

From Requirements Engineering to Knowledge
Engineering: Challenges in Adaptive Systems

Authors:
Michael Eisenbarth
Mathias Grund
Klaus Schmid

Accepted for Publication in
SOCCER 05 Workshop,
Requirements Engineering Conference,
2005, Paris

Partially supported by the projects BelAmI
(Bilateral German Hungarian Research
Collaboration on Ambient Intelligence
Systems) and ASG (FP6-IST-004617).

IESE-Report No. 118.05/E
Version 1.0
August 30, 2005

A publication by Fraunhofer IESE

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Abstract

New technologies like service-based computing or ambient intelligence aim at
systems that adapt their behavior at runtime and integrate functionalities dy-
namically to satisfy end-user needs. In this paper, we will argue that the way
we do Requirements Engineering will need to change in order to support the
necessary adaptability. We will describe the nature of the expected change and
will illustrate our concepts with an example.

Keywords: ambient intelligence, requirements engineering, knowledge engineering, adap-
tive system, BelAmI, ASG

Copyright © Fraunhofer IESE 2005 v

Table of Contents

1 Motivation 1

2 Description of development context 3

3 Requirements Engineering Challenges 5

4 Example for adaptive systems 7

5 Conclusions and Further Work 10

References 11

Copyright © Fraunhofer IESE 2005 vii

Motivation

1 Motivation

Many current SE paradigms like Service-Orientation or Ambient Intelligence fo-
cus on increasing levels of flexibility and adaptivity of the final system. So far,
however, the impact this shift has on requirements engineering has not yet
been sufficiently understood [1]. In this paper, we argue the increasing focus on
adaptive systems will lead to a significant shift from traditional requirements
engineering towards integration with knowledge engineering activities.

We define – for the purpose of our work – adaptive systems as systems that are
able to adapt their behavior based on the availability of base functionality to
optimally serve the goals of the user. Such adaptation can be triggered either
by the absence or by the unexpected presence of functionality. Further, the be-
havior adaptation can be focused on providing the same problem-solving capa-
bilities to the end-user with different qualities (e.g., response time) or by provid-
ing functionally different end-user services. In this paper we will focus on the
provision of functionally different end-user services and the addition of unex-
pected services.

There are two very prominent technologies currently under discussion, which
are most relevant to this: ambient intelligence and service-oriented systems. (Of
course, both are related to each other as service-oriented technologies are seen
as a key technology for implementing ambient intelligence systems.)

The ambient scenario is driven from the idea that coordinated assemblies of
small devices would provide intelligent services to users in their vicinity. Of
course, these devices must be regarded as characterized by the services they are
able to provide and thus, we can see an ambient environment as a service-
oriented infrastructure, in which services must be combined in a user-centric
manner. We pursue these questions in the context of the BelAmI project [2].

We can directly compare this situation with a service grid infrastructure (except
for location-awareness). As new services can be deployed in the grid infrastruc-
ture at any time, it is a key question, whether these services can be exploited by
applications build on top of the infrastructure. This is the focus of the Adaptive
Service Grid (ASG) project. This project addresses in particular the relationship
between service customers and service providers. It is the explicit goal of this
project to compose elementary services into complex processes, in order to cre-
ate new application services on demand [3].

This paper is structured as follows. Chapter 2 gives on overview of the devel-
opment context of adaptive, service-oriented systems. Chapter 3 discusses the

Copyright © Fraunhofer IESE 2005 1

Motivation

challenges for requirements engineering arising from adaptive systems. Chapter
4 exemplifies the challenges with a travel planner system. Finally, in Chapter 5,
we give a conclusion and discuss future work.

Copyright © Fraunhofer IESE 2005 2

Description of development
context

2 Description of development context

Especially in the context of an adaptive service providing system with a dynami-
cally changing set of resource providers and consumers, a service can be situ-
ated anywhere in the world and appear and disappear anytime during the us-
age of such a system. In order to be visible and accessible from everywhere at
any time, service providers in a grid environment generally publish a service as a
service interface providing service methods. Similarly, ambient devices need to
make their services known to a service broker in an ambient environment. Web
services are a typical form of this type of service provision, where web-based
protocols and mechanisms are used by software elements to enable a standard-
ized communication with these services.

This situation, in which systems need to dynamically identify relevant services in
their environment, leads to different viewpoints in requirements engineering.
The distinction of an end-user and a developer oriented view on requirements
engineering for ambient systems is presented in [4]. In addition to these two
views, a third perspective on requirement engineering is raised by the need to
determine which existing services can fulfill an end-user request. Figure 1 illus-
trates the idea of a service-oriented requirements engineering methodology [5]
that addresses these three views on requirements.

Figure 1 Service requirement levels

The service customer requires an explicit modeling of the current customer
needs and constraints that affect the type and outcome of the requested ser-
vices. At the service infrastructure level the need for an information model de-

Copyright © Fraunhofer IESE 2005 3

Description of development
context

scribing semantic information about the registered services is prominent. This
semantic model can then be used to identify appropriate services for the speci-
fied service request. Finally, the service providers are required to provide service
specifications of their services, describing functional and non-functional aspects
as well as semantic usage knowledge.

One possible solution to achieve the systematic discovery of existing services
-

e-

In the remainder of this paper, we will focus on the service customer, i.e. the

and composition of new services by semantic modeling is the usage of ontolo
gies or knowledge models. Based on the semantic specifications of requested
services by service customers and the semantic specifications of the registered
services by service providers, a service broker has to discover appropriate ser-
vices, compose complex processes and – if required – generate software to cr
ate new application services on demand. Subsequently, application services will
be provided through the underlying system infrastructure based on adaptive
process enactment technology.

end-user view on an adaptive system, to explain the impact of the capability to
specify requirements for such kind of systems.

Copyright © Fraunhofer IESE 2005 4

Requirements Engineering
Challenges

3 Requirements Engineering Challenges

A major characteristic of adaptive systems is the capability to provide new func-
tionality during runtime of the system. This leads to new challenges for re-
quirements engineering as current techniques are not sufficiently capable of
supporting this degree of adaptivity of available functionality.

Use cases for example are used to describe how end-users will use the system.
They describe a task or a series of tasks that users will accomplish using the
software, and include the responses of the software to user actions. Use cases
may be included in the Software Requirements Document (SRD) as a way of
specifying the end-users' expected use of the software. They are used to vali-
date understanding, and to identify normal and special use situations. For adap-
tive systems that can provide new functionality during runtime, it is obvious
that a standard use case cannot specify these uncertain tasks or possible usage
scenarios.

Generic use cases, which can be instantiated for specific situations, are capable
of describing generic functionality of an adaptive system. But further context in-
formation and specific application domain knowledge is required to adapt
these use cases to specific situations and therefore the system to a specific us-
age context and application scenario that provides new unprecedented services.
This context information or domain knowledge about a specific application
scenario must be specified and modelled in a systematic and extensible form.

Ontologies [6] are one way to define formal semantics for these additional
kinds of information and knowledge, thus enabling automatic information
processing. Ontologies are formal models of a specific domain that support the
communication between human and computer based actors and therefore en-
able automatic adaptation of services or system components based on the cur-
rent context.

The shift in the type of information contained in a requirements specification,
which is needed for adaptive systems, is shown in the above figure 2.

In non-adaptive systems, the user-specified system requirements and hardware
constraints are the most prominent part of a requirement specification as the
systems functionality and usage context barely change during runtime. In the
case of adaptive systems that can provide new functionality and services during
runtime the above-mentioned specification of domain knowledge is required.

Copyright © Fraunhofer IESE 2005 5

Requirements Engineering
Challenges

Figure 2 Relationship between development and runtime information

Supporting the evaluation of possible solutions is another important challenge
for requirements engineering posed by adaptive systems. An adaptive system
broker needs to explore alternative system proposals by automatically discover
available services and to evaluate the appropriateness of a specific solution for a
certain user request. Explicit goal modelling is one way to support the specifica-
tion of user-oriented service requests. Goals provide the basis to evaluate the
appropriateness and usefulness of newly available solutions to the end user. In
[7][8], an approach for creating formalized goal-oriented specifications and
evaluation of requirements is presented. The hierarchical decomposition of
high-level goals into sub-goals helps to identify whether a service can fulfil a
sub-goal and if the composition of multiple services is appropriate to fulfil the
corresponding high-level goal.

Copyright © Fraunhofer IESE 2005 6

Example for adaptive systems

4 Example for adaptive systems

We will now illustrate the envisioned shift towards knowledge representation
with an example: a travel planner system (TPS).

The travel planner system allows a user to plan her travel. Let us first assume a
rather traditional setting: all available services are known beforehand. There will
be services available for: booking trains, planes, etc. Accommodation services
will be available and so forth. Figure 3 shows an example of a use case that de-
scribes travel planning in such a situation.

On the other hand, in the case of an adaptive service framework, we will not
be able to detail the use case in the same way, as we do not know whether the
specific booking services will be available. Rather, the system will need to adapt
its “flow of events” at runtime.

Use Case: Create Travel Plan (Traditional)
Actor: User
Goal: A travel plan is created, based on the services booking trains, planes and hotels.
Flow of Events:

1. The user enters point of departure and destination and the start and end time of
the travel

2. The system displays the hotel screen
3. The user enters hotel rate
4. The system offers a list of available hotels
5. The user selects hotel
6. The system displays the travel screen
7. The user selects a means and class of transport
8. The system calculates valid routes which don’t exceed maximum traveling time

and costs
9. The system displays the list of valid travel plans

Figure 3 Use Case for traditional TPS

Figure 6 shows the resulting use case. In this case the details of the service in-
teractions are decided at runtime. Thus, the necessary information must be
available in a machine-processable form. A very basic ontology ([9] simplified)
for this application is given in

Figure 4. As opposed to traditional ontologies we expect these to be built out
of three parts:

Copyright © Fraunhofer IESE 2005 7

Example for adaptive systems

• Application-layer: in our example, the information regarding the concept
of a travel could be brought in by an application.

• Infrastructure-layer: The infrastructure (or grid) would need to make avail-
able base information that is relevant to services that can be deployed within
the grid.

• Service-layer: Services can bring along some knowledge fragments which
provide information specific to the service and sufficient to integrate it with
the infrastructure layer (for example, a taxi service could provide the infor-
mation that a taxi is a means of transportation). This is shown in

• Figure 4.

Air

Travel

Means of
Transportation

restaurantfast-food

Gastronomy Sea

ferryshipboat

A
pp

lic
at

io
n

La
ye

r

air-liner

Lodging

pensionhostel hotel

In
fr

as
tr

uc
tu

re

La
ye

r
Se

rv
ic

e
La

ye
r

Land

bustrain

«Travel»
taxi
 call
 pay

run-time
service

Figure 4 Domain model for adaptive TPS

In our example the final application will need to use the specific services avail-
able at runtime. Thus, the use case in Figure 6 will only capture the basic infor-
mation like start/end date and destination. During runtime the system inte-
grates available service, like train and bus as a transport service and hotel as ac-
commodation service. That means, when describing the requirements for the
system, it is not possible to say, which specific service will be available. During
runtime there can be several services for transport and accommodation, ser-
vices offering complete new functionality or not sufficient services. The system
thus has to rely on the information available at runtime.

So far, we did not yet answer the question of how to use the existing knowl-
edge to identify the necessary services at runtime: we bridge this gap by using
approaches from the goal-oriented requirements engineering [7][8]. Ultimately,
we need a high-level goal-model as part of the application. This - in combina-
tion with the underlying domain model - will provide the necessary information
for the runtime assembly of the final application.

Copyright © Fraunhofer IESE 2005 8

Example for adaptive systems

 Valid Travel plan created

Traveling
time kept

Traveling
costs kept

Estimated plan
is valid means

Departure date
and place is used

Arrival date and
place is used

Accomodation
found

Route is End-
to-End

Estimated route
is valid means

Inlcudes no
long-stays

Inlcudes
long-stays

Route is
endurable means

Inlcudes
accomodation

Figure 5 Goal Model for adaptive TPS

Figure 5 shows an example of such a goal-model. One should note a key differ-
ence between the initial development context of Lamsweerde’s goal modeling
and the context we are envisioning here: while the approach was initially de-
veloped as a construction-time activity, we envision here a use of this technique
– based on further refinement and formalization as a (partial) runtime activity.
This is of course closely related to approaches developed in the area of artificial
intelligence as planning systems.

Use Case: Create Travel Plan (Adaptive)
Actor: User
Goal: A travel plan is created, based on the relevant services available at runtime.
Flow of Events:

1. The user enters point of departure and destination and the start and end time of the travel
2. The user enters maximum traveling time and costs
3. The system creates valid travel plans

(Goal: Valid Travel plans created)v
4. The system presents the list of valid travel plans

Figure 6 Use Case for adaptive TPS

Copyright © Fraunhofer IESE 2005 9

Conclusions and Further Work

5 Conclusions and Further Work

Requirements Engineering for Adaptive Systems requires a serious shift in focus
from collecting construction time knowledge to a combined approach that in-
tegrates construction time and runtime knowledge gathering. This is based on
our assumption that adaptive systems will require a substantial amount of
knowledge at runtime in order to perform the necessary adaptations in a man-
ner deemed adequate by the end user.

We aim at further analyzing this relationship in order to derive an integrated
methodology. We will do this in a demonstrator-driven manner based on our
work on adaptive service grids (ASG) and ambient intelligence (BelAMI).

Acknowledgements

The work presented in this paper has been partially supported by the projects
BelAmI and ASG. BelAmI (Bilateral German-Hungarian Research Collaboration
on Ambient Intelligence Systems) is funded by German Federal Ministry of Edu-
cation and Research (BMBF), Fraunhofer-Gesellschaft, and Ministry for Science,
Education, Research and Culture (MWWFK) of Rheinland-Pfalz. ASG is funded
by the European Union (FP6-IST-004617).

Copyright © Fraunhofer IESE 2005 10

References

References

[1] Berry, D., et al., “The Four Levels of Requirements Engineering for and in
Dynamic Adaptive Systems”, Design and Evolution of Autonomic Applica-
tion Software (DEAS’05), 2005.

[2] Project BelAmI, http://www.iese.fraunhofer.de/ belami/.

[3] Weske, M., et al. “Technical Annex 1 – Adaptive Service Grid, Description
of Work”, Proposal no. 004617, Integrated Project, Sixth Framework Pro-
gramme, 2004.

[4] Schmid, K. “Requirements Engineering for Ambient Intelligence Systems: A
Viewpoint”, Workshop on Service-oriented Requirements Engineering, RE
’04, 2004.

[5] Eisenbarth, M. et al., “Requirements Specification Survey”, Adaptive Ser-
vices Grid Deliverable D6.I-1, Integrated Project, Sixth Framework Pro-
gramme, 2005.

[6] Gruber, T., "A Translation Approach to Portable Ontology Specifications",
in: Knowledge Acquistion, Volume 5, pp. 199–220, 1993.

[7] Lamsweerde, A., "Goal-Oriented Requirements Engineering: Goal-Oriented
Requirements Engineering: from System Objectives from System Objectives
to UML Models to UML Models to Precise Software Specifications", ICSE
'03 Tutorial, Portland, 2003.

[8] Lamsweerde, A., "Goal-Oriented Requirements Engineering: Goal-Oriented
Requirements Engineering: A Roundtrip from Research to Practice", RE ’04,
2004.

[9] Gordon, M, et. al., "Ontologies in a travel support system", in Proceedings
of the Internet 2004 Conference, 2004.

Copyright © Fraunhofer IESE 2005 11

Document Information

Title: From Requirements
Engineering to Knowledge
Engineering: Challenges in
Adaptive Systems

Date: August 30, 2005
Report: IESE-118.05/E
Status: Final
Distribution: Public

Copyright 2005, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

	Abstract
	Table of Contents
	Motivation
	Description of development context
	Requirements Engineering Challenges
	Example for adaptive systems
	Conclusions and Further Work
	Acknowledgements
	References
	Document Information

