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Kurzfassung

Piraterie, Schmuggel und illegale Fischerei gefahrdemakgemeine Sicherheit auf Oze-
anen und Meeren. Um diese Bedrohungen einzuddmmen, misses Rbote auf aus-
gedehnten Gebieten entdeckt und beobachtet werden. Elygeeagene Radarsysteme
konnen grof3e Flachen Uberwachen und sind dieser Heraasfogl daher gewachsen.
Aufgrund der niedrigen Radarquerschnittsflache (RCS) demdseBoote, ist die Detek-
tion dieser Ziele jedoch immer noch ein ungeltstes Prob&msatzlich wird bei héher
fliegenden Plattformen durch den steigenden Streifwinlefimb.eistung von der Riick-
streuung des Wassers, dem sogenannten Seeclutter, eepfdfg missen somit Ziele
mit einem niedrigen Signal-zu-Clutter plus Rausch Verh&{8CNR) detektiert werden.
Um ein geeignetes Verfahren zur Detektion von kleinen Boatdrilugzeuggetragenen
Radarsystemen zu finden, wurden in dieser Arbeit reale Messdararbeitet. Diese
wurden wahrend mehrerer Experimente Uber der Nordsee mitakehrkanaligen Radar-
system PAMIR und einem kleinen kooperativen Boot aufgenomré& Analyse dieser
Daten zeigt zum einen, dass traditionelle Signalverarthggmethoden nicht ausreichen,
um das Ziel zu entdecken. Zum anderen wird demonstriers ghiisdem sogenannten
space-time adaptive processing (STAP) eine deutlich be$3etektionsfahigkeit erre-
icht werden kann.

Es ist winschenswert die zu erreichbare Detektionslaishen Anwendung von STAP
auf maritime flugzeuggetragene Radarsysteme im Voraus zekerDa fur diese Be-
rechnung aber die mehrkanaligen Eigenschaften des Seeslbekannt sein muissen,
wird in dieser Arbeit ein theoretisches und ein Simulatroodell hergeleitet. Zusat-
zlich werden die Spektraldichtematrix, das Raum-ZeiteFilind die Kanalkorrelation
des Seeclutters analysiert. Es wird verdeutlicht, dasshddie Bewegung des Wassers
und durch mehrere Streuerarten die mehrkanaligen Eigaftsohvon Land- und See-
daten unterschiedlich sind. Eine wichtige Auswirkung ist \derbreiterung der Kerbe
des Raum-Zeit-Filters bei Seedaten in Abhangigkeit vom &wsgg

Um die hergeleiteten Eigenschaften zu validieren, wurdegesamt drei Messkam-
pagnen mit dem flugzeuggetragenen Radarsystem PAMIR dditirgewobei reale
mehrkanalige Seedaten fur unterschiedliche DUnnundarigen, bei zwei unterschied-
lichen Streifwinkeln und bei deutlich unterschiedlicheet®@rbedingungen gesammelt
wurden. In dieser Arbeit wurden Berechnungen und Simulatidrergeleitet, die die Re-
produzierbarkeit der realen mehrkanaligen EigenschaliésrSeeclutters bei verschiede-
nen Seegangen demonstrieren.






Abstract

Piracy, smuggling and illegal fishery threaten the overatlusity on oceans and seas.
These threats typically arise from small and agile boatsameddistributed over large
areas. To control them, small maritime targets have to bectel and observed. Mar-
itime airborne radar systems are capable of monitoringelargas and are therefore suit-
able to accomplish this challenge. The detection of smaditdyjohowever, is still an
unresolved task due to the small radar cross section (RCSgsé thoats. Additionally,
the RCS of sea clutter rises for high altitude platforms duénéohigher grazing angle,
hence targets with low signal-to-clutter plus noise ra(®SNR) have to be detected.

In order to investigate the appropriate processing to det@all boats from airborne
radars, data from experiments over the North Sea with théichahnel radar system
PAMIR and a small cooperative boat is evaluated in this the$his analysis demon-
strates on one hand that traditional processing is not giffito detect these maritime
targets, and on the other hand that with space-time adgpibeessing (STAP) superior
detection performance is achieved.

To apply STAP to a maritime airborne radar system, it is @éder to know its perfor-
mance in advance. To accomplish this, the multichannebci@ristics of sea clutter have
to be understood. This thesis derives theoretical and atimual multichannel models by
analyzing the spectral density matrix, the space-time @itel the channel correlation of
sea clutter. Different multichannel properties for sedtelucompared to land clutter are
demonstrated, which are due to the varying motion of seaeschod due to different
sea scattering types. An important implication of thiseféince is the broadening of the
space-time filter notch in dependence on the sea condition.

To confirm the predicted properties, three measurement aigmp with the airborne
radar system PAMIR were performed, where real multichaseal data was acquired
for different swell directions, two different grazing aegland significantly varying sea
states. This thesis demonstrates the reproducibilityathéter multichannel characteri-
stics of real data for different sea conditions with the hflpalculations and simulations,
which are introduced in this analysis.
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Chapter 1

| ntroduction and Overview

Maritime radar systems can be traced back as far as 1904,@Hméstian Hulsmeyer pre-
sented the first demonstration of a radar system by detez8hgp from the Hohenzollern
Bridge in Cologne. Ever since, maritime monitoring has beemgoortant application
of radar. During World War 1l it was noted that sea echo, ofefierred to as sea clutter,
places severe limits on the detectability of ships [1]. Bitleen several attempts have
been made to find theoretical explanations for the behavieea clutter [2]. One goal
was to understand the physics of sea clutter by utilizingstbdies of oceanography.

In 1955 a breakthrough in this field was achieved by Crombiesrevtne evaluated the
Doppler spectrum of sea clutter collected with a HF-radduis Doppler spectrum con-
tained two pronounced peaks at Doppler frequencies whiategponded to the phase
velocity of a water wave with the wavelength of one-half af thcident wavelength of
the radar system [3]. In [4] and [5] sea scattering was thealéy calculated with a
boundary perturbation approach. This calculation confirth@t contributions from the
sea surface are only received by the radar system from watezswhose wavelength
equals one-half of the radar wavelength divided by the eosfrthe grazing angle. Fur-
ther, these results illustrated how the measured radas sexgion (RCS) is directly re-
lated to the spatial sea surface spectrum, hence conctusiothe sea surface itself can
be made by measuring the RCS with a radar system.

State of the Art in Ocean Monitoring

The achieved results motivated several research acsivitiehe area of ocean monitor-
ing with synthetic aperture radar (SAR) [6, 7, 8]. Particiylamportant topics in this
area are on one hand how water waves, which have much longetemgths than the
ones from which scattering is received, influence the measRCS [9], [10], [11]. On
the other hand special interest was dedicated to how aziresthiution of a SAR im-
age is limited due to the movement of sea scatterers, whicteasured by the so-called
coherency time, defined as the time during which the echos the scatterers stay co-
herent [12, 13, 14, 15].
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In 1987 Goldstein and Zebker proposed a new application e&manonitoring with
radar systems [16]. They implied the ability to measure ncaaface currents by us-
ing interferometric SAR. This publication triggered a sigrant amount of experiments,
where the along track interferometry phase was used to @&siourrent velocities of a
certain area [17, 18, 19, 20]. In some experiments, howéverstimated current velo-
city did not correspond to the actual current velocity, whicas measured with in-situ
measurements [21]. These deviations forced again to halesardook at studies of
oceanography, where it was realized that several differelatcities are present on the
sea surface. The sum of these velocities is measured by thpl®ashift, hence the
estimated velocity is not exclusively determined by thdaxe current [22].

State of the Art in Maritime Moving Target Indication

In parallel to the described research activities to moritierocean surface with radar, a
different challenge regarding maritime radar systems gatkerSince the 90’s, a consider-
able threat due to piracy has evolved. Additionally, illefgghing, killing of endangered
species, and smuggling of drugs have become a significagedam the public. These
threats have in common that they operate on small and agils deence targets with low
RCS have to be detected. Additionally, to monitor these boads large areas, airborne
radar systems are of great interest. The moving high adtipldtform causes, however, a
strong sea clutter return, which is spread over several Rofgquencies.

While for maritime radar systems as demonstrated by Chrigtilsmeyer, where big
ships have to be detected from a stationary low platform,h@lenging signal proces-
sing is needed, these methods are no longer sufficient ifl foals have to be detected
within strong clutter. This motivated several researclhvdigs in the field of improving
the detection of small targets with maritime radar systemg23] cell-averaging tech-
niques were proposed to choose the threshold for a detectia appropriately and in
[24] and [25] detectors were derived which consider theedgiht statistics of sea clutter
as compared to land clutter. Coherent single-channel détasbere sea clutter was
filtered prior to the actual detection, were shown in [26] fW]. To suppress the clutter
in [26], a temporal covariance matrix was estimated and T {2e clutter was removed
in the Doppler domain.

Research Objectives

If a time adaptive filter is applied prior to the actual deitttargets with low signals are
at risk of being suppressed by the corresponding filter. Teaiground moving targets,
superior performance can be achieved for certain scenésipace-time adaptive proces-
sing (STAP) is utilized rather than time adaptive processinly [28, 29, 30]. For small
maritime targets the STAP performance is however not kndscause to our knowl-
edge such experiments were not carried out yet. For this werkvere able to collect
multichannel sea data with the radar system PAMIR [31], wlaesmall cooperative boat



was present inside the observed scene. One objective afithisis to use the acquired
data to evaluate if the performance of space-time adapteegsing is superior to time
adaptive processing only.

To apply STAP to a maritime radar system, it is desirable tovkin advance which
theoretical performance of STAP can be expected for thaesysThis allows for ex-
ample to decide if the additional cost of building a multichal system is justified or
how the parameters of a multichannel system have to be chiosshieve the desired
performance. To evaluate the STAP performance for a raddersy the multichannel
properties of the clutter have to be known. For land clutter multichannel characte-
ristics were derived in [32] and [33], allowing to calculatesimulate measures which
model the STAP performance. In [34] simulations were pentmt for a displaced phased
center antenna (DPCA) for a clutter type whose velocity isquakto zero, and in [35]
different multichannel characteristics were observedséa clutter as compared to land
clutter. A conclusive model to describe the multichanneperties of sea clutter is how-
ever still missing, but for maritime radar systems such aehsdessential if STAP is to
be applied.

The objective of the presented work is therefore to deriveemrtetical multichannel
model for sea clutter. The multichannel statistical dgsimn of land clutter is revised to
include the properties of sea clutter. To understand thereatf sea clutter, once again
studies of oceanography and physics of sea scattering bade dpplied. To verify the
theory, simulations of multichannel sea data sets are pee and analyzed. A spe-
cialty of this work is the availability of real multichannséa data, which was collected
with the PAMIR system. Sea data sets are available for éiffegrazing angles, different
swell directions, and different sea states. To our knowdeslgch experiments were not
performed before. These data sets allow to compare therpertbsimulations with real
data and analyze how well they match. To emphasize the elifter between land and
sea clutter, also simulations and experiments of a homagesriand scene are presented.
The goal of this work is to gain further insight into the mciftannel properties of sea
clutter and to create a theoretical and simulation modegres/the multichannel charac-
teristics match the ones of real data for different sea ¢mmdi. The purpose of such a
model is the possibility to predict STAP performance foufetmaritime radar systems.
The properties of sea clutter change significantly for deffe sea states. A meaningful
statement of the STAP performance to suppress sea clutigheeefore only be made
in dependency of some parameters of the sea surface. Faljeetives of this work are
therefore to determine these parameters as well as to éstihgan from real multichan-
nel data. An additional application of these estimatiorne @btain information about the
sea surface, allowing to perform some monitoring of the na@aditions.

Major Contributions
The main contributions of this work are:

e Derivation of statistical multichannel sea clutter prajes:.
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e Treatment of clutter physics and oceanography to explannipact of sea clutter
nature on multichannel measures and application of thisviedge for moving
target indication (MTI) of maritime targets.

e Creation of a mathematical basis to calculate the multicllaproperties of sea
clutter and predict the MTI performance over water.

e Acquisition and analysis of real multichannel sea data émdomparison to si-
mulated sea data to demonstrate the reproduction of mattroél properties for
different sea states and swell directions.

¢ Validation of theoretically derived statistical measuveth real data and demon-
stration of different land and sea clutter properties.

e Theoretical derivation and simulation of the impact of wéreaking on multi-
channel properties and confirmation with real data.

e Development of an estimator for the radial sea scatterexcitglvariance to gain
information about the sea state and to predict the MTI peréorce.

e Demonstration of the need to use space-time adaptive @ogeSTAP) to detect
small maritime targets reliably using real sea data with@peoative boat.

Previous Publications of Thesis Results

Some results have been presented at various conferend@§] bifferent multichannel
properties of sea clutter compared to land clutter are dstretied. STAP performance
in dependence of the swell direction is analyzed in [37].g&rchannel and multichan-
nel processing is applied to real sea data with a small catiperboat in [38], where
a significant improvement of the signal-to-clutter plusseoratio (SCNR) with STAP
is shown. The multichannel properties of sea clutter arevelin [39] and in [40] the
channel correlation of different sea data sets is evaluatddcompared to a theoretically
calculated channel correlation. A journal paper has bebmgted [41], where the mul-
tichannel properties of sea clutter are derived, the imphuetave breaking is analyzed
and validation with real data is performed.

ThesisOutline

This work is organized as follows: In chapter 2 the radar amdntals, which were used
for this analysis, are summarized. The specialties of ambdoadar systems are outlined
and the multichannel properties of land clutter are desdrililrhe characteristics of sea
clutter are presented in chapter 3. Here for one the oceapbigr aspects of describ-
ing water waves and the sea surface are specified, and fdrearsime results of the
physics of the received echo from the sea surface are sumedarChapter 4 describes



the PAMIR system and the experiments, which were performitial the PAMIR sys-
tem to collect multichannel land and sea data. Additionabme first evaluations of
sea clutter are presented. The theoretical multichanndetrfor sea clutter is derived
in chapter 5. In this chapter, the impact of sea clutter atarstics on multichannel
properties is theoretically evaluated. Several measwigish are important to model the
STAP performance, are altered to consider the nature oflgttarc To validate the pro-
posed model, simulations are performed in chapter 6. Sleverdichannel measures of
simulated and real land and sea data sets are compared dywkdnavhere the sea data
is evaluated for several different sea conditions. In oerapian experiment with a small
cooperative boat is described, the collected data is edaluyand a comparison of the
detection performance between space-time adaptive aedtlaptive processing only is
demonstrated. Chapter 8 gives a conclusion and an outlodlegfresented work.






Chapter 2

Radar Fundamentals

The statistical properties of multichannel land cluttex ammmarized in this chapter to
be revised in the following chapters to consider the progedf sea clutter. Section 2.1
establishes the signal model of a coherent single chantat sgstem. This signal model
is extended to multichannel radar systems in section 2.8.iEed to use multichannel
systems for moving target indication (MTI) with airbornelaa systems is illustrated in
section 2.2.

2.1 Signal Model

Consider a coherent microwave pulsed radar system, as loedan [42], which trans-
mits the signak(t) in the baseband frequency domain. The received normaligedls
reflected by a single object in the baseband frequency docaaithen be described as

S(,T) = D(u(T))so (t _ 27"9) exp { o g, D) } | 2.1)

C

Heref, denotes the carrier frequeneys the speed of light, andT') is the distance from

the platform of the radar system to the object, from which @moes received. The two
time scales are described by the fast timer/hich is the sampling time of one received
pulse, and the slow tim&, which denotes the pulse-to-pulse time. The antenna gain
is considered by the two-way antenna pattéxu(7)), whereu(T) is the line-of-sight
vector (LOS vector).

The signal is assumed to be range compressed, and only oge resolution cell is
considered. Witly,, = &, where), is the carrier wave length of the radar system, and
the described assumptions, the baseband range compragsadesguals

S(T,u(T)) = D(u(T)) exp {—jf:r(T)}. 2.2)

In the following analysis, only a short time interval is istgated, which allows to as-
sume a constant LOS vector during the observed coherergégsing interval (CPI). To
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Figure 2.1: Radar geometry

consider moving objects, the distand&”) is defined as
r(T) = ro+ v, (2.3)
whereu,; is the constant relative radial velocity
U =0 (ve = v,), (2.4)

with v, being the velocity vector of the echo, in the following reéet to as clutter, and,
the platform velocity vector. If the relative radial veltcis nonzero, then the phase of the
signal described in equation (2.2) changes with time. Trglies a varying frequency,
which is defined as the Doppler frequency. Using the stop @andpgproximation [43],
which states that the velocity of an object does not changedss transmitting and
receiving a pulse, the Doppler frequency can be calculated a

1 d 4
Flora) = 527 (—52r(@))
1 d 47
=——|(—— T
o dT ( 5, (ot vra ))
2
= —)\7711}76[. (25)
Figure 2.1 visualizes the geometry which is used in thisyeml The distance vectaer
can be calculated from the platform position vectgrand the clutter position vectotr,
asr = x. — x,. The LOS vector is a unit vector, which equals
Xe — Xp

u (2.6)

[Ixe = x|’
Using polar coordinates, this vector can also be expressed a

u = (cos ¢ cos 6, sin g cos f, —sin )", (2.7)
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wherey is the azimuth angle anéithe grazing angle. Here the flat earth assumption is
used, the grazing angle is therefore equal to the depreasigie. The angle between
the x-axis and the LOS-vector is denoteddy This is the so-called cone angle. The
relationship between the cone, azimuth and grazing angt& s = cos ¢ cos 6.

Using the assumption of a short CPI and equations (2.2) abjl (Be normalized radar
clutter signal can be described as

4
S(Tv U) = D(’LL) exp {_j)\ﬂ-vrelT}

= D(u) exXp {j27T'F(UTel)T} . (28)

Here the constant phase term due-¢as neglected. Further, a linear array antenna is
assumed, where the antenna elements are positioned alengakis. This allows to
consider only the x-component of the LOS-vector, which isa¢ou = cos ¢ cos 6.

2.2 MTI for Airborne Radar Systems

For a stationary radar, the relative radial velocity is amdyzero if an echo from a moving
object is received. If, however, the radar system is mouatedn airborne platform, the
velocity v, IS in general nonzero due to the movement of the platfornfent objects
are then received at different Doppler frequencies, bectney are viewed from different
directions. If the clutter velocity is assumed to be zerdhasis the case for land clutter,
and the platform is defined to move along the x-axis of the eha®ordinate system, the
Doppler frequency can be stated as

F(u) = —uvpu. (2.9)

A distinct difference between a ground-based and an aigo@dar system can be reali-
zed by analyzing the clutter power. The received cluttenaigan be calculated by
integrating over all echo contributions of the observec4®. Here the integration is
performed in polar coordinates, where the substitutioa cos ¢ cosf is utilized. The
clutter signal is here calculated for a constant range antbdl sitervall of look directions
allowing to neglect terms resulting from the coordinatesfarmation from Cartesian to
polar coordinates. A small intervall of look directions issfified, because for moving
target indication (MTI) application with airborne radasggms, generally narrow beam
antennas are used. The resulting integral describing titeeckignal of an observed area
is therefore equal to

o(T) = /Q A(w)s(T,w) du. (2.10)

Heres(7T,u) is the normalized radar clutter signal, which is describgédpuation (2.8),
(2 is a set of visible look directions anti «) is the complex echo amplitude of the ground
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from directionu. If a wide range of look direction is consider =~ has additionally

to be included inside the integrand in equation (2.10). Thpact of this term on the
subsequent derivations is however small. The complex ectpitaide is modeled as a
random variable. It is assumed to be zero mean and its variamtenoted by?2. Due to
the randomness of the amplitude, the clutter signal is ceghas a stochastic process and
Is assumed to be stationary. The Fourier transform of thgeclsignal can be calculated
as

/ /A w)exp {j2m(F(u) — F)T} dudT
—/ / exp {j2n(F(u) — F)T} dT du
_/A S(F — F(u)) du, (2.11)

whered(F' — F(u)) is the Dirac delta function. For the Fourier transform tinegtiength
Is assumed to be infinite. In practice a long time length cahaaised for MTI applica-
tions. The outcome of the Fourier transform results thengime-function rather than a
Dirac delta function. As described in [44], windowing haapplied to mitigate this
effect. In this analysis a Hamming window is used.

The Dirac delta function states, that only those frequenoomtribute to the clutter signal
which are equal to the Doppler frequency. Due to the uniglagioaship between the
Doppler frequency and the look direction from equation X2t®e directional cosine is
equal to

F\,
2u,
This implies that for each frequency only one look directias to be considered, which
reduces equation (2.11) to

uw(F) =

(2.12)

C(F)=A(u(F))D(u(F)). (2.13)
The mean clutter power in the frequency domain can then loaledéd as

P,(F) = E{C"(F)C(F)}
=z |D (u(F))], (2.14)

where £ {-} is the expected value. Equation (2.14) shows that the clptierer is a
scaled version of the two-way antenna pattern. Clutter pomieich is positioned in the
Doppler frequency range of -2, whereL,, is the length of the transmit antenna, is
referred to as clutter band. In this interval the clutter poarops from maximum to -4
dB.

Figures 2.2(a) and 2.2(b) show simulated clutter plus tgygever for different Doppler
frequencies and different range bins. In figure 2.2(a) theukition is performed for
a ground-based radar and in figure 2.2(b) for an airborner.ratl@e moving target is
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Figure 2.2: Simulated clutter plus target power

injected at range bin 100 and Doppler frequency 100 Hz. Thpgae of these figures
is to demonstrate the difficulty of MTI with airborne radarssyms as opposed to the
ground-based ones. Figure 2.2(a) shows that it is not difficwletect the moving target
with a ground-based radar, because it has a from zero diffEr@ppler frequency, while
the clutter is only located at O Hz. It is therefore an eask tagdiscriminate between
the clutter power and the power of the moving target. With i@noane radar system,
however, the clutter power is spread over several Doppégjuencies, because of the
clutter power distribution in dependency of the frequemdyich is calculated in equation
(2.14). Here the moving target has to compete with echodsectlttter, which are both
received at the same Doppler frequency. Figure 2.2(b) stioatdor airborne radar the
target cannot be detected without any processing, becaissaasked by the clutter.

To detect moving targets reliably with airborne radar systean appropriate filter has
to be applied. With single-channel MTI the cell under test oaly be compared to the
estimated mean power of the corresponding frequency. Thedwhievable filter for
single-channel radar systems is therefore equal to

1
o2 [D(u(F))[* + 02’

w(F) = (2.15)
This filter is referred to as the time-adaptive filter (TAPDidE is assumed to be white
Gaussian noise with variane@. Equation (2.15) shows that the best achievable filter for
single-channel radar systems is approximately the inw&frdee scaled two-way antenna
pattern. Hence targets, which are positioned inside thigeclband, are attenuated by
this filter. If the signal-to-clutter plus noise ratio (SCNR)aoslow target is low, it will

be suppressed by the TAP filter, preventing a detection. [f@bhg detect such targets,
multichannel radar systems have to be applied, which ar@ies in the next section.
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2.3 Multichannel Processing

] ‘Phase front

ANae

Figure 2.3: Multichannel radar system

The concept of multichannel systems is described in figu8e 2 signal is received
with several channels, whose phase centers are separatduclannel is a subaperture
with several elements, which form a phased array antennadefAsted by figure 2.3,
the position of channel is defined ag:,, and« is the angle between the x-axis and the
antenna look direction, where= cos a. The phase center positions of the channels are
assumed to be along the x-axis, and only linear arrays agdzned.

Ideally, all channels receive the same echoes, hence thwedaeflectivity is assumed
to be identical for each channel. Due to the different phasger positions, the phase
of the received signal is however different for each chanhleése phase differences are
considered by the direction-of-arrival vector (DOA vegtdfor channels aligned along
the x-axis, the DOA vector can be stated as

2m N
d(u) = (Dn(u) exp {j )\xnu}> , (2.16)
r n=1

whereD,,(u) denotes the two-way antenna pattern of chanreetd the number of avail-
able channels is equal f8. The phase center of the transmitting antenna is assumed to
be positioned at the origin of the coordinate system.

To describe the received signal of a multichannel systee\DI®A vector has to be in-
corporated into the normalized radar clutter signal of équg2.8)

s(T,u) = exp {727 F (u)T} d(u). (2.17)

Here the Doppler frequency of an airborne radar system fat Gutter is used. Note
that this signal is now a vector.
Afilter is considered to be optimal if it maximizes the SCNR. Badilter can be derived
by using the pre-whiten and match principle, which is déssatifor example in [28]. The
pre-whiten and match principle is performed by first whitenihe signal with the square
root of the clutter plus noise spectral density matrix, vehthis matrix is assumed to be
positive definite and Hermitian, and then matching the etquesignal times the square
root of this spectral density matrix. The optimal filter iretfrequency domain can be
stated as

w(u, F) = C;H(F)d(u), (2.18)
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whereC. (F) is the spectral density matrix of the clutter plus noise aign
C.(F) = C(F) + C,(F). (2.19)

The noise vector is assumed to be white Gaussian and itgalpgensity matrix is there-
fore defined a€,,(F) = 021y, Wherel v, v is the identity matrix with the dimensions
N x N andc? is the noise variance.

Equation (2.18) shows that the filter is two-dimensional angpresses the clutter not
only in dependence of the frequency, but also in dependdnte tcook direction. With
this filter the SCNR of a target, which is received with the atagea; and from the look
directionu,, can be calculated as

SCNRF) = |as|*d” (uy)CoH(F)d (uy). (2.20)

A useful measure to evaluate the performance of a multickanalar system to detect
targets after clutter suppression is the filter gain, whéecimiroduced in [32]. This mea-
sure is here defined as

d"(w)C;H(F)d(u)

R FTOBIE
To gain further insight into the properties of this measthe,spectral density matrix has
to be analyzed. To calculate the clutter spectral densityixpas in [33], the properties
of land clutter are assumed. This matrix can be evaluated the Fourier transform of
the clutter covariance matrix, which is equal to

(2.21)

R (1) = E{c(T + 7)c"(T)}
=F {/Q A(uw)s(T + 7,u) du/Q A" (u)sH (T, ') du’} : (2.22)

The reflectivity is assumed to be spatially white, which @hiequation (2.22) to

Ru(7) = E { /Q A(u) AT ()s(T + 7, u) s (T, ) du} (2.23)
= /Q E {A(U)AH(U)} s(T + 7,u) s™ (T, u) du (2.24)
=o? /Q s(T + 7,u)s™ (T, u) du. (2.25)

The Fourier transform of the covariance matrix equals

- /Q d(w)d" (w)8(F — F(u)) du. (2.26)
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As already described in section 2.2, due to the Dirac dehatfan, for each frequency
the integral is only nonzero at one look direction, whichiigeg by equation (2.12).

Co(F) = ozd(u(F))d" (u(F)), (2.27)

as demonstrated in [33]. Equation (2.27) shows that thetispeensity matrix is a rank
one matrix, because it is only spanned by the vedter(F')). The eigenvector of this
matrix is a multiple of this vector, and the eigenvalue isa&do

M(F) = agl[d(u(F))][*. (2.28)

Due to this property, the clutter is only located in a one-glisional subspace.

To calculate the spectral density matrix in equation (2.2179 assumed that a pulse repi-
tition frequency (PRF) is chosen, which is still sufficientrteglect alliasing, because
otherwise the clutter subspace dimension would increasdescribed in [32]. It is ad-
ditionally assumed that a sufficient time length of the ceheprocessing interval (CPI)
in combination with windowing, spectral leakage can be eegld. If spectral leakage
has to be considered, an increase in the subspace dimenagirbmaccounted for, as
discussed in [44]. Especially, there will arise an addaiocontribution to the second
eigenvalue which is dependent on the used Fourier filterglgterministic waya and can
easily be compensated for.

Figure 2.4 shows the space-time filter gain of equation (2 @lculated with the clutter
spectral density matrix described in equation (2.27). Tlker fjain indicates the amount
of power by which a received signal is attenuated for eadjuigacy and each look di-
rection, where 0 dB means no attenuation. The displayed gi#ten shows a notch along
a diagonal line. The received signal is only attenuated &/tfee look direction corre-
sponds to the Doppler frequency given by equation (2.12).

A simulated filter gain at. = 0 is demonstrated in figure 2.5 to emphasize the difference
between a single-channel and a multichannel system. Ifigiise the blue line indicates
the best achievable filter with single-channel processing,the green line shows the op-
timal filter evaluated with space-time adaptive proces$BiAP). Both filters suppress
the clutter. The TAP filter, however, also attenuates thgetapower at all Doppler fre-
guencies of the clutter band. At significantly fewer frequies, target attenuation needs
to be feared with a STAP filter.

In practice, the spectral density matrix of real data is mmvin and has to be estimated.
If the spectral density matrix equals the covariance matrithe frequency domain, a
maximum likelihood estimator can be derived. The receieeget free signal is assumed
to be zero-mean and have a Gaussian distribution. Furtieditferent range bins are
expected to be independent and identically distributedheanaximum likelihood esti-
mator of the spectral density matrix can be calculated as

C.(F) = Z(n;, F)Z (n;, F). (2.29)

L
=1

|~

)
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Figure 2.4: Calculated space-time filter Figure 2.5: Simulated filter gain at= 0
gain with equations (2.21) and (2.27) for single- and multichannel systems

Here L is the amount of available range bins, dagh;, F') denotes the received multi-
channel signal at range bin and frequency’. The derivation of this estimator can be
found in [29].

The multichannel properties of land clutter are well knowfor sea clutter, however,
they are still ill understood. To derive these propertibs,deneral characteristics of sea
clutter have to be considered. They are described in thechexiter.






Chapter 3
Sea Clutter

During the 1960s, a revolutionary thinking about the orgof sea clutter developed.
Several publications derived a direct relationship betwelatter physics and oceano-
graphy ([9, 45, 1]), which suggests that an understandingarine hydrodynamics is
crucial to model sea clutter. In section 3.1 this chaptevides therefore a basic intro-
duction to relevant topics of oceanography. The relatignsatween sea clutter physics
and oceanography is illustrated in section 3.2, where thgnetic scattering field re-
ceived by a radar from the sea surface is described. An i@pomeasure to evaluate the
clutter properties is the Doppler frequency, which is eatdd in section 3.3 for sea clut-
ter. Section 3.2 analyzes the scattering of capillary waesechoes are also received
from breaking waves. Section 3.4 describes the origin cfdtevents and investigates its
scattering.

3.1 Water Waves

There are basically two types of surface water waves, eaipiaves and gravity waves,
depending on whether surface tension or gravity is the dantirestoring force. Capil-
lary waves supply the surface fine structures, while gravdyes make up the larger and
more visible surface elevations. Figure 3.1 visualizesirseribed water wave types. In
order to arouse the surface to its fully developed or equuiib state, the wind must blow
for a sufficient time over a sufficient distance. As the wiraltstto blow over a smooth
sea surface, at first fluctuations of the atmospheric pressduce capillary waves. With
increasing wind velocity, waves grow and gravity forcessaiicient to support the wave
motion, hence gravity waves develop.

The simplest way to mathematically describe gravity wasgdsyi using the linear wave
theory (or Airy wave theory after its publisher [46]). Hefteetelevation function of a
regular single wave can be described as

H
n(x,t) = 78 cos (kfx — 27rfst> : (3.1)
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(a) Capillary waves (b) Gravity waves

Figure 3.1: Two types of water waves
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Figure 3.2: Assumed model for water wave

whereH;, is the height.f, the frequency an#t, the wave vector of the water wave. The
position vector in the x-y-plane is denotedoy= (z, y)T. The described wave is shown
in figure 3.2. Here the water depth is describedrhyThe coordinate system is chosen
in such a way that the elevation of the water wave is centaatha > = 0.

This wave moves with a certain velocity, called the phasearsi

2nfs ks
@ = Tl Tkl 42
However, also a velocity field is generated by this wave, duetiich water particles,
and anything else which is on the wave, are also in moveméitie lvelocity field can
assumed to be irrotational, a velocity potential can be ddfihe relationship between
the velocity field and the potential is that the velocity fielguals the divergence of the
velocity potential. Assuming further that the flow is incamregsible, the velocity poten-
tial can be used to form the Laplace equation. To solve théacapequation, appropriate
boundary conditions have to be defined. For this calculatimee boundary conditions
are determined. The first one is known as the bottom boundargtiton. It states that
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Figure 3.3: Orbital velocity for deep water assumption.tiel® moves along a constant
circle in dependency of the position on the gravity wave. WMage moves in the right
direction.

the vertical velocity at the bottom has to be zero. The sebouthdary condition applies
to the surface and is called the kinematic boundary comditibresults from the obser-
vation that water particles on the surface always stay ostiiace, if wave breaking is
not considered. The dynamic boundary condition, whichéstkiird one, states that the
pressure at the surface must be equal to the atmosphersupeed he pressure at the sur-
face is further calculated by using the Bernoulli equatidme €alculation of the velocity
field from the Laplace equation and the described boundargitons is a well known
problem, which is for example described in [47, 48, 49]. Far $ake of completeness,
the boundary conditions are summarized in appendix A. Wieéhdescribed boundary
conditions, the velocity potential and hence the veloc#idfcan be calculated as

cosh(||ks||(z + H)) cos (kfx — 27 f,t) cos s
cosh(||ks||(z + H)) cos (kfx —2mfst)sinps |,
sinh(]|ks||(z + H)) sin (kfx— 27rfst)

TH,fs
sinh(||ks||H)

Vorb(xa Z, t) =

(3.3)
where p, is the azimuth angle between the x-axis and the travellingcton of the
water wave. The integration of this velocity vector showat the fluid elements move in
elliptical orbits. This velocity field is therefore usualgferred to as the orbital velocity.
If the water depth approaches infinity, the fractions with yperbolic functions reduce
to exp {][ks||z}.

If only waves at: = 0 are analyzed, the velocity vector reduces to

cos (kix — 27Tfst) COS
Voro(X,t) = THfs | cos (kffx — 27rfst) sinp, |. (3.4)
sin (kfx - 27Tfst)

This simplification is referred to as the deep water assumptin practice, the deep wa-
ter assumption is used H > 2 is valid, where), is the wave length of the water wave.
This assumption is applied in this analysis. Equation (8hws that in deep water the
water particles move in closed orbital paths. This is derrated in figure 3.3, where

a particle moves along a constant circle in dependency ofenihés positioned on the

water wave.

Water particles on real non-linear waves do not move in dgsghs. There is a slow
mean drift in the propagation direction, which is called $tekes drift [50]. To consider
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Figure 3.4: First and second addend of phase velocity inrdgecy of the wave length

the capillary waves, the dynamic boundary condition hastohanged, where the pres-
sure on the surface is not considered to be constant any imdres, changed due to the
surface tension [51]. Then the modified dynamic and the katenboundary conditions
can be used to derive the dispersion relation for water waves

1 v
fo =5 Jolliell + 2l (35)
m p

whereg is the gravity constant angi =T4- 10*6“‘k—rT12 is the surface tension-to-density
ratio. Here also the deep water assumption is used, alloteimgglect the hyperbolic
functions. Equation (3.5) is very important, because testa direct relationship between
the frequency and the wave length of a water wave. With egud8.5) the magnitude
of the phase velocity can be calculated as

g 1%
v Wksn Pl

For a certain wave length, the phase velocity consists ofndriboition from a gravity
wave, which is the first addend, and a contribution from altzagiwave, given by the
second addend. In figure 3.4 both contributions are evaluatdependency of the wave
length. This graph shows, that the contribution from a ¢ailwave is only significant
for wave lengths up t@ cm, while the contribution from a gravity wave can be negddct
for these wave lengths. A wave is therefore considered todap#lary wave if\; < 2
cm is satisfied. Waves having wave lengths where both caivits are significant are
referred to as gravity-capillary waves.

A look at the sea reveals that the sea surface is random i spactime. A very useful
description of the sea surface can therefore be achievedakigteal measures. One
important measure is the spectral density of water waves

Cw(F)=E{H(F)H*(F)}, (3.7)
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whereH (F) is the Fourier transform of the elevation function at a fixethp

H(F) = / (0, 1) exp {—j2n Ft} dt. (3.8)
Note that additionally the elevation function is assumedaoa stationary stochastic
process, due to which

E{H(F)H*(F')} = §(F — F')C,(F) (3.9)

is valid [52], whered(-) denotes the Dirac delta function. With the spectral dernsfity
water waves, many parameters describing the sea surfadeeczaiculated. An impor-
tant parameter for this analysis is the orbital velocityiasace. Due to the deep water
assumption, the variances of the horizontal and vertidaitadrvelocity components are
assumed to be equal. The vertical velocity can be calcufabed the time derivative of
the elevation function, due to the kinematic boundary comli(see appendix A). The
orbital velocity variance at a fixed point is therefore eqoal

on(0,t) On*(0,t)
2 —F : . A
Uorb { at 8t (3 O)

Exploiting the inverse Fourier transform of the elevatiandtion results in

02, = E {gt /O:O H(F) exp {j2nFt} dF - gt/o:o H*(F) exp {—j2nFt} dF}

- /_Oo (2nF)2E {H(F)H*(F)} dF
- /_ T 2 F)2C,(F) dF. (3.11)

For water waves usually only positive frequencies are oesef53]. Becausg(0,¢) is a
real function, also its covariance is real afig /) is therefore an even function, which
allows to use the following definition

2C,(F) F>0
Cw(F) = { 0( ) oo (3.12)
Equation (3.11) then reduces to
o2, = /O Y (2nF)2C,y(F) dF. (3.13)

To calculate the orbital velocity variance, the spectraisity has to be known. Several
empirical spectral densities for wind waves are available most popular one being the
Pierson-Moskowitz spectrum [54]

_ 27kg? g 4
Com(F) = G5 &P {—x (%FUw) } . (3.14)
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Here x andy are constants witlhk = 8.1 - 1073 andy = 0.74. The wind velocity is
denoted byU,,, which is measured at 19.5 m. This spectrum is considerad f@
gravity waves and fully developed sea conditions. To cakeuthe velocity variance for
a given scene of the sea surface, an integration over theswatech contribute to the
velocity variance, has to be performed [12]. The upper liofithis integration is not
critical [13], therefore only the lower limit has to be evatad

o2, = :(zwpfcpm(m dF, (3.15)
where 7, is the frequency of the longest wave which has to be takenaotount. Per-
forming the integration and using the gravity wave part afaopn (3.5) to calculate the
wave length of the longest wave results in

TK 9/ XAL
O = \/;4Uierf< o T3 ) , (3.16)

where erf.) is the error function. In general, howevar, is not known. IfA; — oo is
assumed, as was done in [55], equation (3.16) reduces to

02, = \/ZIU@ (3.17)

This equation corresponds to the highest possible orbafalcity variance for a certain
wind velocity, if the Pierson-Moskowitz spectrum is used.

3.2 Scattering from Sea Surface

To gain some insight into the physical properties of sedeauihe scattering mechanisms
are described in this section. The detailed calculatiorth®tea surface scattering field
are for example performed in [56]. In this section some masults are summarized,
which are crucial for the assumptions and the understardfitite following analysis.
The scattering field can be calculated from the Stratton-Qluatons [57]. These equa-
tions can be derived from the Helmholtz equations, incafiog a Green'’s function and
then simplifying the integrals with Green’s theorem of tkeand kind.

To simplify the calculation, it is assumed that water is dgrconductor. The electrical
field on the sea surface is then zero, and the magnetic sogtfexld at the platform
positionx, can be stated as

B,(x,) = — / / (n(x.) x B(x.)) x VG(x,,x.) dA. (3.18)

Heren(-) is the normal vectoB3(x.) the magnetic field at the position of the scattering,
G(-,-) the Green'’s functiony the nabla operator, and denotes the cross product. To
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calculate this field, the clutter position vector is chossxa= (z,y,n(z,y))", where
n(x,y) is the elevation function of the sea surface at a certainitistant and is assumed
to be near the origin of the coordinate system. With thisaettte normal vecton(x.)
and the area elemedt! can be calculated. For the following calculations, an appate
Green’s function has to be chosen. In this analysis the fpaeesGreen’s function is
applied. Additionally, the magnetic field at positia) has to be known to calculate
the scattering magnetic fieB,(x,). Here the Kirchhoff assumption is used, which
states that this magnetic field is twice the field which issraitted by the radar system.
This assumption is only valid if the sea surface is almosihgeat plane, hence multi-
scatterings and shadowing effects can be neglected. Asguomly waves with small
amplitudes on the surface and utilizing the described edlns, the magnetic scattering
field can be calculated as

—Bgexp {jkr||xp| |}

%]

B;(x,) =

B2 [ 0,y exp {2 (ke + b)) da dy. (3.19)
A

HereBy is the amplitude vector of the magnetic field transmittedigyradar system and
k., = (kyy, kry, by ) defines the wave vector of this field. The detailed calcutestito
derive equation (3.19) are summarized in appendix B and lsarba found in [58].

If the area over which the integration is performed can assuim be big enough, the in-
tegral in equation (3.19) is a two-dimensional spatial kransform of the sea surface
elevation function, which is defined as

H(ky, k) / / (2, ) exp {—j(kow + kyy)} dz dy. (3.20)
Therefore equation (3.19) can be rewritten as

—Bgexp {jerXpH}

%yl

B.(x,) = k2 H (2kyg, 2K,y). (3.22)

This equation is of major importance, because for one iestatdirect relationship be-
tween the scattering, which is received by the radar, anddhesurface elevation. For
another, this equation shows that echoes are only recewetfater waves, whose wave
lengths are related to the radar wave length\by= 230’“89. Hence, there is a direct re-
lationship between the radar and water wave length. Forn¢tHmaedium grazing angle
radar systems, scattering is received from water wavesenahge ofA, = 1.5 cm -
2.1 cm. As described in the previous section, these watee \Wengths correspond to
capillary waves. An important conclusion is thereforef tbathe following analysis the
physical properties of capillary rather than gravity wakease to be considered.

For medium grazing angles, the assumption that the seasusfalmost a tangent plane
and a perfect conductor is not valid. To derive satisfyinutsons, multi-scatterings
have to be considered, for example by using the perturbatgthod, and boundary con-
ditions have to be applied. These calculations are perfdrim@] and [5]. The results
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yield polarization dependent scatterings, which are alseored in experimental data
(see for example [2]). Furthermore, it is proposed in [9] §H) that also the influence
of gravity waves has to be considered, because due to the®ss wWee grazing angle and
the polarization changes locally. An overview of existingdals to calculate scatterings
from the sea surface can be found in [59] and [60]. The moddeddulations of the
scattering field, however, do not change the fact that fomKebradars only echoes from
capillary waves are received.

3.3 Doppler Frequency of Sea Scatterers

While for land clutter the scatterers are assumed to be stiipfor sea clutter this
assumption is not valid. The scatterers are themselves immdence a certain clutter
velocity has to be considered. It is assumed that echoeseaeived from capillary
waves, due to the results of the previous section. The eapWaves have themselves
a phase velocity, but they ride on gravity waves and are thier@dditionally moved by
the surface, which is identified in section 3.1 to be the athi¢locity, but also currents
contribute to a further movement. The resulting velocitythe# received scatterers at a
certain time instant is therefore a sum of several diffevetcities

VC(X) = Veur + Cp + Vorb<x)' (322)

Herev,,, denotes the velocity of any currents, is the phase velocity of the capillary
waves, which have the wave length = 5 C*% 5, andv,,;(x) is the orbital velocity. The
current velocity is usually assumed to be constant. The ratgof the phase velocity

of the capillary waves can be calculated as

1 4
1 gh v 7rcos€. (3.23)

= dmtcosf  p A,

For X-band radar and medium grazing angles, this velocigr@aaind+0.23 m/s. The
orbital velocity can be calculated from equation (3.4). sSTvelocity varies for different
positions in dependence of where the capillary waves anéi@usd on the long waves.
In figure 3.5 the Doppler spectra of a stationary radar of Emtisea clutter are presented
to visualize the difference. For land clutter, power is omgeived at 0 Hz, because the
clutter and platform velocities are zero. For sea cluttewdwver, echos from scatterers
with different velocities are received, and the clutter povg therefore spread over diffe-
rent Doppler frequencies. The scatterer velocity changedaa varying orbital velocity.
The Doppler centroid is not at 0 Hz because of constant iedsand the constant shift
of orbital velocities [22]. Note that for HF radars, where fphase velocity of the waves
from which echoes are received is much higher, Doppler sp@&dth two peaks are ex-
pected. For microwave radars, however, the separationeafinth peaks is quite small
and they are broadened due to orbital velocities, so thatpwaks are only visible for
certain conditions, as analyzed in [61].
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Figure 3.5: Normalized clutter power of a stationary radatesm in dependency of the
Doppler frequency for land and sea clutter

3.4 Scattering from Breaking Waves

It is shown in several publications, like in [2] and [56], tike sea surface RCS deviates
from the scattering model derived for capillary waves. Tdbservation suggests another
scattering source, which is believed to be due to wave bngaki

Wave breaking occurs if the orbital velocity of the partgcta the crest of a wave exceeds
the phase velocity of the wave. Then the crest outruns thme &@frthe underlying wave,
causing wave breaking. This condition is called the kinéoriaeaking criterion. Further
breaking criteria are summarized in [62] or [63].

The scattering properties of breaking waves are differemifthe ones of capillary
waves. The Doppler shift of these scattering events is hitjfaa the ones of scatterings
from capillary waves, because the velocity of these paditlas to be in the order of
the phase velocity of the gravity wave. In [64] this is confahwith experimental data,
where Doppler spectra of breaking events in a water tankrealyzed. The results show
a good fit between the radial velocity of these scattererscanek 6. This observation
further suggests that the velocity of the described s@tas mainly of horizontal na-
ture.

How the scattering properties of capillary and breaking egakelate to each other is
analyzed in [65]. This publication determines that scattgr of both wave types are in-
dependent of each other, due to which the resulting radassection of the sea surface
can be calculated as a sum of the separate contributions.

For medium grazing angles, it is proposed in [56] and [66{ ieatterings from breaking
waves are mostly generated by the white foam which is presdesit such events. This
scattering type can be modeled analog to the scatteringpifargt waves, but with a
much rougher surface, and is often referred to as whitecatpesmng.

Wave breaking and its radar scattering is still ill undesst@nd is an area of ongoing
research. A summary of current problems can be found in [67].

In this analysis the scatterers from breaking waves areresf¢o as “fast scatterers” and
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the scatterers from capillary waves are called “slow spat$&, because the echoes of
breaking waves have much higher velocities.



Chapter 4
Experimentswith PAMIR

Three measurement campaigns were performed with the rgstens PAMIR in the con-
text of this thesis to validate the developed theory with desa. Section 4.1 summarizes
the main parameters of this system and provides an ovenvigs special features. The
radar and sea parameters and the flight paths of the cormdisgaxperiments are illus-
trated in section 4.2. First evaluations of the collecteth @e provided in section 4.3,
where some differences between land and sea clutter arendénauied.

41 PAMIR System

New processing methods need to be validated with real damathis purpose a multi-
functional radar system, called PAMIR (Phased Array Mutiidtional Imaging Radar)
was developed at FHR [31]. A picture of the PAMIR system isighn figure 4.1. Ta-
ble 4.1 summarizes the main parameters of the PAMIR systemns.ah airborne radar
system, where the Transall is the carrier platform. Theesgstperates at X-band and
due to the phased array, the steering of the antenna beanmaothas performed elec-
tronically. This allows great flexibility to steer the ant@nbeam during an experiment.
Additionally, an IMU (Inertial Measuring Unit) and a DGPSi{ferential Global Posi-
tioning System) are implemented inside the PAMIR systeme Ruthese devices, the
position and the orientation angles of the platform are kmatvany time instant. The
roll-pitch-yaw angles are considered by the steering ofptiiesed array antenna, hence
the desired scene is always observed.

A special feature of the PAMIR system are the 9 autonomousrecwhfigurable sub-
groups, of which the antenna consists. This allows to haue Gparallel receive anten-
nas, where the positions of the phase centers can be chosiéelfld-or interferometry
applications, an alignment in the across-track directoselected, where up to 3 receive
antennas can be used. For MTI applications an along-traghkraént is possible, where
also 3 receive antennas are available.
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Carrier platform Transall C-160
Polarization \AY,
Center frequency 9.45 GHz (X-Band)
Bandwidth Upto 3.6 GHz
Transmit power 240 W
Antenna Active phased array
Antenna length in azimuth 0.79m
Steering angle + 45
Number of receive antennas for MTI 3
Phase center separation 0.2656 m

Table 4.1: Main parameters of PAMIR system

Figure 4.1: PAMIR system
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4.2 EXxperiments

To validate the developed theory, several sets of multichlbdata were collected with
the PAMIR system during several experiments. To comparenhiéchannel properties
of sea clutter with land clutter, an experiment over land pagormed. This land data
was acquired near Nuremberg in Germany, as shown in figurerdMarch 2012. Sea
data was collected over the North Sea, near Heligoland. Etendepth at the observed
scene was approximately 40 m. A total of three sea expersweeite performed, where
the first two experiments took place in March 2012 and thedastin October 2012. For
all sea experiments, the flight path was a square, where latsé&#e of the square, data of
the same scene was collected. This allowed to observe the saanclutter at different
swell directions in reference to the radar. The flight pathhef third sea experiment
is shown in figure 4.3. Here the track of the plane was rotated8ob from the north,
east, south and west direction. The track of the first two expts was headed exactly
towards the north, east, south and west direction.

All experiments were performed in a spotlight mode and aéié¢lchannels in along-track
direction were used to receive the data. For the sea expaismewas possible to collect
the data with depression anglesléf and35°. The radar parameters of the land and sea
experiments are summarized in table 4.2.

__

Figure 4.2: Flight path of land experiment
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Figure 4.3: Flight path of sea experiment

Land Experiment
Pulse repetition frequency (PRF) 3000 Hz

Range resolution 3.75m
Nearest center slant range 6085 m
Platform velocity 100 m/s

Depression angle 20°
Slant swath 4500 m

Sea Experiment
Pulse repetition frequency (PRF) 2000 Hz

Range resolution 3.75m
Nearest center slant range 5222 m

Platform velocity 88m/s - 106 m/s
Depression angle 15°/35°
Slant swath 4500 m

Table 4.2: Radar parameters of performed experiments

The sea states varied quite strongly during the differetat dequisitions over the North
Sea. The sea was quite smooth during the first experimeghtiglirougher during the
second one and very rough at the time of the last experimentin® the sea experi-
ments, several weather stations, which were located neaitberved scene, were used
to collect information about the sea state. The weatheiosttecorded measured data
approximately once an hour. These weather conditions anensuized in table 4.3. The
wind and swell directions are evaluated in an east-norticagrdinate system (ENU).
The significant wave height corresponds to the mean thirdmax wave. The cur-
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Experiment 1

Significant wave height

0.3m-0.5m

Mean water wave frequengy0.18 Hz - 0.21 Hz

Wind velocity 2m/s -4 m/s
Wind direction (ENU) 315°
Swell direction (ENU) 295° - 298°
Current velocity 0.1 m/s-0.3m/s
Current direction (ENU) 240 - 315
Experiment 2
Significant wave height 0.6m-0.8m
Mean water wave frequengy0.25 Hz - 0.27 Hz
Wind velocity 7m/s -8 m/s
Wind direction (ENU) 0°
Swell direction (ENU) 129° - 140°
Current velocity 0.3m/s-0.5m/s
Current direction (ENU) 315 - 350
Experiment 3
Significant wave height 23m-24m
Mean water wave frequencgy 0.18 Hz
Wind velocity 10 m/s -14 m/s
Wind direction (ENU) 84° - 96°
Swell direction (ENU) 77° - 95°
Current velocity 0.3 m/s
Current direction (ENU) 350

Table 4.3: Weather conditions of sea experiments

rent velocities and directions were calculated by the BSidgFad Maritime and Hydro-
graphic Agency of Germany. With this data, the sea conditiointhe first experiment

can be assigned to sea state 2 on the Douglas Scale or 2 - 3Bedh#ort Scale, the sea
conditions of the second experiment correspond to sea3tatethe Douglas Scale and
3 - 4 on the Beaufort Scale and during the last experiment tagaswas reached on the

Douglas Scale and 5 - 6 on the Beaufort Scale.
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4.3 First Analysis

Figures 4.4 - 4.6 show the clutter power in the synthetic sbhamoel of different sea data
sets in dependence of the Doppler frequency and slant r&lege.a coherent processing
interval (CPI) of 256 pulses is chosen to perform a Fouriersiarm, and 200 range bins
are selected where maximum clutter power is present. ThNzed signal is normali-
zed to noise power and the centroid is shifted to 0 Hz.

Figure 4.4 shows two coherent processing intervals of thrd #ixperiment, collected
with a15° grazing angle. The data set in figure 4.4(a) was collectetevine plane was
flying on side 3 and in figure 4.4(b) data from side 4 is preseniue to the collected
weather data, the sea surface is assumed to move up sweleremrree to the radar at
side 3, and cross swell at side 4. The two CPIs in figure 4.4 aite different. The
clutter power is much more inhomogeneous for the up swedktion as compared to the
cross swell direction. Additionally, in figure 4.4(a) maroatterers outside of the clutter
band are evident at positive Doppler frequencies. Thestesees are due to wave break-
ing, which is more frequently present in the up swell dir@ctthan in the cross swell
direction. More homogeneous sea clutter in the cross swelttibn is for example also
observed in [56].

Figure 4.5 shows the clutter power of the third experimefiiected with a grazing angle
of 35°. Here higher clutter power is evident due to bigger resotutiells on the ground,
resulting from a higher grazing angle. Additionally, the@across section of sea clutter
is higher for higher grazing angles, as observed for examp&8] or [69]. Again, figure
4.5(a) shows a data set at the assumed up swell directiorfigamd 4.5(b) shows a CPI
at the assumed cross swell direction. Also here the clutteepis more inhomogeneous
for the down swell direction, and several fast scatterezseaident. An analysis of the
clutter power for different grazing angles and differene#iwdirections can be found in
[36].

In figure 4.6 two CPIs, collected from two different sides,lod first experiment are pre-
sented. Here a much lower clutter-to-noise ratio is evid&his is due to a lower RCS
of the sea scatterers for smoother sea surfaces, as for exarglso observed in [70]
and [71]. The distribution of the clutter power is quite hajeoeous for both data sets,
without any fast scatterers.

If the Doppler shift resulting from the movement of the pdauh is removed, the centroid
of land clutter is centered around 0 Hz. This is differentdea clutter, because here an
additional Doppler shift due to the movement of the scatsasepresent. To evaluate this
Doppler shift, the Doppler frequency due to the platformoeél has to be calculated
from equation (2.9). This calculation can be performedabse the track and the roll-
pitch-yaw angles of the platform, which were present dutiregexperiments, are known
from the IMU. With this information, the platform coordireasystem can be rotated to
the earth coordinate system, where equation (2.9) can bedpphe mean radial velo-
city of the sea scatterers can then be calculated from tfexelifice between the Doppler
frequency of the actual clutter power centroid and the Depghift due to the platform
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velocity. In this analysis the Doppler frequency of the ceidlt is estimated by corre-
lating the Doppler spectrum with a Gaussian function, whiek the same bandwidth
as the Doppler spectrum, and searching for the maximum poWete that radial sea
scatterer velocity can also be evaluated by using the ai@ug-interferometry phase, as
was done in several publications (for example [16, 20, 18]).

Figure 4.7 visualizes the estimated mean radial cluttexocitgl of sea data, collected du-
ring experiment 3. This experiment is chosen because the ehection approximately
corresponds to the swell direction and because the diffeseall directions were best
captured during this experiment. The mean clutter velasigvaluated dependent on the
azimuth angle between the x-axis (East direction) and theec@osition in ENU coor-
dinates. If the vectok. = (z., v, zC)T denotes the center coordinates of the observed
area, then this angle is defined as

Le—Tp , - > 0
Penu = e <\/(xc_$p)2+(yc—yp)2> Y Yp = (4.2)
°— Lc—Tp .
360° — arccos <\/($C_$p)2+(y0_yp)2> v Ye—Yp <0

Figure 4.7(a) shows the mean radial velocity of the seaeeatt at side 1. Here the
sea clutter is assumed to move in the down swell directiore 83timated radial clutter
velocity is always positive. In figure 4.7(c) this velocigyestimated for azimuth angles,
where the up swell condition is assumed. For these anglegadive velocity was esti-
mated for both grazing angles. Figures 4.7(b) and 4.7(dyshe estimated mean radial
clutter velocity for assumed cross swell conditions. Haeegign of the radial velocity
changes and the magnitude is around zero. The estimateal sa&ai clutter velocities
collected with different grazing angles mostly match eattten Differences between
different data sets are due to some randomness of the seaesucthanging sea condi-
tions between the data takes (the time difference betwetaredguisitions of same sides
but different grazing angles was around 1 hour), and thetfattthe radial velocity is
dependent on the grazing angle.



34 4. Experiments with PAMIR

35 35
5150
30 30
E o5_,  ES20 25_
g 3 8
20 5 5250 5
g “g g g
= o - o
S 15 S 150
I} IS
] o 9300
10 10
5 5
s o e 0 . .|l i o 0
-400 -200 0 200 400 -400 -200 0 200 400
Doppler Frequency [Hz] Doppler Frequency [Hz]
(a) Side 3 (b) Side 4
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Chapter 5

Theoretical Multichannel Analysis of
Sea Clutter

This chapter derives the multichannel properties of setdetluln sections 5.1 and 5.2
the multichannel statistical description of land clutterevised to consider the different
characteristics of sea clutter. Section 5.3 demonstratestine properties of sea clutter
affect the STAP performance. The multichannel model of $eibec is used in section

5.4, to derive a theoretical description of the channelatation. Section 5.5 considers
the influence of fast scatterers, which result due to wavakimg, on the multichannel

description of sea clutter and alters it.

5.1 Doppler Frequency

While the multichannel characteristics of land clutter assdd on the assumption of
stationary scatterers, for sea clutter also the contobutif the radial component of its
own motion has to be considered. For microwave radars thengascatterer velocities

are determined by orbital motion ([72, 59]), as describechiapter 3.3. By defining the
radial sea scatterer velocity for a certain positiomas u’v,,,, the Doppler frequency

of sea clutter can be stated as

Flu,vy) = f(v,,u — ). (5.1)

Here the platform is assumed to move along the x-axis, asdapteh2.2. Due to the ran-
dom nature of the sea surfaee,is considered to be a realization of the random variable
Vs(u), which varies in dependence of the look direction and it$avere is denoted by
o2. This implies that the Doppler frequendy(u, V;(u)) is itself of random nature.
If a small interval of azimuth angles is assumed, as destiibehapter 2.2, the relation-
ship between the radial sea scatterer velocity variancetandrbital velocity variance
can be stated as

= (0082(<p0 — ¢,) cos® 0 + sin® 9) o2 (5.2)

orb*
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Figure 5.1: Geometry of described scenario to calculatep@oprequency of sea clutter

The azimuth angle of the steering direction is denotedopy Here the random wa-
ter waves are considered as in [73]. The described geonwrgltulate the Doppler
frequency is visualized in figure 5.1, and the orbital velpeariance properties are sum-
marized in chapter 3.1.

5.2 Cross-Covariance Matrix and Spectral Density
Matrix

To characterize the sea clutter signal, the Doppler frecqdafined in equation (5.1) has
to be considered. The sea clutter signal then equals witatemu5.3) to

o(T) = /Q A(w) exp {j2rF (u, Vo(u)) T} d(u) du
— /Q A(w)s(T, u, Vi (u)) du. (5.3)

Here the normalized time-dependent radar clutter sigfi&lu, V;(u)) is dependent on
the radial sea scatterer velocity. It is therefore also nflcan nature.

To calculate the clutter cross-covariance matrix, the dex@gcho amplitude is modeled
as a spatially white and zero mean random variable with eorarghase and the variance
o2, as described in chapter 2.3. The correlation betwiégn) and A(u) is zero due
to the random phase. Since, no converse facts or suppasdienevident, we further
assume that the echo amplitude and the radial sea scatdoeity can considered to be
independent, as it is done for example in [53] and [15]. If¢hdter signal is a stationary
process, the cross-covariance matrix equals

Ro(7) = E{c(T + 7)c"(T)}
_ JZ/QE{S(T+ ru, Va(u))s™ (T, u, Vi) } du. (5.4)

[
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Figure 5.2: Relationship between Doppler frequency and laodction for land and
sea clutter. For land clutter a certain Doppler frequency can be assigned to each look

direction. For sea clutter the Doppler frequency varies for the same look direction in a
random manner.

The sea clutter spectral density matfix(F') can be calculated from the Fourier trans-
form of the clutter cross-covariance matrix as

C.(F) = o? /Q E{d(w)d” (u)s(F — F(u, Vy(u)))} du. (5.5)

Due to the Dirac delta function, only those directions contribute to the integral for which
the frequency equals the Doppler frequency. For sea clutter, equation (5.1) has to be
inverted to calculate the directional cosine affecting the frequency F

F) | Vi)

2v, Up

u (£, Vi(u) = (5.6)

This equation shows the fundamental difference between land and sea clutter. Unlike for
land clutter, for sea clutter there is no unique relationship between the look direction and
the frequency. Due to the dependence of the look direction on the radial sea scatterer
velocity, it is itself a random variable for each frequency. The different meanings of the
look direction in reference to the frequency are visualized in figure 5.2. While for land
clutter to each look direction a Doppler frequency can be assigned independently of the
range bin, for sea clutter the Doppler frequency varies for the same look direction but
different range bins in a random manner. To further calculate the spectral density matrix,
a sea scatterer velocity distribution is assumed, which is independent déing the
integral form of the expected value and describing the sea scatterer velocity distribution
with p¥: (v, ), the spectral density matrix can be written as

C.(F)=a? [ [ awa(ws (F - 2;1% + %“) P, dvs du.  (5.7)
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For each frequency’ and each scatterer velocity, there is only one directional co-
sine, where the Dirac delta function is nonzero. The twoeattisional integral reduces
therefore to a one-dimensional one

CF)=a? [ a (FAT + “) a (“ + ”) " (v,) dv,

—00 2v, vy 2v, vy
F F
:agE{d (Aw VS(U))dH (A’”+ w“))}. (5.8)
2v, Up 2v, Up

It is assumed that all receive antennas have the same twantayna patter(-),
which allows to define the DOA vector as

d (uO(F) + VS(“)> =D (uO(F) + Vs(“)> e <u0(F) + VU(“)> . (5.9

Up Up p

Here for conveniencey(F') = % is specified, and the phase vector is denoted by

e (uo(F) + W) - (exp {]iﬂxn <u0(F) + w“)) })N . (5.10)

Up vp n=1

The directional cosine, () corresponds to the look direction of stationary scatterers

To further calculate the spectral density matrix analytyce (uO(F) + %p“)) IS approx-
imated by the Taylor series as
e <u0(F) + ( )> ~e(ug(F)) + ( )e (uo(F)), (5.11)
Up Up
wheree’ (ug(F’)) corresponds to
, .2 2 N
e (up(F)) = (]mn; exp {j;uo(F)xn}> , (5.12)
T T n=1

andd’(uo(F)) = D(uo(F'))e (uo(F)).

HereV(u) is assumed to be zero mean. A non-zero mean has only a smaltiimpthe
following derivations and is discussed later.

With the phase vector in equation (5.11) the spectral densitrix becomes

2 ( (e untF + et )

Up

(e (uo(F)) + Wy <uO<F>>> )} &4

Up

C.(F) ~ 02 {‘D (uO<F> + V<“>>

Up

In the following an antenna coordinate system is chosenrevtine center of gravity of
phase center positions is at the origin. The vectdis (F)) ande’(uy(F')) are then



5.2.Cross-Covariance Matriand SpectraDensity Matrix 41

orthogonal to each other. To further analyze the properfidsessea clutter spectral den-
sity matrix, its basis is changed, where the set of vectors which form the new basis are

e(uo(F)) _e(uo(F))
{He(uO( FN Tetuc(F)) H,bg(F) bN(F)} wherebs(F), ..., by(F') are some vectors

which are orthonormal tﬂe( E il and H: “Og))n This transformation is discussed in
appendix C and it shows that the sea clutter spectral density matrix in equation (5.13) is
a rank two matrix.

If a Gaussian distribution is assumed for the radial sea scatterer velocity and the abso-
lute squared value of the two-way antenna pattern is described by a Gauss function, the

eigenvalues o€, (F') can be evaluated around the Doppler centroid as

M(F) & 0?24 [|d(uo(F))|[,
0-2_|_7

’U2

0.0 O,

U;% (0-2 + v2)

whereo? is the width of the Gauss function. The main steps to calculate these eigenval-
ues are summarized in appendix C.

a1 (wo(F))| I, (5.14)

If the influence of the radial sea scatterer velocity on the amplitude modulation caused
by the two-way antenna pattern can be neglected, the distribution of the sea scatterer ve-
locity does not require consideration and the sea clutter spectral density matrix reduces
to

C.(F) ~ o2d (uo(F)) d” (ug(F))

0202

%75 ' (ug(F)) d™ (ug(F)) . (5.15)
U

p
This is a reasonable assumption, because the spectrum width is mainly determined by
the platform velocity for airborne radar systems. The vectdrs (F')) ande’(ug(F))
correspond then to multiples of the eigenvectors of the clutter spectral density matrix.
The eigenvalues of this matrix can be calculated as

M(F) = o¢ld(uo(F))IP,

o’o?

Ao(F) = =252 I (wo ()] (5.16)

Note that the sum of the eigenvalues in equation (5.16) does not coincide with the trace of
the spectral density matrix in equation (5.15). This is due to a first order Taylor approx-

imation. If the phase vector in (5.11) is approximated with three terms anﬁiﬁlf?&‘*-

n

terms are neglected, then the eigenvalues can be calculated more approprlately with their
sum matching the trace of the matrix. This calculation can be found in appendix D. The
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Figure 5.3: Approximated and numerically computed eigkrevdistributions in depen-
dence of the Doppler frequency. The eigenvalues are esliirfabm the numerically
computed spectral density matrix from equation (5.8) aralyaically calculated from
the approximations in equation (5.16).

result of this longer derivation is however only a small éiddial contribution to the first
eigenvalue. The main multichannel properties are not obdiby an additional term of
the Taylor series. In the main analysis a second order Tayproximation is therefore
not considered.

To consider a non-zero mean, the Taylor approximation in equation (5.11) has to be
performed around(F') + £=, which results ine(uo(F) + 2 ~ e(ug(F) + 5—;) +

(%ﬁ‘) - ﬁj—p) €' (ug(F) + ﬁj—p) The eigenvectors of the clutter spectral density matrix in
equation (5.15) are then multiplesetfu, () + £=) ande’(uo(F) + £+) and the centroids
of the eigenvalue distributions arew{(F) + £=.

To analyze if the spectral density matrix from equation Y&&n be approximated by
equation (5.13), the calculated eigenvalues are comparttdnwmerically computed
ones. For the numerical computation, the integral in equg.8) is evaluated numeri-
cally by assuming a Gaussian distribution for the radialssdterer velocity. In figure
5.3 the eigenvalues are calculated for different Doppkdencies from equation (5.16),
where the influence of the sea scatterer velocity on theecloppler spectrum is ne-
glected. In figure 5.3(a) the eigenvalues are computed wsteascatterer velocity vari-
ance ofo? = 0.2 m?/s* and in figure 5.3(b) withr> = 0.5 m?/s?. Both figures validate
the derived multichannel characteristics of sea cluttecase also for the numerically
computed values, two eigenvalues have to be considereddalstter. The value of the
second eigenvalue changes significantly around 0 Hz witmyangvelocity variance, as
is expected due to the dependence of the second eigenvathe sea scatterer velocity
variance. While in figure 5.3(a) the approximated and the mioaléy computed eigen-
values match quite well, in figure 5.3(b) deviations areblesibetween the differently
evaluated eigenvalues. This is due to a higher impact of@¢hessatterer velocity on the
clutter Doppler spectrum.



5.2.Cross-Covariance Matriand SpectraDensity Matrix 43

25 . . . : .
——Numerically Computed ——Numerically Computed

— Approximated — Approximated

Power [dB]

S &
Power [dB]

- — )
. a O

(2]
T

5-

s,

—900 -400 -300 -200 -100 0 100 200 300 400 500 —§00 -400 -300 -200 -100 0 100 200 300 400 500
Doppler Frequency [Hz] Doppler Frequency [Hz]
(@) o2 = 0.2 m?/s? (b) 02 = 0.5 m?/s?

Figure 5.4: Approximated and numerically computed eigenvalue distributions in depen-
dence of the Doppler frequency. The eigenvalues are estimated from the numerically
computed spectral density matrix from equation (5.8) and analytically calculated from

the approximations in equation (5.14).

Figure 5.4 demonstrates approximated and numerically computed eigenvalues for dif-
ferent Doppler frequencies, where the approximated eigenvalues result from equation
(5.14). In this approximation the radial sea scatterer velocity variance influence on the
clutter Doppler spectrum is considered. Also here the eigenvalues are computed with a
velocity variance ob? = 0.2 m?/s?, shown in figure 5.4(a), and with? = 0.5 m?/s?,

which is visualized in figure 5.4(b). Figure 5.4(b) shows a better match of the numeri-
cally computed and calculated eigenvalues around the Doppler centroid as compared to
the eigenvalues in figure 5.3(b). This analysis shows that a better eigenvalue evaluation
Is possible, if the distribution of the sea scatterer velocity is known. This is especially
evident for high sea scatterer velocity variances.

In figures 5.3(b) and 5.4(b) also a small third eigenvalue of the numerical evaluation is
visible. If Vig@ x8-terms are not neglected, also a third eigenvalue has to be accounted
for. Generallil, however, this resulting eigenvalue can be neglected in reference to noise.
The spectral density matrix of sea clutter has different properties than the one of land
clutter. For land clutter, the spectral density matrix is ideally a rank one matrix, implying
an one-dimensional clutter subspace. Therefore only one nonzero eigenvalue has to be
considered. The spectral density matrix of sea clutter is, however, a rank two matrix. The
clutter power is spanned over a two-dimensional subspace and there are two eigenvalues,
which have to be accounted for. The differences between land and sea clutter spectral
density matrices are described in [39].

The different properties of land and sea clutter are visualized in figures 5.5 and 5.6, where
the power of CPlIs of real land and sea data are projected on estimated eigenvectors of the
clutter plus noise spectral density matrix for different range bins and Doppler frequen-
cies. The projected power on thth eigenvector is calculated frofiP,,(F)Z(r, F)||?,
whereZ(r, F') is the received multichannel vector from range band frequency" and
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P, (F) is a projection matrix on the corresponding eigenvectoickvis defined as

u, (F)uy/(F)

mn

PulE) = T ENE

(5.17)
whereu, (F) is the eigenvector of dimension

For this demonstration sea data, which was acquired duxkpgrament 3, is chosen. A
downsampling to a PRF of 1000 Hz is performed, to allow a comparbetween both
experiments. This PRF is still sufficient to neglect aliasiihg carry out a Fourier trans-
form, CPIs with 128 pulses are chosen and a Hamming windowpBeapto mitigate
spectral leakage. By means of simulations, the chosen tinggheof a CPI in combina-
tion with windowing is found to be long enough to neglect spddeakage. The Doppler
shift due to the platform velocity is removed and for sea datditionally the Doppler
shift caused by any present currents, modulations of thgwaves or the phase velocity
of capillary waves is eliminated. For each data set the fgyare equally normalized
and the same color scale is chosen, where the upper limiiottale is the maximum
power from the incoherent sum of all projections. For lanthgagure 5.5(a) illustrates
the power from the incoherent sum of all projections and &dub(b) shows the power,
which is projected on the first eigenvector. It is evident tth@ power distribution of
both figures coincides, indicating that the entire clut@wer is contained only along the
first eigenvector. The power on the second and third eigeoredsualized by figures
5.5(c) and 5.5(d), is equal and negligible. It is only due tise and some non-ideal
conditions. The projections of land data demonstrate thaictutter is only contained
in a one-dimensional subspace, hence confirming a rank adeclatter spectral density
matrix. The projections of sea data in figure 5.6 show, howeyeite different cha-
racteristics. Figures 5.6(a) and 5.6(b), where the poveen fthe incoherent sum of all
projections and the power on the first eigenvector are st suggest that here most
of the clutter power is contained along the first eigenveasrwell. But figure 5.6(c)
visualizes that a considerable clutter power amount is@igj@cted on the second eigen-
vector. Figure 5.6(d) shows that along the third eigenveatdy noise is present. This
observation validates the derivation of a rank two seaalspectral density matrix.

5.3 Space-TimeFilter

One of the main reasons why the analysis of the clutter spedénsity matrix is im-
portant is the insight into the properties of the space-filtex. As described in chapter
2.3, the space-time filter gain, defined in equation (2.1@prms about the detection
performance for moving targets with the used multichangsiesn. In this chapter, the
space-time filter gain of sea clutter is evaluated, and tteeadion of this measure due to
the different properties of the sea clutter spectral dgmsdtrix is described.

To evaluate the space-time filter gain, the inverse of thiéaslplus noise spectral density
matrix has to be calculated. To determine the inverse oftlaisix, the singular value de-
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Figure 5.5: Projections of received land data vector fded#nt slant ranges and Doppler
frequencies on estimated eigenvectors of the clutter miserspectral density matrix.

composition is applied. The clutter plus noise spectrakdgmatrix can then be stated

as
C.(F) = QF)A(F)Q"(F) + o7l xn, (5.18)

whereQ(F') is composed of all the orthonormal eigenvectors and
A(F) =diag(M(F), A\a2(F),0,...,0). (5.19)

Here, as described in the previous section, it is assumed tiesto the properties of sea
clutter, two eigenvalues have to be considered. Furthemnttrix inversion lemma (see
[74]) is used, which is defined as

(A+BCD)'=A"'-AT'B(C + DA—IB)_1 DAY, (5.20)

whereA, B, C andD all denote matrices of the correct size.
To calculateC!(F), these matrices are defined as follows:
A = 02Ty, B= Q(F)A(F), C = Iy.y andD = Q(F). With equation (5.20), the
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Figure 5.6: Projections of received sea data vector foegkfit slant ranges and Doppler
frequencies on estimated eigenvectors of the clutter miserspectral density matrix.

inverse spectral density matrix is equal to

MF)  e(un(F)e (ua(F))
Y407 [le(ulF))IP
Mo(F)  €(uo(F))e (uolF))
o(F) 12 e uo(F)]P ) (5:21)
(

C(r) = o (tver = 5.

n

The eigenvalues\; (F') and \(F) are as described in the previous section. If these
eigenvalues are much bigger than the noise po@et,F') reduces to a projection ma-
trix, which projects the received signal to a subspace guahal to the clutter subspace,
spanned by the two eigenvectors of the clutter spectralityanstrix

1 elu(F)eH (uo(F)) e (ua(F))e (un(F))
C. ()= z(lw TeCul®))P DI ) (5.22)

For land clutter, only the first eigenvalue in equation (%.Blnonzero, therefore this
matrix projects to a subspace which is only orthogonal tdX®& vector, as described in
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Figure 5.7: Calculated normalized space-time filter gaimwlifferent sea scatterer ve-
locity variances

[32]. The evaluation of the inverse of the clutter plus naigectral density matrix, shows
the fundamental difference between land and sea clutterlaRd clutter, only an one-
dimensional clutter subspace has to be suppressed, treedfer space-time filtering an
N — 1-dimensional signal is left. For sea clutter, a two-dimenal clutter subspace has
to be considered to remove the clutter from the receivedasigience, after suppression
of sea clutter with a space-time filter, only ah— 2-dimensional signal is left for target
detection and localization.

The second eigenvalue is much smaller than the first oneubediis proportional to the
inverse ofvﬁ. The assumption that,(F') is much bigger tham? is therefore in general
not valid. Then, the inverse spectral density matrix dodscompletely suppress the
dimension spanned by the second eigenvector. The amouappfession is dependent
on the second eigenvalue, which depends on the sea scattkreity variance.

Figure 5.7 demonstrates space-time filter gains, caladilaiten equations (2.21) and
(5.21) with the parameters of the PAMIR system. Here thesiglees of equation (5.16)
are used. The different space-time filter gains are caledlatth different sea scatterer
velocity variances. The filter gain indicates the amount @igr by which a received
signal is attenuated for each frequency and each look trecvhere 0 dB means no
attenuation. In 5.7(a) an evaluation with = 0 m?/s? is performed, which corresponds
to land clutter. The displayed filter gain shows a notch ald@ggonal line. The received
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signal is only attenuated, where the look direction comesis to the Doppler frequency
by equation (2.9). The other filter gains are calculated with= 0.1 m?/s?, 02 = 0.3
m?/s> ando? = 0.5 m?/s?, visualized by figures 5.7(b) - 5.7(d). On one hand, these
figures show that the filter notch of land clutter is much nasothan the ones of sea
clutter. This is expected due to the additional clutter pabs dimension, which has
to be considered by the filter for sea clutter. On the othedhégures 5.7(b) - 5.7(d)
show a broader filter notch for higher velocity variancesisT& due to the dependence
of the second eigenvalue on the sea scatterer velocitynzaiaA broader filter notch
means that for each look direction a target is attenuatecat madial velocities by the
corresponding filter.

5.4 Channd Correlation

Another important multichannel measure is the channeétation. The channels have to
be highly correlated for a successful STAP performance. Gélasorrelation is however
also important for other radar applications. For ocean toang with interferometric
SAR, for example, this measure places limitations on theexahie sensitivity of cur-
rent velocity measurements [75].

Channel correlation is a measure of the similarity betweenrdiceived signals at chan-
nelsn andn’. This measure is here defined as

_ B{z(FR)Z}(R)}
VE{Zu(F)PY E{|Z(F))2}

where F, is the Doppler centroid. The denominator of this equationalkulated by
assuming equal power at all channels. If the scattererstatiergary, as this is the case
for land data, this value is equal to

oo (5.23)

E{|Z,(F)I’} = E{C(F)Cu(F)} +on

= o¢| D(u(F))]* + oy (5.24)
The numerator for land data can be calculated dug {0 = 23; as
E{Z,(F.)Z}1(F.)} = o?|D(u(F.))[* exp {jiﬁu(Fc)(xn - xn,)} . (5.25)

The constant exponential term in equation (5.25) is knowahiarusually compensated
for, if the look direction is unequal to zero, to compare tiarmmnel correlation [76].
Considering further the clutter-to-noise ratio (CNR) of a &nghannel to be

oe E{|D(u(Fe)) "}

2
On

CNR, = (5.26)
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reduces the channel correlation of land data to

oe|D(u(Fe)) |
oZ|D(u(Fe))? + a7

S— (5.27)

1+ snae
as can for example be found in [77]. This equation capturesathd data channel corre-
lation for ideal experiment conditions. There are sevatahions under which further
channel decorrelation occurs for land experiments. Onsiplessource is if the subaper-
tures of the channels do not illuminate the same scene. Angibssible decorrelation
source is any kind of uncompensated system delays betwieredi channels. For high
bandwidth experiments, also carrier wave lengths of difierclutter echoes will vary,
causing additional decorrelation. Further, the assumpifoan ideal antenna is not al-
ways valid. Mutual coupling between single elements of tite@na, for example, cause
additional channel decorrelation. The presence of diffeibandpass filters for different
channels also decorrelates the channels, as demonsuidi&].i A detailed description
of different channel errors can be found in [29] or [28].
If the definition in equation (5.23) is used to derive the atercorrelation for sea data,
the following numerator has to be considered

B{Zu(E) 2 (F)} = o exp {35 w0 (Fo) (e — 1)}

A’,'
E {‘D (uO(FC) + Vs(U)) exp {]iﬂst(u) (), — xn/)}} :
(5.28)

Up

If the radial sea scatterer velocity influence on the antemo@ulation due to the two-way
antenna pattern can be neglected, then the denominatouas &gthe one in equation
(5.24), and the numerator is

B2} = 21D (lE)P B {esp {57 0, - e 629

where the constant exponential term is compensated for. diffezence between land
and sea data correlation is the additional exponential,terinich has to be considered
for sea clutter. To calculate this term, the distributionttad sea scatterer velocity has to
be known. Here a Gaussian distribution is assumed, as bedan (C.5), which allows
to state the numerator as

D (u 2T v,
E{Zn(FC)Zﬁ(FC)} o | \/2_7(;08 ‘ / exp{ 3 —i—j)\—rv—p(xn — xn/)} dvg
2% o2
— 2D Pesp {25 T o — ). (5.30)
r Up
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Here the relationship

o0 b +4
/ exp {ax2+bx—|—c} dx = \/Zexp{zaac} (5.31)

o0

Is used, which can for example be found in [79], to evaluagainkegral. With equation
(5.30) the sea data channel correlation is derived as

R
Ps = T . (5.32)

Equation (5.32) shows the fundamental difference betweanrmel correlations of land
and sea data. While under ideal experiment conditions, |atal decorrelates only due
to noise, for sea data there is an additional decorrelatarnce due to the movement of
the sea scatterers. Hence, the channel correlation of seasdexpected to be always
lower than the one of land data. Equation (5.32) also dematestthat sea data channel
correlation is dependent on the sea scatterer velocitgneei and the separation between
channels: andn’. Consequently, different channel correlations for différeea states
and different channel displacements are expected. In [3%]also analyzed how the
channel correlation of sea clutter relates to the eigeegbf the sea clutter spectral
density matrix.

If the influence of the radial sea scatterer velocity on th@ldaode modulation due to
the two-way antenna pattern cannot be neglected, the anpattern function has to be
known. Here a Gauss function is assumed for the absoluteestjualue of the two-way
antenna pattern as described by equation (C.6). The dentmmofaequation (5.23) has
then to be stated as

2
E{|Z.(F)I?} = "E/OO exp —(UO(FC) i) exp{— v } dvg+0> (5.33)

2 2
2m0 s J—o0 207; 2072

and the numerator equals to

0'2 oo Uo Fc Z*S
E{Zn(FC)Z’{(FC)}:\/ﬁU Lmexp | (22; )

2T v, vz
exp {j)\rvp(xn — a:n/)} exp {—203 } dv,.
(5.34)
To evaluate the integrals in equations (5.33) and (5.3é)dlationship in equation (5.31)

is applied and a centroid position at 0 Hz is assumed. Thasvalto calculate the deno-
minator and the numerator of equation (5.23) as

E{|Z(F)1} = 02— |D(uo(F.))* + 2 (5.35)

[~2 4 02
Ua+u§
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and
o, 212 02 02 (2, — T )?
E{Z,(F)Z1(F.)} = o?————|D(uo(F.))P exp { — =5 — ( :
o2 A2 v a2
o2+ % nr <2 +o;
(5.36)

With these calculations, the channel correlation of setiaglgan be derived as

2n2 02 2
exp {—/\”gvgk:(:vn — Tpr) }

ps = - , (5.37)
1 + CNR,
wherek = 020722 The difference between this channel correlation and tleeion
2toa

equation (5.35), where the influence on the amplitude maéidulalue to the two-way
antenna pattern is neglected, is that heret 1. If ‘;—2 is much smaller thaw?, the

qguotient ofk can be neglected and the channel correlation in equati8@i)(Beduces to
the one in equation (5.32). This coincides with the obsemahat only for high velocity
variances the influence of the sea scatterer velocity onrti@itade modulation has to
be considered, as shown in section 5.2.

5.5 Impact of Fast Scatterers

In the previous sections of this chapter, the multichannalysis was only derived for
slow scatterers. In chapter 3.4, however, also an additsmadtering type, the so-called
fast scatterers, has been specified. To consider the imp&dtscatterers on the multi-
channel properties, the clutter signal of equation (5.3)texed to

o(T) = /Q A(u) exp{j2rF (u, Vy(u)Td(u) du
+B /Q Ap(u) exp{g2nF (u, Vi (w))T}d () du. (5.38)

Here the first term is the contribution of slow scatterers #wedsecond one is due to fast
scatterers. The complex echo amplitude of fast scatteseilerioted byA ((u), which
is assumed to be spatially white, zero mean and independéme oeflectivity of slow
scatterersiA(u) and the velocity of fast scatterers. The radial velocityasitfscatterers
V¢ (u) is modeled as a random variable, which has the expected palaed the variance
a]%. Note that unlike for slow scatterers, the fast scatterkroiy is not considered to be
zero mean. As described in chapter 3.4, the velocity of fzstarers is much faster than
the one of slow scatterers. The Doppler frequency of fasteseas is of random nature
and corresponds to

_ 2y, 2

F(u, Vi(u)) = N u— )\—TVf(u). (5.39)
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The variableB denotes a Bernoulli random variable (see for example [80ih wie
expected valug . The realization of this random variable can either havevéhee O or
1 and models if fast scatterers are present at the obsemgd bén or not. The expected
valuey g corresponds to how many wave breakings occurred in the wix$scene.

The overall clutter spectral density matrix can be caladdtom the sum of the spectral
density matrices of both scatterer types, due to the indigrese of their amplitudes

C.(F) = Cs(F) + Cy(F). (5.40)
Here the spectral density matrix of slow scatterers is défineequation (5.15). The

spectral density matrix of fast scatterers can be derivesd sSimilar way as the one of
slow scatterers

CAF»—[ZE{B{@AA@A?@%M@dH@)
exp {j2n(F(u, Vi(u)) — F)r} du} dr

— sy B { [ d)d” ()s(F = Flu, Vy(w)) du}
= jpo* B {d (uo(F) g (“)> a <UO<F) LY (“)> } . (5.41)

Up Up

The variance ofd;(u) is denoted by?; and the propertys { 3°} = up of a Bernoulli
random variable is used. The number of occurring wave bngagwvents is independent
of the reflectivity or velocity of fast scatterers. The fasttserer velocity distribution is
expected to be independent of the look direction. Due to dmemegligible mean of the
radial fast scatterer velocity, the Taylor approximatiéthe DOA vector is performed at
us(F) = ug(F) + {L resulting in

e <uf(F) Vil W) ~ e(u(F)) + (Vf(“) - W) d(us(F)).  (5.42)

Up Up Up Up

Further, only the deterministic part of the fast scattempeity is considered for the
influence of the amplitude modulation by the two-way antepatiern. The described
simplifications and the approximation with the Taylor sgnieduce the spectral density
matrix of fast scatterers to
0.2
() = i D (s (P (elus(F))e™us(F) + (e (g (F)

p
2

= G (A () 4 (ag(F) + Tl () 4" (F)) . (64)

p
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The eigenvectors of this matrix are multiplesedfu;(F')) ande’ (us(F')), which differ
from the ones of the spectral density matrix of slow scatsate(F'). The overall eigen-
values of the clutter spectral density mat€ix(F') can therefore not easily be calculated
analytically. For this analysis, it is assumed that the gbuation of fast scatterers is much
smaller than the one of slow scatterers. This assumptiarstgfigd due to the fact that
wave breaking, which produces fast scatterers, only oaiwisngle positions, while slow
scatterers are always present. Then the properti€s.@f) can be calculated by using
the perturbation method, whe€g, (F') is the original matrix and;(F') is the perturba-
tion matrix. A detailed description of the perturbationghefor eigenvalue problems can
for example be found in [81] or [82]. For the sake of complets) the related aspects of
this method are summarized in appendix E. With this metheditkt order perturbation
of the second eigenvalue due to fast scatterers, as dasdybequation (E.5), can be
calculated as
_ e (ug(F))Cy(F)e' (uo(F))
Ao g (F) = ,

|le’(uo (F))][?

For simplicity, the second term of equation (5.43) is netglécbecause this term is much
smaller than the first one and the overall contributio@gf £') is considered to be small.
Then the second eigenvalue©f(F') can be calculated as

(5.44)

o202

Ao(F) = =5 Id (wo (F)II” + Ao, (F)

o0

= =51 (wo(F)IF + ppocpr(F) |D (us(F))I” (5.45)
p

’ 2
wherex(F) = ‘eH(ﬁz,(a)&g;ﬂ(f))’ Here the first term is due to slow scatterers and
the second one due to fast scatterers. On one hand, thisegshows that there is an
extra contribution to the second eigenvalue due to fasteseas. This implies an addi-
tional broadening of the space-time filter notch due to tbégtering type. On the other
hand, this equation suggests that the contribution of taterers is centered around the
frequencyF = iﬁu — A%uf, due to the shifted centroid of the clutter Doppler spec-
trum. Therefore an asymmetrical second eigenvalue digtoib in dependence of the
frequency is expected, if fast scatterers are present,lmdigp results in an asymmet-
rical broadness of the space-time filter notch. Figure 5@vshthe implication of this
calculation. Here the space-time filter gain is calculatéd e second eigenvalue from
equation (5.45). This figure shows that due to an asymmetlis@ibution of the second
eigenvalue, the broadness of the space-time filter notdsesssymmetrical.
Another important implication of the presence of fast satts is the fact that the re-
ceived power of this clutter type is distributed over othebspace dimensions of the

spectral density matrix. At dimensionthere is a contribution o?f(ﬂli{gh‘;"(m from

fast scatterers, where, (F') is then-th eigenvector of the slow scatterer spectral density
matrix.




54 5. Theoretical Multichannel Analysis of Sea Clutter

0
-5
-10
-15
-20
-25
-30

—200 -300 -200 -100 100 200 300 400
Doppler Frequency [HZ]

Directional Cosine
Normalized Power [dB]

Figure 5.8: Calculated normalized space-time filter gairhwdlculated second eigen-
value from equation (5.45)

It is demonstrated in figure 5.9 how the multichannel properthange due to fast scat-
terers. Here the power of a CPI, where the sea scatterers afiegrio the up swell
direction, is projected on estimated eigenvectors of thé&ten spectral density matrix.
This CPI contains also 128 pulses, but a PRF of 2000 Hz is usebtd any changes
of the characteristics of fast scatterers in time. Figug€ey.shows the incoherent sum
of all subspace dimensions. In this data set fast scattarersisible due to their high
Doppler shift, which is centered around positive Dopplegftrencies. Figures 5.9(a) and
5.9(b) visualize a significant difference between the suth@power and the power pro-
jected on the first eigenvector. The reason for this observa that many clutter returns
are positioned on other eigenvectors than the first one. r&i§19(c) demonstrates the
projected power on the second eigenvector, where quitedhigter contributions are ev-
ident. This is due to the high sea scatterer velocity vagaislow scatterers, as well as
due to an additional contribution of fast scatterers. Thes#ributions are evident be-
cause of higher returns at positive Doppler frequenciagurgi5.9(d) shows the projected
power on the third eigenvector, where echos of fast scastare present. The amount
of clutter power along the third eigenvector changes in ddpace of the availability of
fast scatterers. This is demonstrated by comparing figufearisl 5.9, where in the latter
CPI fast scatterers are present while in the first one they@reAs demonstrated in ap-
pendix E, due to the contribution of fast scatterers, noy tm eigenvalues, but also the
eigenvectors change. A multiple of the first eigenvectorlzanalculated from equations
(E.5), (E.8) and (5.16) as

B(F)€ (uo(F)), (5.46)

&/ (uo (F))e(us (F))eH (up (F))e(uo(F))
Wheres(F') = 1ot etun (F)IP=o2/2le ()P
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Chapter 6

Multichannel Propertiesof Real and
Simulated Data

To validate the multichannel characteristics of sea aluttés chapter analyzes these
properties of real and simulated data. The simulation medééscribed in section 6.1.

To perform simulations of multichannel sea clutter, theabska scatterer velocity vari-

ance has to be known. Section 6.2 derives therefore an déstifiaa this measure and

in section 6.4 this estimator is applied to all availableadsgts of the three sea experi-
ments. The multichannel properties of real and simulatedds¢a are analyzed in sec-
tion 6.3. The channel correlation of real data is evaluateskection 6.5, where different

data sets are compared and the agreement between estimdtealeulated correlation

coefficients is illustrated. Section 6.6 analyses the rhéthnel properties of real and
simulated data with fast scatterers.

6.1 Simulation Model

Simulations are performed to validate the theoretical ichédinnel model for sea clutter,
which is described in chapter 5. To simulate the receivedatjg space-time signal for
one iso-range ring and a short coherent processing int@@¥) is defined as

Z=2¢&+n. (6.1)

The space-time white Gaussian noise vector is denoted bgd ¢ is the space-time
clutter signal

c= [ A(u)s(u, Vs du, 6.2
&= | Aws(u, Vi(u)) du (6.2)
wheres(u, Vi(u)) = g(F(u, Vs(u))) ® d(u) is the normalized space-time radar clutter
signal. The Kronecker product is denoteddbyandg(F (u, Vs(u))) is the Doppler vector
for sea clutter. This Doppler vector can be defined as
g(F (u, Va(w))) = (exp {j2mmF (u, Vi(u) AT}),, (6.3)

m=1"
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where AT is the pulse repetition interval- (u, Vi(u)) is the Doppler frequency calcu-
lated from equation (5.1), andl/ is the number of pulses of the CPI. This model can
also be used to simulate land clutter if the Doppler frequesicalculated with equation
(2.9).

The radar parameters of the simulations are chosen to pomdgo those of the exper-
iments. The reflectivity is modeled as a Gaussian distrbatenplex random variable.
The variances of reflectivity and noise are assumed t@’be > = 1. The normalized
antenna pattern of one channel is described héy%ﬂl&u) Si (w%u) where si is the un-
normalized sinc function,,, the transmitting and.,., the receiving antenna length. The
antenna gain is chosen to match the CNR of real data and thd®@agmtroid is at 0 Hz.
The simulated pulses are multiplied with a Hamming window.

To simulate sea data, a Gaussian distribution of the setesmatelocity is assumed, as
in equation (C.5). To model this distribution, the velocigriances? has to be known.
One possibility is to calculate? from the Pierson-Moskowitz spectrum, as shown in
equation (3.16). Another possibility is to estimate theoeél variance from real data.
This method is described in the next section.

6.2 Estimation of Radial Sea Scatterer Velocity Variance

Several approaches to estimate the radial velocity vagiaheea scatterers are treated in
the literature. One possible method is described in [59B8t,[wheres? is estimated
from the bandwidth of the clutter spectrum, which is broatkdue to this measure. This
method is however not very precise, because of the diffitaltiscriminate between the
broadening due to the movement of the platform and the moneofesea scatterers.
An improved method is to estimate the velocity variance ftb channel correlation,
if several channels are available. This approach is evaduat[84] and [14]. Different
approaches to estimate the velocity variance from realatatalso discussed in [85].

In this chapter a new method is proposed, where the veloaitance is estimated from
the eigenvalues of the spectral density matrix.

The estimator of the velocity variance is derived using ggianption that the eigenvalues
of the clutter spectral density matrix can be described lmagqgn (5.14). Note that this
is only valid for sea scatterer velocities, having a Gaussiigtribution. With white
Gaussian noise and equation (5.14), the estimated eigexsvaf real data are assumed

to be
2 ! Oq

M (F) = of ———=|d(uo(F))|* + o (6.4)
o2+ 7%
~ 1 0?0’3 0'2
/\Q(F) = 02 N\ (3/2) Hd,<u0(F>>||2 + 0-72L (6.5)
P2+ US)

Ag(F) =+ = An(F) = o2, (6.6)
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Figure 6.1: Estimated radial sea scatterer velocity vagainom simulated data sets.

Simulations are performed with the variangg and the estimator from equation (6.8)
is applied to estimaté?. The blue dot indicates the estimated mean radial sea meratte
velocity variance from 100 trials, and the bars display taedard deviation.

The second eigenvalue can be used to estimatélowever, alsar? is not known. This
measure can be estimated from the first eigenvalue, whiciitses

M (F,) — o2 o?

A2 1 C n 2 s
62 = o2+ =, (6.7)

oq||d(uo(Fp))||? v2

wherecs? is here estimated from the third eigenvalue. The estimagiperformed around
the Doppler centroids,.. With equations (6.5), (6.6) and (6.7), the radial sea soatt
velocity variance can be derived as

O¢S2 _ _ UIQ’()\2(FC) _10721) ’ (68)
a(Fc)(/\l(Fc) - 0721) - ;E(A2(Fc> - 0721)

_ [ (uo(Fe))|2
wherea(F,.) = TCuolFI

Figure 6.1 shows the evaluation of the described estimatiare simulations, as de-
scribed in section 6.1, are performed with a certain sedeseatvelocity variance. Then
the estimator is applied to the simulated data to evaluatewll the variance can be es-
timated. The black line and the x-axis show the simulatedorsl variances and the blue
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line indicates the estimated one. The error bars demoedtratstandard deviation for
each regarded velocity variance, and the blue dots indtbatestimated mean velocity
variance. For each considered velocity variance, 100 sitiaus are performed. Figure
6.1 shows that the proposed estimator in equation (6.8) erage estimates the velocity
variance quite well. The mean error between the simulateldeatimated velocity vari-
ance is 0.004 #is’>. The standard deviation of this estimator is higher for kigrelocity
variances, because then the second eigenvalue changdsdessthis measure.

6.3 Comparison of Real and Simulated Data
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Figure 6.2: Eigenvalue distributions. ReaFigure 6.3: Eigenvalue distributions. Si-
land data, grazing angle 20 mulated land data, matching parameters.
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Figure 6.4: Space-time filter gain. RealFigure 6.5: Space-time filter gain. Simula-
land data, grazing angle 20 ted land data, matching parameters.

In this section the multichannel properties of real and &iea data are analyzed. To
compare the different data sets, a downsampling to a PRF @& H@0s performed and
the Doppler shift due to the platform velocity is removed.

For real sea data additionally the Doppler shift caused lyypmasent currents, modu-
lations of the long waves or the phase velocity of capillagves, which are described
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Figure 6.10: Phase of first eigenvectorFigure 6.11: Phase of first eigenvector. Si-
Real sea data, exp. 3, grazing angie. mulated sea data, matching parameters.

in chapter 4.3, is eliminated. In figure 6.2 the eigenvaluekuad clutter are plotted
for different Doppler frequencies of the same CPI as in figuke %igure 6.3 demon-
strates eigenvalue distributions of a simulated data st nvatching radar parameters.
The black line indicates additionally the summed power bttake channels for each
Doppler frequency. For both data sets a very strong firstneajae around the Doppler
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Figure 6.12: Eigenvalue distributions.Figure 6.13: Eigenvalue distributions. Si-

Real sea data, exp. 2, grazing angie. mulated sea data, matching parameters.
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Figure 6.14: Space-time filter gain. ReaFigure 6.15: Space-time filter gain. Simu-
sea data, exp. 2, grazing angle. lated sea data, matching parameters.

centroid is present, while the other two eigenvalues arégiblg. The second and third
eigenvalue of real land data are higher due to additionalmélamismatches, which are
not considered by the simulation, but the difference betwvtbe first and the other eigen-
values at the Doppler centroid is still 26.5 dB. The eigerwalistribution of real and
simulated land clutter justify that spectral leakage ideetgd for the chosen CPI length.
Figure 6.4 displays the normalized filter gain of the reatlladata set and figure 6.5 of
the simulated one. The filter notch of both data sets is a diddme, as expected due to
the demonstrated calculations of a theoretical land fittdigure 5.7.

Figure 6.6 shows eigenvalue distributions of the same seaadain figure 5.6, and the
eigenvalue distributions of a simulated data set with ggoading parameters are vi-
sualized in figure 6.7. For both CPIs a pronounced rise of thergkeigenvalue can
be observed around the Doppler centroid. The differencedsat the first and second
eigenvalue is only 11.3 dB for real data and 11.6 dB for siteaaTo simulate this sea
data, the radial sea scatterer velocity variance is estisnfabm the real CPI with equa-
tion (6.8) to bes? = 0.37 nt/s?, which corresponds to a standard deviatio pf 0.61
m/s.
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Figure 6.18: Space-time filter gain. ReaFigure 6.19: Space-time filter gain. Simu-
sea data, exp. 1, grazing angle. lated sea data, matching parameters.

Figures 6.8 and 6.9 demonstrate the normalized space-titeedain of the described
real and simulated data. A significant broadening of therfiitéch is evident. For each
look direction, there is a significantly higher amount of Ptgy frequencies where a
target would be attenuated or even suppressed by the Spazsda clutter filter. The
broadening of the filter notch confirms the calculations grenied in chapter 5.3, which
predict a broader space-time filter notch for sea clutter tbaland clutter.

The phase of the first eigenvector is visualized for real amdlated data in figures 6.10
and 6.11. The dotted black line indicates the phase of theehieal DOA vector in both
figures. The comparison of both phases shows an agreemeddrethe phase of the
first eigenvector and the one of the theoretical DOA vectbis Toincides with the ana-
lysis in chapter 5.2, where the first eigenvector is assumedual the DOA vector. The
small bends of the estimated first eigenvector phase argzathin appendix C.

In figure 6.12 eigenvalue distributions of a real sea datafsexperiment 2 are demon-
strated. This CPI is processed in the same manner as the CPperfireent 3. Figure
6.13 shows eigenvalues in dependence of the Doppler freguara simulated data set
with corresponding radar and sea parameters. Both figurpkagia significantly lower
second eigenvalue around the Doppler centroid. The difterdetween the first and sec-
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ond eigenvalue is 14.4 dB for the real data set and 15.1 dBéosimulated one at 0 Hz.
The first eigenvalue is also lower at the Doppler centroidabee the CNR is lower for
this experiment, as described in chapter 4.3. From the esdi@es of this real sea data
also a smaller radial sea scatterer velocity variance imettd, which is equal t62 =
0.158 nt/s?.

Figures 6.14 and 6.15 show the normalized space-time fittersgpf the described sea
data sets. The filter notches of real and simulated data gndisantly narrower than
the filter notches of experiment 3. The consequence of tregrehation is that for this
experiment slower low SCNR targets can be detected than fmriexment 3. A change
of the broadness of the space-time filter notch in dependeiites radial sea scatterer
velocity variance is in accordance with the calculationiclv are performed in chapter
5.3 and visualized in figure 5.7.

Figure 6.16 demonstrates eigenvalue distributions of BG4 of experiment 1. This
CPl is also processed in the same manner as the data sets ofrexgs 2 and 3. The
eigenvalue distributions of figure 6.17 are evaluated ohaukated CPI with matching
radar and sea parameters. Both figures show a small diffetetaeen the second and
third eigenvalue around 0 Hz. This indicates a small infleesicthe sea scatterer velo-
city on the multichannel properties. The sea scatterercitglgariance is estimated from
the real data set a& = 0.088 ni/s?, which equals to a standard deviationsf= 0.30
m/s.

Figures 6.6 - 6.17 show significant variations of the secagelwalue around the Doppler
centroid for different experiments. The real and simul&@dls of experiment 3 display a
pronounced second eigenvalue. The CPlIs of experiment 2izs@dess distinct second
eigenvalue and the demonstrated second eigenvalue ofiegperl is almost only due to
noise. The second eigenvalue of the different experimér@ages due to its dependence
on the radial sea scatterer velocity variance. Differeatsmtterer velocity variances of
the three performed sea experiments are expected, duddredifsea states, which were
present during the data acquisitions. The influence of thestsde on the radial sea scat-
terer velocity variance confirms the proportional relasioip between this measure and
the orbital velocity variance, presented in equation (5T™)e orbital velocity variance
is clearly dependent on the sea state. If, for example, tBes@&i-Moskowitz spectrum
is considered, equation (3.17) shows that the orbital gleariance increases quadrat-
ically with the wind velocity.

Figures 6.19 and 6.18 demonstrate the normalized spaeditier gains of the described
CPIs of experiment 1. These figures show a narrower filter nbtata comparison of the
space-time filter gains of the different experiments is clifi due to a changing CNR.

To have a meaningful comparison of the space-time filter fraidifferent sea scatterer
velocity variances, simulations are performed with thees@nR but varyings?. In fig-
ure 6.20 this evaluation is visualized, where the space-filter gain is plotted for, = 0.
The blue line shows the filter of simulated land clutiet & 0) and the brightly colored
lines indicate filters of sea clutter. To simulate the défersea data sets, the same radial
sea scatterer velocity variances as the ones estimatedtimpresented CPlIs of the dif-
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Figure 6.20: Space-time filter gainat= 0 for simulated data sets with same CNR but
varying velocity variance.

ferent experiments are used. This figure demonstratediseymtiy broader filter notches
of sea data as compared to land data. Additionally, a braagemith a rising velocity
variance is evident.

The dotted lines in figure 6.20 indicate filter gains of seadats, which are simula-
ted with theoretically calculated radial sea scattereocigf variances from equations
(3.17) and (5.2), with radar and sea parameters which qmnesto the performed sea
experiments. This evaluation is performed to show that thitichannel properties of sea
clutter can also be simulated if the velocity variance cabeastimated from real data in
advance. To calculate the orbital velocity variance withRBerson-Moskowitz spectrum
from equation (3.17) and to determine the radial sea seattefocity variance from the
orbital velocity variance with equation (5.2), the maximrenorded swell directions and
wind velocities, which are summarized in chapter 4.2, asgluBeviations between cal-
culated and estimated radial sea scatterer velocity \agare present due to unprecise
weather data and due to the application of the Pierson-Maskspectrum, which is
only an approximation of the real sea surface spectral tler@ther approximations of
the sea spectral density are more precise, like the JONSWAEtrsm, which is intro-
duced in [86]. Nevertheless, the simulated multichannafatteristics with calculated
sea scatterer velocity variances show that a reproducfititleamultichannel properties
of real sea data is also possible to some extent if an estmatithe sea scatterer velocity
variance cannot be performed.

Figure 6.21 demonstrates eigenvalue distributions of a Gittwwas acquired during
experiment 3 with a grazing angle of 35This CPI is processed exactly like the other
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Figure 6.21: Eigenvalue distributions.Figure 6.22: Eigenvalue distributions. Si-

Real sea data, exp. 3, grazing angje. mulated sea data, matching parameters.
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Figure 6.23: Space-time filter gain. ReaFigure 6.24: Space-time filter gain. Simu-
sea data, exp. 3, grazing angle. lated sea data, matching parameters.

data sets in this section. Figure 6.22 visualizes eigenvdistributions of a simulated
CP1 with corresponding radar and sea parameters. Both fignogsa higher first eigen-
value at the Doppler centroid as compared to data sets tadlewith the 18 grazing
angle. This is due to a higher CNR as discussed in chapter 42 fér these CPIs
a pronounced second eigenvalue is visible around the Dopetgroid. The difference
between the first and second eigenvalue is only 12.1 dB forethledata set and 12.4 dB
for the simulated one. The estimated velocity variancessponds té2 = 0.423 m?/s?,
which is equal to a standard deviationaf= 0.65 m/s.

In figures 6.23 and 6.24 the space-time filter gain of the prtesereal and simulated
data is visualized. A significantly broader filter notch isdent for these data sets than
for land clutter. At the look directiom = 0, for example, a target with a radial velocity
of 1.1 m/s would be attenuated by 11 dB more by the presented ifil figure 6.23 as
compared to the land space-time filter shown in figure 6.4.

The comparison of multichannel properties of simulated sead sea data, which are
demonstrated in figures 6.6-6.24, illustrates a good ageaent his shows that the mul-
tichannel properties of sea clutter can be reproduces hatkéscribed simulation model
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for different sea states. Furthermore, this evaluatiorimor the multichannel sea clutter
properties, which are theoretically derived in chapter 5.2

6.4 Radial Sea Scatterer Velocity Variance of Real Data

The radial sea scatterer velocity variance has a crucialdnfle on the multichannel
characteristics of sea clutter. This measure decides hawh the multichannel properties
of sea clutter deviate from the ideal properties of landtelutlf fast scatterers are not
considered, the velocity variance specifies the magnitdidieeosecond eigenvalue and
the decorrelation of the channels in addition to noise. Télecity variance is a measure
of the broadness of the space-time filter notch, which detexsnat which velocities a
target can still be detected after sea clutter suppression.

This section presents estimations of velocity varianceh e presented estimator in
equation (6.8). Here all collected data sets of the threeespariments are evaluated.
The performed estimations are summarized in tables 6.1,-vwh8re the mean of all
estimated velocity variances {62} of one data set, the standard deviati¢l7(ar {62}

of the corresponding data set and the azimuth angle rangdlihd®ordinates, at which
the velocity variance is estimated, are documented.

To estimate the velocity variance, CPIs with 256 pulses ansidered at steering angles,
which range from70° - 110° in the platform coordinate system. The eigenvalues are
calculated from a spectral density matrix, which is esteddtom 200 range bins. The
range interval with the highest clutter power is chosentit ¢stimation. For experiment
3, several range intervals are selected for each CPI. Theisehariance is estimated
from each range interval and an average is calculated. $ipsrformed to mitigate the
influence of fast scatterers.

The mean velocity variance is calculated from 150 - 2504yidépending on the available
number of CPlIs for the desired steering angle range. The itaelariance is assumed
not to change due to the azimuth angle within the observedviat Unfortunately, the
data acquisition during experiment 1 at side 2 with the gigangle of15° was not
successful.

Tables 6.1 - 6.3 show that the mean velocity variance chasigesicantly for different
experiments. The estimated velocity variance intervagearfrom0.075 m?/s? to 0.125
m?/s? for the first experiment, from.141 m?/s? to 0.231 m?/s? for the second one and is
equal t00.360 m?/s* - 0.514 m?/s? for the third experiment. Different velocity variances
are evaluated for different experiments due to unequaltaés sluring these experiments.
The orbital velocity variance depends on the weather and@editions, and the radial
sea scatterer velocity variance is proportional to thetaklelocity variance.

A higher velocity variance is expected for in swell direaadue to equation (5.2). Ad-
ditionally, for the cross swell direction a higher velocugriance should be present for
the grazing angle a35° as opposed td5°. While such a tendency can be observed re-
garding the estimations of experiment 3, for the other erpants this dependence is not
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ppvu [ | E{62} m¥$] | \/Var {62} [m?/$?]
# = 35° side1l| 50-95 0.102 0.025
0 = 35°, side 2| 340 -25 0.100 0.023
= 35°, side 3| 255 - 300 0.105 0.029
0 = 35°, side 4| 310 - 355 0.102 0.021
= 15°,side 1| 70-105 0.075 0.015
0 = 15°, side 3| 260 - 295 0.110 0.019
0 = 15°, side 4| 165 - 200 0.125 0.017

Table 6.1: Estimated radial sea scatterer velocity vasari@xperiment 1

ppvu [ | E{62} m¥$] | \/Var {62} [m?/$]

= 35°,side 1| 65-105 0.185 0.027
0 = 35°, side 2| 350 -25 0.141 0.022
0 = 35°, side 3| 265 - 305 0.197 0.034
0 = 35°, side 4| 170 - 205 0.197 0.032
f = 15°,side 1| 70-105 0.231 0.035
0 = 15°, side 2| 350 - 25 0.144 0.014
f = 15°, side 3| 260 - 295 0.198 0.024
0 = 15°, side 4| 175 - 200 0.214 0.029

Table 6.2: Estimated radial sea scatterer velocity vagari@xperiment 2

pevu [ | E {62} IM*$] | \/Var {62} (/7]

f = 35°, sidel| 50-95 0.473 0.085
f = 35°, side 2| 310 - 355 0.432 0.065
f = 35°, side 3| 210 - 255 0.504 0.067
0 = 35°,side 4| 130-175 0.401 0.046
f = 15°,sidel| 50-85 0.450 0.084
0 = 15°, side 2| 315 - 350 0.434 0.055

= 15°, side 3| 210 - 250 0.514 0.068
0 = 15°, side 4| 130 - 165 0.360 0.034

Table 6.3: Estimated radial sea scatterer velocity vadari@xperiment 3

distinct. The reason for the observed discrepancies arsidened to be the unprecise
weather condition measurements, which were collected andeur and not exactly at
the observed scene. The collected weather informationrisidered to be sufficient to
compare the different experiments with each other, but retipe enough to allow any
conclusions concerning the data sets of the different saflese experiment. For such



6.5. Channel Correlation of Real Data 69

an analysis more precise in-situ measurements would beedeed

The radial sea scatterer velocity variance is also a crowasure for SAR imaging. This
measure determines the azimuth resolution of a sea surfRerage (see for example
[15] or [12]). In literature this measure is often referredas the coherence time. The
relationship between the coherence time and the sea sratidocity variance is given

as ([12], [87]) \

o 203,

Ts (6.9)
which is valid if the time auto-correlation function of semagerers can be assumed to be
Gaussian.

In literature several attempts to estimate the coherenoe ¢an be found ([13, 84, 14]).
In [84] the coherence time is estimated from two along-trelt&nnels, and in [14] two
channels with a switching technique are used to achievelddsealine. The estimations
of both publications are performed in L-band with obtainetbeity variances of 0.052
m?/s? - 0.126 n1/s? in [84] and 0.026 Vs - 0.317 n?/s? in [14].

6.5 Channed Correation of Real Data
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Figure 6.25: Channel correlation of land data for differezitraith angles. Estimated
correlation (colored lines) and theoretical correlationland data (black line).

To evaluate the channel correlation from real range corspredata, coherent processing
intervals with 256 pulses are chosen to apply a Fourierfioams The channel correlation
Is estimated from 200 range bins. The pulses are multipligd asHamming window to
mitigate spectral leakage. The cable length and systerysiate compensated for each
channel. The Doppler shift due to the platform velocity immowed, and for sea data
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Figure 6.26: Channel correlation of sea data for differeithath angles. Experiment 3,
side 1, grazing angl&5°. Estimated correlation (colored lines) and theoreticaledation
for land data (dashed black line) and sea data (dotted bilaek |

additionally the Doppler shift caused by any sea scatteghacities is eliminated. The
channel correlation is evaluated in dependency of the ahilewgley s 7, which is the
angle between the x-axis and the line-of-sight vector tocérger position in the ENU
coordinate system.

In figure 6.25 the channel correlation of real land data istptbfor different azimuth
angles. Here a scale is chosen to match the channel carretdtsea data. Additionally,
a second figure is inserted with a more appropriate scaleete the land data channel
correlation. The colored lines show the estimated coiglatoefficients using equation
(5.23) and the dashed black line indicates the calculatadre#i correlation from equa-
tion (5.27), which calculates the decorrelation due toedisgure 6.25 shows highly cor-
related channels, where the mean correlation coefficieategual toE {512} = 0.997,
E{p13} = 0.998 and E {3} = 0.997. These mean values suggest equal correlation
between all channels. Additionally, in figure 6.25 a matctwieen the calculated and
estimated channel correlations is visible, where the méameocalculated channel cor-
relation is equal taZ {p;} = 0.999. The described evaluation validates equation (5.27)
and suggests that noise is the only decorrelation sourdbdéatescribed land data set.
Figure 6.26 shows the channel correlation of a real sea dgta/kich was collected du-
ring experiment 3 with the grazing angleidgf’. Here again the colored lines indicate the
estimated channel correlation from equation (5.23) andifshed black line shows the
calculated channel correlation from equation (5.27). #Aiddally, the dotted black line
visualizes the calculated channel correlation from eguafb.37), which is derived for
sea data. In figure 6.26 a significantly lower channel caliceigfor sea data is visible
as compared to land data. The estimated channel correlatadso much lower than the
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Figure 6.27: Channel correlation of sea data for differeithath angles. Experiment 3,
side 1, grazing angl&s°. Estimated correlation (colored lines) and theoreticaledation
for land data (dashed black line) and sea data (dotted bilaek |

calculated one from equation (5.27), indicating a furtteiree of decorrelation for sea
data than just noise. Another striking property of the eated sea data channel corre-
lation are the significantly different correlation coeféiots between channels 1 and 3,
as compared to the other channels, which is due to differleasg center separations.
Channels 1 and 2 and channels 2 and 3 are equidistant. Theqardee separation be-
tween channels 1 and 3 is however twice as big. As derived uaten (5.37), higher
phase center separations result in lower channel cooefatiThis is crucially different
from land data, where this measure is expected to be indepéwnd the channel sepa-
ration. A match of the calculated correlation coefficiemtsri equation (5.37) and the
estimated ones is evident, where also different valuesaloelated for different phase
center separations.

To determine the channel correlation of sea data, the rag#$catterer velocity variance
has to be known. For this calculation the sea scatterer ighariance is estimated from
equation (6.8). Note that it would also be possible to edrtize velocity variance from
the estimated channel correlations. This estimator is lieweot applied here, because
it has a higher variance than the proposed estimator.

The mean correlation coefficients, which are presented umdi§.26, are

E{p12} = 0.952, E{ps3} = 0.951 and E {p13} = 0.836. The mean calculated sea
data correlation coefficients are 0.953 and 0.832 for thehase center separations.
If the sea data channel correlation for this data set is tatled without considering the
influence of the radial sea scatterer velocity on the antgrateern, the mean values
for both channel separations would be 0.940 and 0.786. Tvedges indicate that the
antenna pattern cannot be neglected when considering &mmehcorrelation.
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Figure 6.28: Channel correlation of sea data for differeithath angles. Experiment 2,
side 3, grazing angl&5°. Estimated correlation (colored lines) and theoreticaledation
for land data (dashed black line) and sea data (dotted bilaek |
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Figure 6.29: Channel correlation of sea data for differemhaih angles. Experiment 1,
side 3, grazing angl&s°. Estimated correlation (colored lines) and theoreticalelation
for land data (dashed black line) and sea data (dotted biaeX |

Figure 6.27 shows channel correlation coefficients foredght azimuth angles of a sea
data set collected during experiment 3 with the grazingen@t5°. This figure demon-
strates same properties for this grazing angle as compareéx tgrazing angle of5°.
The correlation of the channels is lower compared to land,dasulting in a discrepancy
between estimated channel correlations and the thedreheanel correlation of land
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‘ ‘ E{ﬁu} ‘ E{ﬁ23} ‘ E{ﬁ13} ‘ E{ﬂz} ‘ E{ﬂs} ‘
f = 35°, sidel| 0.966 0.965 0.936 | 0.981 | 0.968/0.933
0 = 35°, side 2| 0.957 0.956 0.929 | 0.971 | 0.958/0.925
0 = 35°, side 3| 0.970 0.969 0.938 | 0.984 | 0.971/0.935
0 = 35°, side 4| 0.968 0.966 0.938 | 0.981 | 0.969/0.936
f# = 15°,side 1| 0.953 0.952 0.932 | 0.967 | 0.957/0.931
0 = 15°, side 3| 0.942 0.941 0.913 | 0.960 | 0.947/0.911
0 = 15°, side 4| 0.955 0.954 0.918 | 0.974 | 0.959/0.917

Table 6.4: Estimated and calculated channel correlatiefficants of experiment 1

’ ‘ E{p12} ‘ E{pa3} ‘ E{pi3} ‘ E{m} ‘ E{ps} ‘
0 = 35°, side 1| 0.962 0.961 0.884 | 0.993 | 0.969/ 0.900
0 = 35°, side 2| 0.961 0.960 0.904 | 0.985 | 0.967/0.917
0 = 35°, side 3| 0.966 0.965 0.899 | 0.992 | 0.969/ 0.905
0 = 35°, side 4| 0.969 0.968 0.895 | 0.997 | 0.975/0.912

6 =15°sidel| 0.945 | 0.944 | 0.856 | 0.984 | 0.952/0.866
6 =15°side2| 0.971 | 0.971 | 0.919 | 0.9993| 0.971/0.911
6 =15° side3| 0.959 | 0.958 | 0.902 | 0.984 | 0.961/0.899
6 =15° side4| 0.970 | 0.970 | 0.905 | 0.997 | 0.974/0.910

Table 6.5: Estimated and calculated channel correlatiefficants of experiment 2

‘ ‘ E{ﬁu} ‘ E{ﬁ23} ‘ E{ﬁm} ‘ E{PZ} ‘ E{Ps} ‘
0 = 35°,side 1| 0.951 0.950 0.828 | 0.998 | 0.952/0.826
0 = 35°, side 2| 0.950 0.949 0.822 | 0.999 | 0.956/0.837
0 = 35°, side 3| 0.943 0.941 0.798 | 0.999 | 0.950/0.818
0 = 35°, side 4| 0.953 0.952 0.836 | 0.998 | 0.954/0.834
0 =15°, sidel| 0.952 0.951 0.836 | 0.998 | 0.953/0.832
0 = 15°, side 2| 0.943 0.941 0.813 | 0.996 | 0.950/ 0.827
0 = 15°, side 3| 0.936 0.934 0.785 | 0.998 | 0.948/0.815
f = 15° side4| 0.951 0.949 0.834 | 0.997 | 0.953/0.832

Table 6.6: Estimated and calculated channel correlatiefficeents of experiment 3

data from equation (5.27). A match between the actual chaonelations and the theo-
retical channel correlation of sea data can however be vbdeawhere also here channels
1 and 3 are significantly less correlated than the other ones.

In figures 6.28 and 6.29 channel correlation coefficientyistealized of data sets, which
were collected during experiments 2 and 1, to show how semaa&nnel correlation
changes for different sea conditions. In figure 6.28 the dataf experiment 2 is pre-
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sented, which shows a smaller difference between the dstihtarrelatiorp,3 and the
other correlations in reference to the data sets of expeti@eThis is due to a smaller
sea scatterer velocity variance, which was present dusipgranent 2 as compared to
experiment 3. Figure 6.29 shows an even smaller discregzetayeen the different chan-
nel correlations. In this figure the correlation is evalddtem a data set of experiment
1, where the radial sea scatterer velocity variance is thadlest one of all three sea ex-
periments. Also the deviation between estimated coeffisiand the calculated one for
land data is not significant, indicating a small influencehefinovement of sea scatterers
on the channel decorrelation. A smaller sea scatterer iglegriance is observed for
experiments 2 and 1 due to a smaller sea state, which wasnpihseng these exper-
iments. The radial sea scatterer velocity variance is ptapal to the orbital velocity
variance of the sea surface and this variance decreasandtiessea states, as described
in chapter 3.1.

Figures 6.28 and 6.29 show that for smaller sea states thmehdecorrelation due to
noise rises. This is due to the decrease of the radar crossrsetsea echoes for smaller
sea states, as observed in chapter 4.3.

Tables 6.4 - 6.6 summarize the correlation coefficients éetwthe three channels of
all available data sets. These coefficients are estimatddnvthe azimuth angle inter-
vals described in section 6.4 and calculated with equat{brs7) and (5.37). These
tables show three properties. First, they illustrate thanoel correlation of sea data is
highly dependent on the sea state. The difference betweetothelation of channels 1
and 3 and the other channel correlations changes signifidandifferent experiments.
Also the discrepancy between the actual channel decaoeland the calculated chan-
nel decorrelation due to noise varies for different expents. Both variations are due to
different sea scatterer velocity variances during difieexperiments, hence the impact
of the movement of the scatterers is different for all thregegiments. Secondly, tables
6.4 - 6.6 demonstrate same properties for both grazing anglerdly, these tables vali-
date the derived model to calculate the channel correlatigea data in equation (5.37),
indicating that channel decorrelation due to the movemeétitesea surface can be re-
produced by the proposed model. Some deviations are evmiegperiment 3 at sides,
where significant amounts of fast scatterers are presens. iFbecause fast scatterers
are not considered in the derived model. Another possibl&tien source is if the sea
scatterer velocity has a different distribution than thei§an one. Further, the channels
can decorrelate due to any other non-ideal conditions, ware not considered by the
presented model.

6.6 Real and S mulated Data with Fast Scatterers

To validate the impact of fast scatterers on multichanneperties of sea data, simula-
ted and real data sets with slow and fast scatterers areag@dluSuch simulations are
performed as described in section 6.1. Here, however, a&gpae clutter signal, which
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consists of slow and fast scatterers, is used
&= / A(w)3(u, Vi(u)) du + B/ Ap(w)8(u, Vi (u) du. (6.10)
Q Q

For the described simulations, the mean of the fast scaitetecity 1., the mean of the
Bernoulli variableu z, the fast scatterer velocity varian@% and the reflectivity variance
o2, are chosen to match real data.

In figure 6.30 beamformed clutter power of the same CPI as indi§L9 is presented, and
the power of a simulated data set with corresponding raddseaa parameters is shown
in figure 6.31. Both figures show several scatterers with a hegjative radial velocity.

In figures 6.32 and 6.33 the eigenvalue distributions oféheBIs are visualized. The
second eigenvalue around the Doppler centroid is alsofgigntly higher than for land
data, due to the motion of the sea scatterers. Additionladiyever, the centroid of the
second eigenvalue distribution is different from the onehef first eigenvalue. For si-
mulated and real data, the second eigenvalue distribuBatrad is at 46 Hz. This is
expected due to the derivations which are performed in en&pb, where an asymmet-
ric contribution to the second eigenvalue distribution @peindence of the frequency is
calculated, if fast scatterers are present. The dotted itz in figure 6.33 indicates the
calculated distribution of the second eigenvalue from &#qng5.45). For this calcula-
tion, the clutter power of slow and fast scatterers of thégoered simulation are used.
The calculated eigenvalue distribution is also centeredrad 46 Hz and agrees quite
well with the simulated one. Small deviations are presenttdiseveral approximations,
which are applied to calculate the second eigenvalue ofitivedus fast scatterer spec-
tral density matrix. Figures 6.32 and 6.33 show a highedtkigenvalue distribution,
which is because of the presence of fast scatterer clutteempio the third subspace di-
mension. The power of the third eigenvalue distribution guffe 6.32 is lower than the
one in figure 5.9, due to a discrepancy between estimatedaculated eigenvectors.
Figure 6.34 and 6.35 show the phase of the first eigenvecteabaind simulated data. In
figure 6.34 the black line indicates the phase of the thexaelOA vector. It is obvious
that the phase of the DOA vector does not correspond to thefthe first eigenvector
at positive frequencies. As predicted in chapter 5.5, tis¢ éigenvector changes asym-
metrically due to the contribution of fast scatterers arttiésefore not equal to the DOA
vector any more. In figure 6.35 the black line indicates thasphof the first eigenvec-
tor, calculated from equation (5.46). This figure shows adgagreement between the
calculated and simulated phase of the first eigenvectos Vidlidates the derivations per-
formed in chapter 5.5. Small deviations exist due to the agguoximations.

The space-time filter gain of real and simulated sea datanstit§ast scatterers are il-
lustrated in figures 6.36 and 6.37. Both figures show a broaltler fiotch at positive
Doppler frequencies than at negative ones. Therefore, saty@w Doppler frequencies
more look directions are attenuated by the space-time. fildare to a changing cen-
troid of the second eigenvalue distribution, an asymmepece-time filter is predicted
is chapter 5.5.



76 6. Multichannel Properties of Real and Simulated Data

In figure 6.38 beamformed clutter power of a CPI of experimeastBesented, where the
sea surface was moving in the down swell direction. This CIpragessed in the same
manner as the CPI in figure 6.30. Figure 6.39 displays beanefrctutter power of a
simulated CPI with matching radar and sea parameters. IreBguiB8 and 6.39 several
scatterers at positive radial velocities are visible.

Figure 6.40 shows eigenvalue distributions of the desdrieal data set and figure 6.41
of the simulated one. In both figures the centroid of the se@genvalue distribution
Is shifted to -31 Hz. Figure 6.41 also visualizes the catedalistribution of the second
eigenvalue for different frequencies with equation (5#%Ythe corresponding radar and
sea parameters. Also for the down swell condition this datmn matches the simula-
tion.

In figure 6.42 the phase of the estimated first eigenvectdreofdal data is plotted. Ad-
ditionally, the dotted black line indicates the phase ofttie®retical DOA vector. Figure
6.42 shows that at negative Doppler frequencies the theafrddOA vector does not
match the actual one. In figure 6.43 the phase of the first eggeor of the simulated
data set is visualized. Here the dotted black line indictitegphase of the theoretically
calculated first eigenvector from equation (5.46). Thisrégghows that this measure can
be calculated from this equation for different frequencaédso for the up swell condition.
Figures 6.44 and 6.45 illustrate the space-time filter gasiraulated and real sea data
with many fast scatterers at negative Doppler frequentiese asymmetrical broadness
of filter notches is evident, as well, where for these data aetetection is more difficult
at negative Doppler frequencies.

The comparison of simulated and real multichannel propgrtivhich are presented in
figures 6.32-6.45, illustrates a good agreement betwedn dster sets for the up and
down swell direction. All multichannel characteristicsrefl data are reproduced by
the performed simulations. This shows that the impact dffeatterers on multichannel
characteristics can be simulated with the proposed model.
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Chapter 7

Experimentswith a Small Cooperative
Boat

In the context of this thesis, experiments with the PAMIRtegsand a small cooperative
boat were performed. The goal of these experiments, whigkl@scribed in section 7.1,
is to evaluate if STAP is needed for maritime radar systerosttis analysis, the target
position is calculated inside the acquired data in secti@draid the SCNR is determined
in section 7.3. Section 7.4 demonstrates the detectioonmeaince of the cooperative
target for different processing methods.

7.1 Experiments

Figure 7.1: Cooperative boat, 7.5 m lengti2.5 m width
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Figure 7.2: Flight path with a picture of cooperative target

PRF 2000 Hz
Range resolution 3.75m
Nearest center slant range5600 m
Platform velocity 100 m/s
Depression angle 35°
Slant swath 4500 m

Table 7.1: Radar parameters

Significant wave height 1.9m-2m
wind velocity 9m/s-11m/s
Wind direction (ENU) | 170° - 200°
Swell direction (ENU) | 160° - 180°
Sea state 4

Table 7.2: Weather data

The experiments, which are evaluated in this chapter, wanfeqpned in the same manner
as the sea experiments described in chapter 4.2. Here, bovadso a cooperative target
was located inside the scene. This target is a small boatdwitknsions 7.5 m lengtk

2.5 m width, as shown in figure 7.1. During these experimenGPS system was used
to record the position, track and velocity of the boat, whheeboat was moving with its
maximum possible velocity of 5 m/s - 6 m/s. In figure 7.2 thehiligath is illustrated
with a picture of the cooperative target. This picture waetawith a camera, which

is integrated inside the PAMIR system, during the performegeriments. The track of
the plane was rotated by 3@rom the north, east, south and west direction. The radar
parameters are summarized in table 7.1.
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Several weather stations located near Helgoland were asedléct weather data. These
recordings are summarized in table 7.2 and show quite roegltenditions. The swell
and wind direction angles are transformed into an ENU coartei system and the sea
state is identified on the Douglas scale.

7.2 Target Position in acquired Data

To evaluate how well the cooperative boat can be detectdudiferent processing tech-
nigues, the position of this boat inside the acquired dasadhe known. The longitude,
latitude and velocity of the boat were recorded with a GP8ivec. These measures are
also known from the platform due to the IMU and DGPS systemighvare integrated
inside the PAMIR system. The longitude and latitude of th&eeposition were defined
a priori. The roll, pitch and yaw angles of the platform weaken into account by the
steering of the phased array antenna, hence the centeiopdsitalways the specified
longitude and latitude.

To calculate the position of the target, its longitude andude have to be evaluated in
terms of an earth-based local coordinate system. The lohgiand latitude, which are
given in the World Geodetic System 1984 (WGS84), are firstsfiamed to an earth-
centered earth-fixed (ECEF) coordinate system. These cwtedi are then converted to
a local east-north-up (ENU) Cartesian coordinate systentrarsform from the ECEF
coordinate system to an ENU coordinate system, a referesgiggn has to be defined.
Here the platform position is chosen as the reference pasitecause all location infor-
mation collected by the PAMIR system is in reference to tladéfptm, hence the platform
coordinates are always, = (0,0, O)T. The described geometry is visualized in figure
7.3. Here the position of the boat is described by the pasitectorx,; and the center
position coordinates are denoted Xy The LOS vector to the center position is equal
tou, = ﬁ and the one to the target position is describedipy= ﬁ Note that
for this geometry the platform is not assumed to move aloegxtaxis. +he platform
velocity vector can be calculated fromy = (v, cos(,), U sin(@,), v,,)", Where the
horizontal and vertical platform velocities, andv,, and the track of the platform,
were recorded by the PAMIR system. The velocity veetpois due to the mean sea scat-
terer velocity at the center position.

With the target position vector, the target slant range eodiculated as

re =\ (@ — )2 + (g — )2 + (20— 2)? (7.1)

and the Doppler shift of the target is equal to

Flu,vy) = ——ul (v —v,). (7.2)

Herev, is the target velocity vector, which can be calculated as

Vi = U (COS<99?5)7 SiH(QOt), O)T ’ (73)
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Figure 7.3: Geometry of observed scene

wherey; is the track of the target angd the magnitude of the target velocity. Both values
were collected with the GPS system. With the target Dopigt, she radial velocity of
the target relative to the center position can be calculased

U=y (F(uy, vy) — F(ue, vy)), (7.4)
whereF(u,, v;) is the Doppler shift at the center position, whose estinmdsalescribed
in chapter 4.3. The described calculation is demonstratedlf four sides in figure 7.4
in dependence of the azimuth angle in ENU coordinates, wisidefined in equation
(4.1). Figure 7.4 shows that the radial target velocity esquite strongly for sides 1
and 3. For some angles the target is very fast and for someutiziamgles the radial
velocity is almost zero. For sides 2 and 4 the variation oftdrget radial velocity is
significantly smaller. During the data acquisition at sidetfe target velocity varied
around 1.5 m/s - 4 m/s and while the plane was flying on sideedtafyet moved with a
radial velocity between 1 m/s - 1.5 m/s. As was described aptdr 2.2, it is important
to know if the target is positioned inside or outside of thettelr band to analyze the
different clutter suppression filters. For the PAMIR systéme theoretical clutter band is
distributed between the velocity interval ©f2 m/s for the platform velocity of 100 m/s.
Due to the movement of the sea scatterers, the actual chatet is however broader.
To be positioned outside of the sea clutter band, the rela#dial velocity of the target
therefore has to be faster than for a land clutter band.

Figure 7.5 shows beamformed data in the range Doppler doforione CPI, which
was acquired during side 4. The CPI consists of 128 pulsesavRiRF of 2000 Hz.
The white circle in this figure indicates the expected positf the boat, calculated
from equations (7.1) and (7.2). The target is however mabketie strong clutter. The
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Figure 7.4: Relative radial velocity of cooperative targatcalated from GPS data and
clutter Doppler centroid

remaining uncertainty in range is due to the uncertaintyhefGPS localization, which
was 10 m during the data collection. This affects also the@ay of the Doppler shift,
but its uncertainty is additionally determined by the aecaion and the vertical velocity
of the target, which were not known exactly during these erpents. To visualize
the Doppler shift due to the movement of the scatterers, tidyDoppler shift due to
the platform velocity is compensated in figure 7.5. The rengi Doppler shift after
this compensation is at 31 Hz, which corresponds to a meaal naglocity of the sea
scatterers of -0.5 m/s.

7.3 SCNR before and after Clutter Suppression

A crucial parameter for target detection is the SCNR. On one hthis measure is pre-
sented in this section without any processing, and on ther dthnd the SCNR is evalu-
ated after clutter suppression with different filters. Inufig 7.6 the SCNR before clutter
suppression is plotted for data sets collected from the ddterent sides in dependency
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Figure 7.5: Beamformed data of one CPI. The circle indicategtsition of the target,
calculated from GPS data.

of the azimuth angle. The signal of the target is estimatedhfthe maximum power
inside the circle. The clutter and noise power is estimagechiculating the mean power
inside the main beam (3 dB), but outside of the circle. For lmma powers, rather
strong clutter returns inside the circle are mistaken toheetarget, hence this estima-
tion has to be considered as being the upper bound of the @NIRSFigure 7.6 reveals
quite strong variations of the SCNR before clutter suppoessvhich is due to different
positions of the target inside the antenna beam and dueftatit target echoes from
different aspect angles. To consider the variation of the B@Ne to the antenna beam,
a normalized two-way antenna pattern is added to the real SCNé&corrected SCNR
is denoted by the blue dashed line in figure 7.6. Here only zirawth antenna pattern is
considered due to the narrower beamwidth. The positioneofalget inside the antenna
beam is derived by calculating the difference between tine @mgle of the center posi-
tion and the cone angle of the target in the platform cootdisgstem.

The boat was not always inside the antenna beam, due to timeysteeather conditions
and the small azimuth swath. Here data is considered, wherbdat was inside the
one-fourth power beamwidth (6 dB). During the data acquisiof side 2, the boat was
not positioned in the center of the elevation pattern, floeesits SCNR is significantly
lower than the ones of the other sides.

To compare the performance between multichannel proagssid single channel pro-
cessing with adaptive matched filters, a TAP filter and twdedgnt STAP filters are
applied to the data to suppress the clutter. For multichgrneessing the two most com-
mon STAP methods are chosen: pre-Doppler and post-DoppkiP.S-or pre-Doppler
STAP the sub-CPIl method is applied and for post-Doppler STAPulti-bin method
is used. The sub-CPI method is described in detail in [28] &4l §nd the multi-bin
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Figure 7.6: SCNR before clutter suppression. Estimated SGNRK line) and SCNR
with corrected antenna pattern (dashed blue line).

method in [30] and [88]. The main steps are visualized in 8gui7, where the multi-bin
method is shown on the left side of this figure. Here first a leoaransform is performed
in the slow time domain of one CPI. Then the available charmadisa certain amount of
Doppler bins, which are adjacent to the cell under test (Cldii@,used to form a STAP
filter. To estimate the spectral density matrix for this filtde available range bins are
utilized. A STAP filter is estimated and applied to each CUTe Bab-CPI method is
visualized on the right side of figure 7.7. Here a certain amotfipulses and the avail-
able channels are used to form a STAP filter, where the cowaiaatrix is estimated
from the available range samples. The Fourier transformlisgerformed after applying
the STAP filter to each CUT. For the presented evaluation, tij@cant Doppler bins on
each side are applied for the multi-bin method and four putse used for the sub-CPI
method. For TAP also the sub-CPI technique is applied, fistiever, the multichannel
data is coherently combined to one single channel. For &rdil the spectral density
or covariance matrix is estimated for each CUT using 256 raageples for training,
with 128 bins being on each side. Four guard cells are usedom €ide of the CUT
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Figure 7.7: Main processing steps of multi-bin post-Dop@&AP (left) and sub-CPI
pre-Doppler STAP (right)

to ensure that the target will not eliminate itself. A Hamghimindow is utilized for the
post-Doppler technique, but not for the other ones. The SCINR @utter suppression
is calculated by considering the maximum power inside thdecand dividing it by the
clutter plus noise power, which is estimated from all sampletside of the circle. Ide-
ally, the clutter should be completely suppressed by ther fisio that the SCNR is equal
to the signal-to-noise-ratio (SNR).

Figure 7.8 shows the SCNR after clutter suppression for thiedifferent sides. The data
of side 1 reveals quite high variations of the SCNR beforet@figuppression. In figure
7.8(a), however, a high SCNR after all processing methodarigtes untikpe,, = 86°,
with values of 20 dB - 30 dB, is visualized. For these angles téinget echo is outside
of the clutter band, hence it is not suppressed by any filteomkp.,, = 86° till the
end of the data set, the relative target velocity is not highan the maximum velocities
of the clutter band, the target echo is therefore positianedie the clutter band. For
these angles the TAP-SCNR is clearly lower than the SCNRs of TA¢> Silters. For
weny = 98° - 101°, the target velocity varies from -0.5 m/s to 0.5 m/s and thgetissignal
is suppressed by all filters.

The SCNR of side 2 is low for all angles prior to clutter suppres. After applying all
processing methods, however, values of 20 dB - 28 dB are wx$ewhere the target
power is well outside of the clutter band. This is the casefagles up taog,, = 314°.
At this angle the radial target velocity is at -2.5 m/s, whigkheoretically outside of the
clutter band, but due to the movement of the sea scatterdrdumnto fast scatterers, a
broader clutter filter is estimated. From this angle the SCNRIlIgrocessings drops,
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Figure 7.8: Estimated SCNR after clutter suppression withdifferent STAP filters and
a TAP filter

where the one after applying TAP is significantly lower thia@ bnes after multichannel
processing. At = 318° the target velocity is -2.1 m/s. From this angle till the efd o
the data set, the SCNR after clutter suppression is very lowlf@rocessing methods,
which is also due to a lower SCNR prior to any processing.

During side 3 the target returns vary strongly. A high SCNRraflutter filtering can
be observed for all angles, where the target signal doesawvettio compete with clutter
returns. Atpg,, = 247° the target echo is positioned inside the clutter band. Rstathd
all following angles, the target signal is suppressed byl filter. Fromepg,, = 259°
the target radial velocity varies around -0.5 m/s to 0.25 ds these velocities the target
is also suppressed by the STAP filters.

The target signal, which was received during the experiraeside 4, is quite low, with
values around 12 dB - 14 dB. Additionally, the target echowsagk positioned inside or
at the edge of the clutter band. Hence, the estimated SCNRs#ftge channel proces-
sing mostly varies between 12 dB - 14 dB, which indicates a igsjoon of the target
signal with the TAP filter. After multichannel processingwever, the SCNR is 18 dB -
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24 dB for most angles, which results in a mean SCNR improvewie®dB with STAP
compared to TAP for this side.

After suppressing the clutter, the relative radial targdowity is estimated from the ac-
quired data sets. Such an estimation is needed, if targedpprtunity are detected,
where no GPS data is available. This velocity is estimatewh ftonsidering the Doppler
frequency with the maximum power inside the circle aftettelusuppression. The stan-
dard deviations of the difference between the calculatddkaarget velocity and the
estimated one are summarized in table 7.3 for the differéietdi The deviations are
due to the uncertainties described in section 7.2. Furtbexpior some CPIs the target
power is spread over several strong Doppler cells aftetetlstippression. For the TAP
filter the deviation is higher, due to suppressed targetexfar some angles. Here the
radial velocity resolution is 0.25 m/s.

| | Post-Doppler STAR Pre-Doppler STAR  TAP |

Side 1 0.50 m/s 0.47 m/s 0.50 m/s
Side 2 0.45 m/s 0.54 m/s 0.61 m/s
Side 3 0.49 m/s 0.48 m/s 0.77 m/s
Side 4 0.53 m/s 0.59 m/s 0.69 m/s

Table 7.3: Standard deviation between estimated and edéclkelative radial target
velocities after clutter suppression with different figter

7.4 Detection Performance

To evaluate the detection performance of the cooperatigetafter applying different
filters, a suitable threshold has to be estimated. In thisysisa a threshold is set to
achieve a probability of false alarn#f,) of 10~*. This probability is estimated from all
available range samples and Doppler bins which are outditteedarget circle. Addi-
tionally, an area is excluded where a target of opportundg wresent during the exper-
iments. This condition will be described later in more detAnother possibility would
be to estimate the threshold in dependency of the Dopplguénecy, because the clutter
characteristics vary strongly for different Doppler biespecially if fast scatterers are
present. This is not pursued here, because then for somesfreigs the threshold would
be very high, preventing a detection of the cooperativestarg

In figure 7.9 the estimated threshold is visualized for the fdifferent sides in depen-
dency of the azimuth angle. The mean threshold ranges betive8 dB - 15.4 dB for
side 1, between 15.8 dB - 16.9 dB for side 2, between 14.7 dB5 dB for side 3 and
is equal to 15.7 dB - 16.7 dB for side 4. The thresholds are enage slightly higher
for side 2 and 4, because probably the observed azimuthsaaggecloser to the down
or up swell direction. However, also for side 1 a high thréghe estimated between
the azimuth angles 86 101° and also for side 3 the threshold is high between°202
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Figure 7.9: Estimated threshold fé%, = 10~* after clutter suppression with different
filters

218. This is due to some fast scatterers, which are presentse itheta sets. To analyze
why the fast scatterers occur in these angle intervals, mi@eise weather data would
be needed. Figure 7.9 shows that a similar threshold is attnfor the three diffe-
rent processing methods. The threshold after applying Aefilter is however slightly
lower, because fast scatterers are often better suppresisethis filter. Fast scatterers
are distributed over all subspace dimensions of the clptternoise spectral density ma-
trix, as described in chapter 5.5. This makes it difficult AP filters to completely
suppress this clutter type. The TAP filter, however, onlynestes the present power for
each Doppler frequency. If fast scatterers are presenty naage bins but one Doppler
frequency, they are eliminated with TAP.

The detection performance is evaluated by comparing thaireng power after clutter
suppression to the estimated threshold for each CPI. If teepof more than one cell in-
side the target circle exceeds the threshold, then thettiargensidered to be detected for
the according CPI. The detection performance is visualipedhie four different sides
for different azimuth angles in figures 7.10 - 7.12. In figur&0rthe detection perfor-
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Figure 7.10: Number of detections witfy, = 10~* and post-Doppler STAP

mance after applying the post-Doppler STAP filter is demastl, figure 7.11 shows
the performance after pre-Doppler STAP and figure 7.12tiltiss how well the target
is detected with the TAP filter. The blue line in these figuresgesses the value 1 if the
target is detected at the observed azimuth angle and O ihidtisFor a better overview,
the median between a certain azimuth interval is visualized

At side 1 the target is reliably detected with TAP until theykenof 92, which is visua-
lized in figure 7.12(a). At this side the SCNR before cluttgpmession is quite high.
Even though the target is already inside the clutter ban@&ati8s not suppressed with
TAP due to its high signal. With multichannel processingttmget is reliably detected
until the angle of 98 as shown in figures 7.10(a) and 7.11(a). During side 2 the SCNR
before clutter suppression is very low, because the taggat the edge of the eleva-
tion beamwidth. The target is therefore already supprebgettie TAP filter at 314,
where its radial velocity is -2.6 m/s, which is outside of thatter band. With STAP the
target power is suppressed from 3Math pre-Doppler processing and from 318ith
post-Doppler STAP, which both correspond to a radial tavgéicity of -2.5 m/s. These
detection performances are shown in figures 7.10(b), 7) Bk 7.12(b). Figure 7.12(c)
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Figure 7.11: Number of detections witfy, = 10~* and pre-Doppler STAP

shows detections during side 3 with single channel proongsaihere the target is identi-
fied between 202- 24 7. The target radial velocity range in this angle intervaldsn/s
to -2 m/s. With multichannel processing the target is detécip to a radial velocity of
-0.3 m/s. During side 4 the target radial velocity variesassn 1 m/s - 1.5 m/s, which
is inside the clutter band. At this side the cooperative ®atmost never detected with
single channel processing.

The described condition is demonstrated in figure 7.13, vtter same CPI as in figure
7.5, is shown. Here the target and clutter power are visedlefore and after clutter
suppression, where only the slant ranges and Doppler freggeearound the expected
target position are presented. In figure 7.13(a) the clattertarget power before clutter
suppression are visualized. The target is masked by thieckhnd can therefore not be
detected. Figure 7.13(b) presents the CPI after applyingRafilfer. This figure shows
that the clutter is suppressed quite well with this filtert &lso the target is suppressed,
preventing a detection. In figures 7.13(c) and 7.13(d) théterl and target power are
demonstrated after applying the two different STAP filtevéith multichannel proces-
sing the clutter is suppressed, but the target is still wisible. With these processing
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Figure 7.12: Number of detections wiftPy, = 10~* and TAP

methods a detection is possible.

Table 7.4 demonstrates the probability of detection of the Eides and the three filters
of all available CPlIs. This table shows a worse detectioroperdnce with single channel
processing. Especially during side 4 the probability okedaon with TAP is only 9%,
while with post-Doppler STAP the probability of detectia92% and with pre-Doppler
STAP 89%. With STAP filters the target is detected for mosinah angles, which were
observed during the data acquisition at side 4.

The green line in figures 7.10 - 7.12 indicates the number tdatiens outside of the
target circle. In these figures an average is presented ¢braamuth angle interval. A
detection is considered to be valid if the power of at least &djacent cells exceeds the
threshold. All cells which are next to each other are couatedne target. In most cases
the detections outside of the target circle correspondlse falarms. To further reduce
their number, the range history of the detections shoulchbé/aed. While the target po-
sition is assumed to change linearly in dependence of tim idlage for different CPIs,
scatterers should show a random behavior. An additionabagp could also be to com-
pare the power of a detection before and after clutter sggpe. These improvement
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steps will be considered in the future.

During side 4, between the angles of 112417, a target of opportunity was present in-
side the observed scene. This target was at the edge of tlatiefeand azimuth antenna
beamwidth. Nevertheless, a strong signal power is recdneed this target. In figure
7.14 a picture of this target is shown. This picture was takéh the camera, which
is integrated inside the PAMIR system, during the perforrergderiment. Figure 7.14
shows a big ship, hence the RCS of this target is quite higholtsepis distributed over
several cells, therefore a considerable number of detecisopresent in figures 7.10(d) -
7.12(d) due to this ship.

In figure 7.15 one CPI which includes this target of opportuistpresented. This target
is highlighted with a pink circle, whereas the cooperatieaths bordered by a white
circle. Note that while for the cooperative target the posiis known due to the GPS
data, for the target of opportunity such information is na@ikable. Figure 7.15(a) shows
power of the clutter and of both targets without any processHere again the coopera-
tive boat is masked by the strong clutter power. The targeppbrtunity is well visible,
because it is well outside of the clutter band and due tontmgtsignal. In figure 7.15(b)
the CPl is presented after clutter suppression with TAP. Whédarget of opportunity is
well visible after single channel processing, the coopezdioat is suppressed and can-
not be detected. The power of the big ship is visible over red\Boppler frequencies,
due to high spectral leakage. In figures 7.15(c) and 7.18@lrlutter and target power
after multichannel processing are demonstrated. Thesefighhow that with STAP both
targets can be detected. The power of the big ship after ST#irig is not as high as
without any processing, due to a small number of guard cells.

Side | Post-Doppler STAR Pre-Doppler STAR TAP
1 94 % 95 % 82 %
2 89 % 86 % 77 %
3 94 % 93 % 74 %
4 92 % 89 % 9%

Table 7.4: Probability of detection of different sides aftkitter suppression with diffe-
rent filters
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pression

Figure 7.14:

Picture of target of opportunity inside theeslsed scene
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Chapter 8

Conclusion and QOutlook

The main focus of this thesis is to understand the multicebproperties of sea clutter
for microwave radars. To achieve this goal, statisticaltitldnnel properties of sea clut-
ter are derived. Then these characteristics are validatiadreal multichannel sea data
and reproduced with a simulation model.

In order to analyze the multichannel properties of seaalutirst the well-known mul-
tichannel characteristics of land clutter are summarizéd.point out the differences
between land and sea clutter and to gain a deeper undergjaofdhe latter clutter type,
the physical origin of sea echoes is described and a brigidattion to oceanography is
provided.

To achieve a comprehensive theoretical analysis of maltiokl sea clutter, this thesis
characterizes the sea clutter spectral density matrixyralacorrelation, and space-time
filter. It is derived that due to varying velocities of seattmars, for sea clutter at least
a rank two clutter spectral density matrix has to be consdlewhereas for land clutter
only a rank one clutter spectral density matrix has to be @usal for.

The calculation of the sea clutter space-time filter denrates a broader filter notch
than for land clutter, due to different sea clutter multichel properties. It is shown that
the radial sea scatterer velocity variance is crucial ireaeining the broadness of the
space-time filter notch. The physical origin of this meassiiavestigated and the calcu-
lation possibilities are summarized. A further option ietimate the radial sea scatterer
velocity variance from available data. A suitable estim&groposed in this thesis and
its performance is evaluated.

This thesis also demonstrates that fast scatterers, whearchoes due to wave breaking,
lead to additional broadening of the filter notch. The prapsrof this scattering type
are summarized and the multichannel sea clutter modelesndgtd to consider fast scat-
terers.

A model to calculate the channel correlation is derived chwishows that channels of sea
clutter are more decorrelated than channels of land cldtierto the movement of sea
scatterers. It is illustrated that sea clutter channeletation is highly dependent on the
phase center separation and the radial sea scatterertyalagance.
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To validate the introduced multichannel properties of $eter, in the context of this the-
sis three measurement campaigns were performed with the sggtem PAMIR, where
multichannel sea data was acquired at different sea stitesent swell directions and
two different grazing angles. To emphasize the differeretevben land and sea clutter,
also data of a homogeneous land scene was collected. Theatwoal of real sea data
confirms the theoretical multichannel properties. Furtiae from real data a rank two
spectral density matrix is estimated, which is dependethh@esea state. The actual chan-
nel correlation changes for different sea states and diitgshase center separations and
matches the calculated one. This thesis demonstrateotitagh sea states and in swell
direction, fast scatterers are present in real sea data. d¥ication of the multichannel
properties due to these scatterers is evident and agreetheipredicted behavior. Simi-
lar characteristics are observed for both grazing angles.

To further confirm the derived multichannel characterssatsea clutter, simulations are
performed with radar and sea parameters matching thosee@dtjuired real sea data
sets. The introduced simulation model reproduces the chaltinel properties of real
data for different sea states, different grazing anglesadtidexisting fast scatterers.
Several applications can benefit from the introduced arglyi® monitor the ocean sur-
face more precisely, the insight into the multichannel prtps of sea clutter can be
exploited to estimate parameters describing the sea surfaarther, the application of
space-time adaptive processing (STAP) to maritime radaiesys benefits from this ana-
lysis, because this thesis provides simulation and cdlonlenodels to evaluate the STAP
performance in dependence on radar and sea parameters.

The necessity to use STAP in order to reliably detect smatitimee targets from air-
borne radar systems is demonstrated in this thesis by parigrfurther experiments
with the radar system PAMIR and a small cooperative boat.alugiired data is used to
analyze the detectability of this target without any preoas, with time adaptive proces-
sing (TAP), and with STAP. The evaluation of these experimishows that without any
processing the signal-to-clutter plus noise ratio (SCNRisf boat is too low to be de-
tected. If TAP is applied, the target signal is often suppeddy this filter, preventing its
detection. With STAP, however, the cooperative boat is atratways identified within
the data sets of the presented experiments.

Multichannel processing for maritime radar systems is a field of research, where
several questions are still unanswered. One important igeeithe dependencies of sea
clutter multichannel properties on various sea and wegiliemeters. To evaluate these
dependencies, further experiments need to be performédpnécise in-situ measure-
ments. It would also be useful to mount the PAMIR system oraticstary platform,
in order to exclude influences of the moving platform. Fumth@re, the demonstrated
multichannel analysis refers to sea surfaces in deep wadterseveral applications, like
for harbour survaillance, an evaluation of multichannel getter properties for shallow
waters is of interest as well. To exploit further the proaegpossibilities of a coher-
ent airborne radar system, the sea clutter multichanndysieehas to be extended to
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synthetic aperture radar (SAR). It is expected that moraufeatof the sea surface are
recognized with this processing technique.

With multichannel processing an improved detection pentoice for airborne radar sys-
tems can be achieved. However, further improvement is plesibetter detection tech-
niques are developed. One possible source of improvemeheiseduction of false
alarms due to fast scatterers after STAP. To obtain a morergkestatement of possible
detection performances with different processings, atpeements during different sea
states with targets of different sizes and moving with défe radial velocities have to be
carried out and analyzed.






List of Abbrevations

CNR
CPI
CuT
DGPS
DOA
ECEF
ENU
GMTI
IMU
LOS
MTI
PAMIR
PRF
RCS
SAR
SNR
STAP
TAP

Clutter-to-Noise Ratio

Coherent Processing Interval

Cell under Test

Differential Global Positioning System
Direction of Arrival

Earth-Centered Earth-Fixed
East-North-Up

Ground Moving Target Indication
Inertial Measuring Unit

Line of sight

Moving Target Indication

Phased Array Multifunctional Imaging Radar
Pulse Repetition Frequency

Radar Cross Section

Synthetic Aperture Radar
Signal-to-Noise Ratio

Space-Time Adaptive Processing

Time Adaptive Processing
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L atin Symbols

A(u) Reflectivity as random variable

Ar(u) Reflectivity of fast scatterers as random variable
B Bernoulli random variable

c Speed of light

cp Phase velocity vector of water wave

o(T) Clutter signal in time domain

c Space-time clutter signal vector

C(F) Clutter signal in frequency domain

C.(F) Clutter spectral density matrix

Cs(F) Spectral density matrix of fast scatterers

C.(F) Noise spectral density matrix

C(F) Spectral density matrix of slow scatterers

Cw(F) Spectral density of water waves

C.(F) Spectral density matrix of received signal

d(u) DOA-vector

do(u) DOA-vector without considering the antenna pattern
D(u) Two-way antenna pattern

e,(F) Eigenvector of spectral density matrix
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E{} Expectation value

fr Carrier radar frequency

fs Water wave frequency

F Frequency

F(") Doppler frequency

F, Doppler centroid

g Gravity constant

g(F(+)) Doppler vector

H(F) Fourier transform of elevation function

H, Water wave height

k, Radar wave vector

k, Water wave vector

M Number of pulses of one CPI

N Number of available channels

" (vs) Distribution of radial sea scatterer velocity
r Distance vector

T4 Target slant range

R.(T) Clutter covariance matrix

s(+) Normalized time-dependent radar clutter signal
S(+) Normalized space-time clutter signal vector
T Slow time

u Directional cosine, look direction

uo(F) Look direction of stationary scatterers

u, LOS vector to center position

w LOS vector to target position
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Uy

Urel

Vs

Xe = (xcv Ye, ZC)T
Tn
Xp = (Tp; Yp, Zp>T

Xt = ('rtaytvzt)T

LOS vector

Wind velocity

Clutter velocity vector

Orbital water wave velocity vector

Platform velocity vector

Radial target velocity

Relative radial velocity

Radial sea scatterer velocity as realization
Target velocity vector

Radial velocity of fast scatterers as random variable
Radial sea scatterer velocity as random variable
Space-time filter

Clutter position vector

Position ofnth channel

Platform position vector

Target position vector

Received signal in time domain

Received signal in frequency domain

Cone angle
Space-time filter gain
Dirac delta distribution

Elevation function of sea surface
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0 Grazing angle

An(F) Eigenvalue of spectral density matrix

Ar Carrier radar wave length

As Wave length of water wave

1B Expectation value of Bernoulli random variable

[y Expectation value of radial sea scatterer velocity of fast
scatterers

o Channel correlation of land clutter

P Channel correlation between channelandn’

Ps Channel correlation of sea clutter

o2 Broadness of absolute squared value of two-way antenna
pattern

o? Reflectivity variance

o Reflectivity variance of fast scatterers

U]% Radial sea scatterer velocity variance of fast scatterers

o2 Noise variance

o’ Orbital velocity variance

o Orbital velocity variance calculated with Pierson-Moslktaw
spectrum

o? Radial sea scatterer velocity variance

G2 Estimated radial sea scatterer velocity variance

@ Azimuth angle

Deny Azimuth angle between x-axis in ENU-coordinates and

Ps

center position

Azimuth angle between x-axis and direction of water wave



Appendix A

Boundary Conditionsto Calculate Flow
Velocity of Water Waves

The flow is assumed to be incompressible
Vvo(x, z,t) = 0. (A.1)
Using further that the flow velocity is irrotational
V X Vorp(x,2,t) =0, (A.2)
allows to define a velocity potentidl(x, z, t), which is related to the flow velocity by
Vorp(X, 2, 1) = VO(x, 2, t). (A.3)
This equation allows to rewrite equation (A.1) as
V2®(x, z,t) = 0, (A.4)

which is the Laplace equation.

To solve this equation, boundary conditions have to be defifie first boundary con-
dition is the so-called bottom boundary condition, whidites that the vertical velocity
has to be zero on the floor, hence

0P(x, z,1)

= = 0. (A.5)

z=—H

The kinematic boundary condition is due to the fact thatiplag on the surface stay on
the surface, if wave breaking is not considered. Theretbweyelocity of the particles
on the surface has to equal the velocity of the surface itself

on(x,t)  0P(x,z,t)

ot 0z

: (A.6)
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wheren(x,t) is the elevation function of the sea surface. Here the aongdi of the
waves are additionally assumed to be small, which allowbseore the vertical velocity
atz = 0. The dynamic boundary condition assumes that the atmaspbessure is
equal to the pressure on the surface. Assuming them to beamdrasing the Bernoulli
equation to calculate the pressure on the surface allowtati® the condition as

0P (x, 2,t)

1
at + 7||V07"b<xvn(x7 t)vt)HQ +977(Xat) = O (A7)

2

z=n(x,1)

Because the velocity term is of second order, it is assumeck tmloch smaller than
the other terms, and is therefore neglected. If only waveh wimnall amplitudes are
considered, the boundary condition can be stated as

0P (x, z,t)

ot - _gn(xat)i (A8)

2=0

whereg denotes the gravity constant.



Appendix B

Calculation of Scattering from Sea
Surface

Here the detailed calculations are described to derive thgnetic scattering field of
equation (3.19) from equation (3.18).
The normal vector can be calculated from

Va (X) X vy (x)

(B.1)

m(9) = ) x vy T

wherev,(x) andv,(x) are vectors which span the plane to whiefx) is orthogonal.
With the defined clutter position vector, the two vectors barapproximated by

ox,
V. (Xe) =~ dx pe
T
_p» (17 0, 21 y)> (B.2)
ox
and
0X,
Vy(XC) ~ dy ay
T
= dy (o, 1, a”(x’y>> . (B.3)
dy

BecauselA = ||v,(x.) x v,(x.)||, the product of the normal vector and the infinitesimal
area element equals

n(x.)dA = dady <_ang;, v, —6"2;’ 28 1) . (B.4)

For the following calculations, the free space Green'’s fimnds chosen

G(xpx) = 1k |lp = xel |} (B.5)

Ay — x|
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wherek, is the wave number of the transmitted radar wave. For a denvaf this
function, see for example [89]. The gradient of this funeti@n be calculated as

1 exp {jk|[xp — X[} .

VG(XI)’XC) = E(X}? o XC) HXp _ XcHS (]kTHXp - XCH o 1) (86)
The term, which containﬁlij, is neglected, because it is assumed ﬁhaH <<
W Furtherx. is neglected in the amplitude, because it is chosen nearitjia of
the coordinate system. To calculate the phase, the appatigim|x, — x.|| ~ ||x,|| —

H H is used. This reduces the gradient of the free space Gragrctidn to

VG(xp, %) = exp {35} exp { —jk/x. } (B.7)

J Kk

A [[x, |
Here additionallyk, = &, IXPH is defined.

To calculate the scattering field in equation (3.18), an mggion about the magnetic
field at positionx,. has to be made. Here the Kirchhoff assumption is used, whatbss
that

B(x.) = 2B, (x.), (B.8)

whereB,.(x) is the field, which is transmitted by the radar. It is assunied the radar
transmits a plane wave, which can be described as

B, (x) = Byexp { —jk/x}, (B.9)

whereB, is the amplitude vector of the magnetic field.
Using equations (B.4), (B.7) and (B.8) allows to state equdfciB8) as

// (( on(z,y) an(azy)’1>T X 2B0exp{—jkflxc})

J

X
47erpH

Using Lagrange’s formula to calculate the triple cross potéind considering that the
magnetic field is orthogonal to the propagation directiB§'k, = 0), equation (B.10)
can be rewritten as

~ —jBoexp {jk:| x|} / 3"7 z,y), _ Onz,y)
BS (Xp) - 27_‘_‘ ‘XpH / TCI: ay kry + krz

exp {—j2(kzx + kryy)} exp {—72n(x,y)k,.} dx dy. (B.11)

It is shown in [90] that terms which include a derivativegfr, y) can be neglected,
because they only change the result by a constant factor. t®tlee assumption of a

exp {jk:rHXpH}exp{—jkf{xc} dx dy. (B.10)
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small amplitude surface, the second exponential term caappeoximated by a Taylor
series as

exp {—j2n(z,y)k..} =~ 1 — j2k..n(x,y). (B.12)

The magnetic field resulting from the first term in equationl@.can be neglected,
because it is the specular reflection.






Appendix C

Change of Basis and Eigenvalues of the
Clutter Spectral Density Matrix

In this section the bases of the following approximatedtehgpectral density matrix

C(F) ~ 02 {|D <uo<F> 4 VSW))

Up

}e(uO(F))eH (uo(F))

+ z:E {Vs<u> D (%(F) + st(pm> }e< o(F)) €™ (uo(F))
- Z;E {Vs(u) D (Uo(F) + %11(:)> }E/ (uo(F)) e (uo(F))

2
Up

2
+2ZE {v3<u>

are changed.
Let B(F') be theN x N change of basis matrix

_ (eluo(F)) _e(ug(F))
B = (He(uo(mm le (oI

where all vectors are orthonormal to each other. The clagiectral density matrix in the
new bases can be calculated as

bs(F)... bN(F)> , (C.2)

Cp(F) = B™(F)C.(F)B(F)
ci(F) c(F) 0 ... 0
co(F) e3(F) 0 0
2 0

:O’c

(C.3)

o

0 0
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Figure C.1: Calculated and numerically computed eigenvakigllitions in dependence
of the Doppler frequency. The eigenvalues are estimated fih@ numerically computed
spectral density matrix from equation (5.8) and calcul&tech equation (C.4).

with ¢, (F) = E{[D(u ( (U)))P}He(uo(F))W,
e(F) = E{%"|D(u M2} e(uo(F)Ille (uo(F))l| and

c3(F)=F VQ(“ | D(u ( ( NI |€' (ug(F))||>. The matrixCp(F) is clearly a rank
two matrix, and the eigenvalues can easily be calculated as

—
H/—/

Mja(F) = 5 (en(F) + es(F) £ ((F)), (C.4)

|3,

with {(F) = \/(cl(F) —¢3(F))? + 4¢3(F). Because the matriceS.(F) in equation
(C.1) andCp(F) in equation (C.3) are similar matrices, their rank and eigkres are
equal. Therefor€ .(F) is also a rank two matrix whose eigenvalues can be calculated
from equation (C.4).

In figure C.1 eigenvalues are computed from the simulateteclspectral density matrix
of equation (5.8) and calculated with equation (C.4) for tuftecent radial sea scatterer
velocity variances. The expected value terms were evalusith a Monte Carlo simu-
lation. For both computations a Gaussian distribution efrédial sea scatterer velocity
is assumed. Figure C.1 validates the calculation of the Wsitigenvalues of the clutter
spectral density matrix with equation (C.4).

To derive the eigenvalues from equation (C.4) analyticalaussian distribution for
the radial sea scatterer velocity

P (03) = —m— exp {— - } (C.5)

210, 20?2

and a Gauss function for the absolute squared value of thevaycantenna pattern

ID(F, V() = exp {—W} (c.6)

2
207}



117

are assumed. Then(F') from equation (C.3) can be evaluated from

ca(F) = [[d(uo(F))[|[1d (uo (F))]] éa
Lo G e e

with ¢ =

(o++5)
20302 °

If the eigenvalues are only calculated around the Doppletrogl, the first exponential
function can be approximated by 1, which results4f¥’) ~ 0.

Considering the outcome of equation (C.7) and estimatingrartlie Doppler centroid
to calculater; (F') andes(F), allows to state the eigenvalues from equation (C.4) as

M(F) = of|[d(uo(F))|[*

\/_ / exp }dvs
Ma(F) & 2 ||d (o (F))|

\/2_ U exp }d’us. (C.8)
O

The first eigenvalue is calculated by using the relationghipexp {—av?} dvs = \/E

which can for example be found in [79]. To calculate the iriégf the second eigen-
value, a substitution with = av? is chosen. Then the integral can be calculated by
considering that the function inside the integral is evet wat the integral corresponds

to the Gamma functiofl(2) = ¥~

The first two eigenvectors of the mati®g (F') can be calculated as

B 2¢y(F) r
ul(F)_<1 1(F) = es(F) + ¢(F )0 O)
5 (F) ( o F) = a(F) 1) 10,...,0> : (C.9

To compute the eigenvectors 6f.(F'), the eigenvectors in equation (C.9) have to be
multiplied with the change of basis matrix. {f{£') can be approximated ag/') ~
c1(F)—c3(F) around the Doppler centroid, the eigenvectors of the alafiectral density
matrix are equal to

() = () oF)  (u(F))
TewoE) ™ a(F) + ea(F) [ (o ()]
_ fwo(F)  eF) e(uo(F))
) = (o EN ~ a(F) + ealF) elual P (C.10)
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Figure C.2: Phase of the first eigenvector in dependence ddppler frequency. The
eigenvector is estimated from the numerically computecttsgledensity matrix from
equation (5.8) and analytically calculated from the appnations in equation (C.10).

In figure C.2 the phase of the first eigenvector is evaluateoh fitee simulated spec-
tral density matrix in equation (5.8) and compared to thesphaf the approximated
eigenvector from equation (C.10) for two different radiad seatterer velocity variances.
Also here a Gaussian distribution of the radial sea scattetecity is assumed and the
expected value terms in equation (C.10) are computed in time $aanner as for the
eigenvalues in equation (C.4). Figure 5.3 demonstratedahabth radial sea scatterer
velocity variances the calculated phase of the first eigeovenatches quite well the one
of the simulated matrix.



Appendix D

Approximation of the Spectral Density
Matrix with three Taylor terms

To approximate the spectral density matrix of sea cluttenenaccurately, the DOAvector
is described by a Taylor series with three terms

d <uO<F> ¥ ij“)) ~ dy (0 (F) + 2ty )+ S g (). 0.
Hered{(uo(F")) corresponds to
7T2 ™ N
i) = (S ton {iFurn)) ©2)

With this approximation, the spectral density matrix carstaged as

2

Up

C.(F)~c’E {’D <u0(F) + Vs(u))

( (do (uo(F)) +

Vi(u) 1V2(u)

(a0 o)+ P o) + 710 ) ) )} ©0:3)

For the following analysis the assumptionslgf«) being a zero mean random variable
and not influencing the antenna pattern are used. To cadhlatspectral density matrix,
. 4 . .
terms in the order o%xfl are neglected, resulting in
p

2 .2

Ce(F)  o2d(uo(F))d" (uo(F)) + 5 20 d(uo((F))d" (uo(F))
+ ;Uiggd”(uo(F))dH(uo(F)) + Uiggd/(uo(F))d’H(uo(F)). (D.4)
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The approximated spectral density matrix in equation (@@bsists of a sum of four
rank one matrices. It is assumed that the contribution ofiteematrix to the spectral
density matrix is much higher than the contributions of theasid and the third matrix.
The second matrix has the same eigenvector as the first onle, thvr third matrix has
a different one. The first order contribution to the first eiggue of this matrix is cal-
culated by using the perturbation method (for a detailedrigson of this method see
appendix E) as
1030? H "
oM (F) = 77,2 4 (uo(F))d" (uo(F)). (D.5)
p
It is assumed that the first eigenvector is not changed byhing matrix of equation
(D.4). The first eigenvalue of the spectral density matrix oa calculated from the sum
of the contributions of the first three matrices as

M(F) = a2l d(ua(F)I? = 025 1d (o (F))]* (D-6)

p

Here for more clarityd” (uq(F))d” (ug(F)) = A" (uo(F))d(ug(F)) = —||d’'(uo(F))||?
was used.

The fourth matrix of equation (D.4) corresponds to the sdauatrix of equation (5.15).
It spans a second dimension of the clutter subspace. Itaagr and eigenvalue cor-
respond to the ones in chapter 5.2. Only the fourth matrihisf ¢quation contributes
to the second eigenvalue of the clutter spectral densityixnaecause its eigenvector is
orthogonal to all the other eigenvectors of the matricegjuration (D.4).

Using the calculated eigenvalues and considering@hat’) is a symmetrical matrix, it
can be represented as

d'(uo(F))d"™ (uo(F))
[[d" (uo (F))[|?

_ ) d (uo(F)) d™ (uo(F))

o2 d (uo(F)) 4™ (uo(F)) (D.7)

Because the trace of the spectral density matrix equals theo$the two eigenvalues,
no further eigenvalues have to be accounted for.
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Perturbation Method for Eigenvalue
Problems

Consider a matrix, which is a sum of an original matrix and aysbation matrix. The
eigenvalues and eigenvectors of this matrix are functidtissoerrors, which is produced
by the perturbation matrix. Now the clutter spectral dgnsittrix C.(F') = Cs(F) +
C(F') is examined, where the spectral density matrix of slow soatsC,(F) is the
original matrix and the spectral density matrix of fast sera@rsC (') is the perturbation
matrix. The perturbation matri<C;(F") causes the erraAd, which is assumed to be
small, allowing to approximate the eigenvalue and eigetoveaf dimensionn by the
first order Taylor series as

A (F, AS) 2 M\o(F, 0) + ASN. (F, 0) (E.1)
u,,(F, Ad) = u,(F,0) + Adu,(F, 0), (E.2)

where )\, (F,0) andu,(F,0) are the eigenvalue and eigenvector of matix F') and
AL (F,0) andu!/,(F,0) are their derivatives at = 0.
Consider further the eigenproblem for the dimension

Co(F)un(F, AS) = A (F, Ad)u, (F, Ad). (E.3)

With equations (E.1) and (E.2), equation (E.3) can be résvwritor first order perturba-
tions as

C;(F)un(F,0) + C,Adu,(F,0)
= Au(F,0)A8U, (F, 0) + u,(F,0)A5N, (F, 0). (E.4)

If the eigenvalues of matri&C,(F') are distinct, the eigenvectors of this matrix span the
whole N-dimensional space and can be chosen as a basis for theddemgenvectors
(see [91))

Adu),(F,0) = cin(F)u(F,0), (E.5)
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wherec;, (F') are some constants. Using equation (E.5), equation (Erdpeaewritten
as

Cf(F)un(F7 0) + CS(F) Zcin(F)ui<F7 0)
= AN, (F,0)u,(F,0) + A\, (F,0) Z cin(F)u;(F,0). (E.6)

Multiplying both left sides of equation (E.6) with’ (F,0) and assuming that,(F') is
symmetric allows to calculate the change of the eigenvaligetdAj as

! (F,0)Cy(F)u,(F,0)

AN, (F,0) = [, (F,0)]]2

(E.7)

To determine the constant,,(F'), equation (E.6) is multiplied on the left side with
uf(F,0), wherek # n, which results in

ull (F,0)C(F)u,(F,0)
[ (£, 0)[P(An(F, 0) — Ai(£,0))

The constant,,,,(F') is only certain if a normalization condition is imposed oa #igen-
vectors. These calculations were for example performe@2ndr [93].
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One efficient method to detect slow targets with low signal-to-clutter-plus-noise ratios
is space-time adaptive processing (STAP). To apply STAP to maritime radar systems,
the multichannel properties of sea clutter have to be known. This thesis provides a
mathematical basis to describe these characteristics and predict STAP performance
over water for airborne microwave radar systems. To confirm the derived properties,
several real multichannel sea data sets for different swell directions and sea states were
acquired and simulations were conducted.
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