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Abstract: The paper introduces a subclass of nonlinear
differential-algebraic models of interest for applications.
By restricting the nonlinearities to multilinear polynomi-
als, it is possible to use modern tensor methods. This
opens the door to new approximation and complexity re-
duction methods for large scale systems with relevant
nonlinear behavior. The modeling procedures including
composition, decomposition, normalization, and multi-
linearization steps are shown by an example of a local en-
ergy system with a nonlinear electrolyzer, a linear buck
converter and a PI controller with saturation.

Keywords:multilinear algebra, differential-algebraicmod-
els, tensor decompositions, energy systems

Zusammenfassung: Eine für Anwendungen interessante
Unterklasse differential-algebraischerModelle wird einge-
führt. Die Beschränkung auf multilineare Polynome er-
laubt den Einsatz moderner Tensormethoden. Dies öff-
net die Tür zu neuen Approximations- und Reduktions-
methoden für großskalige Systeme mit relevantem nicht-
linearen Verhalten. Die Modellierungsschritte Kompositi-
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on, Dekomposition, Normalisierung sowieMultilinearisie-
rung werden am Beispiel eines lokalen Energiesystems,
bestehend aus einem nichtlinearen Elektrolyseur, einem
linearen Buck-Converter und einem PI-Regler mit Sätti-
gung, gezeigt.

Schlagwörter: Multilineare Algebra, differential-algebrai-
sche Modelle, Tensor-Dekomposition, Energiesysteme
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1 Introduction

1.1 Motivation

Automation systems in general are hybrid, i. e., some
signals are discrete-valued and some are continuous-
valued [20]. The discrete-valued part can be modeled by
binary functions, which are generically in the multilin-
ear subclass of polynomials. Butmultilinear functions can
also be defined over real numbers, thus including linear
functions, see Figure 1.

Linear modeling will not be sufficient for applications
where larger deviations from an operating point have to
be considered and which show essential nonlinear ef-
fects within their region of operation. Multilinear func-
tions generically enable theusageof tensor algorithmsand
multilinear algebra is the mathematical domain of inter-
est. In the last decade this domain has delivered results
in the field of tensor decompositions which have been en-
abling break-throughs in many disciplines like quantum
information theory or thermodynamic models of atomic
alloy structures [5, 25]. The research community of con-
trol and automation is only slightly aware of this: an open
invited session was organized at the IFAC World Congress
2017, but e. g., the number of papers at IFACWC 2020 deal-
ing with tensors methods still was low.
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Figure 1: Classes of functions.

This paper follows the idea of using tensor decomposi-
tion techniques for parameter spaces of models. It further
extends the class of multilinear time-invariant (MTI) mod-
els from explicit state space models to implicit descriptor
models. This opens the door to reduced efficient modeling
of huge nonlinear complex systems – where many chal-
lenging problems of today and in future are coming from.

1.2 Known results

Although tensor decompositions were defined a century
ago [11] there are still open problems [3], some of them
related to the field of algebraic geometry [6]. But applied
mathematics and informatics research have found effi-
cient strategies for approximative solutions [13]. The atten-
tion in engineering sciences has been growing with the
availability of computational toolboxes [30, 2, 1, 24]. The
connection of tensor decomposition and multilinear sys-
tems is established [27].

Remark: Multiple or piecewise linear systems should
be calledmulti-linear to distinguish them frommultilinear
systems. The first class needs switches and linear algebra,
the latter involves multilinear algebra. Tensor representa-
tions can be found for both, but this paper is focussed on
the second.

In the past years, explicit multilinear time-invariant
(eMTI) models have been developed and used for control
of HVAC systems in buildings [14, 18, 19, 15]. The class of
eMTI models is not closed w. r. t. basic compositions, but
only the larger class of polynomial models [26]. Descrip-
tormodels which combine algebraic and differential equa-
tions are intrinsically composable. They describe the sys-
tem dynamics implicitly and as well have been proven to

be useful in many applications [22]. To the knowledge of
the authors, extensions of eMTI models to implicit mul-
tilinear time-invariant (iMTI) models haven’t been inves-
tigated so far. This will be the main and methodological
contribution of this paper which will be illustrated by an
example of an energy system.

Current and future problems of energy systems are the
integration of new components in power networks – in the
real world as well as in the models. Basic relevant liter-
ature for the energy system components discussed later
can be found in [21]. The power system is undergoing a
deep transformation towards power electronic dominated
generation and consumption, which brings challenges re-
garding the safe operation of the grid. Therefore new tech-
niques are needed to access the safe operation. The MTI
class shows several aspects which makes it promising for
power systems description, e. g., switching and discrete
dynamics, multilinearity and scale.

1.3 Open questions

The non-closedness of eMTI models w. r. t. compositions
has several drawbacks for complex system modeling
which this paper overcomes by answering the questions:
1. How are basic connections (parallel, series, feedback)

best represented?
2. Whichmodel class holds the pros ofmultilinearity but

offers composability?
3. Can complex energy system components be modeled

within this class?
4. What complexity and accuracy do tensor energy net-

work models have?
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The paper is structured as follows: the next Section 2 re-
caps the current state of research of explicit multilinear
modeling and introduces implicit models in matrix rep-
resentation. Section 3 shows by an counterexample why
explicit multilinear models are not closed w. r. t. composi-
tion of subsystems and gives the important result that im-
plicit multilinear models are closed w. r. t. series, parallel
and feedback compositions. In Section 4, tensor represen-
tations are given for explicit as well as implicit multilinear
models togetherwith one relevant decompositionmethod.
How the canonical polyadic (CP) decomposed tensor rep-
resentation can be further reduced by normalization is
shown in Section 5. All methods are applied in Section 6
to a small scale energy system example for demonstration
of the capabilities of the approach. The paper closes with
conclusion and outlook.

2 Multilinear models
In this section the description of multilinear models is
given. This class of models extends the linear class.

2.1 Multilinear functions

A function f (x)with x = (x1, . . . , xn) is called multilinear, if
the function is linear in each individual variable xi, mean-
ing all other variables are held constant. This means, that
multiplicative combinations of the scalars in x are feasible
for the function to be multilinear. All combinations of the
scalars can be generated by the so called monomial vec-
torm(x), which is given by

m(x)=( 1
xn
)⊗ ⋅ ⋅ ⋅ ⊗(

1
x1
) , (1)

where ⊗ denotes the Kronecker product.

Example 2.1. For x ∈ ℝ3 the monomial is given by

m((x1, x2, x3)) =

((((((((

(

1
x1
x2
x1x2
x3
x1x3
x2x3
x1x2x3

))))))))

)

. (2)

Thus, the general form of a multilinear function can
be given by the inner product

f (x) = fTm(x) , (3)

i. e., the multiplication of a row vector fT of coefficients
times the column vectorm(x) of monomials.

A very interesting property of multilinear functions is,
that all Boolean functions belong to that class. In the fol-
lowing, the set denoted by B = {0, 1} ≡ {FALSE, TRUE}
refers to binary variables. AnyBoolean function b of n vari-
ables can be represented by 2n rows of a truth table, cor-
responding to n-element binary vectors given in lexico-
graphical order. Assuming this order, theBoolean function
can be represented by the truth vector b ∈ B2

n
of the last

column of the truth table. To show this, a vector of literals
is introduced as the Kronecker product of the literals of the
variables of the Boolean function, given as

l(x) = ( x̄n
xn
) ⊗ ⋅ ⋅ ⋅ ⊗ (

x̄1
x1
) ∈ ℝ2

n
, (4)

where x̄ := 1 − x ∈ ℝ.

Definition 2.1. A Zhegalkin polynomial [32]

f (x) = bT l(x) (5)

of order n is a multilinear square-free polynomial given by
the scalar product of a Boolean truth vector b ∈ B2

n
and

a vector l(x) ∈ ℝ2
n
of literals. Zhegalkin Polynomials are

sometimes also referred to as Reed-Muller Forms or Alge-
braic Normal Forms (ANF).

The following example of order n = 2, taken from [28],
illustrates the idea.

Example 2.2. For the Boolean function b = ¬(x1 ∧ x2) the
truth table is given as

x2 x1 b

0 0 1
0 1 1
1 0 1
1 1 0

thus the Zhegalkin Polynomial is

f (x) = bT l(x) = (1 1 1 0)(

x̄2x̄1
x̄2x1
x2x̄1
x2x1

)

= (1 − x1)(1 − x2) + x1(1 − x2) + (1 − x1)x2 + 0x2x1

= 1 − x1x2 = (1 0 0 −1)(

1
x1
x2
x1x2

) = fTm(x) .

As Zhegalkin polynomials (5) are multilinear, they can be
equivalently represented by the parameter vector f of (3).
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If Boolean values are inserted for x1 and x2 this results in
Boolean values which correspond to the truth table.

2.2 Explicit multilinear models

With the monomial vector, an eMTI state space model can
be written in continuous time

ẋ = Fm(x,u) , (6)
y = Gm(x,u) , (7)

where u ∈ ℝm is the input vector, y ∈ ℝp the output vec-
tor, F ∈ ℝn×2

(n+m)
the transition matrix and G ∈ ℝp×2

(n+m)
the

output matrix. Themonomial vector of more than one vec-
tor treats the input vectors as concatenated, for two vectors
i. e.,m(x,u) = m((x1, x2, u1, u2)).

Remark. In contrast to multilinear models, linear mod-
els are restricted to the subclass of linear functions going
through the origin (f (0) = 0), whereas the first element of
the monomial vector contains a constant.

Remark. Bilinearmodels are also a subclass ofmultilinear
models where all monomials are restricted to order 2 and
combinations of inputs and states.

Boolean functions can be represented as given in (5).
If the Boolean variable is depended on a continuous vari-
able x, the result of (5) will be continuous. Thus, contin-
uous multilinear function and Boolean functions can be
modeled individually by (6) and (7). On the other side,
if continuous and Boolean functions are connected with
each other a quantizer is needed, see [27] for more details.
A simple solution is to use a Heaviside function

σ(x) = { 1 if x ≥ 0 ,
0 otherwise

(8)

as quantizer. Using this function, a saturation can bemod-
eled as given in the following example.

Example 2.3. Assuming the input to the saturation is
a state, and the output is saturated between two val-
ues, e. g., the output of a controller needs to be between 0
and 1. The saturation function is depicted in Figure 2.

To model this as an eMTI model two discrete-valued
variables are introduced

bl = σ(u − ul) (9)
bu = σ(u − uu) . (10)

The output is then calculated by

y = (1 − bl)yl + bl(1 − bu)((u − ul)s + yl) + buyu , (11)

with the slope s = yu−yl
uu−ul

of the middle part.

u

y

ul uu

yu

yl

Figure 2: Saturation function.

2.3 Implicit multilinear models

The class of explicit multilinear models has the draw-
back, that by connecting multiple eMTI models the over-
all model is not necessarily an eMTI model which will be
shown in section 3. To overcome this obstaclewe introduce
iMTI models similar to descriptor systems in the next sub-
section.

For iMTImodels a kernel representation is chosen and
the monomial vector is extended. An iMTI model in kernel
representation is given as

Hm(ẋ,x,u, y) = 0 , (12)

where the states are ẋ ∈ ℝn, x ∈ ℝn, the inputs are
u ∈ ℝm, the outputs are y ∈ ℝp and the model matrix
is H ∈ ℝN×2

2n+m+p
. The dimension of the model matrix is

not only determined by the number of states, inputs and
outputs but by the application specific number N of equa-
tions. A designated output equation is in implicit form
not required, but output equations can be included in the
model matrix H.

Remark. Note that all eMTI models can be written as iMTI
models by subtracting the right hand sides of (6) and (7)
on both sides, leading to kernel representations

ẋ − Fm(x,u) = 0 (13)
y − Gm(x,u) = 0 , (14)

given as a semiexplicit differential algebraic equation, [4].
These equations can then be written in the form (12), be-
cause their left hand sides are obviously multilinear func-
tions inm(ẋ,x,u, y).

Since the equations for the states are no longer in ex-
plicit form, themapping fromcontinuous-valued variables
to discrete-valued variables can no longer be performed by
quantization (8), but discrete valued states have to be de-
fined in pairs, because the single kernel equation b(1−b) =
b − b2 = 0 of a Boolean constraint is polynomial, but not
multilinear.
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Example 2.4. Assume the statesb1 andb2 are Boolean and
can therefore only take the values 0 or 1, meaning FALSE or
TRUE, respectively. Introducing the equations

b1b2 = 0 , (15)
b1 + b2 − 1 = 0 (16)

forces at least one of the variables to be 0 by (15), but pre-
vents both to be 0, because of (16), and thus forcing one to
be 0 and the other one to be 1.

As the example shows, an iMTI model is capable to
define Boolean variables. But to, e. g., model saturation,
inequalities are no longer avoidable – which leads to the
generic multilinear model

Lm(ẋ,x,u, y) ≥ 0 . (17)

Note that (17) includes the kernel representation (12) by
setting

L = ( H
−H
) ∈ ℝ2N×(2n+m+p) , (18)

and thus, the iMTI model (17) has the broadest spectrum
of applicability.

Next, saturation is modeled generically as iMTI.

Example 2.5. To model saturation, we use the discrete
variables b1 and b2 of Example 2.4 and append a second
pair of discrete variables by

b3b4 = 0 , (19)
b3 + b4 − 1 = 0 . (20)

Then the variables need to be connected to the ranges in
Figure 2 given as

(b1 − b2)(u − ul) ≥ 0 , (21)
(b3 − b4)(u − uu) ≥ 0 . (22)

In case u is above the lower limit ul, the second term in (21)
is positive, thus b1 = 1 and b2 = 0 for the inequality to
hold. If u is below the lower limit ul, then b1 = 0 and b2 =
1. The same holds analogously for the upper limit in (22),
see Table 1.

With the discrete variables connected to the input
ranges, it is now possible to give the output equation of
the saturation as

y = b2yl + b1b4((u − ul)s + yl) + b3yu , (23)

again with the slope s = yu−yl
uu−ul

.

Table 1: Values of the discrete variables corresponding to the input
ranges.

u − ul u − uu b1 b2 b3 b4

<0 <0 0 1 0 1
>0 <0 1 0 0 1
>0 >0 1 0 1 0

3 Composition

Systems can be connected in three different ways: series,
parallel, and feedback. In general, any eMTI system can be
connected to another eMTI system using one of the men-
tioned connection types. Whether the coupled system is
within the class of eMTI systems depends on the subsys-
tems and the connection type [26]. The following example
shows a simple series connectionwhere the overall system
does not remain within the eMTI class.

Example 3.1. Consider two first order eMTI systems con-
nected in series. The first system has one input u1 and two
outputs y1 described by

ẋ1 = f12x1 + f14 x1 u1 , (24)

y1 = (
g12x1

g18 x1 u1
) . (25)

The second system has a 2-dimensional input u2 and one
output y2 described by

ẋ2 = f21 + f27 u21 u22 , (26)
y2 = g26 u22 x2 . (27)

A series connection of the two subsystems can be repre-
sented as state space model

ẋ = ( f12 x1 + f14 x1 u1
f21 + f27 g12 g18 x21 u1

) , (28)

y = g26 g18 x1 x2 u1 . (29)

Due to the term x21 , it is no longer possible to model the
overall systemexplicitlymultilinear, but only bymore gen-
eral polynomial functions. See Appendix B for a detailed
development and the parameter matrices F and G.

In contrast, if the systems are represented in iMTI
form, the overall system will still be within this class,
which is formally stated by the following proposition.

Lemma 3.1. The class of iMTImodels (12) is closedw. r. t. all
connections: series, parallel, and feedback.
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System 1 System 2
y1 u2u1 y2

Figure 3: Series connection.

System 1

System 2

u1 y1

u2 y2

+
y

Figure 4: Parallel connection.

System 1

System 2

e u1 y1

u2y2

+

Figure 5: Feedback connection.

Proof. Given two model matricesH1 and H2 of the subsys-
tems, the model matrix H of the overall system has a col-
umn dimension according to the total number of variables
of the overall system. The row dimension takes the sum
of the row dimensions of H1 and H2 plus the number of
additional connecting equations, which is dependent on
the connection type. The overall dimensions ofH are given
in subsection 2.3. The equations to append for different
connection types are given next.
1. Series connection (Figure 3) has the implicit equation

u2 − y1 = 0 . (30)

2. Parallel connection (Figure 4) has the implicit equa-
tions

y − y1 − y2 = 0 , (31)
u2 − u1 = 0 . (32)

3. Feedback connection (Figure 5) has the implicit equa-
tions

u2 − y1 = 0 , (33)
e + y2 − u1 = 0 . (34)

Example 3.2. If Example 3.1 is written in implicit form, it
can be seen that the overall system remains in the iMTI

class. The iMTI formulation of system 1 is

(
f12 x1 + f14 x1 u1 − ẋ1

g12 x1 − y11
g18 x1 u − y12

) = 0 , (35)

and for system 2

(
f21 + f27 u21 u22 − ẋ2

g26 u22 x2 − y
) = 0 . (36)

Using (30) for series connection, the implicit form of the
overall model is

(((((

(

f12 x1 + f14 x1 u1 − ẋ1
g12 x1 − y11

g18 x1 u1 − y12
f21 + f27 u21 u22 − ẋ2

g26 u22 x2 − y
u21 − y11
u22 − y12

)))))

)

= 0 . (37)

It is clear that the last two connection equations allow to
reduce the model to

(

f12 x1 + f14 x1 u1 − ẋ1
g12 x1 − u21

g18 x1 u1 − u22
f21 + f27 u21 u22 − ẋ2

g26 u22 x2 − y

) = 0 . (38)

See Appendix B for a more detailed development of the
equations.

Equation (38) shows that in general, auxiliary vari-
ables are required in addition to the overall input and out-
put variables and state variables of the subsystems. Sym-
bolic methods for reduction of the number of auxiliary
variables and thus, equations are known and provided by
standard algorithms, e. g., as implemented for the Model-
ica language in OpenModelica. This paper does not focus
on these, but on the structure of the iMTI models, which
additional enable the use of tensor decomposition meth-
ods for reduction which will be discussed in the next sec-
tion.

4 Decomposition

4.1 Tensors

Real-valued tensors X ∈ ℝI1×I2×⋅⋅⋅×In are multidimensional
arrays well known from physics and various other appli-
cation domains, e. g., in data sciences. Well established
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x1 x1x2

x21

x1x3 x1x2x3

x2x3x3

Figure 6:Monomial tensor of 3rd order.

linear control engineering methods mostly rely on matri-
ces, i. e., 2D tensors and also current extensions to the
nonlinear domain, e. g., linear-parameter-varying models
do this, too. But for multilinear models, matrices are less
appropriate parameter formats than general tensors. This
is because of the intrinsic tensor structure of multilinear
monomials which can be seen best by the small example
in Figure 6.

The contracted product ⟨⋅|⋅⟩ of a tensor F ∈
ℝI1×⋅⋅⋅×In×J1 ⋅⋅⋅×Jm and a tensor G ∈ ℝI1×⋅⋅⋅×In is defined as a
tensor H = ⟨ F |G ⟩ ∈ ℝJ1×⋅⋅⋅×Jm with elements

H(j1, . . . , jm)

=
I1
∑
i1=1

I2
∑
i2=1
⋅ ⋅ ⋅

In
∑
in=1

g(i1, . . . , in)f (i1, . . . , in, j1, . . . , jm) . (39)

The contracted product for tensors of the same size is
called inner (or element-wise) product. This can be used
to define a multilinear function

f (x) = ⟨ F |M(x) ⟩ ∈ ℝ , (40)

with x ∈ ℝn represented by the inner (elementwise) prod-
uct of a parameter tensor F ∈ ℝ×

n2, using the simple nota-
tion for tensor spaces as

ℝ×
(n+m)2 := ℝ×(n+m)2 := ℝ

n+m
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞2 × . . . × 2 ,

with the monomial tensor M(x) of the same dimension,
which is the tensor analogon to (3), [13].

4.2 Tensor decomposition

The representation of the coefficients of amultilinear poly-
nomial as tensor F as in (40) enables the application of ten-
sor decomposition methods which have proven to be ex-

tremely powerful inmany other application domains. This
paper focusses on the so called canonical polyadic (CP)
decomposition, but all other decomposition methods are
also possible in principle [14].

A tensor X can be decomposed in a sum of a minimum
number of r outer products, where r is the so called tensor
rank. All factors can be represented as matrices Fi ∈ ℝIi×r

for each dimension i of the original tensor F, which can be
abbreviated as

X = [F1,F2, ⋅ ⋅ ⋅ ,Fn] . (41)

An element of X is then given by

x(i1, i2, . . . , in) =
r
∑
j=1

F1(i1, j) ⋅ F2(i2, j) ⋅ ⋅ ⋅Fn(in, j) , (42)

which can be seen as the generalization of the dyadic
product for dimensions larger 2. Figure 7 shows how
the red element x(3, 1, 2) of the tensor is computed
as F1(3, 1)F2(1, 1)F3(2, 1) + F1(3, 2)F2(1, 2)F3(2, 2) + ⋅ ⋅ ⋅ +
F1(3, r)F2(1, r)F3(2, r) by r ⋅ (n− 1)multiplications and (r − 1)
summations.

Determing the exact rank of certain tensors is known
to be a relevant but hard problem in mathematics [7]. For
engineering applications, the problem of finding a CP de-
composition of a predefined rank as approximation of an
original tensor F is more relevant. Minimizing the norm
⟨ E | E ⟩ of the error tensor

E = F − [F1, ⋅ ⋅ ⋅ ,Fn] (43)

still is a non-convex hard problem, but sub-optimal so-
lutions can be computed by tools like Tensorlab [30] and
used for approximation in applications like the one given
in this paper in Section 6.

4.3 Explicit CP models

Any eMTI model can represented by contracted tensor
products [26]

ẋ = ⟨ F |M(x,u) ⟩ , (44)

y = ⟨G |M(x,u) ⟩ , (45)

with the parameter tensors F = ℝ×
(n+m)2×n and G =

ℝ×
(n+m)2×p. Whereas the parameter tensors can have arbi-

trary rank, monomial tensors are always rank 1, so for a
state vector x ∈ ℝn and an input vector u ∈ ℝm the mono-
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Figure 7: CP Decomposition of a tensor with dimensions 5 × 3 × 4.

mial tensor has the decomposition

M(x,u) = [( 1
x1
) , ⋅ ⋅ ⋅ ,(

1
xn
),(

1
u1
) , ⋅ ⋅ ⋅ ,(

1
um
)] . (46)

After CP decomposition of the parameter tensors aswell as
the monomial tensor, the eMTI model reads

ẋ = ⟨[F1, ⋅ ⋅ ⋅ ,Fn+m,Fϕ]
!!!!!!!!!
[(

1
x1
) , ⋅ ⋅ ⋅ ,(

1
um
)] ⟩ , (47)

y = ⟨[G1, ⋅ ⋅ ⋅ ,Gn+m,Gϕ]
!!!!!!!!!
[(

1
x1
) , ⋅ ⋅ ⋅ ,(

1
um
)] ⟩ , (48)

with the factor matrices Fi,Gi ∈ ℝ
2×r for all states and in-

puts i = 1, ⋅ ⋅ ⋅ , (n +m) and Fϕ ∈ ℝn×r and Gϕ ∈ ℝ
p×r .

The next step is the most important one for applica-
bility and large-scale models, because here the curse of
dimensionality is broken by factorization. If a CP decom-
position of the parameter tensor F with arbitrary rank r is
available, the computation of the right hand side of the
state space model (6)–(7) is possible by using the factors
and the rank-1 structure of the monomial tensor, e. g., for
the state equation by

ẋ = Fϕ((F
T
1 (

1
x1
)) ⊛ ⋅ ⋅ ⋅ ⊛ (FTn (

1
xn
))

⊛ (FTn+1 (
1
u1
)) ⊛ ⋅ ⋅ ⋅ ⊛ (FTm+n (

1
um
))). (49)

The overall number of operations for each factor are
2rmultiplications and n+m additions, together with n+m
multiplications for the element-wise Hadamard product ⊛
and the final multiplication with the n × r matrix Fϕ these
are (n+2) rmultiplications and r+n+m additions which is
linear in all dimensions n and m of the variables whereas
already the number 2n+m of monomials has exponential
complexity. Thus, full tensor computations are reasonable
only for small dynamic order n and number m of inputs,
whereas computations with decomposed representations
are easily done up to very large dimensions. Similar argu-
ments hold for the output equation (48).

4.4 Implicit CP models

An iMTI model (12) represented in tensor form reads

⟨H |M(ẋ,x,u, y) ⟩ = 0 , (50)

and the same holds true for the representation of the in-
equality constraints

⟨ L |M(ẋ,x,u, y) ⟩ ≥ 0 . (51)

As discussed, for larger systems only decomposed param-
eter tensors make sense, i. e., the general model is given
by

⟨[L1, ⋅ ⋅ ⋅ ,L2n+m+p,Lϕ]
!!!!!!!!!
[(

1
ẋ1
) , ⋅ ⋅ ⋅ ,(

1
yp
)] ⟩ ≥ 0 , (52)

asmentioned in subsection 2.3, (50) canbe included in (51)
and therefore the decomposed version of (50) is not given.
Computations with large scale models always have to be
done on the factors like

Lϕ (L
T
1(

1
ẋ1
)) ⊛ ⋅ ⋅ ⋅ ⊛ (LT2n+m+p(

1
yp
)) ≥ 0 , (53)

because even constructing the full parameter tensorwould
lead to enormous memory and runtime requirements.

The factor matrix Lϕ ∈ ℝN×r where the row dimension
N is the number of inequality constraints and r is the de-
composed tensor rank. All other factor matrices Li ∈ ℝ2×r

for i = 1, ⋅ ⋅ ⋅ 2n +m + p have a row dimension of 2. The next
Section will show how this structure can be exploited fur-
ther and how the storage needed for the model can nearly
be reduced by another 50%.

5 Normalization
In this section, a linear state and input transformation
for eMTImodels is given and a normalization of iMTImod-
els in CP tensor representation are discussed.
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5.1 Linear transformation

For linear state and input variable transformations of mul-
tilinear models (6) in continuous time given by

x̃i =
xi − bi
ai
∀i = 1, . . . , n, (54)

ũi =
ui − bn+i
an+i
∀i = 1, . . . ,m, (55)

the transformed state transition matrix is given by

F̃ = diag
i=1,...,n
(
1
ai
) (FT) , (56)

where diag denotes the diagonal matrix with elements ai
and

T = ( 1 0
bn+m an+m

) ⊗ ⋅ ⋅ ⋅ ⊗ (
1 0
b1 a1
)

is a transformation matrix. Linear transformations allow
a numerical preconditioning of models which is used in
the application example. The linear transformation can as
well be done in tensor representation.

5.2 Normalized implicit CP tensor models

The CP tensor H of the decomposed iMTI model from sec-
tion 4 can be represented in a normalized form. Several
norms, such as the euclidean norm (2-norm) or the man-
hattan norm (1-norm) could be used in principle, but the
latter enables very efficient computations and thus is given
priority in this paper [17]. In [13] it is proposed to normalize
the columns of the factors of a CP tensor which is applied
in [12] using the norm 1 condition.

Definition 5.1. The iMTI model with CP Tensor

H̃ = [H̃1, . . . , H̃2n+m+p, H̃ϕ] (57)

is called 1-norm normalized, if all factors H̃i ∈ ℝ
2×r for i =

1, . . . , (2n +m + p) have columns k = 1, . . . , r of norm

||H̃i(:, k)||1 =
2
∑
j=1
|H̃i(j, k)| = |H̃i(1, k)| + |H̃i(2, k)| = 1 . (58)

Aminimal representation of H̃ by the factor H̃ϕ ∈ ℝ
N×r

and only vectors instead of matrices for the other factors
thus is possible, because the other elements of the matrix
H̃i canbe computedby (58).Moreover, anyCPdecomposed
tensorH of an iMTImodel can be transformed in aminimal
normalized representation with factor vectors

h̃i(k) =
Hi(2, k)
||Hi(:, k)||1

⋅ (2σ(Hi(1, k)) − 1) (59)

and

H̃ϕ=Hϕ⊛[
2n+m+p
∏
i=1
||Hi(:, 1)||1,. . . ,

2n+m+p
∏
i=1
||Hi(:, r)||1]

⊛[
2n+m+p
∏
i=1
(2σ(Hi(1, 1)) − 1),. . .,

2n+m+p
∏
i=1
(2σ(Hi(1, r)) − 1)] .

(60)

Some remarks:
– For computational efficiency, H̃ϕ is allowed to have ar-

bitrary column vectors,
– for all reasonable iMTI models, ||Hi(:, k)||1 > 0 holds,
– the Heaviside function (8) allows to construct a two-

valued sign function,
– all factor vectors h̃i can be stored in amatrix of dimen-

sion ℝ(2n+m+p)×r .

In the following, an example of CP tensor normalization is
given by an example of an easy linear system relevant for
the next section, too.

Example 5.1. A PI controller can be represented by the im-
plicit equations

ẋ − KI u = 0, (61)

y − x − KP u = 0,

with integral gain KI , proportional gain KP, input u, state
x and output y. The CP iMTI model

⟨[Hẋ ,Hx ,Hu,Hy ,Hϕ]
!!!!!!!!!
[(

1
ẋ
) ,(

1
x
) ,(

1
u
) ,(

1
y
)] ⟩ = 0

(62)

can be represented as a rank 5 CP tensor Hwith factor ma-
trices for each term

Hẋ = (
0 1 1 1 1
1 0 0 0 0

) ,

Hx = (
1 0 1 1 1
0 −1 0 0 0

) ,

Hu = (
1 1 0 0 1
0 0 −KI −KP 0

) ,

Hy = (
1 1 1 1 0
0 0 0 0 1

) ,

Hϕ = (
1 0 1 0 0
0 1 0 1 1

) .
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Using (59) and (60), the factors in minimal normalized
form are

h̃ẋ = (1 0 0 0 0) ,

h̃x = (0 −1 0 0 0) ,

h̃u = (0 0 −1 −1 0) ,

h̃y = (0 0 0 0 1) ,

H̃ϕ = (
1 0 KI 0 0
0 1 0 KP 1

) .

Because the third and the fourth columnsof allhi are equal
andHϕ has only one parameter in the third row for the first
state equation and one parameter in the forth row for the
second state equation, it is obvious, that the rank can be
reduced to 4 by storing the third and fourth columns as
one:

h̃ẋ = (1 0 0 0) ,

h̃x = (0 −1 0 0) ,

h̃u = (0 0 −1 0) ,

h̃y = (0 0 0 1) ,

H̃ϕ = (
1 0 KI 0
0 1 KP 1

) .

It is now possible to crosscheck, that by (53) themodel (61)
can be recovered

((1 − 1) ⋅ 1 + 1ẋ) ⋅ 1 + ((1 − 1) ⋅ 1 − 1u) ⋅ KI = 0 ,
((1 − 1) ⋅ 1 − 1x) ⋅ 1 + ((1 − 1) ⋅ 1 − 1u) ⋅ KP

+((1 − 1) ⋅ 1 + 1y) ⋅ 1 = 0 .

To illustrate the normalization of the factor matrices
from Example 5.1, the Figure 8 shows the original column
vector of Hu(:, 3) with dashed line and the normalized col-
umn vector of H̃u(:, 3) with solid line in blue. Red vectors
belong to a factor Hu(:, k) = (2 1)

� to demonstrate nor-
malization with arbitrary angle.

6 Application example

The previous section showed that the non-closedness of
the eMTI is overcome by introducing the iMTI form. The
following section presents a first showcase example about
the usage of this new representation by connecting an
electrolyzer with a buck converter powered by an infinite
DC bus. These applications exemplify local energy sys-
tems, where several multiphysical dynamics are present.

−1 1 2

−1

1

−KI

u⃗

Figure 8: Normalization of a CP tensor factor to norm-1.

Three main aspects are demonstrated here. Firstly, the
nonlinear model of the electrolyzer is multilinearized and
compared with a typical linear approximation. Then this
multiphysical model is connected with a buck converter,
where a linear averaged model is assumed, since the fo-
cus in this paper is on the connection of the two models.
Lastly, this paper derives a representation of the nonlin-
ear saturation limits of the buck converter in an iMTI form.
Thereby, the basic functionalities of the new implicit form
are demonstrated and the prospective of large-scale mul-
tilinear energy systems modeling is shown.

6.1 Electrolyzer

The nonlinear model of the polymer exchange membrane
(PEM) electrolyzer is based on a 46 kW model from litera-
ture [8]. Because in this example the connection to power
electronics is crucial, also the electric dynamic behavior
should be modeled [23]. Considering an equivalent elec-
tric circuit tomodel the electrolyzerwith an RC element for
each electrode, the ordinary differential equation (ODE)
describing the activation overpotential vact on anode and
cathode, respectively, is expressed as

dvact
dt
=

1
CDL

iely −
1

CDLRact
vact, (63)

with the total electrolyzer current iely in A [31]. The dou-
ble layer capacity CDL, defined in (A.1), and activation re-
sistance Ract are often measured by a step function of the
input current or voltage [10]. Since the base model of [8]
does not include values for the capacity, simplifying as-
sumptions will be made to include a value. The electric
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dynamic behavior is mainly caused by the double layer
at the electrode-electrolyte interface. Due to the geometric
arrangement of the electrode and electrolyte, the capac-
ity can be estimated by a simple plate capacitor [29]. The
total activation overpotential is mainly caused by the re-
action at the anode (vact,an = vact), wherefore the cathode
is neglected and the resistance Ract can be calculated as
displayed in (A.2) [8]. Therefore, Ract is already nonlinear,
but in addition the temperature dependency of the elec-
trode exchange current density j0 is expressed by an ex-
ponential function [8]. The temperature influence on the
open circuit voltage vocv, defined by the Nernst-Equation,
is also nonlinear (A.3). By adding up vocv with the ohmic
overpotential vohm based on (A.4) and the activation over-
potential, the total electrolyzer voltage can be described as

vely = vocv + vact + vohm. (64)

Again, the temperature dependency of the protonic mem-
brane conductivity σmem is nonlinear and contains an ex-
ponential expression. For describing the thermal dynam-
ics, an ODE is used as in

dT
dt
= (

s1
∑
k=1

Ẇk +
s2
∑
k=1

Q̇k +
s3
∑
k=1

Ḣk)/Cth, (65)

with s1 power (Ẇ), s2 heat (Q̇) and s3 enthalpy (Ḣ) streams,
and the lumped thermal capacity Cth [8]. The cooling
heat Q̇cool is directly controlled by a PI controller, and de-
scribed by a state space model as

Q̇cool = xPI + KPΔT (66)
dxPI
dt
= KIΔT ,

with KP = −152.023, KI = −0.218 and the temperature dif-
ference as control deviation ΔT = Tset − T. Because of the
ODEs describing the thermal, electric and controller dy-
namics, the model has three states (n = 3). Since the elec-
trolyzer is current-controlled, the input current iely (m = 1)
results into an output voltage vely, which is set by the
converter. Additionally, the generated hydrogen substance
stream ṅH2

inmol s−1 is considered as an output (p = 2), de-
scribed by Farady’s law in

ṅH2
=
nciely
2F

nF, (67)

containing the number of cells nc, Faraday’s constant F
and faradaic efficiency nF = 1. With the state and output

vectors

x = (
T
vact
xPI
) , y = (vely

ṅH2

) , (68)

a nonlinear state space model can be derived.
Considering the broad operating range of electrolyz-

ers, linearization of this nonlinear model at one operation
point could be insufficient regarding the model accuracy.
Thus, the projection multilinearization method from [16]
was chosen, as it can be defined for the operating range
of states, input and outputs. In that operating range the
number of values per variable is N = 30 and the maximal
multilinear order is mn = 2. The lower and upper bound
for the multilinearization were estimated by the minimum
and maximum values of the nonlinear model in the sim-
ulated range of 200 to 400A, which corresponds to 50 to
100% of the nominal load of the electrolyzer. This leads to
the matrices F ∈ ℝ3×16 and G ∈ ℝ2×16 of the eMTI model.
The eMTI model in the form of (6) and (7) can easily be
transferred to implicit form, as described in (13) and (14)
in subsection 2.3.

The eMTImodel was decomposed by theMATLAB ten-
sor toolbox, resulting in a reduced rank of rF = 9 and rG =
8. A linear transformation was applied to the model ac-
cording to (54)–(56) for getting an operating region be-
tween 0 and 0.5. For numerical comparison, linearization
at 300A, corresponding to 75% of the nominal load was
done by the MATLAB function linmod.

At the operation point, the linear time-invariant (LTI)
model fits the nonlinear dynamics better than the eMTI
model, as it can be observed for vact in Figure 9 (c). Af-
ter 10min of electrolyzer operation at 75%, the current
jumps to nominal load, where the eMTI model fits better.
The same behavior can be observed at the second jump
to 200A. Especially the states of the thermal dynamics T
and xPI of the eMTI model show good accordance with
the nonlinear model in Figure 9 (b) and (d). This exam-
ple shows the benefits of the eMTI modeling approach for
wider operating ranges compared to linearization.

Additionally, the computational time of the simula-
tions are compared. The simulations are performed on a
conventional laptop, while using the automatic solver and
step-size selection within Simulink. The simulation time
of the LTI model is the smallest (21 s), followed by the
eMTI (26 s) and the nonlinear model (35 s). These results
are expected as the LTI and eMTI are approximations of
different complexity of the nonlinear model. In addition,
thememory requirements are compared for the LTI and the
eMTI models. For the comparison the matrices A, B, C, D
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Figure 9: Electrolyzer model comparison for: (a) current input iely, (b) temperature state T , (c) activation voltage state vact, and (d) cooling
power state xPI.

of the LTI model and the normalized decomposed tensors
F, G of the eMTI model in double precision are used. The
required memory of the eMTI model (888 bytes) is signifi-
cantly higher than that of the LTI model (160 bytes). How-
ever, the advantages of decomposed tensors for MTI mod-
els will be noticeable for larger systems as the increase of
elements is linear compared to an exponential increase for
full tensors and for the LTI model. An example for this is
given in Figure 10. The intersections of the graphs depend
on the rank of the decomposed tensors. The memory re-
quirements of the nonlinear model are not taken into ac-
count due to the significantly larger memory of the overall
Simulink file. Therefore, a reasonable comparison is not
possible here.

6.2 Buck converter

The buck converter steps down the voltage of 800V pro-
vided by the infinite DC bus VDC. This paper takes an ideal
model of a buck converter as depicted in Figure 11. At the
load side of the converter, since the electrolyzermodel pro-
vides the voltage vely for a given current input iely, a con-
trolled voltage source is used to connect the electrolyzer
to the DC bus. It is connected in series with a small resis-
tance RS of 10 µΩ. The switching power electronic S, e. g.,
an IGBT, is modelled as an ideal switch. The diode, induc-
tor L, and capacitor C, have no internal, or parasitic, re-

Figure 10: Comparison of the memory consumption of an LTI model,
eMTI model using full tensors and eMTI model using decomposed
and normalized tensors with rF = 9 and rG = 8 as a function of
number of states.

sistances. The inductor is sized to 1mH and the capacitor
to 680 µF similarly to the filter design used in [9].

This paper assumes an average model of the switch-
ing, and thus, the buck converter excluding the controller
can be described by the LTI state-space model

(
̇iL
v̇C
) = (

0 − 1L
1
C −

1
RsC
)(

iL
vC
) + (

VDC
L 0
0 1

RsC
)(

d
vely
) , (69)

(iely) = (0
1
Rs ) (

iL
vC
) + (0 − 1

Rs ) (
d
vely
) , (70)
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where the duty cycle d is the input coming from the con-
troller. This LTI model can be easily transformed into an
iMTI model as outlined in (13)–(14) in subsection 2.3.

6.3 Local energy system

Finally, the coupled system of the buck converter and
electrolyzer including a controller is analyzed. Figure 12
shows the closed control loop of the coupled system.
The controller tracks the difference between the reference
power Pref and the actual power P delivered to the elec-
trolyzer. Using the tracking error, the duty cycle d is cal-
culated with a PI controller, with gains KP = 5.0 ⋅ 10−4

and KI = 1.0 ⋅ 10−2, and saturated to [0, 1]. The buck con-
verter takes the duty cycle d and the output voltage of the
electrolyzer vely to provide the input current iely to the elec-
trolyzer.

As mentioned in section 3 the connection of eMTI sys-
tems can lead to anoverall system,which is not in the eMTI
class. Due to Lemma 3.1 the application example is formu-
lated in implicit form, which guarantees the overall model
to be within the iMTI class. The connection equations for

VDC

S L iL

Rs
iely

Vely

D CVC

Figure 11: Ideal buck converter scheme and connection to the elec-
trolyzer.

the system are given as

u − uI − KPe = 0, (71)
e − Pref + velyiely = 0, (72)

y − d = 0. (73)

The iMTI representation of the controller can be written in
CP tensor form

⟨Hc |M (yc,bc, ẋc, xc,uc) ⟩ = 0, (74)
⟨ Lc |M (yc,bc, ẋc, xc,uc) ⟩ ≥ 0, (75)

where yc = d, bc = [b1 b2 b3 b4]
T, xc = uI,

and uc = [Pref vely iely]
T. In this representation Hc cor-

responds to the equalities of the controller (61), the satura-
tion (15), (16), (19), (20), (23), the buck converter (69), (70),
the electrolyzer (63)–(68) as well as the connection equa-
tions (71)–(73),while Lc corresponds to the inequalities (21)
and (22).

Special differential algebraic equations (DAE) solvers
for descriptormodels canbeused for simulationof CP iMTI
models like the one derived for the closed loop energy sys-
temhere [4]. For this paper, the closed loopmodel is imple-
mented in Simulinkwith CP eMTI submodels. Three differ-
ent setups are compared, where the electrolyzer is either
modeled as an LTI, eMTI or nonlinear system. The formu-
lation of the electrolyzer w.r.t these three model classes is
given in subsection 6.1. The rest of the system remains un-
changed during the comparison shown in Figure 13.

A total simulation time of 30 minutes is used. Dur-
ing the simulation the reference power Pref is changed
twice using a step function. The step is performed
w. r. t. subsection 6.1. The initial reference power Pref un-
til 10minutes simulation time is related to 75%of the nom-
inal power of the electrolyzer. After the first step the refer-
ence power is increased by 1/3. After another 10 minutes

PI (s) u
Buck

Converter

d

Electrolyzer
vely

ielyePref

P

−

Controller

Figure 12: Closed control loop.
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Figure 13: Closed loop simulation results: (a) electrolyzer input cur-
rent iely, (b) electrolyzer output voltage vely, (c) electrolyzer output
hydrogen stream ṅH2 , and (d) electrolyzer power P tracking.

of simulation time the reference power is decreased by 2/3
of the initial power. Figure 13 gives an overview of the en-
tire simulation regarding the time and operational range.
Here, all models show comparable results.

A more detailed view of the results is given in Fig-
ure 14. An overshoot for the controller can be seen for all
models after the first step. During the simulation from 10
to 20 minutes the eMTI model is outperforming the LTI
model. Especially for an advanced simulation time after
the first step, the deviation for the LTI model is large com-
pared to the eMTI model.

The whole model can also be represented by a single
tensor and inequalities

⟨ Ltot |M (yc,bc, ẋc, xc,uc) ⟩ ≥ 0, (76)

where Ltot appends the equalities to the inequalities given
by Lc. This can be achieved by expressing each equality by
two opposing inequalities as given in (18). Although the
number of inequalities gets larger, such a representation
could lead to reductions because of the possible good low
rank tensor approximations exploiting the internal struc-
ture of Ltot.

Figure 14: Zoom of closed loop simulation results: (a) electrolyzer
input current iely, (b) electrolyzer output voltage vely, (c) electrolyzer
output hydrogen stream ṅH2 , and (d) electrolyzer power P tracking.

7 Conclusion

This paper introduces iMTI models as a new class – which
is interesting for large-scale hybrid complex engineering
applications because of three reasons. The parameters
can be represented as normalized tensors – which allow
tremendous model reduction by modern decomposition
methods. Nonlinear effects can be modeled – which is es-
sential for the large signal behaviour of real world sys-
tems. Boolean dynamics is exactly modeled because its
intrinsically multilinear – which is necessary to describe
all discrete-valued subsystems, switches, and automata.
Possible white-box modeling steps are shown by a small
energy system example, including multilinearization, de-
composition of themultilinearmodel into factors, normal-
ization and composition back to overall models. Research
on multilinear black-box and grey-box parameter identifi-
cation is parallel ongoing.

Future research activities will apply the iMTI form to
modeling large power networks, where discrete-valued dy-
namics, such as the switches in power converters, become
more present with the growth of renewables. This includes
the quick composition of multiphysical energy systems
models by using the implicit form. This will add a power-
ful tool to address the challenges arising in the European
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power system growing in complexity, for which efficient
models are needed.
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by the Free and Hanseatic City of Hamburg.

Appendix A. Electrolyzer model

In this section some equations of the nonlinear elec-
trolyzer model are further described to point out the non-
linearity of the problem. The equations calculate
– the total capacity

CDL =
CDL,cellA

nc
, (A.1)

with electrode surface A, specific cell capacity CDL,cell,
and number of cells nc,

– the activation resistance

Ract =
vact,cell
iely

nc =
RT

2αanF
asinh ( j

2j0,an )
iely

nc, (A.2)

including the Volmer-Butler-Equation with current
density j, electrode exchange current density j0,
charge transfer coefficient α, temperatureT, Faraday’s
constant F, and universal gas constant R [8, 31],

– the open-circuit cell voltage

vocv,cell = (vstd − 0.0009(T − Tstd))

+
RT
2F
[ln(

pH2
p0.5O2

pH2O(T)
)], (A.3)

with voltage at standard conditions vstd, standard
temperature Tstd, and partial pressure ps of the sub-
stance s [8],

– and the Ohmic cell overpotential

vohm,cell =
δmem

σmem,stdexp (−
Epro
R (

1
T −

1
Tstd
))
j, (A.4)

with membrane thickness δmem, standard protonic
conductivity σmem,std, and activation energy required
for the proton transport in the membrane Epro [8].

For further description of the parameters and the thermal
dynamics see [8].

Appendix B. Composition

This section provides the parameter matrices F and G of
the eMTI model example in section 3. The state equation
of system 1 is given by

ẋ1 = f12x1 + f14 x1 u1 = F1m1(x1, u1)

= (0 f12 0 f14)(

1
x1
u1
x1 u1

)

and the output equations

y1 = (
y11
y12
) = (

g12x1
g18 x1 u1

) = G1m1(x1, u1)

= (
0 g12 0 0
0 0 0 g18

)(

1
x1
u1
x1 u1

) .

For system 2, the corresponding equations are

ẋ2 = f21 + f27 u21 u22 = F2m2(x2, u21, u22)

= (f21 0 0 0 0 0 f27 0)

((((((((

(

1
x2
u21
x2 u21
u22
u22 x2
u22 u21
u22 x2 u21

))))))))

)

,

and

y2 = g26 u22 x2 = G2m2(x2, u21, u22)

= (0 0 0 0 0 g26 0 0)

((((((((

(

1
x2
u21
x2 u21
u22
u22 x2
u22 u21
u22 x2 u21

))))))))

)

.

A series connectionu2 = (
u21
u22
) = (

y11
y12
) = y1 of the two

models is not within the eMTI class, but the overall iMTI
model can be derived from the iMTI submodels,where Sys-
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tem 1 can be written by H1 ∈ ℝ
3×32 as

H1m1(ẋ1, x1, u1, y11, y12)

=

((((((((((((((((((

(

0 0 0
−1 0 0
f12 g12 0
0 0 0
0 0 0
0 0 0
f14 0 g18
0 0 0
0 −1 0
0 0 0
...

...
...

0 0 0

))))))))))))))))))

)

T

((((((((((((((((((

(

1
ẋ1
x1
ẋ1x1
u1
ẋ1u1
x1u1
ẋ1x1u1
y11
ẋ1y11
...

ẋ1x1u1y11y12

))))))))))))))))))

)

= 0

and system 2 with H2 ∈ ℝ
2×32 as

H2m2(ẋ2, x2, u21, u22, y2)

=

(((((((((((((((((((((((((((((((((((((

(

f21 0
−1 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 g26
0 0
f27 0
0 0
0 0
0 0
0 −1
0 0
...

...
0 0

)))))))))))))))))))))))))))))))))))))

)

T

(((((((((((((((((((((((((((((((((((((

(

1
ẋ2
x2
ẋ2x2
u21
ẋ1u21
x1u21
ẋ1x1u21
u22
ẋ2u22
x2u22
ẋ2x2u22
u21u22
ẋ1u21u22
x1u21u22
ẋ1x1u21u22

y2
ẋ2y2
...

ẋ2x2u21u22y2

)))))))))))))))))))))))))))))))))))))

)

= 0 ,

where the transposed forms of H are chosen for better vi-
sualization.
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