
Spatial-aware Iterative Integration of Crisis
Management Information Systems

Betim Sojeva
Fraunhofer IAIS

Sankt Augustin, Germany
betim.sojeva@iais.fraunhofer.de

Jingquan Xie
Fraunhofer IAIS

Sankt Augustin, Germany
jingquan.xie@iais.fraunhofer.de

Abstract—Information systems are playing increasingly more
important role in modern crisis management process. An in-
tegrated system with capabilities like foresight, prediction and
decision support capabilities can provide substantial added-
value for decision makers on both tactical and policy-making
levels. It is however a challenging task to seamlessly integrate
various systems with dedicated functionalities on functional and
technical aspects, especially when these systems are developed
independently from each other with substantially different design
rationale and software technology. In this paper, an iterative
system integration approach is proposed by harmonising service-
oriented, model-driven and agile system development. Several
design principles and best practices from the software engineer-
ing community are adopted to facilitate the integration task. In
addition, extra attention is paid to provide enhanced support
for integrating spatial data into the crisis management workflow.
This approach aims to provide a pragmatic system integration
methodology to integrate crisis management information systems
in a more effective and efficient fashion.

Index Terms—Disaster management, service-oriented architec-
ture, system integration, geographical information system.

I. INTRODUCTION

Modern information systems are essential parts of the crisis
management process - both preparedness and response phases.
Real-time collaboration systems can support rescue forces to
communicate with each during crisis situations. Sensor sys-
tems are able to provide information like temperature, smoke
concentration, etc. to the central monitoring system for im-
proved situation awareness. Simulation-based systems can help
decision makers to assess possible impacts and consequences
in the future of certain actions for better decision making. Most
of these systems involved in the crisis management process
are however developed independently and isolated deployed
- for dedicated tasks. Integrating these systems together will
provide different roles in the crisis management a seamless
user experience in terms of situation awareness and decision
making.

This paper proposes an architectural approach for integrat-
ing information systems used in a typical crisis management
process, which consists of three parts: situational awareness,
foresight and prediction, decision making (see Fig. 1). It tries
to combine modern software engineering best practices with
the specific requirements in crisis management process. An
iterative system integration approach is described to facilitate
the technical integration work. RESTful mock-up services [1]

Situational 
Awareness

Decision 
Making

Foresight / 
Prediction

Fig. 1. Typical crisis management process with decision making by consid-
ering the current situation and possible future development.

based on modern Service-Oriented Architecture (SOA) [2] are
the essential parts of the integration architecture. Reverse-
proxy based solution provides a flexible runtime environment
for hiding the technical details of different system implemen-
tations. Special design consideration is also given to integrate
spatial data into the crisis management process. To maximise
the system design flexibility, software containers are used to
provide flexible wrappers for the real implementation.

This paper is organised as follows: Section I gives the
background and the motivation of the proposed approach. It is
followed by Section II where the adoption of RESTful service-
oriented architecture, agile iterative integration and software
containers with spatial data integration is elaborated. This is
the major part of this paper. To help readers better understand
the proposed approach, a simplified use case is presented
and discussed in Section III. Some related work is discussed
in Section IV. Finally, Section V concludes this paper and
provides insight on potential future directions.

II. ITERATIVE SYSTEM INTEGRATION

Working with partners from different organisations on the
same software project can be difficult, especially when it
comes to integrating new system features and providing system
maintenance. It can yield unwanted dependencies and slow
down the software development process. Therefore, a modular
software architecture can help to manage system development
and de-couple component dependencies. In the following
subsection, four major aspects of the integration approach are
elaborated.

A. RESTful service-oriented architecture

Service-Oriented Architecture (SOA) [2] is an architectural
design pattern based on isolated and de-coupled software
components - each provides dedicated services to the others,
focusing on interoperability and re-usability. One approach to



Fig. 2. A service suite with three RESTful web services and one service
proxy. Each of them provides dedicated services and can communicate with
each other via the proxy.

implement SOA capability is using RESTful web services [1],
which provide light-weight and highly scalable solutions.
Extensive programming language support and large ecosys-
tem make it ideal for integrating heterogeneous information
systems used in crisis management process. Fig 2 illustrates a
system with three services and a proxy. All three services can
be developed independently by different organisations. They
are accessible by exposing themselves via the proxy, which
de-couples the service interface and the implementation. This
kind of system isolation is of critical for developing different
crisis management system components.

B. Iterative Integration

An iterative approach of system integration can be separated
into three stages (see Fig. 3):

1) Defining specification and requirement of the service.
This includes developing use cases, formal specification,
etc.

2) Writing service mock-ups and deploy them to the server
for automated testing. After this stage, all unit tests
should pass as required in classical Test-Driven Devel-
opment (TDD) [3].

3) Iteratively replace mock-ups by real implementations.
Each time, if a service mock-up is replaced, all unit
tests must be executed to guarantee that the service
implementation meets the requirements defined in the
specification.

The first step requires a complete specification description of
each RESTful endpoint including:

• Uniform Resource Locator (URL) - a unique ID of the
service.

• Request method type - indicating the character of the
service whether it is for reading, writing or deleting
operations.

• Header information - some meta information that is not
suitable to be encoded in the URL.

• Payload - additional information that is two large to be
encoded in the URL.

• Expected responses - the result delivered by the service
implementation.

Finally, after all the mock-ups are replaced by real implemen-
tation, it is always a good practice to have some high-level tests
running like functional tests and even human-guided tests.

C. Embracing Software Container

Component-based development is a technique to manage
software artefacts on a single or multiple host machines.

Requirements & 
Specifications

Service Mock-ups Replacement of 
Service Mock-ups

Fig. 3. Iterative integration of different RESTful services. It starts with the
service specification and followed by the mock-up services. The major effort
devotes to the replacement of the mock-ups by the real implementation, which
is iterative, i.e. services can be replaced one by one.

A software container is isolated and independent software
that works as infrastructure software to host other software
components [4]. After deployed, a software container can
be considered as a running application with all the depen-
dency it needs. To build such a container, a configuration
file is needed, which comprises the blueprint of the software
container. It includes specific instructions for the Container-
Engine to determine the runtime behaviour of the container. In
the proposed iterative approach, the following configuration is
recommended to have a skeleton of the container deployment
(see Fig. 4):

• Web Server - the web server is responsible for handling
the requests from the service consumers. On the other
hand, the responses generated by RESTful services are
forwarded by the web server to the service consumers.

• Documentation Server - this serve as a descriptive website
of all of the services. It can host the information for both
developers and the system end-users.

• Continuous Integration - this ensures a sound software
development workflow by seamlessly integrate the soft-
ware modifications into the deployment.

• Mock-up services - this container consists of the mock-up
services as described in the previous section.

• WMS and WFS - the mapping services for exposing
spatial data. More details see Section II-D.

D. Spatial Data Integration

Spatial data integration is an essential part in modern crisis
management process. Most of the objects that are of interest to
the crisis management team have geographical location - like
a street, a electrical substation, a telecommunication router,
etc. crisis managers and situation operators need sufficient
information about states of these objects, in order to make
reasonable decision like whether to evacuate a certain region.
Modern geographical information systems consist of a set of
standards [5] like Web Map Service (WMS) and Web Feature
Service (WFS) to facilitate the modelling of these objects. The
status of these objects can be encoded directly as attributes
of certain features - an object in both WMS and WFS. As
illustrated in Fig. 4, dedicated map server can be setup as
containers to provide spatial data support. The objects that

Documentation 
System

Continuous 
Integration

Data 
Storage

Web Server
Mock-up
Services

WMS and WFS

Fig. 4. Integrated Service using software containers.



iP
D

T
PROCeed SBR

Map/Mock
-up

ServicesNGINX

MYRIAD

Fig. 5. The integrated PREDICT tool suite consisting of three major
components - PROCeed, MYRIAD and SBR. The mapping service and the
service mock-ups are also part of the container deployment.

need to be rendered in the map server can be extracted from
the Data Storage container.

III. USE CASE - THE INTEGRATED PREDICT TOOL SUITE

The integrated PREDICT tool suite - iPDT for short -
developed in the PREDICT project [6] is an example that
comes with the proposed integration approach. The fully
integrated system iPDT (see Fig. 5) combines the integration
clusters on both conceptual and technical level. Each of the
blocks in Fig. 5 correspond to a Docker container [4] - a
proprietary implementation of software containers. Services
provided by components like PROCeed or MYRIAD are
specified at the beginning and replaced iteratively by imple-
mentations provided by different organisations. This kind of
isolation and de-coupling make the distributed development
and deployment more efficient. Moreover, information gen-
erated within iPDT can also be fed into other systems. For
instance, the information forecasted by PROCeed can also
be fed into other system by providing the standard mapping
services on top of the Web. Currently a working group in the
PREDICT project is focusing on integrating the Dutch national
crisis management LCMS with iPDT by applying this kind of
spatial-aware integration approach. Finally, all the services are
exposed by using the reverse proxy server NGINX [7], which
provides high performance and scalable solutions for exposing
RESTful web services.

IV. RELATED WORK

System integration is not a new topic for managing informa-
tion systems. Several approaches have already been proposed
during the last decades. Applying grid computing technology
for general purpose system integration is discussed in [8].
With modern Web infrastructure this kind of integration is
well suited. A similar approach as proposed in this work is
also discussed in [9], which however more focus on the health
care information systems. System integration on the semantics
level is also investigated. A survey paper [10] presents several
approaches using state-of-the-art Semantic Web technologies.
This is one of the limitations of the proposed approach -
lacking the support for the semantic data exchange between
different system components.

V. CONCLUSION AND OUTLOOK

Modern crisis management process requires a sophisticated
combination of different information systems. Seamlessly in-
tegrating them to provide a holistic view of the crisis situations
is of great added-value to rescue forces and decision makers,
especially for real crisis where time is critical for saving

human lives. This paper proposes an iterative system inte-
gration approach tailored for crisis information management
systems. Special attention is also given to integrate spatial
data, which is nowadays an essential part to provide advanced
situation awareness. Best practices from modern software
engineering like Service-Oriented Architecture (SOA), agile
development, and container-based system deployment provide
a solid foundation for operationalise the proposed approach.
A simplified use case is also presented to demonstrate the
potential benefits of the proposed approach. One of the major
limitations of the proposed approach is its sophistication.
System developers need to be familiar with modern software
engineering technology. Moreover, software containers are
still an emerging technology and not widely used; therefore
deploying existing systems into containers requires additional
overhead for adopting the proposed approach.

In the future, more efforts will be devoted to provide
extensive semantic interoperability, i.e. information exchanged
are not only represented as syntactical artefacts, but also the
context and the meta information will be shared as well.
This is extremely useful for cross-border crisis management
use cases where different participants from different countries
(with different background information) can be sure that they
are talking about the same thing even syntactically represented
differently - semantic consistency. Technologies from the
Semantic Web community like linked data, formal ontology
provide promising solutions to tackle this problem. In addition,
high-level standard crisis management mock-up services for
integration purposes can be summarised and provided to
reduce the efforts for integrating new information systems.

ACKNOWLEDGEMENT

This research was funded by the European Commission
within the Seventh Framework Programme project PREDICT.
The authors would like to thank all of the project partners.

REFERENCES

[1] R. Fielding and R. Tylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2,
pp. 15–150, 2002.

[2] E. Newcomer and G. Lomow, Understanding SOA with Web services.
Addison-Wesley, 2005.

[3] D. Janzen and H. Saiedian, “Test-driven development: Concepts, taxon-
omy, and future direction,” Computer, no. 9, pp. 43–50, 2005.

[4] C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, vol. 49, no. 1, pp. 71–79, 2015.

[5] C. D. Michaelis and D. P. Ames, “Web feature service (wfs) and web
map service (wms),” in Encyclopedia of GIS. Springer, 2008, pp. 1259–
1261.

[6] PREDICT, “The EU PREDICT Research Project,” 2014. [Online].
Available: http://www.predict-project.eu

[7] W. Reese, “Nginx: the high-performance web server and reverse proxy,”
Linux Journal, vol. 2008, no. 173, p. 2, 2008.

[8] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke, “Grid services for
distributed system integration,” Computer, vol. 35, no. 6, pp. 37–46,
2002.

[9] W. Wang, M. Wang, and S. Zhu, “Healthcare information system
integration: A service oriented approach,” in Proceedings of ICSSSM’05.
2005 International Conference on Services Systems and Services Man-
agement, 2005., vol. 2. IEEE, 2005, pp. 1475–1480.

[10] N. F. Noy, “Semantic integration: a survey of ontology-based ap-
proaches,” ACM Sigmod Record, vol. 33, no. 4, pp. 65–70, 2004.


