derived multichannel characteristics of sea clutter, because also for the numerically
computed values, two eigenvalues have to be considered for sea clutter. The value of the
second eigenvalue changes significantly around 0 Hz with a varying velocity variance, as
is expected due to the dependence of the second eigenvalue onthe sea scatterer velocity
variance. While in figure 5.3(a) the approximated and the numerically computed eigen-
values match quite well, in figure 5.3(b) deviations are visible between the differently
evaluated eigenvalues. This is due to a higher impact of the sea scatterer velocity on the
clutter Doppler spectrum.
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Figure 5.4: Approximated and numerically computed eigenvalue distributions in depen-
dence of the Doppler frequency. The eigenvalues are estimated from the numerically
computed spectral density matrix from equation (5.8) and analytically calculated from
the approximations in equation (5.14).

Figure 5.4 demonstrates approximated and numerically computed eigenvalues for dif-
ferent Doppler frequencies, where the approximated eigenvalues result from equation
(5.14). In this approximation the radial sea scatterer velocity variance influence on the
clutter Doppler spectrum is considered. Also here the eigenvalues are computed with a
velocity variance ofσ2

s = 0.2 m2/s2, shown in figure 5.4(a), and withσ2
s = 0.5 m2/s2,

which is visualized in figure 5.4(b). Figure 5.4(b) shows a better match of the numeri-
cally computed and calculated eigenvalues around the Doppler centroid as compared to
the eigenvalues in figure 5.3(b). This analysis shows that a better eigenvalue evaluation
is possible, if the distribution of the sea scatterer velocity is known. This is especially
evident for high sea scatterer velocity variances.
In figures 5.3(b) and 5.4(b) also a small third eigenvalue of the numerical evaluation is
visible. If V 6

s (u)
v6

p
x6

n-terms are not neglected, also a third eigenvalue has to be accounted
for. Generally, however, this resulting eigenvalue can be neglected in reference to noise.
The spectral density matrix of sea clutter has different properties than the one of land
clutter. For land clutter, the spectral density matrix is ideally a rank one matrix, implying
an one-dimensional clutter subspace. Therefore only one nonzero eigenvalue has to be
considered. The spectral density matrix of sea clutter is, however, a rank two matrix. The
clutter power is spanned over a two-dimensional subspace and there are two eigenvalues,
which have to be accounted for. The differences between land and sea clutter spectral
density matrices are described in [39].
The different properties of land and sea clutter are visualized in figures 5.5 and 5.6, where
the power of CPIs of real land and sea data are projected on estimated eigenvectors of the
clutter plus noise spectral density matrix for different range bins and Doppler frequen-
cies. The projected power on thenth eigenvector is calculated from||Pn(F )Z(r, F )||2,
whereZ(r, F ) is the received multichannel vector from range binr and frequencyF and
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Pn(F ) is a projection matrix on the corresponding eigenvector, which is defined as

Pn(F ) =
un(F )uH

n (F )

||un(F )||2 , (5.17)

whereun(F ) is the eigenvector of dimensionn.
For this demonstration sea data, which was acquired during experiment 3, is chosen. A
downsampling to a PRF of 1000 Hz is performed, to allow a comparison between both
experiments. This PRF is still sufficient to neglect aliasing. To carry out a Fourier trans-
form, CPIs with 128 pulses are chosen and a Hamming window is applied to mitigate
spectral leakage. By means of simulations, the chosen time length of a CPI in combina-
tion with windowing is found to be long enough to neglect spectral leakage. The Doppler
shift due to the platform velocity is removed and for sea dataadditionally the Doppler
shift caused by any present currents, modulations of the long waves or the phase velocity
of capillary waves is eliminated. For each data set the figures are equally normalized
and the same color scale is chosen, where the upper limit of this scale is the maximum
power from the incoherent sum of all projections. For land data, figure 5.5(a) illustrates
the power from the incoherent sum of all projections and figure 5.5(b) shows the power,
which is projected on the first eigenvector. It is evident that the power distribution of
both figures coincides, indicating that the entire clutter power is contained only along the
first eigenvector. The power on the second and third eigenvector, visualized by figures
5.5(c) and 5.5(d), is equal and negligible. It is only due to noise and some non-ideal
conditions. The projections of land data demonstrate that the clutter is only contained
in a one-dimensional subspace, hence confirming a rank one land clutter spectral density
matrix. The projections of sea data in figure 5.6 show, however, quite different cha-
racteristics. Figures 5.6(a) and 5.6(b), where the power from the incoherent sum of all
projections and the power on the first eigenvector are illustrated, suggest that here most
of the clutter power is contained along the first eigenvector, as well. But figure 5.6(c)
visualizes that a considerable clutter power amount is alsoprojected on the second eigen-
vector. Figure 5.6(d) shows that along the third eigenvector only noise is present. This
observation validates the derivation of a rank two sea clutter spectral density matrix.

5.3 Space-Time Filter

One of the main reasons why the analysis of the clutter spectral density matrix is im-
portant is the insight into the properties of the space-timefilter. As described in chapter
2.3, the space-time filter gain, defined in equation (2.18), informs about the detection
performance for moving targets with the used multichannel system. In this chapter, the
space-time filter gain of sea clutter is evaluated, and the alteration of this measure due to
the different properties of the sea clutter spectral density matrix is described.
To evaluate the space-time filter gain, the inverse of the clutter plus noise spectral density
matrix has to be calculated. To determine the inverse of thismatrix, the singular value de-
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(a) Incoherent sum of all projections

Doppler Frequency [Hz]

S
la

n
t 
R

a
n
g
e
 [
m

]

 

 

−500 −400 −300 −200 −100 0 100 200 300 400 500

6000

6050

6100

6150

6200

6250

P
o
w

e
r 

[d
B

]

0

5

10

15

20

25

30

35

40

(b) Projection on first eigenvector
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(c) Projection on second eigenvector
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(d) Projection on third eigenvector

Figure 5.5: Projections of received land data vector for different slant ranges and Doppler
frequencies on estimated eigenvectors of the clutter plus noise spectral density matrix.

composition is applied. The clutter plus noise spectral density matrix can then be stated
as

Cz(F ) = Q(F )Λ(F )QH(F ) + σ2
nIN×N , (5.18)

whereQ(F ) is composed of all the orthonormal eigenvectors and

Λ(F ) = diag(λ1(F ), λ2(F ), 0, . . . , 0) . (5.19)

Here, as described in the previous section, it is assumed that due to the properties of sea
clutter, two eigenvalues have to be considered. Further, the matrix inversion lemma (see
[74]) is used, which is defined as

(A + BCD)−1 = A−1 − A−1B
(

C−1 + DA−1B
)−1

DA−1, (5.20)

whereA, B, C andD all denote matrices of the correct size.
To calculateC−1

z (F ), these matrices are defined as follows:
A = σ2

nIN×N , B = Q(F )Λ(F ), C = IN×N andD = QH(F ). With equation (5.20), the
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Figure 5.6: Projections of received sea data vector for different slant ranges and Doppler
frequencies on estimated eigenvectors of the clutter plus noise spectral density matrix.

inverse spectral density matrix is equal to

C−1
z (F ) =

1

σ2
n

(

IN×N − λ1(F )

λ1(F ) + σ2
n

e(u0(F ))eH(u0(F ))

||e(u0(F ))||2 −

λ2(F )

λ2(F ) + σ2
n

e′(u0(F ))e′H(u0(F ))

||e′(u0(F ))||2
)

. (5.21)

The eigenvaluesλ1(F ) and λ2(F ) are as described in the previous section. If these
eigenvalues are much bigger than the noise power,C−1

z (F ) reduces to a projection ma-
trix, which projects the received signal to a subspace orthogonal to the clutter subspace,
spanned by the two eigenvectors of the clutter spectral density matrix

C−1
z (F ) =

1

σ2
n

(

IN×N − e(u0(F ))eH(u0(F ))

||e(u0(F ))||2 − e′(u0(F ))e′H(u0(F ))

||e′(u0(F ))||2
)

. (5.22)

For land clutter, only the first eigenvalue in equation (5.21) is nonzero, therefore this
matrix projects to a subspace which is only orthogonal to theDOA vector, as described in
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Figure 5.7: Calculated normalized space-time filter gain with different sea scatterer ve-
locity variances

[32]. The evaluation of the inverse of the clutter plus noisespectral density matrix, shows
the fundamental difference between land and sea clutter. For land clutter, only an one-
dimensional clutter subspace has to be suppressed, therefore after space-time filtering an
N − 1-dimensional signal is left. For sea clutter, a two-dimensional clutter subspace has
to be considered to remove the clutter from the received signal. Hence, after suppression
of sea clutter with a space-time filter, only anN − 2-dimensional signal is left for target
detection and localization.
The second eigenvalue is much smaller than the first one, because it is proportional to the
inverse ofv2

p. The assumption thatλ2(F ) is much bigger thanσ2
n is therefore in general

not valid. Then, the inverse spectral density matrix does not completely suppress the
dimension spanned by the second eigenvector. The amount of suppression is dependent
on the second eigenvalue, which depends on the sea scatterervelocity variance.
Figure 5.7 demonstrates space-time filter gains, calculated from equations (2.21) and
(5.21) with the parameters of the PAMIR system. Here the eigenvalues of equation (5.16)
are used. The different space-time filter gains are calculated with different sea scatterer
velocity variances. The filter gain indicates the amount of power by which a received
signal is attenuated for each frequency and each look direction, where 0 dB means no
attenuation. In 5.7(a) an evaluation withσ2

s = 0 m2/s2 is performed, which corresponds
to land clutter. The displayed filter gain shows a notch alonga diagonal line. The received
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signal is only attenuated, where the look direction corresponds to the Doppler frequency
by equation (2.9). The other filter gains are calculated withσ2

s = 0.1 m2/s2, σ2
s = 0.3

m2/s2 andσ2
s = 0.5 m2/s2, visualized by figures 5.7(b) - 5.7(d). On one hand, these

figures show that the filter notch of land clutter is much narrower than the ones of sea
clutter. This is expected due to the additional clutter subspace dimension, which has
to be considered by the filter for sea clutter. On the other hand, figures 5.7(b) - 5.7(d)
show a broader filter notch for higher velocity variances. This is due to the dependence
of the second eigenvalue on the sea scatterer velocity variance. A broader filter notch
means that for each look direction a target is attenuated at more radial velocities by the
corresponding filter.

5.4 Channel Correlation

Another important multichannel measure is the channel correlation. The channels have to
be highly correlated for a successful STAP performance. Channel correlation is however
also important for other radar applications. For ocean monitoring with interferometric
SAR, for example, this measure places limitations on the achievable sensitivity of cur-
rent velocity measurements [75].
Channel correlation is a measure of the similarity between the received signals at chan-
nelsn andn′. This measure is here defined as

ρnn′ =
E
{

Zn(Fc)Z
H
n′ (Fc)

}

√

E {|Zn(Fc)|2} E {|Zn′(Fc)|2}
, (5.23)

whereFc is the Doppler centroid. The denominator of this equation iscalculated by
assuming equal power at all channels. If the scatterers are stationary, as this is the case
for land data, this value is equal to

E
{

|Zn(Fc)|2
}

= E
{

CH
n (Fc)Cn(Fc)

}

+ σ2
n

= σ2
c |D(u(Fc))|2 + σ2

n. (5.24)

The numerator for land data can be calculated due tou(F ) = F λr

2vp
as

E
{

Zn(Fc)Z
H
n′ (Fc)

}

= σ2
c |D(u(Fc))|2 exp

{

j
2π

λr

u(Fc)(xn − xn′)
}

. (5.25)

The constant exponential term in equation (5.25) is known and is usually compensated
for, if the look direction is unequal to zero, to compare the channel correlation [76].
Considering further the clutter-to-noise ratio (CNR) of a single channel to be

CNRn =
σ2

c E {|D(u(Fc))|2}
σ2

n

(5.26)
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reduces the channel correlation of land data to

ρl =
σ2

c |D(u(Fc))|2
σ2

c |D(u(Fc))|2 + σ2
n

=
1

1 + 1
CNRn

, (5.27)

as can for example be found in [77]. This equation captures the land data channel corre-
lation for ideal experiment conditions. There are several situations under which further
channel decorrelation occurs for land experiments. One possible source is if the subaper-
tures of the channels do not illuminate the same scene. Another possible decorrelation
source is any kind of uncompensated system delays between different channels. For high
bandwidth experiments, also carrier wave lengths of different clutter echoes will vary,
causing additional decorrelation. Further, the assumption of an ideal antenna is not al-
ways valid. Mutual coupling between single elements of the antenna, for example, cause
additional channel decorrelation. The presence of different bandpass filters for different
channels also decorrelates the channels, as demonstrated in [78]. A detailed description
of different channel errors can be found in [29] or [28].
If the definition in equation (5.23) is used to derive the channel correlation for sea data,
the following numerator has to be considered

E
{

Zn(Fc)Z
H
n′ (Fc)

}

= σ2
c exp

{

j
2π

λr

u0(Fc)(xn − xn′)
}

E
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2π

λr

Vs(u)

vp

(xn − xn′)

}







.

(5.28)

If the radial sea scatterer velocity influence on the antennamodulation due to the two-way
antenna pattern can be neglected, then the denominator is equal to the one in equation
(5.24), and the numerator is

E
{

Zn(Fc)Z
H
n′ (Fc)

}

= σ2
c |D (u0(Fc))|2 E

{

exp

{

j
2π

λr

Vs(u)

vp

(xn − xn′)

}}

, (5.29)

where the constant exponential term is compensated for. Thedifference between land
and sea data correlation is the additional exponential term, which has to be considered
for sea clutter. To calculate this term, the distribution ofthe sea scatterer velocity has to
be known. Here a Gaussian distribution is assumed, as described in (C.5), which allows
to state the numerator as

E
{

Zn(Fc)Z
H
n′ (Fc)

}

=
σ2

c |D (u0(Fc))|2√
2πσs

∫ ∞

−∞
exp

{

− v2
s

2σ2
s

+ j
2π

λr

vs

vp

(xn − xn′)

}

dvs

= σ2
c |D(u0(Fc))|2 exp

{

−2π2

λ2
r

σ2
s

v2
p

(xn − xn′)2

}

. (5.30)
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Here the relationship
∫ ∞

−∞
exp

{

ax2 + bx + c
}

dx =

√

π

a
exp

{

b2 + 4ac

4a

}

(5.31)

is used, which can for example be found in [79], to evaluate the integral. With equation
(5.30) the sea data channel correlation is derived as

ρs =
exp

{

−2π2

λ2
r

σ2
s

v2
p
(xn − xn′)2

}

1 + 1
CNRn

. (5.32)

Equation (5.32) shows the fundamental difference between channel correlations of land
and sea data. While under ideal experiment conditions, land data decorrelates only due
to noise, for sea data there is an additional decorrelation source due to the movement of
the sea scatterers. Hence, the channel correlation of sea data is expected to be always
lower than the one of land data. Equation (5.32) also demonstrates that sea data channel
correlation is dependent on the sea scatterer velocity variance and the separation between
channelsn andn′. Consequently, different channel correlations for different sea states
and different channel displacements are expected. In [37] it is also analyzed how the
channel correlation of sea clutter relates to the eigenvalues of the sea clutter spectral
density matrix.
If the influence of the radial sea scatterer velocity on the amplitude modulation due to
the two-way antenna pattern cannot be neglected, the antenna pattern function has to be
known. Here a Gauss function is assumed for the absolute squared value of the two-way
antenna pattern as described by equation (C.6). The denominator of equation (5.23) has
then to be stated as

E
{

|Zn(Fc)|2
}

=
σ2

c√
2πσs

∫ ∞

−∞
exp











−
(

u0(Fc) + vs

vp

)2

2σ2
a











exp

{

− v2
s

2σ2
s

}

dvs+σ2
n (5.33)

and the numerator equals to

E
{

Zn(Fc)Z
H
n′ (Fc)

}

=
σ2

c√
2πσs

∫ ∞

−∞
exp











−
(

u0(Fc) + vs

vp

)2

2σ2
a











exp

{

j
2π

λr

vs

vp

(xn − xn′)

}

exp

{

− v2
s

2σ2
s

}

dvs.

(5.34)

To evaluate the integrals in equations (5.33) and (5.34), the relationship in equation (5.31)
is applied and a centroid position at 0 Hz is assumed. This allows to calculate the deno-
minator and the numerator of equation (5.23) as

E
{

|Zn(Fc)|2
}

= σ2
c

σa
√

σ2
a + σ2

c

v2
p

|D(u0(Fc))|2 + σ2
n (5.35)
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and

E
{

Zn(Fc)Z
H
n′ (Fc)

}

= σ2
c

σa
√

σ2
a + σ2

c

v2
p

|D(u0(Fc))|2 exp















−2π2

λ2
r

σ2
s

v2
p

σ2
a(xn − xn′)2

(

σ2
s

v2
p

+ σ2
a

)















.

(5.36)
With these calculations, the channel correlation of sea clutter can be derived as

ρs =
exp

{

−2π2

λ2
r

σ2
s

v2
p
k(xn − xn′)2

}

1 + 1
CNRn

, (5.37)

wherek = σ2
a

(

σ2
s

v2
p

+σ2
a

) . The difference between this channel correlation and the one in

equation (5.32), where the influence on the amplitude modulation due to the two-way
antenna pattern is neglected, is that herek 6= 1. If σ2

s

v2
p

is much smaller thanσ2
a, the

quotient ofk can be neglected and the channel correlation in equation (5.37) reduces to
the one in equation (5.32). This coincides with the observation that only for high velocity
variances the influence of the sea scatterer velocity on the amplitude modulation has to
be considered, as shown in section 5.2.

5.5 Impact of Fast Scatterers

In the previous sections of this chapter, the multichannel analysis was only derived for
slow scatterers. In chapter 3.4, however, also an additional scattering type, the so-called
fast scatterers, has been specified. To consider the impact of fast scatterers on the multi-
channel properties, the clutter signal of equation (5.3) isaltered to

c(T ) =
∫

Ω
A(u) exp{j2πF(u, Vs(u))T}d(u) du

+ B

∫

Ω
Af (u) exp{j2πF(u, Vf (u))T}d(u) du. (5.38)

Here the first term is the contribution of slow scatterers andthe second one is due to fast
scatterers. The complex echo amplitude of fast scatterers is denoted byAf (u), which
is assumed to be spatially white, zero mean and independent of the reflectivity of slow
scatterersA(u) and the velocity of fast scatterers. The radial velocity of fast scatterers
Vf (u) is modeled as a random variable, which has the expected valueµf and the variance
σ2

f . Note that unlike for slow scatterers, the fast scatterer velocity is not considered to be
zero mean. As described in chapter 3.4, the velocity of fast scatterers is much faster than
the one of slow scatterers. The Doppler frequency of fast scatterers is of random nature
and corresponds to

F(u, Vf (u)) =
2vp

λr

u − 2

λr

Vf (u). (5.39)
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The variableB denotes a Bernoulli random variable (see for example [80]) with the
expected valueµB. The realization of this random variable can either have thevalue 0 or
1 and models if fast scatterers are present at the observed range bin or not. The expected
valueµB corresponds to how many wave breakings occurred in the observed scene.
The overall clutter spectral density matrix can be calculated from the sum of the spectral
density matrices of both scatterer types, due to the independence of their amplitudes

Cc(F ) = Cs(F ) + Cf (F ). (5.40)

Here the spectral density matrix of slow scatterers is defined in equation (5.15). The
spectral density matrix of fast scatterers can be derived ina similar way as the one of
slow scatterers

Cf (F ) =
∫ ∞

−∞
E







B2
∫

Ω
Af (u)AH

f (u)d(u)dH(u)

exp {j2π(F(u, Vf (u)) − F )τ} du







dτ

= µBσ2
cfE

{∫

Ω
d(u)dH(u)δ(F − F(u, Vf (u))) du

}

= µBσ2
cfE

{

d

(

u0(F ) +
Vf (u)

vp

)

dH

(

u0(F ) +
Vf (u)

vp

)}

. (5.41)

The variance ofAf (u) is denoted byσ2
cf and the propertyE {B2} = µB of a Bernoulli

random variable is used. The number of occurring wave breaking events is independent
of the reflectivity or velocity of fast scatterers. The fast scatterer velocity distribution is
expected to be independent of the look direction. Due to the non-negligible mean of the
radial fast scatterer velocity, the Taylor approximation of the DOA vector is performed at
uf (F ) = u0(F ) +

µf

vp
resulting in

e

(

uf (F ) +
Vf (u)

vp

− µf

vp

)

≈ e(uf (F )) +

(

Vf (u)

vp

− µf

vp

)

e′(uf (F )). (5.42)

Further, only the deterministic part of the fast scatterer velocity is considered for the
influence of the amplitude modulation by the two-way antennapattern. The described
simplifications and the approximation with the Taylor series reduce the spectral density
matrix of fast scatterers to

Cf (F ) ≈ σ2
cfµB |D (uf (F ))|2

(

e(uf (F ))eH(uf (F )) +
σ2

f

v2
p

e′(uf (F ))e′H(uf (F ))

)

= σ2
cfµB

(

d (uf (F )) dH (uf (F )) +
σ2

f

v2
p

d′ (uf (F )) d′H (uf (F ))

)

. (5.43)
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The eigenvectors of this matrix are multiples ofe (uf (F )) ande′ (uf (F )), which differ
from the ones of the spectral density matrix of slow scatterersCs(F ). The overall eigen-
values of the clutter spectral density matrixCc(F ) can therefore not easily be calculated
analytically. For this analysis, it is assumed that the contribution of fast scatterers is much
smaller than the one of slow scatterers. This assumption is justified due to the fact that
wave breaking, which produces fast scatterers, only occursat single positions, while slow
scatterers are always present. Then the properties ofCc(F ) can be calculated by using
the perturbation method, whereCs(F ) is the original matrix andCf (F ) is the perturba-
tion matrix. A detailed description of the perturbation theory for eigenvalue problems can
for example be found in [81] or [82]. For the sake of completeness, the related aspects of
this method are summarized in appendix E. With this method the first order perturbation
of the second eigenvalue due to fast scatterers, as described by equation (E.5), can be
calculated as

λ2,f (F ) =
e′H(u0(F ))Cf (F )e′(u0(F ))

||e′(u0(F ))||2 . (5.44)

For simplicity, the second term of equation (5.43) is neglected, because this term is much
smaller than the first one and the overall contribution ofCf (F ) is considered to be small.
Then the second eigenvalue ofCc(F ) can be calculated as

λ2(F ) =
σ2

c σ2
s

v2
p

||d′(u0(F ))||2 + λ2,f (F )

=
σ2

c σ2
s

v2
p

||d′(u0(F ))||2 + µBσ2
cfκ(F ) |D (uf (F ))|2 , (5.45)

whereκ(F ) =
|e′H(u0(F ))e(uf (F ))|2

||e′(u0(F ))||2 . Here the first term is due to slow scatterers and
the second one due to fast scatterers. On one hand, this equation shows that there is an
extra contribution to the second eigenvalue due to fast scatterers. This implies an addi-
tional broadening of the space-time filter notch due to this scattering type. On the other
hand, this equation suggests that the contribution of fast scatterers is centered around the
frequencyF = 2vp

λr
u − 2

λr
µf , due to the shifted centroid of the clutter Doppler spec-

trum. Therefore an asymmetrical second eigenvalue distribution in dependence of the
frequency is expected, if fast scatterers are present, which also results in an asymmet-
rical broadness of the space-time filter notch. Figure 5.8 shows the implication of this
calculation. Here the space-time filter gain is calculated with the second eigenvalue from
equation (5.45). This figure shows that due to an asymmetrical distribution of the second
eigenvalue, the broadness of the space-time filter notch is also asymmetrical.
Another important implication of the presence of fast scatterers is the fact that the re-
ceived power of this clutter type is distributed over other subspace dimensions of the
spectral density matrix. At dimensionn there is a contribution ofu

H
n (F )Cf (F )un(F )

||un(F )||2 from
fast scatterers, whereun(F ) is then-th eigenvector of the slow scatterer spectral density
matrix.



54 5. Theoretical Multichannel Analysis of Sea Clutter

Doppler Frequency [Hz]

D
ir
e

c
ti
o

n
a

l 
C

o
s
in

e

 

 

−400 −300 −200 −100 0 100 200 300 400

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

N
o

rm
a

liz
e

d
 P

o
w

e
r 

[d
B

]

−30

−25

−20

−15

−10

−5

0

Figure 5.8: Calculated normalized space-time filter gain with calculated second eigen-
value from equation (5.45)

It is demonstrated in figure 5.9 how the multichannel properties change due to fast scat-
terers. Here the power of a CPI, where the sea scatterers are moving in the up swell
direction, is projected on estimated eigenvectors of the clutter spectral density matrix.
This CPI contains also 128 pulses, but a PRF of 2000 Hz is used to avoid any changes
of the characteristics of fast scatterers in time. Figure 5.9(a) shows the incoherent sum
of all subspace dimensions. In this data set fast scatterersare visible due to their high
Doppler shift, which is centered around positive Doppler frequencies. Figures 5.9(a) and
5.9(b) visualize a significant difference between the sum ofthe power and the power pro-
jected on the first eigenvector. The reason for this observation is that many clutter returns
are positioned on other eigenvectors than the first one. Figure 5.9(c) demonstrates the
projected power on the second eigenvector, where quite highclutter contributions are ev-
ident. This is due to the high sea scatterer velocity variance of slow scatterers, as well as
due to an additional contribution of fast scatterers. Thesecontributions are evident be-
cause of higher returns at positive Doppler frequencies. Figure 5.9(d) shows the projected
power on the third eigenvector, where echos of fast scatterers are present. The amount
of clutter power along the third eigenvector changes in dependence of the availability of
fast scatterers. This is demonstrated by comparing figures 5.6 and 5.9, where in the latter
CPI fast scatterers are present while in the first one they are not. As demonstrated in ap-
pendix E, due to the contribution of fast scatterers, not only the eigenvalues, but also the
eigenvectors change. A multiple of the first eigenvector canbe calculated from equations
(E.5), (E.8) and (5.16) as

u1(F ) = e(u0(F )) +
µBσ2

cf |D (uf (F ))|2

σ2
c |D (u0(F ))|2

β(F )e′(u0(F )), (5.46)

whereβ(F ) =
e′H(u0(F ))e(uf (F ))eH(uf (F ))e(u0(F ))

||e′(u0(F ))||2(||e(u0(F ))||2−σ2
s/v2

p||e′(u0(F ))||2)
.
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(a) Incoherent sum of all projections
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(b) Projection on first eigenvector
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(c) Projection on second eigenvector
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(d) Projection on third eigenvector

Figure 5.9: Projections of received sea data vector with fast scatterers for different slant
ranges and Doppler frequencies on estimated eigenvectors of the clutter plus noise spec-
tral density matrix





Chapter 6

Multichannel Properties of Real and
Simulated Data

To validate the multichannel characteristics of sea clutter, this chapter analyzes these
properties of real and simulated data. The simulation modelis described in section 6.1.
To perform simulations of multichannel sea clutter, the radial sea scatterer velocity vari-
ance has to be known. Section 6.2 derives therefore an estimator for this measure and
in section 6.4 this estimator is applied to all available data sets of the three sea experi-
ments. The multichannel properties of real and simulated sea data are analyzed in sec-
tion 6.3. The channel correlation of real data is evaluated in section 6.5, where different
data sets are compared and the agreement between estimated and calculated correlation
coefficients is illustrated. Section 6.6 analyses the multichannel properties of real and
simulated data with fast scatterers.

6.1 Simulation Model

Simulations are performed to validate the theoretical multichannel model for sea clutter,
which is described in chapter 5. To simulate the received signal, a space-time signal for
one iso-range ring and a short coherent processing interval(CPI) is defined as

z̃ = c̃ + ñ. (6.1)

The space-time white Gaussian noise vector is denoted byñ and c̃ is the space-time
clutter signal

c̃ =
∫

Ω
A(u)s̃(u, Vs(u)) du, (6.2)

wheres̃(u, Vs(u)) = g(F(u, Vs(u))) ⊗ d(u) is the normalized space-time radar clutter
signal. The Kronecker product is denoted by⊗ andg(F(u, Vs(u))) is the Doppler vector
for sea clutter. This Doppler vector can be defined as

g(F(u, Vs(u))) = (exp {j2πmF(u, Vs(u))∆T})M
m=1 , (6.3)
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where∆T is the pulse repetition interval,F(u, Vs(u)) is the Doppler frequency calcu-
lated from equation (5.1), andM is the number of pulses of the CPI. This model can
also be used to simulate land clutter if the Doppler frequency is calculated with equation
(2.9).
The radar parameters of the simulations are chosen to correspond to those of the exper-
iments. The reflectivity is modeled as a Gaussian distributed complex random variable.
The variances of reflectivity and noise are assumed to beσ2

c = σ2
n = 1. The normalized

antenna pattern of one channel is described by si
(

π Ltx

λr
u
)

si
(

π Lrx

λr
u
)

, where si is the un-
normalized sinc function,Ltx the transmitting andLrx the receiving antenna length. The
antenna gain is chosen to match the CNR of real data and the Doppler centroid is at 0 Hz.
The simulated pulses are multiplied with a Hamming window.
To simulate sea data, a Gaussian distribution of the sea scatterer velocity is assumed, as
in equation (C.5). To model this distribution, the velocity varianceσ2

s has to be known.
One possibility is to calculateσ2

s from the Pierson-Moskowitz spectrum, as shown in
equation (3.16). Another possibility is to estimate the velocity variance from real data.
This method is described in the next section.

6.2 Estimation of Radial Sea Scatterer Velocity Variance

Several approaches to estimate the radial velocity variance of sea scatterers are treated in
the literature. One possible method is described in [59] or [83], whereσ2

s is estimated
from the bandwidth of the clutter spectrum, which is broadened due to this measure. This
method is however not very precise, because of the difficultyto discriminate between the
broadening due to the movement of the platform and the movement of sea scatterers.
An improved method is to estimate the velocity variance fromthe channel correlation,
if several channels are available. This approach is evaluated in [84] and [14]. Different
approaches to estimate the velocity variance from real dataare also discussed in [85].
In this chapter a new method is proposed, where the velocity variance is estimated from
the eigenvalues of the spectral density matrix.
The estimator of the velocity variance is derived using the assumption that the eigenvalues
of the clutter spectral density matrix can be described by equation (5.14). Note that this
is only valid for sea scatterer velocities, having a Gaussian distribution. With white
Gaussian noise and equation (5.14), the estimated eigenvalues of real data are assumed
to be

λ̂1(F )
!

= σ2
c

σa
√

σ2
a + σ2

s

v2
p

||d(u0(F ))||2 + σ2
n (6.4)

λ̂2(F )
!

=
σ2

c σ2
s

v2
p

σ3
a

(

σ2
a + σ2

s

v2
p

)(3/2)
||d′(u0(F ))||2 + σ2

n (6.5)

λ̂3(F ) = · · · = λ̂N(F )
!

= σ2
n. (6.6)
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Figure 6.1: Estimated radial sea scatterer velocity variance from simulated data sets.
Simulations are performed with the varianceσ2

s , and the estimator from equation (6.8)
is applied to estimatêσ2

s . The blue dot indicates the estimated mean radial sea scatterer
velocity variance from 100 trials, and the bars display the standard deviation.

The second eigenvalue can be used to estimateσ2
s . However, alsoσ2

c is not known. This
measure can be estimated from the first eigenvalue, which results in

σ̂2
c =

λ̂1(Fc) − σ2
n

σa||d(u0(Fc))||2

√

√

√

√σ2
a +

σ2
s

v2
p

, (6.7)

whereσ2
n is here estimated from the third eigenvalue. The estimationis performed around

the Doppler centroidFc. With equations (6.5), (6.6) and (6.7), the radial sea scatterer
velocity variance can be derived as

σ̂s
2 =

v2
p(λ̂2(Fc) − σ2

n)

α(Fc)(λ̂1(Fc) − σ2
n) − 1

σ2
a
(λ̂2(Fc) − σ2

n)
, (6.8)

whereα(Fc) = ||d′(u0(Fc))||2
||d(u0(Fc))||2 .

Figure 6.1 shows the evaluation of the described estimator.Here simulations, as de-
scribed in section 6.1, are performed with a certain sea scatterer velocity variance. Then
the estimator is applied to the simulated data to evaluate how well the variance can be es-
timated. The black line and the x-axis show the simulated velocity variances and the blue
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line indicates the estimated one. The error bars demonstrate the standard deviation for
each regarded velocity variance, and the blue dots indicatethe estimated mean velocity
variance. For each considered velocity variance, 100 simulations are performed. Figure
6.1 shows that the proposed estimator in equation (6.8) on average estimates the velocity
variance quite well. The mean error between the simulated and estimated velocity vari-
ance is 0.004 m2/s2. The standard deviation of this estimator is higher for higher velocity
variances, because then the second eigenvalue changes lessdue to this measure.

6.3 Comparison of Real and Simulated Data
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Figure 6.2: Eigenvalue distributions. Real
land data, grazing angle 20◦.

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

5

10

15

20

25

30

35

Doppler Frequency [Hz]

P
o

w
e

r 
[d

B
]

 

 

First Eigenvalue
Second Eigenvalue

Third Eigenvalue
Summed Power

Figure 6.3: Eigenvalue distributions. Si-
mulated land data, matching parameters.
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Figure 6.4: Space-time filter gain. Real
land data, grazing angle 20◦.
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Figure 6.5: Space-time filter gain. Simula-
ted land data, matching parameters.

In this section the multichannel properties of real and simulated data are analyzed. To
compare the different data sets, a downsampling to a PRF of 1000 Hz is performed and
the Doppler shift due to the platform velocity is removed.
For real sea data additionally the Doppler shift caused by any present currents, modu-
lations of the long waves or the phase velocity of capillary waves, which are described
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Figure 6.6: Eigenvalue distributions. Real
sea data, experiment 3, grazing angle15◦.
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Figure 6.7: Eigenvalue distributions. Si-
mulated sea data, matching parameters.
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Figure 6.8: Space-time filter gain. Real sea
data, exp. 3, grazing angle15◦.
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Figure 6.9: Space-time filter gain. Simula-
ted sea data, matching parameters.
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Figure 6.10: Phase of first eigenvector.
Real sea data, exp. 3, grazing angle15◦.
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Figure 6.11: Phase of first eigenvector. Si-
mulated sea data, matching parameters.

in chapter 4.3, is eliminated. In figure 6.2 the eigenvalues of land clutter are plotted
for different Doppler frequencies of the same CPI as in figure 5.5. Figure 6.3 demon-
strates eigenvalue distributions of a simulated data set with matching radar parameters.
The black line indicates additionally the summed power of all three channels for each
Doppler frequency. For both data sets a very strong first eigenvalue around the Doppler
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Figure 6.12: Eigenvalue distributions.
Real sea data, exp. 2, grazing angle15◦.
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Figure 6.13: Eigenvalue distributions. Si-
mulated sea data, matching parameters.
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Figure 6.14: Space-time filter gain. Real
sea data, exp. 2, grazing angle15◦.
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Figure 6.15: Space-time filter gain. Simu-
lated sea data, matching parameters.

centroid is present, while the other two eigenvalues are negligible. The second and third
eigenvalue of real land data are higher due to additional channel mismatches, which are
not considered by the simulation, but the difference between the first and the other eigen-
values at the Doppler centroid is still 26.5 dB. The eigenvalue distribution of real and
simulated land clutter justify that spectral leakage is neglected for the chosen CPI length.
Figure 6.4 displays the normalized filter gain of the real land data set and figure 6.5 of
the simulated one. The filter notch of both data sets is a diagonal line, as expected due to
the demonstrated calculations of a theoretical land filter in figure 5.7.
Figure 6.6 shows eigenvalue distributions of the same sea data as in figure 5.6, and the
eigenvalue distributions of a simulated data set with corresponding parameters are vi-
sualized in figure 6.7. For both CPIs a pronounced rise of the second eigenvalue can
be observed around the Doppler centroid. The difference between the first and second
eigenvalue is only 11.3 dB for real data and 11.6 dB for simulated. To simulate this sea
data, the radial sea scatterer velocity variance is estimated from the real CPI with equa-
tion (6.8) to bêσ2

s = 0.37 m2/s2, which corresponds to a standard deviation ofσ̂s = 0.61
m/s.
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Figure 6.16: Eigenvalue distributions.
Real sea data, exp. 1, grazing angle15◦.
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Figure 6.17: Eigenvalue distributions. Si-
mulated sea data, matching parameters.
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Figure 6.18: Space-time filter gain. Real
sea data, exp. 1, grazing angle15◦.
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Figure 6.19: Space-time filter gain. Simu-
lated sea data, matching parameters.

Figures 6.8 and 6.9 demonstrate the normalized space-time filter gain of the described
real and simulated data. A significant broadening of the filter notch is evident. For each
look direction, there is a significantly higher amount of Doppler frequencies where a
target would be attenuated or even suppressed by the space-time sea clutter filter. The
broadening of the filter notch confirms the calculations performed in chapter 5.3, which
predict a broader space-time filter notch for sea clutter than for land clutter.
The phase of the first eigenvector is visualized for real and simulated data in figures 6.10
and 6.11. The dotted black line indicates the phase of the theoretical DOA vector in both
figures. The comparison of both phases shows an agreement between the phase of the
first eigenvector and the one of the theoretical DOA vector. This coincides with the ana-
lysis in chapter 5.2, where the first eigenvector is assumed to equal the DOA vector. The
small bends of the estimated first eigenvector phase are analyzed in appendix C.
In figure 6.12 eigenvalue distributions of a real sea data setof experiment 2 are demon-
strated. This CPI is processed in the same manner as the CPI of experiment 3. Figure
6.13 shows eigenvalues in dependence of the Doppler frequency of a simulated data set
with corresponding radar and sea parameters. Both figures display a significantly lower
second eigenvalue around the Doppler centroid. The difference between the first and sec-
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ond eigenvalue is 14.4 dB for the real data set and 15.1 dB for the simulated one at 0 Hz.
The first eigenvalue is also lower at the Doppler centroid, because the CNR is lower for
this experiment, as described in chapter 4.3. From the eigenvalues of this real sea data
also a smaller radial sea scatterer velocity variance is estimated, which is equal tôσ2

s =
0.158 m2/s2.
Figures 6.14 and 6.15 show the normalized space-time filter gains of the described sea
data sets. The filter notches of real and simulated data are significantly narrower than
the filter notches of experiment 3. The consequence of this observation is that for this
experiment slower low SCNR targets can be detected than for experiment 3. A change
of the broadness of the space-time filter notch in dependenceof the radial sea scatterer
velocity variance is in accordance with the calculations, which are performed in chapter
5.3 and visualized in figure 5.7.
Figure 6.16 demonstrates eigenvalue distributions of a real CPI of experiment 1. This
CPI is also processed in the same manner as the data sets of experiments 2 and 3. The
eigenvalue distributions of figure 6.17 are evaluated of a simulated CPI with matching
radar and sea parameters. Both figures show a small differencebetween the second and
third eigenvalue around 0 Hz. This indicates a small influence of the sea scatterer velo-
city on the multichannel properties. The sea scatterer velocity variance is estimated from
the real data set aŝσ2

s = 0.088 m2/s2, which equals to a standard deviation ofσ̂s = 0.30
m/s.
Figures 6.6 - 6.17 show significant variations of the second eigenvalue around the Doppler
centroid for different experiments. The real and simulatedCPIs of experiment 3 display a
pronounced second eigenvalue. The CPIs of experiment 2 visualize a less distinct second
eigenvalue and the demonstrated second eigenvalue of experiment 1 is almost only due to
noise. The second eigenvalue of the different experiments changes due to its dependence
on the radial sea scatterer velocity variance. Different sea scatterer velocity variances of
the three performed sea experiments are expected, due to different sea states, which were
present during the data acquisitions. The influence of the sea state on the radial sea scat-
terer velocity variance confirms the proportional relationship between this measure and
the orbital velocity variance, presented in equation (5.2). The orbital velocity variance
is clearly dependent on the sea state. If, for example, the Pierson-Moskowitz spectrum
is considered, equation (3.17) shows that the orbital velocity variance increases quadrat-
ically with the wind velocity.
Figures 6.19 and 6.18 demonstrate the normalized space-time filter gains of the described
CPIs of experiment 1. These figures show a narrower filter notch, but a comparison of the
space-time filter gains of the different experiments is difficult due to a changing CNR.
To have a meaningful comparison of the space-time filter gainfor different sea scatterer
velocity variances, simulations are performed with the same CNR but varyingσ2

s . In fig-
ure 6.20 this evaluation is visualized, where the space-time filter gain is plotted foru = 0.
The blue line shows the filter of simulated land clutter (σ2

s = 0) and the brightly colored
lines indicate filters of sea clutter. To simulate the different sea data sets, the same radial
sea scatterer velocity variances as the ones estimated fromthe presented CPIs of the dif-
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Figure 6.20: Space-time filter gain atu = 0 for simulated data sets with same CNR but
varying velocity variance.

ferent experiments are used. This figure demonstrates significantly broader filter notches
of sea data as compared to land data. Additionally, a broadening with a rising velocity
variance is evident.
The dotted lines in figure 6.20 indicate filter gains of sea data sets, which are simula-
ted with theoretically calculated radial sea scatterer velocity variances from equations
(3.17) and (5.2), with radar and sea parameters which correspond to the performed sea
experiments. This evaluation is performed to show that the multichannel properties of sea
clutter can also be simulated if the velocity variance cannot be estimated from real data in
advance. To calculate the orbital velocity variance with the Pierson-Moskowitz spectrum
from equation (3.17) and to determine the radial sea scatterer velocity variance from the
orbital velocity variance with equation (5.2), the maximumrecorded swell directions and
wind velocities, which are summarized in chapter 4.2, are used. Deviations between cal-
culated and estimated radial sea scatterer velocity variances are present due to unprecise
weather data and due to the application of the Pierson-Moskowitz spectrum, which is
only an approximation of the real sea surface spectral density. Other approximations of
the sea spectral density are more precise, like the JONSWAP spectrum, which is intro-
duced in [86]. Nevertheless, the simulated multichannel characteristics with calculated
sea scatterer velocity variances show that a reproduction of the multichannel properties
of real sea data is also possible to some extent if an estimation of the sea scatterer velocity
variance cannot be performed.
Figure 6.21 demonstrates eigenvalue distributions of a CPI which was acquired during
experiment 3 with a grazing angle of 35◦. This CPI is processed exactly like the other
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Figure 6.21: Eigenvalue distributions.
Real sea data, exp. 3, grazing angle35◦.
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Figure 6.22: Eigenvalue distributions. Si-
mulated sea data, matching parameters.
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Figure 6.23: Space-time filter gain. Real
sea data, exp. 3, grazing angle35◦.
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Figure 6.24: Space-time filter gain. Simu-
lated sea data, matching parameters.

data sets in this section. Figure 6.22 visualizes eigenvalue distributions of a simulated
CPI with corresponding radar and sea parameters. Both figures show a higher first eigen-
value at the Doppler centroid as compared to data sets collected with the 15◦ grazing
angle. This is due to a higher CNR as discussed in chapter 4.3. Also for these CPIs
a pronounced second eigenvalue is visible around the Doppler centroid. The difference
between the first and second eigenvalue is only 12.1 dB for thereal data set and 12.4 dB
for the simulated one. The estimated velocity variance corresponds tôσ2

s = 0.423 m2/s2,
which is equal to a standard deviation ofσ̂s = 0.65 m/s.
In figures 6.23 and 6.24 the space-time filter gain of the presented real and simulated
data is visualized. A significantly broader filter notch is evident for these data sets than
for land clutter. At the look directionu = 0, for example, a target with a radial velocity
of 1.1 m/s would be attenuated by 11 dB more by the presented filter in figure 6.23 as
compared to the land space-time filter shown in figure 6.4.

The comparison of multichannel properties of simulated andreal sea data, which are
demonstrated in figures 6.6-6.24, illustrates a good agreement. This shows that the mul-
tichannel properties of sea clutter can be reproduces with the described simulation model
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for different sea states. Furthermore, this evaluation confirms the multichannel sea clutter
properties, which are theoretically derived in chapter 5.2.

6.4 Radial Sea Scatterer Velocity Variance of Real Data

The radial sea scatterer velocity variance has a crucial influence on the multichannel
characteristics of sea clutter. This measure decides how much the multichannel properties
of sea clutter deviate from the ideal properties of land clutter. If fast scatterers are not
considered, the velocity variance specifies the magnitude of the second eigenvalue and
the decorrelation of the channels in addition to noise. The velocity variance is a measure
of the broadness of the space-time filter notch, which determines at which velocities a
target can still be detected after sea clutter suppression.
This section presents estimations of velocity variances with the presented estimator in
equation (6.8). Here all collected data sets of the three seaexperiments are evaluated.
The performed estimations are summarized in tables 6.1 - 6.3, where the mean of all
estimated velocity variancesE {σ̂2

s} of one data set, the standard deviation
√

V ar {σ̂2
s}

of the corresponding data set and the azimuth angle range in ENU coordinates, at which
the velocity variance is estimated, are documented.
To estimate the velocity variance, CPIs with 256 pulses are considered at steering angles,
which range from70◦ - 110◦ in the platform coordinate system. The eigenvalues are
calculated from a spectral density matrix, which is estimated from 200 range bins. The
range interval with the highest clutter power is chosen for this estimation. For experiment
3, several range intervals are selected for each CPI. The velocity variance is estimated
from each range interval and an average is calculated. This is performed to mitigate the
influence of fast scatterers.
The mean velocity variance is calculated from 150 - 250 trials, depending on the available
number of CPIs for the desired steering angle range. The velocity variance is assumed
not to change due to the azimuth angle within the observed interval. Unfortunately, the
data acquisition during experiment 1 at side 2 with the grazing angle of15◦ was not
successful.
Tables 6.1 - 6.3 show that the mean velocity variance changessignificantly for different
experiments. The estimated velocity variance interval ranges from0.075 m2/s2 to 0.125
m2/s2 for the first experiment, from0.141 m2/s2 to 0.231 m2/s2 for the second one and is
equal to0.360 m2/s2 - 0.514 m2/s2 for the third experiment. Different velocity variances
are evaluated for different experiments due to unequal sea state, during these experiments.
The orbital velocity variance depends on the weather and seaconditions, and the radial
sea scatterer velocity variance is proportional to the orbital velocity variance.
A higher velocity variance is expected for in swell directions due to equation (5.2). Ad-
ditionally, for the cross swell direction a higher velocityvariance should be present for
the grazing angle of35◦ as opposed to15◦. While such a tendency can be observed re-
garding the estimations of experiment 3, for the other experiments this dependence is not
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ϕENU [◦] E {σ̂2
s} [m2/s2]

√

V ar {σ̂2
s} [m2/s2]

θ = 35◦, side 1 50 - 95 0.102 0.025
θ = 35◦, side 2 340 - 25 0.100 0.023
θ = 35◦, side 3 255 - 300 0.105 0.029
θ = 35◦, side 4 310 - 355 0.102 0.021

θ = 15◦, side 1 70 - 105 0.075 0.015
θ = 15◦, side 3 260 - 295 0.110 0.019
θ = 15◦, side 4 165 - 200 0.125 0.017

Table 6.1: Estimated radial sea scatterer velocity variance of experiment 1

ϕENU [◦] E {σ̂2
s} [m2/s2]

√

V ar {σ̂2
s} [m2/s2]

θ = 35◦, side 1 65 - 105 0.185 0.027
θ = 35◦, side 2 350 - 25 0.141 0.022
θ = 35◦, side 3 265 - 305 0.197 0.034
θ = 35◦, side 4 170 - 205 0.197 0.032

θ = 15◦, side 1 70 - 105 0.231 0.035
θ = 15◦, side 2 350 - 25 0.144 0.014
θ = 15◦, side 3 260 - 295 0.198 0.024
θ = 15◦, side 4 175 - 200 0.214 0.029

Table 6.2: Estimated radial sea scatterer velocity variance of experiment 2

ϕENU [◦] E {σ̂2
s} [m2/s2]

√

V ar {σ̂2
s} [m2/s2]

θ = 35◦, side 1 50 - 95 0.473 0.085
θ = 35◦, side 2 310 - 355 0.432 0.065
θ = 35◦, side 3 210 - 255 0.504 0.067
θ = 35◦, side 4 130 - 175 0.401 0.046

θ = 15◦, side 1 50 - 85 0.450 0.084
θ = 15◦, side 2 315 - 350 0.434 0.055
θ = 15◦, side 3 210 - 250 0.514 0.068
θ = 15◦, side 4 130 - 165 0.360 0.034

Table 6.3: Estimated radial sea scatterer velocity variance of experiment 3

distinct. The reason for the observed discrepancies are considered to be the unprecise
weather condition measurements, which were collected oncean hour and not exactly at
the observed scene. The collected weather information is considered to be sufficient to
compare the different experiments with each other, but not precise enough to allow any
conclusions concerning the data sets of the different sidesof one experiment. For such
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an analysis more precise in-situ measurements would be needed.
The radial sea scatterer velocity variance is also a crucialmeasure for SAR imaging. This
measure determines the azimuth resolution of a sea surface SAR image (see for example
[15] or [12]). In literature this measure is often referred to as the coherence time. The
relationship between the coherence time and the sea scatterer velocity variance is given
as ([12], [87])

τs =
λr

2π
√

2σ2
s

, (6.9)

which is valid if the time auto-correlation function of sea scatterers can be assumed to be
Gaussian.
In literature several attempts to estimate the coherence time can be found ([13, 84, 14]).
In [84] the coherence time is estimated from two along-trackchannels, and in [14] two
channels with a switching technique are used to achieve a dual baseline. The estimations
of both publications are performed in L-band with obtained velocity variances of 0.052
m2/s2 - 0.126 m2/s2 in [84] and 0.026 m2/s2 - 0.317 m2/s2 in [14].

6.5 Channel Correlation of Real Data
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Figure 6.25: Channel correlation of land data for different azimuth angles. Estimated
correlation (colored lines) and theoretical correlation for land data (black line).

To evaluate the channel correlation from real range compressed data, coherent processing
intervals with 256 pulses are chosen to apply a Fourier transform. The channel correlation
is estimated from 200 range bins. The pulses are multiplied with a Hamming window to
mitigate spectral leakage. The cable length and system delays are compensated for each
channel. The Doppler shift due to the platform velocity is removed, and for sea data
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Figure 6.26: Channel correlation of sea data for different azimuth angles. Experiment 3,
side 1, grazing angle15◦. Estimated correlation (colored lines) and theoretical correlation
for land data (dashed black line) and sea data (dotted black line).

additionally the Doppler shift caused by any sea scatterer velocities is eliminated. The
channel correlation is evaluated in dependency of the azimuth angleϕENU , which is the
angle between the x-axis and the line-of-sight vector to thecenter position in the ENU
coordinate system.
In figure 6.25 the channel correlation of real land data is plotted for different azimuth
angles. Here a scale is chosen to match the channel correlation of sea data. Additionally,
a second figure is inserted with a more appropriate scale to view the land data channel
correlation. The colored lines show the estimated correlation coefficients using equation
(5.23) and the dashed black line indicates the calculated channel correlation from equa-
tion (5.27), which calculates the decorrelation due to noise. Figure 6.25 shows highly cor-
related channels, where the mean correlation coefficients are equal toE {ρ̂12} = 0.997,
E {ρ̂13} = 0.998 andE {ρ̂23} = 0.997. These mean values suggest equal correlation
between all channels. Additionally, in figure 6.25 a match between the calculated and
estimated channel correlations is visible, where the mean of the calculated channel cor-
relation is equal toE {ρl} = 0.999. The described evaluation validates equation (5.27)
and suggests that noise is the only decorrelation source forthe described land data set.
Figure 6.26 shows the channel correlation of a real sea data set, which was collected du-
ring experiment 3 with the grazing angle of15◦. Here again the colored lines indicate the
estimated channel correlation from equation (5.23) and thedashed black line shows the
calculated channel correlation from equation (5.27). Additionally, the dotted black line
visualizes the calculated channel correlation from equation (5.37), which is derived for
sea data. In figure 6.26 a significantly lower channel correlation for sea data is visible
as compared to land data. The estimated channel correlationis also much lower than the
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Figure 6.27: Channel correlation of sea data for different azimuth angles. Experiment 3,
side 1, grazing angle35◦. Estimated correlation (colored lines) and theoretical correlation
for land data (dashed black line) and sea data (dotted black line).

calculated one from equation (5.27), indicating a further source of decorrelation for sea
data than just noise. Another striking property of the estimated sea data channel corre-
lation are the significantly different correlation coefficients between channels 1 and 3,
as compared to the other channels, which is due to different phase center separations.
Channels 1 and 2 and channels 2 and 3 are equidistant. The phasecenter separation be-
tween channels 1 and 3 is however twice as big. As derived in equation (5.37), higher
phase center separations result in lower channel correlations. This is crucially different
from land data, where this measure is expected to be independent of the channel sepa-
ration. A match of the calculated correlation coefficients from equation (5.37) and the
estimated ones is evident, where also different values are calculated for different phase
center separations.
To determine the channel correlation of sea data, the radialsea scatterer velocity variance
has to be known. For this calculation the sea scatterer velocity variance is estimated from
equation (6.8). Note that it would also be possible to estimate the velocity variance from
the estimated channel correlations. This estimator is however not applied here, because
it has a higher variance than the proposed estimator.
The mean correlation coefficients, which are presented in figure 6.26, are
E {ρ̂12} = 0.952, E {ρ̂23} = 0.951 andE {ρ̂13} = 0.836. The mean calculated sea
data correlation coefficients are 0.953 and 0.832 for the twophase center separations.
If the sea data channel correlation for this data set is calculated without considering the
influence of the radial sea scatterer velocity on the antennapattern, the mean values
for both channel separations would be 0.940 and 0.786. Thesevalues indicate that the
antenna pattern cannot be neglected when considering the channel correlation.
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Figure 6.28: Channel correlation of sea data for different azimuth angles. Experiment 2,
side 3, grazing angle15◦. Estimated correlation (colored lines) and theoretical correlation
for land data (dashed black line) and sea data (dotted black line).
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Figure 6.29: Channel correlation of sea data for different azimuth angles. Experiment 1,
side 3, grazing angle15◦. Estimated correlation (colored lines) and theoretical correlation
for land data (dashed black line) and sea data (dotted black line).

Figure 6.27 shows channel correlation coefficients for different azimuth angles of a sea
data set collected during experiment 3 with the grazing angle of35◦. This figure demon-
strates same properties for this grazing angle as compared to the grazing angle of15◦.
The correlation of the channels is lower compared to land data, resulting in a discrepancy
between estimated channel correlations and the theoretical channel correlation of land
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E {ρ̂12} E {ρ̂23} E {ρ̂13} E {ρl} E {ρs}
θ = 35◦, side 1 0.966 0.965 0.936 0.981 0.968/ 0.933
θ = 35◦, side 2 0.957 0.956 0.929 0.971 0.958/ 0.925
θ = 35◦, side 3 0.970 0.969 0.938 0.984 0.971/ 0.935
θ = 35◦, side 4 0.968 0.966 0.938 0.981 0.969/ 0.936

θ = 15◦, side 1 0.953 0.952 0.932 0.967 0.957/ 0.931
θ = 15◦, side 3 0.942 0.941 0.913 0.960 0.947/ 0.911
θ = 15◦, side 4 0.955 0.954 0.918 0.974 0.959/ 0.917

Table 6.4: Estimated and calculated channel correlation coefficients of experiment 1

E {ρ̂12} E {ρ̂23} E {ρ̂13} E {ρl} E {ρs}
θ = 35◦, side 1 0.962 0.961 0.884 0.993 0.969/ 0.900
θ = 35◦, side 2 0.961 0.960 0.904 0.985 0.967/ 0.917
θ = 35◦, side 3 0.966 0.965 0.899 0.992 0.969/ 0.905
θ = 35◦, side 4 0.969 0.968 0.895 0.997 0.975/ 0.912

θ = 15◦, side 1 0.945 0.944 0.856 0.984 0.952/ 0.866
θ = 15◦, side 2 0.971 0.971 0.919 0.9993 0.971/ 0.911
θ = 15◦, side 3 0.959 0.958 0.902 0.984 0.961/ 0.899
θ = 15◦, side 4 0.970 0.970 0.905 0.997 0.974/ 0.910

Table 6.5: Estimated and calculated channel correlation coefficients of experiment 2

E {ρ̂12} E {ρ̂23} E {ρ̂13} E {ρl} E {ρs}
θ = 35◦, side 1 0.951 0.950 0.828 0.998 0.952/ 0.826
θ = 35◦, side 2 0.950 0.949 0.822 0.999 0.956/ 0.837
θ = 35◦, side 3 0.943 0.941 0.798 0.999 0.950/ 0.818
θ = 35◦, side 4 0.953 0.952 0.836 0.998 0.954/ 0.834

θ = 15◦, side 1 0.952 0.951 0.836 0.998 0.953/ 0.832
θ = 15◦, side 2 0.943 0.941 0.813 0.996 0.950/ 0.827
θ = 15◦, side 3 0.936 0.934 0.785 0.998 0.948/ 0.815
θ = 15◦, side 4 0.951 0.949 0.834 0.997 0.953/ 0.832

Table 6.6: Estimated and calculated channel correlation coefficients of experiment 3

data from equation (5.27). A match between the actual channel correlations and the theo-
retical channel correlation of sea data can however be observed, where also here channels
1 and 3 are significantly less correlated than the other ones.
In figures 6.28 and 6.29 channel correlation coefficients arevisualized of data sets, which
were collected during experiments 2 and 1, to show how sea data channel correlation
changes for different sea conditions. In figure 6.28 the dataset of experiment 2 is pre-
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sented, which shows a smaller difference between the estimated correlation̂ρ13 and the
other correlations in reference to the data sets of experiment 3. This is due to a smaller
sea scatterer velocity variance, which was present during experiment 2 as compared to
experiment 3. Figure 6.29 shows an even smaller discrepancybetween the different chan-
nel correlations. In this figure the correlation is evaluated from a data set of experiment
1, where the radial sea scatterer velocity variance is the smallest one of all three sea ex-
periments. Also the deviation between estimated coefficients and the calculated one for
land data is not significant, indicating a small influence of the movement of sea scatterers
on the channel decorrelation. A smaller sea scatterer velocity variance is observed for
experiments 2 and 1 due to a smaller sea state, which was present during these exper-
iments. The radial sea scatterer velocity variance is proportional to the orbital velocity
variance of the sea surface and this variance decreases for smaller sea states, as described
in chapter 3.1.
Figures 6.28 and 6.29 show that for smaller sea states the channel decorrelation due to
noise rises. This is due to the decrease of the radar cross section of sea echoes for smaller
sea states, as observed in chapter 4.3.
Tables 6.4 - 6.6 summarize the correlation coefficients between the three channels of
all available data sets. These coefficients are estimated within the azimuth angle inter-
vals described in section 6.4 and calculated with equations(5.27) and (5.37). These
tables show three properties. First, they illustrate that channel correlation of sea data is
highly dependent on the sea state. The difference between the correlation of channels 1
and 3 and the other channel correlations changes significantly for different experiments.
Also the discrepancy between the actual channel decorrelation and the calculated chan-
nel decorrelation due to noise varies for different experiments. Both variations are due to
different sea scatterer velocity variances during different experiments, hence the impact
of the movement of the scatterers is different for all three experiments. Secondly, tables
6.4 - 6.6 demonstrate same properties for both grazing angles. Thirdly, these tables vali-
date the derived model to calculate the channel correlationof sea data in equation (5.37),
indicating that channel decorrelation due to the movement of the sea surface can be re-
produced by the proposed model. Some deviations are evidentfor experiment 3 at sides,
where significant amounts of fast scatterers are present. This is because fast scatterers
are not considered in the derived model. Another possible deviation source is if the sea
scatterer velocity has a different distribution than the Gaussian one. Further, the channels
can decorrelate due to any other non-ideal conditions, which are not considered by the
presented model.

6.6 Real and Simulated Data with Fast Scatterers

To validate the impact of fast scatterers on multichannel properties of sea data, simula-
ted and real data sets with slow and fast scatterers are evaluated. Such simulations are
performed as described in section 6.1. Here, however, a space-time clutter signal, which
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consists of slow and fast scatterers, is used

c̃ =
∫

Ω
A(u)s̃(u, Vs(u)) du + B

∫

Ω
Af (u)s̃(u, Vf (u)) du. (6.10)

For the described simulations, the mean of the fast scatterer velocity µf , the mean of the
Bernoulli variableµB, the fast scatterer velocity varianceσ2

f and the reflectivity variance
σ2

cf are chosen to match real data.
In figure 6.30 beamformed clutter power of the same CPI as in figure 5.9 is presented, and
the power of a simulated data set with corresponding radar and sea parameters is shown
in figure 6.31. Both figures show several scatterers with a highnegative radial velocity.
In figures 6.32 and 6.33 the eigenvalue distributions of these CPIs are visualized. The
second eigenvalue around the Doppler centroid is also significantly higher than for land
data, due to the motion of the sea scatterers. Additionally,however, the centroid of the
second eigenvalue distribution is different from the one ofthe first eigenvalue. For si-
mulated and real data, the second eigenvalue distribution centroid is at 46 Hz. This is
expected due to the derivations which are performed in chapter 5.5, where an asymmet-
ric contribution to the second eigenvalue distribution in dependence of the frequency is
calculated, if fast scatterers are present. The dotted black line in figure 6.33 indicates the
calculated distribution of the second eigenvalue from equation (5.45). For this calcula-
tion, the clutter power of slow and fast scatterers of the performed simulation are used.
The calculated eigenvalue distribution is also centered around 46 Hz and agrees quite
well with the simulated one. Small deviations are present due to several approximations,
which are applied to calculate the second eigenvalue of the slow plus fast scatterer spec-
tral density matrix. Figures 6.32 and 6.33 show a higher third eigenvalue distribution,
which is because of the presence of fast scatterer clutter power in the third subspace di-
mension. The power of the third eigenvalue distribution in figure 6.32 is lower than the
one in figure 5.9, due to a discrepancy between estimated and calculated eigenvectors.
Figure 6.34 and 6.35 show the phase of the first eigenvector ofreal and simulated data. In
figure 6.34 the black line indicates the phase of the theoretical DOA vector. It is obvious
that the phase of the DOA vector does not correspond to the oneof the first eigenvector
at positive frequencies. As predicted in chapter 5.5, the first eigenvector changes asym-
metrically due to the contribution of fast scatterers and istherefore not equal to the DOA
vector any more. In figure 6.35 the black line indicates the phase of the first eigenvec-
tor, calculated from equation (5.46). This figure shows a good agreement between the
calculated and simulated phase of the first eigenvector. This validates the derivations per-
formed in chapter 5.5. Small deviations exist due to the usedapproximations.
The space-time filter gain of real and simulated sea data setswith fast scatterers are il-
lustrated in figures 6.36 and 6.37. Both figures show a broader filter notch at positive
Doppler frequencies than at negative ones. Therefore, at positive Doppler frequencies
more look directions are attenuated by the space-time filter. Due to a changing cen-
troid of the second eigenvalue distribution, an asymmetricspace-time filter is predicted
is chapter 5.5.
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In figure 6.38 beamformed clutter power of a CPI of experiment 3is presented, where the
sea surface was moving in the down swell direction. This CPI isprocessed in the same
manner as the CPI in figure 6.30. Figure 6.39 displays beamformed clutter power of a
simulated CPI with matching radar and sea parameters. In figures 6.38 and 6.39 several
scatterers at positive radial velocities are visible.
Figure 6.40 shows eigenvalue distributions of the described real data set and figure 6.41
of the simulated one. In both figures the centroid of the second eigenvalue distribution
is shifted to -31 Hz. Figure 6.41 also visualizes the calculated distribution of the second
eigenvalue for different frequencies with equation (5.45)for the corresponding radar and
sea parameters. Also for the down swell condition this calculation matches the simula-
tion.
In figure 6.42 the phase of the estimated first eigenvector of the real data is plotted. Ad-
ditionally, the dotted black line indicates the phase of thetheoretical DOA vector. Figure
6.42 shows that at negative Doppler frequencies the theoretical DOA vector does not
match the actual one. In figure 6.43 the phase of the first eigenvector of the simulated
data set is visualized. Here the dotted black line indicatesthe phase of the theoretically
calculated first eigenvector from equation (5.46). This figure shows that this measure can
be calculated from this equation for different frequencies, also for the up swell condition.
Figures 6.44 and 6.45 illustrate the space-time filter gain of simulated and real sea data
with many fast scatterers at negative Doppler frequencies.Here asymmetrical broadness
of filter notches is evident, as well, where for these data sets a detection is more difficult
at negative Doppler frequencies.

The comparison of simulated and real multichannel properties, which are presented in
figures 6.32-6.45, illustrates a good agreement between both data sets for the up and
down swell direction. All multichannel characteristics ofreal data are reproduced by
the performed simulations. This shows that the impact of fast scatterers on multichannel
characteristics can be simulated with the proposed model.
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Figure 6.30: Beamformed power. Real
data, exp. 3, up swell condition.
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Figure 6.31: Beamformed power. Simula-
ted data, matching parameters.
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Figure 6.32: Eigenvalue distributions.
Real data, exp. 3, up swell condition.
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Figure 6.33: Eigenvalue distributions. Si-
mulated data, matching parameters.
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Figure 6.34: Phase of first eigenvector.
Real data, exp. 3, up swell condition.
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Figure 6.35: Phase of first eigenvector. Si-
mulated data, matching parameters.
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Figure 6.36: Space-time filter gain. Real
data, exp. 3, up swell condition.

Doppler Frequency [Hz]

D
ir
e

c
ti
o

n
a

l 
C

o
s
in

e

 

 

−400 −200 0 200 400

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

N
o

rm
a

liz
e

d
 P

o
w

e
r 

[d
B

]

−30

−25

−20

−15

−10

−5

0

Figure 6.37: Space-time filter gain. Simu-
lated data, matching parameters.



78 6. Multichannel Properties of Real and Simulated Data

Doppler Frequency [Hz]

S
la

n
t 
R

a
n
g
e
 [
m

]

 

 

−700 −500 −300 −100 100 300 500 700

4300

4400

4500

4600

4700

4800

N
o
rm

a
liz

e
d
 P

o
w

e
r 

[d
B

]

−40

−30

−20

−10

0

Figure 6.38: Beamformed power. Real
data, exp. 3, down swell condition.
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Figure 6.39: Beamformed power. Simula-
ted data, matching parameters.
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Figure 6.40: Eigenvalue distributions.
Real data, exp. 3, down swell condition.
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Figure 6.41: Eigenvalue distributions. Si-
mulated data, matching parameters.
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Figure 6.42: Phase of first eigenvector.
Real data, exp. 3, down swell condition.
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Figure 6.43: Phase of first eigenvector. Si-
mulated data, matching parameters.
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Figure 6.44: Space-time filter gain. Real
data, exp. 3, down swell condition.

Doppler Frequency [Hz]

D
ir
e

c
ti
o

n
a

l 
C

o
s
in

e

 

 

−400 −200 0 200 400

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

N
o

rm
a

liz
e

d
 P

o
w

e
r 

[d
B

]

−30

−25

−20

−15

−10

−5

0

Figure 6.45: Space-time filter gain. Simu-
lated data, matching parameters.





Chapter 7

Experiments with a Small Cooperative
Boat

In the context of this thesis, experiments with the PAMIR system and a small cooperative
boat were performed. The goal of these experiments, which are described in section 7.1,
is to evaluate if STAP is needed for maritime radar systems. For this analysis, the target
position is calculated inside the acquired data in section 7.2 and the SCNR is determined
in section 7.3. Section 7.4 demonstrates the detection performance of the cooperative
target for different processing methods.

7.1 Experiments

Figure 7.1: Cooperative boat, 7.5 m length× 2.5 m width
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Figure 7.2: Flight path with a picture of cooperative target

PRF 2000 Hz
Range resolution 3.75 m

Nearest center slant range5600 m
Platform velocity 100 m/s
Depression angle 35◦

Slant swath 4500 m

Table 7.1: Radar parameters

Significant wave height 1.9 m - 2 m
Wind velocity 9 m/s - 11 m/s

Wind direction (ENU) 170◦ - 200◦

Swell direction (ENU) 160◦ - 180◦

Sea state 4

Table 7.2: Weather data

The experiments, which are evaluated in this chapter, were performed in the same manner
as the sea experiments described in chapter 4.2. Here, however, also a cooperative target
was located inside the scene. This target is a small boat withdimensions 7.5 m length×
2.5 m width, as shown in figure 7.1. During these experiments,a GPS system was used
to record the position, track and velocity of the boat, wherethe boat was moving with its
maximum possible velocity of 5 m/s - 6 m/s. In figure 7.2 the flight path is illustrated
with a picture of the cooperative target. This picture was taken with a camera, which
is integrated inside the PAMIR system, during the performedexperiments. The track of
the plane was rotated by 30◦ from the north, east, south and west direction. The radar
parameters are summarized in table 7.1.
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Several weather stations located near Helgoland were used to collect weather data. These
recordings are summarized in table 7.2 and show quite rough sea conditions. The swell
and wind direction angles are transformed into an ENU coordinate system and the sea
state is identified on the Douglas scale.

7.2 Target Position in acquired Data

To evaluate how well the cooperative boat can be detected with different processing tech-
niques, the position of this boat inside the acquired data has to be known. The longitude,
latitude and velocity of the boat were recorded with a GPS receiver. These measures are
also known from the platform due to the IMU and DGPS systems which are integrated
inside the PAMIR system. The longitude and latitude of the center position were defined
a priori. The roll, pitch and yaw angles of the platform were taken into account by the
steering of the phased array antenna, hence the center position is always the specified
longitude and latitude.
To calculate the position of the target, its longitude and latitude have to be evaluated in
terms of an earth-based local coordinate system. The longitude and latitude, which are
given in the World Geodetic System 1984 (WGS84), are first transformed to an earth-
centered earth-fixed (ECEF) coordinate system. These coordinates are then converted to
a local east-north-up (ENU) Cartesian coordinate system. Totransform from the ECEF
coordinate system to an ENU coordinate system, a reference position has to be defined.
Here the platform position is chosen as the reference position, because all location infor-
mation collected by the PAMIR system is in reference to the platform, hence the platform
coordinates are alwaysxp = (0, 0, 0)T . The described geometry is visualized in figure
7.3. Here the position of the boat is described by the position vectorxt and the center
position coordinates are denoted byxc. The LOS vector to the center position is equal
to uc = xc

||xc|| , and the one to the target position is described byut = xt

||xt|| . Note that
for this geometry the platform is not assumed to move along the x-axis. The platform
velocity vector can be calculated fromvp = (vph cos(ϕp), vph sin(ϕp), vpv)T , where the
horizontal and vertical platform velocitiesvph andvpv and the track of the platformϕp

were recorded by the PAMIR system. The velocity vectorvs is due to the mean sea scat-
terer velocity at the center position.
With the target position vector, the target slant range can be calculated as

rt =
√

(xt − xp)2 + (yt − yp)2 + (zt − zp)2 (7.1)

and the Doppler shift of the target is equal to

F(ut, vt) = − 2

λr

uH
t (vt − vp). (7.2)

Herevt is the target velocity vector, which can be calculated as

vt = vt (cos(ϕt), sin(ϕt), 0)T , (7.3)
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Figure 7.3: Geometry of observed scene

whereϕt is the track of the target andvt the magnitude of the target velocity. Both values
were collected with the GPS system. With the target Doppler shift, the radial velocity of
the target relative to the center position can be calculatedas

vr = −λr

2
(F(ut, vt) − F(uc, vs)) , (7.4)

whereF(uc, vs) is the Doppler shift at the center position, whose estimation is described
in chapter 4.3. The described calculation is demonstrated for all four sides in figure 7.4
in dependence of the azimuth angle in ENU coordinates, whichis defined in equation
(4.1). Figure 7.4 shows that the radial target velocity varies quite strongly for sides 1
and 3. For some angles the target is very fast and for some azimuth angles the radial
velocity is almost zero. For sides 2 and 4 the variation of thetarget radial velocity is
significantly smaller. During the data acquisition at side 2, the target velocity varied
around 1.5 m/s - 4 m/s and while the plane was flying on side 4, the target moved with a
radial velocity between 1 m/s - 1.5 m/s. As was described in chapter 2.2, it is important
to know if the target is positioned inside or outside of the clutter band to analyze the
different clutter suppression filters. For the PAMIR system, the theoretical clutter band is
distributed between the velocity interval of± 2 m/s for the platform velocity of 100 m/s.
Due to the movement of the sea scatterers, the actual clutterband is however broader.
To be positioned outside of the sea clutter band, the relative radial velocity of the target
therefore has to be faster than for a land clutter band.
Figure 7.5 shows beamformed data in the range Doppler domainfor one CPI, which
was acquired during side 4. The CPI consists of 128 pulses witha PRF of 2000 Hz.
The white circle in this figure indicates the expected position of the boat, calculated
from equations (7.1) and (7.2). The target is however maskedby the strong clutter. The
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(d) Side 4

Figure 7.4: Relative radial velocity of cooperative target calculated from GPS data and
clutter Doppler centroid

remaining uncertainty in range is due to the uncertainty of the GPS localization, which
was 10 m during the data collection. This affects also the accuracy of the Doppler shift,
but its uncertainty is additionally determined by the acceleration and the vertical velocity
of the target, which were not known exactly during these experiments. To visualize
the Doppler shift due to the movement of the scatterers, onlythe Doppler shift due to
the platform velocity is compensated in figure 7.5. The remaining Doppler shift after
this compensation is at 31 Hz, which corresponds to a mean radial velocity of the sea
scatterers of -0.5 m/s.

7.3 SCNR before and after Clutter Suppression

A crucial parameter for target detection is the SCNR. On one hand, this measure is pre-
sented in this section without any processing, and on the other hand the SCNR is evalu-
ated after clutter suppression with different filters. In figure 7.6 the SCNR before clutter
suppression is plotted for data sets collected from the fourdifferent sides in dependency
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Figure 7.5: Beamformed data of one CPI. The circle indicates the position of the target,
calculated from GPS data.

of the azimuth angle. The signal of the target is estimated from the maximum power
inside the circle. The clutter and noise power is estimated by calculating the mean power
inside the main beam (3 dB), but outside of the circle. For low signal powers, rather
strong clutter returns inside the circle are mistaken to be the target, hence this estima-
tion has to be considered as being the upper bound of the real SCNR. Figure 7.6 reveals
quite strong variations of the SCNR before clutter suppression, which is due to different
positions of the target inside the antenna beam and due to different target echoes from
different aspect angles. To consider the variation of the SCNR due to the antenna beam,
a normalized two-way antenna pattern is added to the real SCNR.The corrected SCNR
is denoted by the blue dashed line in figure 7.6. Here only the azimuth antenna pattern is
considered due to the narrower beamwidth. The position of the target inside the antenna
beam is derived by calculating the difference between the cone angle of the center posi-
tion and the cone angle of the target in the platform coordinate system.
The boat was not always inside the antenna beam, due to the stormy weather conditions
and the small azimuth swath. Here data is considered, where the boat was inside the
one-fourth power beamwidth (6 dB). During the data acquisition of side 2, the boat was
not positioned in the center of the elevation pattern, therefore its SCNR is significantly
lower than the ones of the other sides.
To compare the performance between multichannel processing and single channel pro-
cessing with adaptive matched filters, a TAP filter and two different STAP filters are
applied to the data to suppress the clutter. For multichannel processing the two most com-
mon STAP methods are chosen: pre-Doppler and post-Doppler STAP. For pre-Doppler
STAP the sub-CPI method is applied and for post-Doppler STAP the multi-bin method
is used. The sub-CPI method is described in detail in [28] and [30] and the multi-bin
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Figure 7.6: SCNR before clutter suppression. Estimated SCNR (black line) and SCNR
with corrected antenna pattern (dashed blue line).

method in [30] and [88]. The main steps are visualized in figure 7.7, where the multi-bin
method is shown on the left side of this figure. Here first a Fourier transform is performed
in the slow time domain of one CPI. Then the available channelsand a certain amount of
Doppler bins, which are adjacent to the cell under test (CUT),are used to form a STAP
filter. To estimate the spectral density matrix for this filter, the available range bins are
utilized. A STAP filter is estimated and applied to each CUT. The sub-CPI method is
visualized on the right side of figure 7.7. Here a certain amount of pulses and the avail-
able channels are used to form a STAP filter, where the covariance matrix is estimated
from the available range samples. The Fourier transform is only performed after applying
the STAP filter to each CUT. For the presented evaluation, two adjacent Doppler bins on
each side are applied for the multi-bin method and four pulses are used for the sub-CPI
method. For TAP also the sub-CPI technique is applied, first, however, the multichannel
data is coherently combined to one single channel. For all filters, the spectral density
or covariance matrix is estimated for each CUT using 256 rangesamples for training,
with 128 bins being on each side. Four guard cells are used on each side of the CUT
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Figure 7.7: Main processing steps of multi-bin post-Doppler STAP (left) and sub-CPI
pre-Doppler STAP (right)

to ensure that the target will not eliminate itself. A Hamming window is utilized for the
post-Doppler technique, but not for the other ones. The SCNR after clutter suppression
is calculated by considering the maximum power inside the circle and dividing it by the
clutter plus noise power, which is estimated from all samples outside of the circle. Ide-
ally, the clutter should be completely suppressed by the filter, so that the SCNR is equal
to the signal-to-noise-ratio (SNR).
Figure 7.8 shows the SCNR after clutter suppression for the four different sides. The data
of side 1 reveals quite high variations of the SCNR before clutter suppression. In figure
7.8(a), however, a high SCNR after all processing methods forangles untilϕENU = 86◦,
with values of 20 dB - 30 dB, is visualized. For these angles, the target echo is outside
of the clutter band, hence it is not suppressed by any filter. From ϕENU = 86◦ till the
end of the data set, the relative target velocity is not higher than the maximum velocities
of the clutter band, the target echo is therefore positionedinside the clutter band. For
these angles the TAP-SCNR is clearly lower than the SCNRs of the STAP filters. For
ϕENU = 98◦ - 101◦, the target velocity varies from -0.5 m/s to 0.5 m/s and the target signal
is suppressed by all filters.
The SCNR of side 2 is low for all angles prior to clutter suppression. After applying all
processing methods, however, values of 20 dB - 28 dB are observed, where the target
power is well outside of the clutter band. This is the case forangles up toϕENU = 314◦.
At this angle the radial target velocity is at -2.5 m/s, whichis theoretically outside of the
clutter band, but due to the movement of the sea scatterers and due to fast scatterers, a
broader clutter filter is estimated. From this angle the SCNR of all processings drops,
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Figure 7.8: Estimated SCNR after clutter suppression with two different STAP filters and
a TAP filter

where the one after applying TAP is significantly lower than the ones after multichannel
processing. AtϕENU = 318◦ the target velocity is -2.1 m/s. From this angle till the end of
the data set, the SCNR after clutter suppression is very low for all processing methods,
which is also due to a lower SCNR prior to any processing.
During side 3 the target returns vary strongly. A high SCNR after clutter filtering can
be observed for all angles, where the target signal does not have to compete with clutter
returns. AtϕENU = 247◦ the target echo is positioned inside the clutter band. For this and
all following angles, the target signal is suppressed by theTAP filter. FromϕENU = 259◦

the target radial velocity varies around -0.5 m/s to 0.25 m/s. For these velocities the target
is also suppressed by the STAP filters.
The target signal, which was received during the experimentat side 4, is quite low, with
values around 12 dB - 14 dB. Additionally, the target echo is always positioned inside or
at the edge of the clutter band. Hence, the estimated SCNR after single channel proces-
sing mostly varies between 12 dB - 14 dB, which indicates a suppression of the target
signal with the TAP filter. After multichannel processing, however, the SCNR is 18 dB -
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24 dB for most angles, which results in a mean SCNR improvementof 8 dB with STAP
compared to TAP for this side.
After suppressing the clutter, the relative radial target velocity is estimated from the ac-
quired data sets. Such an estimation is needed, if targets ofopportunity are detected,
where no GPS data is available. This velocity is estimated from considering the Doppler
frequency with the maximum power inside the circle after clutter suppression. The stan-
dard deviations of the difference between the calculated radial target velocity and the
estimated one are summarized in table 7.3 for the different filters. The deviations are
due to the uncertainties described in section 7.2. Furthermore, for some CPIs the target
power is spread over several strong Doppler cells after clutter suppression. For the TAP
filter the deviation is higher, due to suppressed target echoes for some angles. Here the
radial velocity resolution is 0.25 m/s.

Post-Doppler STAP Pre-Doppler STAP TAP

Side 1 0.50 m/s 0.47 m/s 0.50 m/s
Side 2 0.45 m/s 0.54 m/s 0.61 m/s
Side 3 0.49 m/s 0.48 m/s 0.77 m/s
Side 4 0.53 m/s 0.59 m/s 0.69 m/s

Table 7.3: Standard deviation between estimated and calculated relative radial target
velocities after clutter suppression with different filters

7.4 Detection Performance

To evaluate the detection performance of the cooperative target after applying different
filters, a suitable threshold has to be estimated. In this analysis, a threshold is set to
achieve a probability of false alarm (Pfa) of 10−4. This probability is estimated from all
available range samples and Doppler bins which are outside of the target circle. Addi-
tionally, an area is excluded where a target of opportunity was present during the exper-
iments. This condition will be described later in more detail. Another possibility would
be to estimate the threshold in dependency of the Doppler frequency, because the clutter
characteristics vary strongly for different Doppler bins,especially if fast scatterers are
present. This is not pursued here, because then for some frequencies the threshold would
be very high, preventing a detection of the cooperative target.
In figure 7.9 the estimated threshold is visualized for the four different sides in depen-
dency of the azimuth angle. The mean threshold ranges between 14.9 dB - 15.4 dB for
side 1, between 15.8 dB - 16.9 dB for side 2, between 14.7 dB - 15.5 dB for side 3 and
is equal to 15.7 dB - 16.7 dB for side 4. The thresholds are on average slightly higher
for side 2 and 4, because probably the observed azimuth angles are closer to the down
or up swell direction. However, also for side 1 a high threshold is estimated between
the azimuth angles 86◦ - 101◦ and also for side 3 the threshold is high between 202◦ -
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Figure 7.9: Estimated threshold forPfa = 10−4 after clutter suppression with different
filters

218◦. This is due to some fast scatterers, which are present in these data sets. To analyze
why the fast scatterers occur in these angle intervals, moreprecise weather data would
be needed. Figure 7.9 shows that a similar threshold is estimated for the three diffe-
rent processing methods. The threshold after applying the TAP filter is however slightly
lower, because fast scatterers are often better suppressedwith this filter. Fast scatterers
are distributed over all subspace dimensions of the clutterplus noise spectral density ma-
trix, as described in chapter 5.5. This makes it difficult forSTAP filters to completely
suppress this clutter type. The TAP filter, however, only estimates the present power for
each Doppler frequency. If fast scatterers are present at many range bins but one Doppler
frequency, they are eliminated with TAP.
The detection performance is evaluated by comparing the remaining power after clutter
suppression to the estimated threshold for each CPI. If the power of more than one cell in-
side the target circle exceeds the threshold, then the target is considered to be detected for
the according CPI. The detection performance is visualized for the four different sides
for different azimuth angles in figures 7.10 - 7.12. In figure 7.10 the detection perfor-
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Figure 7.10: Number of detections withPfa = 10−4 and post-Doppler STAP

mance after applying the post-Doppler STAP filter is demonstrated, figure 7.11 shows
the performance after pre-Doppler STAP and figure 7.12 illustrates how well the target
is detected with the TAP filter. The blue line in these figures possesses the value 1 if the
target is detected at the observed azimuth angle and 0 if it isnot. For a better overview,
the median between a certain azimuth interval is visualized.
At side 1 the target is reliably detected with TAP until the angle of 92◦, which is visua-
lized in figure 7.12(a). At this side the SCNR before clutter suppression is quite high.
Even though the target is already inside the clutter band at 86◦, it is not suppressed with
TAP due to its high signal. With multichannel processing thetarget is reliably detected
until the angle of 98◦, as shown in figures 7.10(a) and 7.11(a). During side 2 the SCNR
before clutter suppression is very low, because the target is at the edge of the eleva-
tion beamwidth. The target is therefore already suppressedby the TAP filter at 314◦,
where its radial velocity is -2.6 m/s, which is outside of theclutter band. With STAP the
target power is suppressed from 316◦ with pre-Doppler processing and from 318◦ with
post-Doppler STAP, which both correspond to a radial targetvelocity of -2.5 m/s. These
detection performances are shown in figures 7.10(b), 7.11(b) and 7.12(b). Figure 7.12(c)
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Figure 7.11: Number of detections withPfa = 10−4 and pre-Doppler STAP

shows detections during side 3 with single channel processing, where the target is identi-
fied between 202◦ - 247◦. The target radial velocity range in this angle interval is -8 m/s
to -2 m/s. With multichannel processing the target is detected up to a radial velocity of
-0.3 m/s. During side 4 the target radial velocity varies between 1 m/s - 1.5 m/s, which
is inside the clutter band. At this side the cooperative boatis almost never detected with
single channel processing.
The described condition is demonstrated in figure 7.13, where the same CPI as in figure
7.5, is shown. Here the target and clutter power are visualized before and after clutter
suppression, where only the slant ranges and Doppler frequencies around the expected
target position are presented. In figure 7.13(a) the clutterand target power before clutter
suppression are visualized. The target is masked by the clutter and can therefore not be
detected. Figure 7.13(b) presents the CPI after applying a TAP filter. This figure shows
that the clutter is suppressed quite well with this filter, but also the target is suppressed,
preventing a detection. In figures 7.13(c) and 7.13(d) the clutter and target power are
demonstrated after applying the two different STAP filters.With multichannel proces-
sing the clutter is suppressed, but the target is still well visible. With these processing
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Figure 7.12: Number of detections withPfa = 10−4 and TAP

methods a detection is possible.
Table 7.4 demonstrates the probability of detection of the four sides and the three filters
of all available CPIs. This table shows a worse detection performance with single channel
processing. Especially during side 4 the probability of detection with TAP is only 9%,
while with post-Doppler STAP the probability of detection is 92% and with pre-Doppler
STAP 89%. With STAP filters the target is detected for most azimuth angles, which were
observed during the data acquisition at side 4.
The green line in figures 7.10 - 7.12 indicates the number of detections outside of the
target circle. In these figures an average is presented for each azimuth angle interval. A
detection is considered to be valid if the power of at least two adjacent cells exceeds the
threshold. All cells which are next to each other are countedas one target. In most cases
the detections outside of the target circle correspond to false alarms. To further reduce
their number, the range history of the detections should be analyzed. While the target po-
sition is assumed to change linearly in dependence of the slant range for different CPIs,
scatterers should show a random behavior. An additional approach could also be to com-
pare the power of a detection before and after clutter suppression. These improvement
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steps will be considered in the future.
During side 4, between the angles of 112◦ - 117◦, a target of opportunity was present in-
side the observed scene. This target was at the edge of the elevation and azimuth antenna
beamwidth. Nevertheless, a strong signal power is receivedfrom this target. In figure
7.14 a picture of this target is shown. This picture was takenwith the camera, which
is integrated inside the PAMIR system, during the performedexperiment. Figure 7.14
shows a big ship, hence the RCS of this target is quite high. Its power is distributed over
several cells, therefore a considerable number of detections is present in figures 7.10(d) -
7.12(d) due to this ship.
In figure 7.15 one CPI which includes this target of opportunity is presented. This target
is highlighted with a pink circle, whereas the cooperative boat is bordered by a white
circle. Note that while for the cooperative target the position is known due to the GPS
data, for the target of opportunity such information is not available. Figure 7.15(a) shows
power of the clutter and of both targets without any processing. Here again the coopera-
tive boat is masked by the strong clutter power. The target ofopportunity is well visible,
because it is well outside of the clutter band and due to its strong signal. In figure 7.15(b)
the CPI is presented after clutter suppression with TAP. Whilethe target of opportunity is
well visible after single channel processing, the cooperative boat is suppressed and can-
not be detected. The power of the big ship is visible over several Doppler frequencies,
due to high spectral leakage. In figures 7.15(c) and 7.15(d) the clutter and target power
after multichannel processing are demonstrated. These figures show that with STAP both
targets can be detected. The power of the big ship after STAP filtering is not as high as
without any processing, due to a small number of guard cells.

Side Post-Doppler STAP Pre-Doppler STAP TAP
1 94 % 95 % 82 %
2 89 % 86 % 77 %
3 94 % 93 % 74 %
4 92 % 89 % 9 %

Table 7.4: Probability of detection of different sides after clutter suppression with diffe-
rent filters
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Figure 7.13: Clutter power and signal of cooperative target with and without clutter sup-
pression

Figure 7.14: Picture of target of opportunity inside the observed scene
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Figure 7.15: Clutter power, signal of cooperative target andsignal of target of opportunity
with and without clutter suppression





Chapter 8

Conclusion and Outlook

The main focus of this thesis is to understand the multichannel properties of sea clutter
for microwave radars. To achieve this goal, statistical multichannel properties of sea clut-
ter are derived. Then these characteristics are validated with real multichannel sea data
and reproduced with a simulation model.
In order to analyze the multichannel properties of sea clutter, first the well-known mul-
tichannel characteristics of land clutter are summarized.To point out the differences
between land and sea clutter and to gain a deeper understanding of the latter clutter type,
the physical origin of sea echoes is described and a brief introduction to oceanography is
provided.
To achieve a comprehensive theoretical analysis of multichannel sea clutter, this thesis
characterizes the sea clutter spectral density matrix, channel correlation, and space-time
filter. It is derived that due to varying velocities of sea scatterers, for sea clutter at least
a rank two clutter spectral density matrix has to be considered, whereas for land clutter
only a rank one clutter spectral density matrix has to be accounted for.
The calculation of the sea clutter space-time filter demonstrates a broader filter notch
than for land clutter, due to different sea clutter multichannel properties. It is shown that
the radial sea scatterer velocity variance is crucial in determining the broadness of the
space-time filter notch. The physical origin of this measureis investigated and the calcu-
lation possibilities are summarized. A further option is toestimate the radial sea scatterer
velocity variance from available data. A suitable estimator is proposed in this thesis and
its performance is evaluated.
This thesis also demonstrates that fast scatterers, which are echoes due to wave breaking,
lead to additional broadening of the filter notch. The properties of this scattering type
are summarized and the multichannel sea clutter model is extended to consider fast scat-
terers.
A model to calculate the channel correlation is derived, which shows that channels of sea
clutter are more decorrelated than channels of land clutterdue to the movement of sea
scatterers. It is illustrated that sea clutter channel correlation is highly dependent on the
phase center separation and the radial sea scatterer velocity variance.



100 8. Conclusion and Outlook

To validate the introduced multichannel properties of sea clutter, in the context of this the-
sis three measurement campaigns were performed with the radar system PAMIR, where
multichannel sea data was acquired at different sea states,different swell directions and
two different grazing angles. To emphasize the difference between land and sea clutter,
also data of a homogeneous land scene was collected. The evaluation of real sea data
confirms the theoretical multichannel properties. Furthermore from real data a rank two
spectral density matrix is estimated, which is dependent onthe sea state. The actual chan-
nel correlation changes for different sea states and different phase center separations and
matches the calculated one. This thesis demonstrates that for high sea states and in swell
direction, fast scatterers are present in real sea data. A modification of the multichannel
properties due to these scatterers is evident and agrees with the predicted behavior. Simi-
lar characteristics are observed for both grazing angles.
To further confirm the derived multichannel characteristics of sea clutter, simulations are
performed with radar and sea parameters matching those of the acquired real sea data
sets. The introduced simulation model reproduces the multichannel properties of real
data for different sea states, different grazing angles andwith existing fast scatterers.
Several applications can benefit from the introduced analysis. To monitor the ocean sur-
face more precisely, the insight into the multichannel properties of sea clutter can be
exploited to estimate parameters describing the sea surface. Further, the application of
space-time adaptive processing (STAP) to maritime radar systems benefits from this ana-
lysis, because this thesis provides simulation and calculation models to evaluate the STAP
performance in dependence on radar and sea parameters.
The necessity to use STAP in order to reliably detect small maritime targets from air-
borne radar systems is demonstrated in this thesis by performing further experiments
with the radar system PAMIR and a small cooperative boat. Theacquired data is used to
analyze the detectability of this target without any processing, with time adaptive proces-
sing (TAP), and with STAP. The evaluation of these experiments shows that without any
processing the signal-to-clutter plus noise ratio (SCNR) of this boat is too low to be de-
tected. If TAP is applied, the target signal is often suppressed by this filter, preventing its
detection. With STAP, however, the cooperative boat is almost always identified within
the data sets of the presented experiments.
Multichannel processing for maritime radar systems is a newfield of research, where
several questions are still unanswered. One important issue are the dependencies of sea
clutter multichannel properties on various sea and weatherparameters. To evaluate these
dependencies, further experiments need to be performed with precise in-situ measure-
ments. It would also be useful to mount the PAMIR system on a stationary platform,
in order to exclude influences of the moving platform. Furthermore, the demonstrated
multichannel analysis refers to sea surfaces in deep waters. For several applications, like
for harbour survaillance, an evaluation of multichannel sea clutter properties for shallow
waters is of interest as well. To exploit further the processing possibilities of a coher-
ent airborne radar system, the sea clutter multichannel analysis has to be extended to
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synthetic aperture radar (SAR). It is expected that more features of the sea surface are
recognized with this processing technique.
With multichannel processing an improved detection performance for airborne radar sys-
tems can be achieved. However, further improvement is possible if better detection tech-
niques are developed. One possible source of improvement isthe reduction of false
alarms due to fast scatterers after STAP. To obtain a more general statement of possible
detection performances with different processings, also experiments during different sea
states with targets of different sizes and moving with different radial velocities have to be
carried out and analyzed.





List of Abbrevations

CNR Clutter-to-Noise Ratio

CPI Coherent Processing Interval

CUT Cell under Test

DGPS Differential Global Positioning System

DOA Direction of Arrival

ECEF Earth-Centered Earth-Fixed

ENU East-North-Up

GMTI Ground Moving Target Indication

IMU Inertial Measuring Unit

LOS Line of sight

MTI Moving Target Indication

PAMIR Phased Array Multifunctional Imaging Radar

PRF Pulse Repetition Frequency

RCS Radar Cross Section

SAR Synthetic Aperture Radar

SNR Signal-to-Noise Ratio

STAP Space-Time Adaptive Processing

TAP Time Adaptive Processing





List of Symbols

Latin Symbols

A(u) Reflectivity as random variable

Af (u) Reflectivity of fast scatterers as random variable

B Bernoulli random variable

c Speed of light

cp Phase velocity vector of water wave

c(T ) Clutter signal in time domain

c̃ Space-time clutter signal vector

C(F ) Clutter signal in frequency domain

Cc(F ) Clutter spectral density matrix

Cf (F ) Spectral density matrix of fast scatterers

Cn(F ) Noise spectral density matrix

Cs(F ) Spectral density matrix of slow scatterers

Cw(F ) Spectral density of water waves

Cz(F ) Spectral density matrix of received signal

d(u) DOA-vector

d0(u) DOA-vector without considering the antenna pattern

D(u) Two-way antenna pattern

en(F ) Eigenvector of spectral density matrix
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E {·} Expectation value

fr Carrier radar frequency

fs Water wave frequency

F Frequency

F (·) Doppler frequency

Fc Doppler centroid

g Gravity constant

g(F (·)) Doppler vector

H(F ) Fourier transform of elevation function

Hs Water wave height

kr Radar wave vector

ks Water wave vector

M Number of pulses of one CPI

N Number of available channels

pVs(vs) Distribution of radial sea scatterer velocity

r Distance vector

rt Target slant range

Rc(τ) Clutter covariance matrix

s(·) Normalized time-dependent radar clutter signal

s̃(·) Normalized space-time clutter signal vector

T Slow time

u Directional cosine, look direction

u0(F ) Look direction of stationary scatterers

uc LOS vector to center position

ut LOS vector to target position
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u LOS vector

Uw Wind velocity

vc Clutter velocity vector

vorb Orbital water wave velocity vector

vp Platform velocity vector

vr Radial target velocity

vrel Relative radial velocity

vs Radial sea scatterer velocity as realization

vt Target velocity vector

Vf (u) Radial velocity of fast scatterers as random variable

Vs(u) Radial sea scatterer velocity as random variable

w(u, F ) Space-time filter

xc = (xc, yc, zc)
T Clutter position vector

xn Position ofnth channel

xp = (xp, yp, zp)T Platform position vector

xt = (xt, yt, zt)
T Target position vector

z(T ) Received signal in time domain

Z(F ) Received signal in frequency domain

Greek Symbols

α Cone angle

γ(u, F ) Space-time filter gain

δ(·) Dirac delta distribution

η(·) Elevation function of sea surface
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θ Grazing angle

λn(F ) Eigenvalue of spectral density matrix

λr Carrier radar wave length

λs Wave length of water wave

µB Expectation value of Bernoulli random variable

µf Expectation value of radial sea scatterer velocity of fast
scatterers

ρl Channel correlation of land clutter

ρnn′ Channel correlation between channelsn andn′

ρs Channel correlation of sea clutter

σ2
a Broadness of absolute squared value of two-way antenna

pattern

σ2
c Reflectivity variance

σ2
cf Reflectivity variance of fast scatterers

σ2
f Radial sea scatterer velocity variance of fast scatterers

σ2
n Noise variance

σ2
orb Orbital velocity variance

σ2
pm Orbital velocity variance calculated with Pierson-Moskowitz

spectrum

σ2
s Radial sea scatterer velocity variance

σ̂s
2 Estimated radial sea scatterer velocity variance

ϕ Azimuth angle

ϕENU Azimuth angle between x-axis in ENU-coordinates and
center position

ϕs Azimuth angle between x-axis and direction of water wave



Appendix A

Boundary Conditions to Calculate Flow
Velocity of Water Waves

The flow is assumed to be incompressible

∇vorb(x, z, t) = 0. (A.1)

Using further that the flow velocity is irrotational

∇ × vorb(x, z, t) = 0, (A.2)

allows to define a velocity potentialΦ(x, z, t), which is related to the flow velocity by

vorb(x, z, t) = ∇Φ(x, z, t). (A.3)

This equation allows to rewrite equation (A.1) as

∇2Φ(x, z, t) = 0, (A.4)

which is the Laplace equation.
To solve this equation, boundary conditions have to be defined. The first boundary con-
dition is the so-called bottom boundary condition, which states that the vertical velocity
has to be zero on the floor, hence

∂Φ(x, z, t)

∂z

∣

∣

∣

∣

∣

z=−H

= 0. (A.5)

The kinematic boundary condition is due to the fact that particles on the surface stay on
the surface, if wave breaking is not considered. Therefore,the velocity of the particles
on the surface has to equal the velocity of the surface itself

∂η(x, t)

∂t
=

∂Φ(x, z, t)

∂z

∣

∣

∣

∣

∣

z=0

, (A.6)
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whereη(x, t) is the elevation function of the sea surface. Here the amplitudes of the
waves are additionally assumed to be small, which allows to observe the vertical velocity
at z = 0. The dynamic boundary condition assumes that the atmospheric pressure is
equal to the pressure on the surface. Assuming them to be zeroand using the Bernoulli
equation to calculate the pressure on the surface allows to state the condition as

∂Φ(x, z, t)

∂t

∣

∣

∣

∣

∣

z=η(x,t)

+
1

2
||vorb(x, η(x, t), t)||2 + gη(x, t) = 0. (A.7)

Because the velocity term is of second order, it is assumed to be much smaller than
the other terms, and is therefore neglected. If only waves with small amplitudes are
considered, the boundary condition can be stated as

∂Φ(x, z, t)

∂t

∣

∣

∣

∣

∣

z=0

= −gη(x, t), (A.8)

whereg denotes the gravity constant.



Appendix B

Calculation of Scattering from Sea
Surface

Here the detailed calculations are described to derive the magnetic scattering field of
equation (3.19) from equation (3.18).
The normal vector can be calculated from

n(x) =
vx(x) × vy(x)

||vx(x) × vy(x)|| , (B.1)

wherevx(x) andvy(x) are vectors which span the plane to whichn(x) is orthogonal.
With the defined clutter position vector, the two vectors canbe approximated by

vx(xc) ≈ dx
∂xc

∂x

= dx

(

1, 0,
∂η(x, y)

∂x

)T

(B.2)

and

vy(xc) ≈ dy
∂xc

∂y

= dy

(

0, 1,
∂η(x, y)

∂y

)T

. (B.3)

BecausedA = ||vx(xc)×vy(xc)||, the product of the normal vector and the infinitesimal
area element equals

n(xc)dA = dxdy

(

−∂η(x, y)

∂x
, −∂η(x, y)

∂y
, 1

)T

. (B.4)

For the following calculations, the free space Green’s function is chosen

G(xp, xc) =
exp {jkr||xp − xc||}

4π||xp − xc||
, (B.5)
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wherekr is the wave number of the transmitted radar wave. For a derivation of this
function, see for example [89]. The gradient of this function can be calculated as

∇G(xp, xc) =
1

4π
(xp − xc)

exp {jkr||xp − xc||}
||xp − xc||3

(jkr||xp − xc|| − 1). (B.6)

The term, which contains 1
||xp−xc||3 , is neglected, because it is assumed that1||xp−xc||3 <<

1
||xp−xc||2 . Further,xc is neglected in the amplitude, because it is chosen near the origin of
the coordinate system. To calculate the phase, the approximation ||xp − xc|| ≈ ||xp|| −
xH

p xc

||xp|| is used. This reduces the gradient of the free space Green’s function to

∇G(xp, xc) =
j

4π

kr

||xp|| exp {jkr||xp||} exp
{

−jkH
r xc

}

. (B.7)

Here additionallykr = kr
xp

||xp|| is defined.
To calculate the scattering field in equation (3.18), an assumption about the magnetic
field at positionxc has to be made. Here the Kirchhoff assumption is used, which states
that

B(xc) = 2Br(xc), (B.8)

whereBr(x) is the field, which is transmitted by the radar. It is assumed that the radar
transmits a plane wave, which can be described as

Br(x) = B0 exp
{

−jkH
r x
}

, (B.9)

whereB0 is the amplitude vector of the magnetic field.
Using equations (B.4), (B.7) and (B.8) allows to state equation(3.18) as

Bs(xp) = −
∫∫

A





(

−∂η(x, y)

∂x
, −∂η(x, y)

∂y
, 1

)T

× 2B0 exp
{

−jkH
r xc

}





× j

4π

kr

||xp|| exp {jkr||xp||} exp
{

−jkH
r xc

}

dx dy. (B.10)

Using Lagrange’s formula to calculate the triple cross product and considering that the
magnetic field is orthogonal to the propagation direction (BH

0 kr = 0), equation (B.10)
can be rewritten as

Bs(xp) =
−jB0 exp {jkr||xp||}

2π||xp||
∫∫

A

(

−∂η(x, y)

∂x
krx − ∂η(x, y)

∂y
kry + krz

)

exp {−j2(krxx + kryy)} exp {−j2η(x, y)krz} dx dy. (B.11)

It is shown in [90] that terms which include a derivative ofη(x, y) can be neglected,
because they only change the result by a constant factor. Dueto the assumption of a
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small amplitude surface, the second exponential term can beapproximated by a Taylor
series as

exp {−j2η(x, y)krz} ≈ 1 − j2krzη(x, y). (B.12)

The magnetic field resulting from the first term in equation (B.12) can be neglected,
because it is the specular reflection.





Appendix C

Change of Basis and Eigenvalues of the
Clutter Spectral Density Matrix

In this section the bases of the following approximated clutter spectral density matrix

Cc(F ) ≈ σ2
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are changed.
Let B(F ) be theN × N change of basis matrix

B(F ) =

(

e(u0(F ))

||e(u0(F ))||
e′(u0(F ))

||e′(u0(F ))||b3(F ) . . . bN(F )

)

, (C.2)

where all vectors are orthonormal to each other. The clutterspectral density matrix in the
new bases can be calculated as

CB(F ) = B−1(F )Cc(F )B(F )

= σ2
c



















c1(F ) c2(F ) 0 . . . 0
c2(F ) c3(F ) 0 . . . 0

0 . . . 0
...

...
0 . . . 0



















, (C.3)
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Figure C.1: Calculated and numerically computed eigenvalue distributions in dependence
of the Doppler frequency. The eigenvalues are estimated from the numerically computed
spectral density matrix from equation (5.8) and calculatedfrom equation (C.4).

with c1(F ) = E {|D(u(F, Vs(u)))|2} ||e(u0(F ))||2,
c2(F ) = E

{

Vs(u)
vp

|D(u(F, Vs(u)))|2
}

||e(u0(F ))||||e′(u0(F ))|| and

c3(F ) = E

{

V 2
s (u)
v2

p
|D(u(F, Vs(u)))|2

}

||e′(u0(F ))||2. The matrixCB(F ) is clearly a rank

two matrix, and the eigenvalues can easily be calculated as

λ1/2(F ) =
σ2

c

2
(c1(F ) + c3(F ) ± ζ(F )) , (C.4)

with ζ(F ) =
√

(c1(F ) − c3(F ))2 + 4c2
2(F ). Because the matricesCc(F ) in equation

(C.1) andCB(F ) in equation (C.3) are similar matrices, their rank and eigenvalues are
equal. ThereforeCc(F ) is also a rank two matrix whose eigenvalues can be calculated
from equation (C.4).
In figure C.1 eigenvalues are computed from the simulated clutter spectral density matrix
of equation (5.8) and calculated with equation (C.4) for two different radial sea scatterer
velocity variances. The expected value terms were evaluated with a Monte Carlo simu-
lation. For both computations a Gaussian distribution of the radial sea scatterer velocity
is assumed. Figure C.1 validates the calculation of the first two eigenvalues of the clutter
spectral density matrix with equation (C.4).
To derive the eigenvalues from equation (C.4) analytically,a Gaussian distribution for
the radial sea scatterer velocity

pVs(vs) =
1√

2πσs

exp

{

− v2
s

2σ2
s

}

(C.5)

and a Gauss function for the absolute squared value of the two-way antenna pattern

|D(u(F, Vs(u)))|2 = exp

{

−u2(F, Vs(u))

2σ2
a

}

(C.6)
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are assumed. Thenc2(F ) from equation (C.3) can be evaluated from

c2(F ) = ||d(u0(F ))||||d′(u0(F ))|| 1√
2πσs

·
∫ ∞

−∞

vs

vp

exp

{

−u0(F )vs

σ2
a

}

exp
{

−av2
s

}

dvs, (C.7)

with a =

(

σ2
a+

σ2
s

v2
p

)

2σ2
aσ2

s
.

If the eigenvalues are only calculated around the Doppler centroid, the first exponential
function can be approximated by 1, which results inc2(F ) ≈ 0.
Considering the outcome of equation (C.7) and estimating around the Doppler centroid
to calculatec1(F ) andc3(F ), allows to state the eigenvalues from equation (C.4) as

λ1(F ) ≈ σ2
c ||d(u0(F ))||2 1√

2πσs

∫ ∞

−∞
exp

{

−av2
s

}

dvs

λ2(F ) ≈ σ2
c

v2
p

||d′(u0(F ))||2 1√
2πσs

∫ ∞

−∞
v2

s exp
{

−av2
s

}

dvs. (C.8)

The first eigenvalue is calculated by using the relationship
∫∞

−∞ exp {−av2
s} dvs =

√

π
a
,

which can for example be found in [79]. To calculate the integral of the second eigen-
value, a substitution witht = av2

s is chosen. Then the integral can be calculated by
considering that the function inside the integral is even and that the integral corresponds
to the Gamma functionΓ(3

2
) =

√
π

2
.

The first two eigenvectors of the matrixCB(F ) can be calculated as

uB
1 (F ) =

(

1,
2c2(F )

c1(F ) − c3(F ) + ζ(F )
, 0, . . . , 0

)T

uB
2 (F ) =

(

− 2c2(F )

c1(F ) − c3(F ) + ζ(F )
, 1, 0, . . . , 0

)T

. (C.9)

To compute the eigenvectors ofCc(F ), the eigenvectors in equation (C.9) have to be
multiplied with the change of basis matrix. Ifζ(F ) can be approximated asζ(F ) ≈
c1(F )−c3(F ) around the Doppler centroid, the eigenvectors of the clutter spectral density
matrix are equal to

u1(F ) =
e(u0(F ))

||e(u0(F ))|| +
c2(F )

c1(F ) + c3(F )

e′(u0(F ))

||e′(u0(F ))||

u2(F ) =
e′(u0(F ))

||e′(u0(F ))|| − c2(F )

c1(F ) + c3(F )

e(u0(F ))

||e(u0(F ))|| . (C.10)
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Figure C.2: Phase of the first eigenvector in dependence of theDoppler frequency. The
eigenvector is estimated from the numerically computed spectral density matrix from
equation (5.8) and analytically calculated from the approximations in equation (C.10).

In figure C.2 the phase of the first eigenvector is evaluated from the simulated spec-
tral density matrix in equation (5.8) and compared to the phase of the approximated
eigenvector from equation (C.10) for two different radial sea scatterer velocity variances.
Also here a Gaussian distribution of the radial sea scatterer velocity is assumed and the
expected value terms in equation (C.10) are computed in the same manner as for the
eigenvalues in equation (C.4). Figure 5.3 demonstrates thatfor both radial sea scatterer
velocity variances the calculated phase of the first eigenvector matches quite well the one
of the simulated matrix.



Appendix D

Approximation of the Spectral Density
Matrix with three Taylor terms

To approximate the spectral density matrix of sea clutter more accurately, the DOAvector
is described by a Taylor series with three terms

d0

(

u0(F ) +
Vs(u)

vp

)

≈ d0 (u0(F )) +
Vs(u)

vp

d′
0 (u0(F )) +

1

2

V 2
s (u)

v2
p

d′′
0 (u0(F )) . (D.1)

Hered′′
0(u0(F )) corresponds to

d′′
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−4π2
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x2
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. (D.2)

With this approximation, the spectral density matrix can bestated as

Cc(F ) ≈ σ2
c E
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For the following analysis the assumptions ofVs(u) being a zero mean random variable
and not influencing the antenna pattern are used. To calculate the spectral density matrix,
terms in the order ofV

4
s (u)
v4

p
x4

n are neglected, resulting in

Cc(F ) ≈ σ2
c d(u0(F ))dH(u0(F )) +

1

2

σ2
c σ2

s

v2
p

d(u0(F ))d′′H(u0(F ))

+
1

2

σ2
c σ2

s

v2
p

d′′(u0(F ))dH(u0(F )) +
σ2

c σ2
s

v2
p

d′(u0(F ))d′H(u0(F )). (D.4)
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The approximated spectral density matrix in equation (D.4)consists of a sum of four
rank one matrices. It is assumed that the contribution of thefirst matrix to the spectral
density matrix is much higher than the contributions of the second and the third matrix.
The second matrix has the same eigenvector as the first one, while the third matrix has
a different one. The first order contribution to the first eigenvalue of this matrix is cal-
culated by using the perturbation method (for a detailed description of this method see
appendix E) as

δλ1(F ) =
1

2

σ2
sσ2

c

v2
p

dH(u0(F ))d′′(u0(F )). (D.5)

It is assumed that the first eigenvector is not changed by the third matrix of equation
(D.4). The first eigenvalue of the spectral density matrix can be calculated from the sum
of the contributions of the first three matrices as

λ1(F ) = σ2
c ||d(u0(F ))||2 − σ2

c

σ2
s

v2
p

||d′(u0(F ))||2. (D.6)

Here for more claritydH(u0(F ))d′′(u0(F )) = d′′H(u0(F ))d(u0(F )) = −||d′(u0(F ))||2
was used.
The fourth matrix of equation (D.4) corresponds to the second matrix of equation (5.15).
It spans a second dimension of the clutter subspace. Its eigenvector and eigenvalue cor-
respond to the ones in chapter 5.2. Only the fourth matrix of this equation contributes
to the second eigenvalue of the clutter spectral density matrix, because its eigenvector is
orthogonal to all the other eigenvectors of the matrices in equation (D.4).
Using the calculated eigenvalues and considering thatCc(F ) is a symmetrical matrix, it
can be represented as

Cc(F ) = λ1(F )
d(u0(F ))dH(u0(F ))

||d(u0(F ))||2 + λ2(F )
d′(u0(F ))d′H(u0(F ))

||d′(u0(F ))||2

= σ2
c

(

1 − σ2
s

v2
p

||d′(u0(F ))||2
||d(u0(F ))||2

)

d (u0(F )) dH (u0(F ))

+ σ2
c

σ2
s

v2
p

d′ (u0(F )) d′H (u0(F )) . (D.7)

Because the trace of the spectral density matrix equals the sum of the two eigenvalues,
no further eigenvalues have to be accounted for.



Appendix E

Perturbation Method for Eigenvalue
Problems

Consider a matrix, which is a sum of an original matrix and a perturbation matrix. The
eigenvalues and eigenvectors of this matrix are functions of the errorδ, which is produced
by the perturbation matrix. Now the clutter spectral density matrix Cc(F ) = Cs(F ) +
Cf (F ) is examined, where the spectral density matrix of slow scatterersCs(F ) is the
original matrix and the spectral density matrix of fast scatterersCf (F ) is the perturbation
matrix. The perturbation matrixCf (F ) causes the error∆δ, which is assumed to be
small, allowing to approximate the eigenvalue and eigenvector of dimensionn by the
first order Taylor series as

λn(F, ∆δ) ≈ λn(F, 0) + ∆δλ′
n(F, 0) (E.1)

un(F, ∆δ) ≈ un(F, 0) + ∆δu′
n(F, 0), (E.2)

whereλn(F, 0) andun(F, 0) are the eigenvalue and eigenvector of matrixCs(F ) and
λ′

n(F, 0) andu′
n(F, 0) are their derivatives atδ = 0.

Consider further the eigenproblem for the dimensionn

Cc(F )un(F, ∆δ) = λn(F, ∆δ)un(F, ∆δ). (E.3)

With equations (E.1) and (E.2), equation (E.3) can be rewritten for first order perturba-
tions as

Cf (F )un(F, 0) + Cs∆δu′
n(F, 0)

= λn(F, 0)∆δu′
n(F, 0) + un(F, 0)∆δλ′

n(F, 0). (E.4)

If the eigenvalues of matrixCs(F ) are distinct, the eigenvectors of this matrix span the
whole N -dimensional space and can be chosen as a basis for the derived eigenvectors
(see [91])

∆δu′
n(F, 0) =

∑

i

cin(F )ui(F, 0), (E.5)
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wherecin(F ) are some constants. Using equation (E.5), equation (E.4) can be rewritten
as

Cf (F )un(F, 0) + Cs(F )
∑

i

cin(F )ui(F, 0)

= ∆δλ′
n(F, 0)un(F, 0) + λn(F, 0)

∑

i

cin(F )ui(F, 0). (E.6)

Multiplying both left sides of equation (E.6) withuH
n (F, 0) and assuming thatCs(F ) is

symmetric allows to calculate the change of the eigenvalue due to∆δ as

∆δλ′
n(F, 0) =

uH
n (F, 0)Cf (F )un(F, 0)

||un(F, 0)||2 . (E.7)

To determine the constantckn(F ), equation (E.6) is multiplied on the left side with
uH

k (F, 0), wherek 6= n, which results in

ckn(F ) =
uH

k (F, 0)Cf (F )un(F, 0)

||uk(F, 0)||2(λn(F, 0) − λk(F, 0))
. (E.8)

The constantcnn(F ) is only certain if a normalization condition is imposed on the eigen-
vectors. These calculations were for example performed in [92] or [93].



Bibliography

[1] D. E. Barrick. HF Radio Oceanography- A Review.Boundary Layer Meteorology,
13:23–43, 1978.

[2] M. Skolnik. Radar Handbook. McGraw-Hill, 1990.

[3] D. D. Crombie. Doppler Spectrum of Sea Echo at -13.56 Mc/s.Nature, 175:201–
227, 1955.

[4] S.O. Rice. Reflections of Electromagnetic Waves from Slightly Rough Surfaces.
Communications on Pure and Applied Mathematics, 4:351–378, 1951.

[5] W. H. Peake. Theory of Radar Return from Terrain.IRE International Convention
Record, 7:27–41, 1959.

[6] K. Hasselmann, R. K. Raney, W. J. Plant, W. Alpers, R. A. Shuchman, D. R.
Lyzenga, C. L. Rufenach, and M. J. Tucker. Theory of Synthetic Aperture Radar
Ocean Imaging: A MARSEN View.Journal of Geophysical Research, 90, No.
C3:4659–4686, 1985.

[7] C. Brüning, W. R. Alpers, and J. G. Schröter. On the Focusing Issue of Synthetic
Aperture Radar.IEEE Transaction on Geoscience and Remote Sensing, 29, No.
1:120–128, 1991.

[8] M. B. Kanevsky. On the Theory of SAR Ocean Wave Imaging.IEEE Transaction
on Geoscience and Remote Sensing, 31, No. 5:1031–1035, 1993.

[9] J. W. Wright. A New Model for Sea Clutter.IEEE Transactions on Antennas and
Propagation, 16:217–223, 1968.

[10] W. R. Alpers, D. B. Ross, and C. L. R. On the Detectability of Ocean Surface Waves
by Real and Synthetic Aperture Radar.Journal of Geophysical Research, 86, No.
C7:6481–6498, 1981.

[11] W. J. Plant. Radar Scattering from Modulated Wind Waves. Kluwer Academic
Press, 1989.



124 BIBLIOGRAPHY

[12] W. R. Alpers and C. Bruening. On the Relative Importance of Motion-Related
Contributions to the SAR Imaging Mechanism of Ocean Surface Waves. IEEE
Transactions on Geoscience and Remote Sensing, 24:873–885, 1986.

[13] M. J. Tucker. The Decorrelation Time of Microwave Radar Echoes from the Sea
Surface.Int. J. Remote Sensing, 6:1075–1089, 1985.

[14] R. E. Carande. Estimating Ocean Coherence Time Using Dual-Baseline Interfer-
ometric Synthetic Aperture Radar.IEEE Transactions on Geoscience and Remote
Sensing, 32:846–854, 1994.

[15] R. K. Raney. SAR Response to Partially Coherent Phenomena.IEEE Transaction
on Antennas and Propagation, AP-28, No. 6:777–787, 1980.

[16] R. M. Goldstein and H. A. Zebker. Interferometric Radar Measurement of Ocean
Surface Currents.Nature, 328, No. 20:707–709, 1987.

[17] T. L. Ainsworth, S. R. Chubb, R. A. Fusina, R. M. Goldstein, and R. W. Jansen.
INSAR Imagery of Surface Currents, Wave Fields and Fronts.IEEE Transactions
on Geoscience and Remote Sensing, 33, No. 5:1117–1123, 1995.

[18] R. Romeiser. Current Measurement by Airborne Along-Trck InSAR: Measuring
Technique and Experimental Results.IEEE Journal of Oceanic Engineering, 30,
No. 3:552–569, 2005.

[19] D. Kim, W. M. Moon, D. Moller, and D. A. Imel. Measurements of Ocean Surface
Waves and Currents Using L- and C-Band Along Track Interferometric SAR. IEEE
Transactions on Geoscience and Remote Sensing, 41, No, 12:2821–2832, 2002.

[20] G. O. Marmorino, D. R. Thompson, H. C. Graber, and C. L. Trump. Correlation
of Oceanographic Signatures appearing in Synthetic Aperture Radar and Interfero-
metric Synthetic Aperture Radar Imagery with In Situ Measurements. Journal of
Geophysical Research, 102, No. C8:18,723–18,736, 1997.

[21] D. R. Thompson and J. R. Jensen. Synthetic aperture radar interferometry applied to
ship-generated waves in the 1989 loch linnhe experiment.Journal of Geophysical
Research, 98:10,259–10,269, 1993.

[22] R. Romeiser and D. R. Thompson. Numerical Study on the Along-Track Interfero-
metric Radar Imaging Mechanism of Oceanic Surface Currents.IEEE Transactions
on Geoscience and Remote Sensing, 38:446–458, 2000.

[23] S. Watts, C. J. Baker, and K. D. Ward. Maritime Surveillance Radar Part 2: De-
tection Performance Prediction in Sea Clutter.IEE Proceedings, 137, No. 2:63–72,
1990.



BIBLIOGRAPHY 125

[24] E. Conte, M. Lops, and G. Ricci. Asymptotically Optimum Radar Detection in
Compound-Gaussian Clutter.IEEE Transactions on Aerospace and Electronic Sys-
tems, 31, No. 2:617–625, 1995.

[25] F. Gini and A. Farina. Vector Subspace Detection in Compound-Gaussian Clutter
Part I: Survey and New Results.IEEE Transactions on Aerospace and Electronic
Systems, 38, No. 4:1295–1311, 2002.

[26] P. I. Herselman and H. J. de Wind. Improved Covariance Matrix Estimation in
Spectrally Inhomogeneous Sea Clutter with Application to Adaptive Small Boat
Detection. InRadar 2008, 2008.

[27] W. N. Dawber and N.M. Harwood. Comparison of Doppler Clutter Cancellation
Techniques for Naval Multi-Function Radars.Radar, Sonar and Navigation, IEE
Proceedings, 150:37–40, 2003.

[28] R. Klemm.Principles of Space-Time Adaptive Processing. IEE, 2006.

[29] J. R. Guerci.Space-Time Adaptive Processing for Radar. Artech House, 2003.

[30] J. Ward. Space-Time Adaptive Processing for Airborne Radar. Technical report,
MIT, 1994.

[31] J. H. G. Ender and A. R. Brenner. PAMIR - a Wideband Phased Array SAR/MTI
System.Radar, Sonar and Navigation, IEE Proceedings, 150:165–172, 2003.

[32] J. H. G. Ender. Detection and Estimation of Moving Target Signals by Multi-
Channel SAR.AEÜ Int. J. Electron. Commun., 50:150–156, 1996.

[33] J. H. G. Ender. Space-time processing for multichannelsynthetic aperture radar.
Electronics and Communication Engineering Journal, 11:29–38, 1999.

[34] E. C. Barile, R. L. Fante, and J. A. Torres. Some Limitationson the Effectiveness of
Airborne Adaptive Radar.IEEE Transactions on Aerospace and Electronic Systems,
Vol. 28, NO. 4:1015–1032, 1992.

[35] M. McDonald, D. Cerutti-Maori, and A. Damini. Characterisation and cancellation
of medium grazing angle sea clutter. InEuRAD, 2010.

[36] V. Gracheva and D. Cerutti-Maori. STAP Performance of Sea Clutter Supression in
Dependency of the Grazing Angle and Swell Direction for HighResolution Band-
width. In IET Radar, 2012.

[37] V. Gracheva and D. Cerutti-Maori. Multi-channel analysis of sea clutter for stap
applications. InEUSAR 2012, 2012.



126 BIBLIOGRAPHY

[38] V. Gracheva and D. Cerutti-Maori. First Results of Maritime MTI with PAMIR
Multichannel Data. InInternational Conference on Radar (Radar), 2013.

[39] V. Gracheva and J. Ender. Multichannel analysis of medium grazing angle sea
clutter. InEUSAR 2014, 2014.

[40] V. Gracheva and J. Ender. Channel Correlation of Sea Data for Microwave Radar
Systems. InInternational Geoscience and Remote Sensing Symposium (IGARSS),
2015.

[41] V. Gracheva and J. Ender. Multichannel Ananlysis and Suppression of Sea Clut-
ter for Airborne Microwave Radar Systems.Submitted to: IEEE Transactions on
Geoscience and Remote Sensing, 2015.

[42] McGraw-Hill, editor. Fundamentals of Radar Signal Processing. M. A. Richards,
2005.

[43] I. A. Cumming and F. H. Wong.Digital Processing of Synthetic Aperture Radar
Data, Algorithms and Implementation.Artech House, 2005.

[44] J. H. G. Ender. Signal Processig for Multi Channel SAR applied to the Experimental
SAR System "AER". InInternational Conference on Radar, 1994.

[45] F. G. Bass, I. M. Fuks, A. I. Kalmykov, I. E. Ostrovsky, andA. D. Rosenberg.
Very High Frequency Radiowave Scattering by a Distributed Sea Surface. IEEE
Transactions on Antennas and Propagation, 5:560–568, 1968.

[46] G. B. Airy. On Tides and Waves.Encyclopaedia Metropolitania, 5, Article
192:241–396, 1845.

[47] H. Lamb.Hydrodynamics. Cambridge University Press, 1916.

[48] J. N. Newman.Marine Hydrodynamics. MIT Press, 1977.

[49] M. E. McCormick. Ocean Engineering Mechanics. Cambridge University Press,
2010.

[50] O. M. Phillips. The Dynamics of the Upper Ocean. Cambridge University Press,
1977.

[51] Blair Kinsman. Wind Waves: Their Generation and Propagation on the Ocean
Surface. Prentice-Hall, 1965.

[52] J. F. Böhme.Stochastische Signale. Teubner-Studienbücher, 1998.

[53] M. B. Kanevsky.Radar Imaging of the Ocean Waves. Elsevier, 2009.



BIBLIOGRAPHY 127

[54] W. J. Pierson and L. Moskowitz. A Proposed Spectral Formfor Fully Developed
Wind Seas Based on the Similarity Theory of S. A. Kitaigorodskii. Journal of
Geophysical Research, 69:5181–5190, 1964.

[55] F. M. Monaldo and D. R. Lyzenga. On the Estimation of Wave-Slope- and Height-
Variance Spectra from SAR Imagery.IEEE Transactions on Geoscience and Re-
mote Sensing, GE-24:543–551, 1986.

[56] K. D. Ward, R. J. A. Tough, and S. Watts.Sea Clutter: Scattering, the K Distribution
and Radar Performance. The Institution of Engineering and Technology, 2006.

[57] J. A. Stratton and L. J. Chu. Diffraction Theory of Electromagnetic Waves.Physical
Review, 56:99–107, 1939.

[58] D. Holliday. Resolution of a Controversy Surrounding theKirchoff Approach and
the Small Perturbation Method in Rough Surface Scattering Theory. IEEE Trans-
actions on Antennas and Propagation, 35:120–122, 1987.

[59] G. R. Valenzuela and M. B. Laing. Study of Doppler Spectra of Radar Sea Echo.
Journal of Geophysical Research, 75:551–563, 1970.

[60] G. S. Brown. A Comparison of Approximate Theories for Scattering from Rough
Surfaces.Wave Motion, 7:195–205, 1985.

[61] W. J. Plant and W. C. Keller. Evidence of Bragg Scattering in Microwave Doppler
Spectra of Sea Return.Journal of Geophysical Research, 95:16,299–16,310, 1990.

[62] M. K. Gaughan, P. D. Komar, and J. H. Nath.Breaking Waves: A Review of Theory
and Measurements. School of Oceanography, Oregon State University, 1973.

[63] S. R. Massel.Ocean Wave Breaking and Marine Aerosol Fluxes. Springer, 2007.

[64] T. Lamont-Smith, T. Waseda, and C. K. Rheem. Measurementsof the Doppler
Spectra of Breaking Waves.IET Radar Sonar Navigation, 1:149–157, 2007.

[65] O. M. Phillips. Radar Returns from the Sea Surface- Bragg scattering and Breaking
Waves.Journal of Physical Oceanography, 18:1065–1074, 1988.

[66] T. Lamont-Smith, K. D. Ward, and D. Walker. A Comparison of EM Scattering
Results and Radar Sea Clutter. InRadar Conference, 2002.

[67] M. Perlin, W. Choi, and Z. Tian. Breaking Waves in Deep and Intermediate Waters.
Annual Review Fluid Mechanics, 45:115–145, 2013.

[68] J. W. Wright. Backscattering from Capillary Waves with Application to Sea Clutter.
IEEE Transaction on Antennas and Propagation, AP-14, No. 6:749–754, 1966.



128 BIBLIOGRAPHY

[69] P. W. Vachon, R. B. Olsen, and C. E. Livingstone. Airborne SAR Imagery of Ocean
Surface Waves Obtained During LEWEX: Some Initial Results.IEEE Transactions
on Geoscience and Remote Sensing, 26, No. 5:548–561, 1988.

[70] A. D. Rozenberg, D. C. Quigley, and W. K. Melville. Labratory Study of Polarized
Scattering by Surface Waves at Grazing Incidence: Part I- Wind Waves. IEEE
Transactions on Geoscience and Remote Sensing, 33, No. 4:1037–1046, 1995.

[71] R. Romeiser and W. Alpers. An Improved Composite Surface Model fro the Radar
Backscattering Cross Section of the Ocean Surface 1. Theory ofthe Model and
Optimization/Validation by Scatterometer Data.Journal of Geophysical Research,
102, No. C11:25,237–25,250, 1997.

[72] R. K. Raney and P. W. Vachon. Phase versus Orbital Velocityin SAR Wave Imag-
ing: Paradox Lost. InProceedings of IGARSS ’88 Symposium, 1988.

[73] M.S. Longuet-Higgins. The Statistical Analysis of a Random, Moving Surface.
Philosophical Transactions of the Royal Society of London.Series A, Mathematical
and Physical Sciences, 249, No. 966:321–387, 1957.

[74] N. J. Higham. Accuracy and Stability of Numerical Algorithms, Second Edition.
SIAM, 2002.

[75] M. Marom. Interferometric Synthetic Aperture Radar Imaging of OceanSurface
Currents and Wavefields. PhD thesis, Naval Postgraduate School, 1990.

[76] C. H. Gierull. Digital Channel Balancing of Along-Track Interferometric SAR
Data. Technical report, Defence R&D Canada, 2003.

[77] P. A Rosen, S. Hensley, I. R. Joughin, F. K. Li, S. N. Madsen,E. Rodriguez, and
R. M. Goldstein. Synthetic Aperture Radar Interferometry.Proceedings of the
IEEE, 88:333–382, 2000.

[78] U. Nickel. On the Influence of Channel Errors on Array Signal Processing Methods.
AEÜ, 47:209–219, 1993.

[79] M. Abramowitz and I. A. Stegun.Handbook of Mathematical Functions with For-
mulas, Graphs and Mathematical Tables. Dover, 1964.

[80] M. Lefebvre.Applied Probability and Statistics. Springer, 2006.

[81] E. J. Hinch.Perturbation Methods. Cambridge University Press, 1991.

[82] T. Kato. Perturbation Theory for Linear Operators. Springer, 1980.

[83] L. Rosenberg and N. J. Stacy. Analysis of Medium Grazing Angle X-band Sea-
clutter Doppler Spectra. InRadar Conference 2008, 2008.



BIBLIOGRAPHY 129

[84] L. Shemer and M. Marom. Estimates of Ocean Coherence Timeby an Interfero-
metric SAR.Int. J. Remote Sensing, 14:3021–3029, 1993.

[85] I. C. Sikaneta and C. Gierull. On the Determination of Temporal Reflectivity Fading
with Multi-Aperture SAR. InEuropean Conference on Synthetic Aperture Radar
(EUSAR), Dresden, 2006.

[86] K. Hasselmann et .al. Measurements of Wind-Wave Growthand Swell Decay du-
ring the Joint North Sea Wave Project (JONSWAP).Zusatzheft zur Deutschen Hy-
drographischen Zeitschrift, A:1–95, 1973.

[87] S. J. Frasier and A. J. Camps. Dual-Beam Interferometry for Ocean Surface Current
Vector Mapping. IEEE Transactions on Geoscience and Remote Sensing, 39, No.
2:401–413, 2001.

[88] R. C. DiPietro. Extended Factored Space-Time Processingfor Airborne Radar Sys-
tems.Signnals, Systems and Computers, 1:425–430, 1992.

[89] Tom Rother.Electromagnetic Wave Scattering on Nonspherical Particles. Springer,
2009.

[90] D. R. Thompson. Calculation of Radar Backscatter Modulations From Internal
Waves.Journal of Geophysical Research, 93, No. C10:12,371–12,380, 1988.

[91] L. C. Rogers. Derivatives of Eigenvalues and Eigenvectors. AIAA Journal, 8, No.
5:943–944, 1970.

[92] D. V. Murthy and R. T. Haftka. Derivatives of Eigenvaluesand Eigenvectors of a
General Complex Matrix.International Journal for Numerical Methods in Engi-
neering, 26:293–311, 1988.

[93] R. B. Nelson. Simplified Calculation of Eigenvector Derivatives.AIAA Journal, 15,
No. 9:1201–1205, 1976.



 

9 783839 609842

ISBN 978-3-8396-0984-2




