Heating technology mix in a future German energy system dominated by renewables

Prof. Dr. Hans-Martin Henning

Fraunhofer Institute for Solar Energy Systems ISE

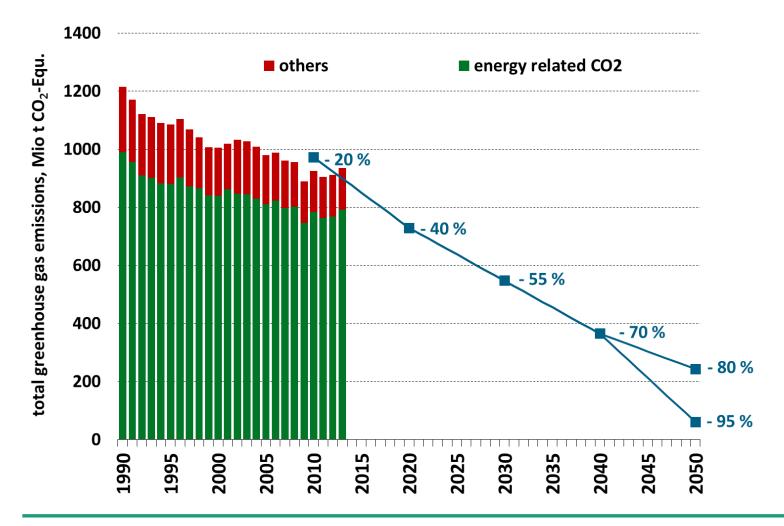
4th Congress of Polish Organization of Heat Pump Technology Development

Warsaw, September 22, 2015

www.ise.fraunhofer.de

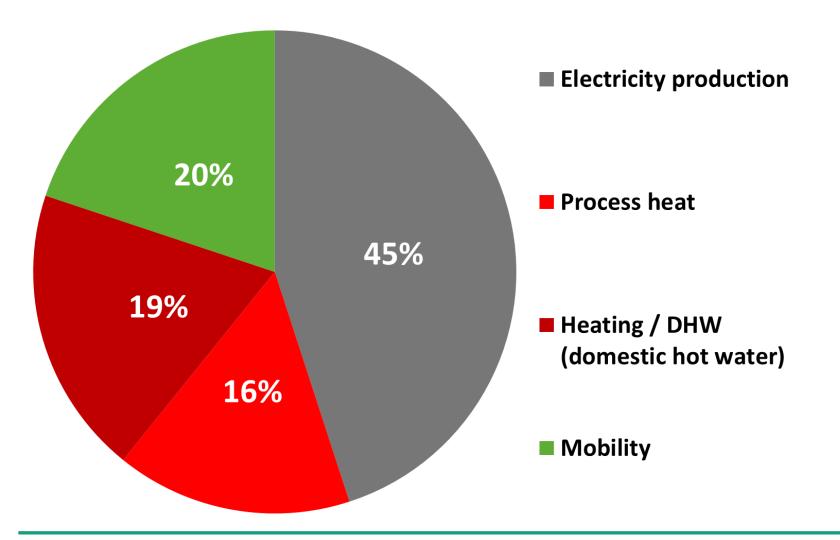
Overview

- German climate policy targets and the building sector
- Technologies for decarbonizing the heating sector
- Transformation pathway of the German energy system
- Summary & conclusions

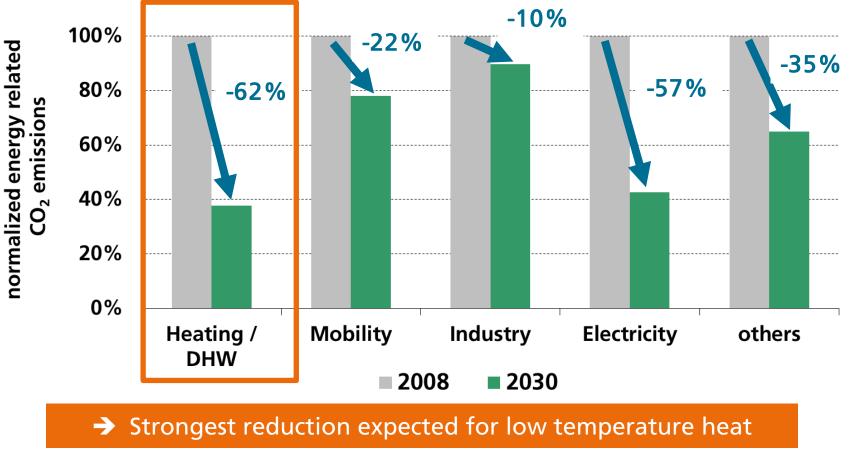


Overview

- German climate policy targets and the building sector
- Technologies for decarbonizing the heating sector
- Transformation pathway of the German energy system
- Summary & conclusions



Development of German GHG emissions 1990 – 2013 & target values until 2050



Energy related CO₂ emissions – Germany 2013

Development of energy related CO₂ emissions Expected sectorial reductions from 2008 until 2030

- Treibhausgas-Emissionsszenarien bis zum Jahr 2030". Öko-Institut et al. im Auftrag des Umwelt-bundesamtes (UBA), März 2013 Politikszenarien für den Klima-schutz source:

Reduction of CO₂ emissions in the heat sector 2030 targets

space heating demand (today = 100 %)		specific CO ₂ emissions heating technologies (today = 100 %)												
		100%	<mark>9</mark> 5%	90%	85%	80%	75%	70%	65%	60%	55%	50%	45%	40%
100%		100%	050/	000/	050/	000/	750/	700/	CE0/	60%	EE 0/	E 00/		40%
95% 🛨		96%		Decarbonizing of heating techniques						es		38%		
90%		91%	87%	82%	78%	73%	69%	64%	59%	55%	50%	46%	41	37%
85% 📮		87%	83%	78%	74%	70%	65%	61%	57%	52%	48%	44%	39%	35%
80% 🕘		83%	79 %	75%	70%	66%	62%	58%	54%	50%	46%	41%	37%	33%
75% >		79%	75%	71%	67%	63%	59%	55%	51%	47%	43%	39%	35%	31%
70% 2		74%	71%	67%	63%	60%	56%	52%	48%	45%	41%	37%	33%	30%
65% ^O C		70%	67%	63%	60%	56%	53%	49%	46%	42%	39%	35%	32%	28%
60% Ū		66%	63%	59%	56%	53%	49%	46%	43%	40%	36%	33%	30%	26%
55% 🖸	ר	62%	59%	55%	52%	49%	46%	43%	40%	37%	34%	31%	28%	25%
50%		57%	54%	52%	49%	46%	43%	40%	37%	34%	32%	29%	26%	23%
45%		53%	50%	48%	45%	42%	40%	37%	34%	32%	29%	27%	arget	. 21 <mark>%</mark>
<u>/10%</u> ⊃		49%	46%	44%	41%	39%	37%	34%	32%	29%	27%	24%	22%	20%
<u> </u>		45%	42%	40%	38%	36%	33%	31%	29%	27%	24%	22%6	gior	18%
30%		40%	38%	36%	34%	32%	30%	28%	26%	24%	22%	20%	18%	16%

Average value of specific CO_2 emission of heating technologies today about 220 g/kWh

Reduction of CO₂ emissions in the heat sector 2030 targets

space heating demand (today = 100 %)	specific CO ₂ emissions heating technologies (today = 100 %)												
	100%	95%	90%	85%	80%	75%	70%	65%	60%	55%	50%	45%	40%
100%	100	95%	90%	85%	80%	75%	70%	65%	60%	55%	50%	45%	40%
95%	9		86%	81%	77%	72%	67%	62%	57%	53%	48%	43%	38%
90%	91%	Le la		78%	73%	69%	64%	59%	55%	50%	46%	41%	37%
85%	87%	83%		No	70%	65%	61% 58% 55%	57%	52%	48%	44%	39%	35%
80%	83%	79%	75%	.66	den	62%	58%	54%	50%	46%	41%	37%	33%
75%	79 %	75%	71%	67%		Dath	55%	51%	47%	43%	39%	35%	31%
70%	74%	71%	67%	63%	60%	V	Var	48%	45%	41%	37%	33%	30%
65%	70%	67%	63%	60%	56%	53%			42%	39%	35%	32%	28%
60%	66%	63%	59%	56%	53%	49%	46%	-		5%	33%	30%	26%
55%	62%	59%	55%	52%	49%	46%	43%	40%	~	6	31%	28%	25%
50%	57%	54%	52%	49 %	46%	43%	40%	37%	34%	<u>%</u>	29%	26%	23%
45%	53%	50%	48%	45%	42%	40%	37%	34%	32%	29%	27%	rget	21 <mark>%</mark>
40%	49%	46%	44%	41%	39%	37%	34%	32%	29%	27%	24%	22%	20%
35%	45%	42%	40%	38%	36%	33%	31%	29%	27%	24%	22% ^e	glor	18 <mark>%</mark>
30%	40%	38%	36%	34%	32%	30%	28%	26%	24%	22%	20%	18%	16%

Average value of specific CO_2 emission of heating technologies must be reduced until 2030 by almost 50 % compared to today

Reduction of CO₂ emissions in the heat sector 2050 target: climate neutral building sector

space heating demand	specific CO ₂ emissions heating technologies (today = 100 %)												
(today = 100 %)	100%	95%	90%	85%	80%	75%	70%	65%	60%	55%	50%	45%	40%
100%	100%	95%	90%	85%	80%	75%	70%	65%	60%	55%	50%	45%	40%
95%	96%	91%	86%	81%	77%	72%	67%	62%	57%	53%	48%	43%	38%
90%	91%	87%	82%	78%	73%	69%	64%	59%	55%	50%	46%	41%	37%
85%	87%	83%	78%	74%	70%	65%	61%	57%	52%	48%	44%	39%	35%
80%	83%	79%	75%	70%	66%	62%	58%	54%	50%	46%	41%	37%	33%
75%	79 %	75%	71%	67%	63%	59%	55%	51%	47%	43%	39%	35%	31%
70%	74%	71%	67%	63%	60%	56%	52%	48%	45%	41%	37%	33%	30%
65%	70%	67%	63%	60%	56%	53%	49%	46%	42%	39%	35%	32%	28%
60%	66%	63%	59%	56%	53%	49%	46%	43%	40%	36%	33%	30%	26%
55%	62%	59%	55%	52%	49%	46%	43%	40%	37%	34%	31%	28%	25%
50%	57%	54%	52%	49 %	46%	43%	40%	37%	34%	32%	29%	26%	23%
45%	53%	50%	48%	45%	42%	40%	37%	34%	32%	29%	27%	24%	21%
40%	<mark>49%</mark>	4 <mark>6</mark> %	44%	41%	39%	37%	34%	32%	29%	27%	24%	22%	20%
35%	45%	42%	40%	38%	36%	33%	31%	29%	27%	24%	22%	20%	18%
30%	40%	38%	36%	34%	32%	30%	28%	26%	24%	22%	20%	18%	16%

Long term (2050) target

Overview

- German climate policy targets and the building sector
- Technologies for decarbonizing the heating sector
- Transformation pathway of the German energy system
- Summary & conclusions

Low carbon heating technologies

- Solar thermal
 - Very low CO₂ emissions
 - Potential in particular for domestic hot water
 - Limited potential for solar assisted space heating
 - Close to economic operation for hot water systems (life cycle cost)
 - Large plants connected to district heating (Denmark)
- Biomass
 - Today dominating renewable heat
 - Very limited long term potential due to competition with other uses (energy, non-energy)
 - High exergy content → potential for high temperatur processes or cogeneration

Low carbon heating technologies

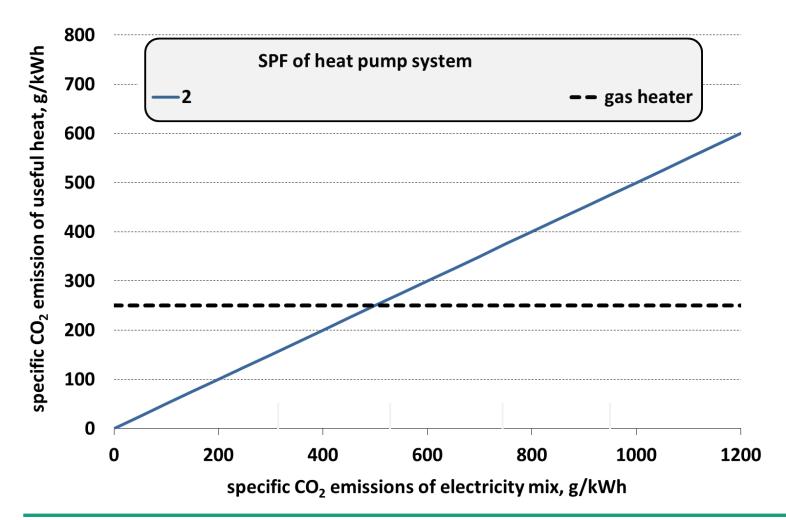
District heating

- Crucial regarding economic perspective for districts with strongly reduced heat density (due to building energy retrofit)
- Promising potential for urban energy management in dense areas including large scale heat storage (→ Denmark)
- Various heat sources such as medium and large scale CHP, large scale heat pumps, solar thermal, industrial waste heat, deep geothermal

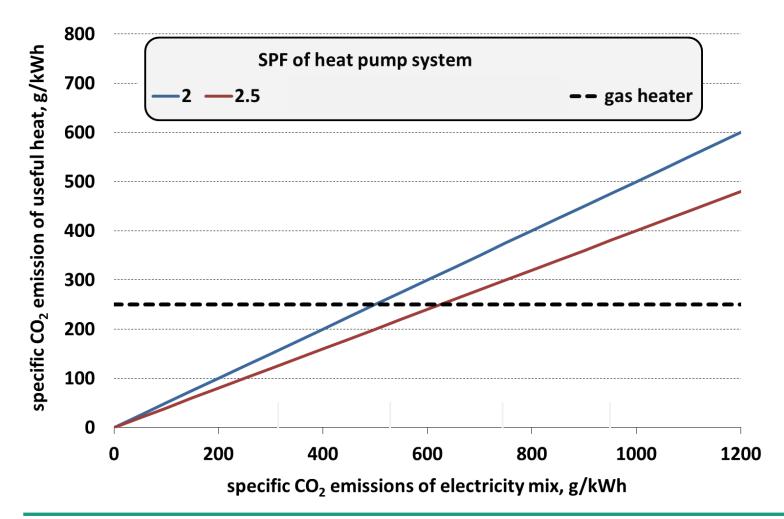
Gas heat pumps

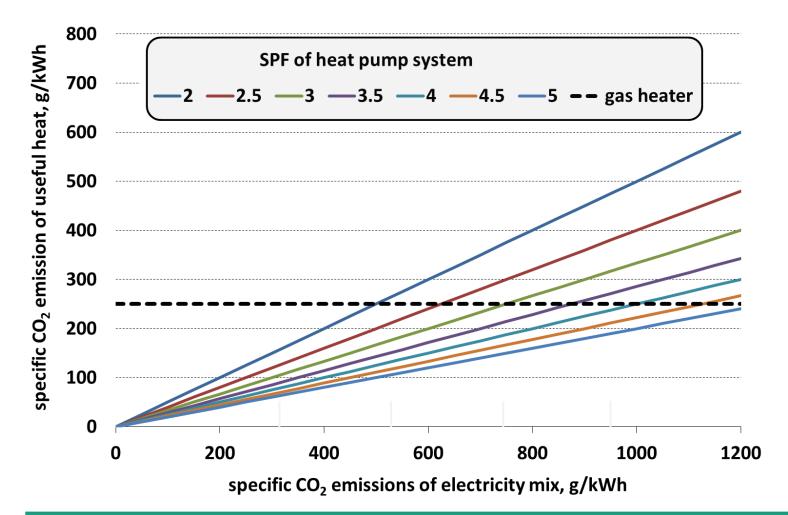
- Emerging technology; yet still small market
- High potential as follow-up technology for gas boilers → highly efficient use of fuel (fossil, renewable) for heating application

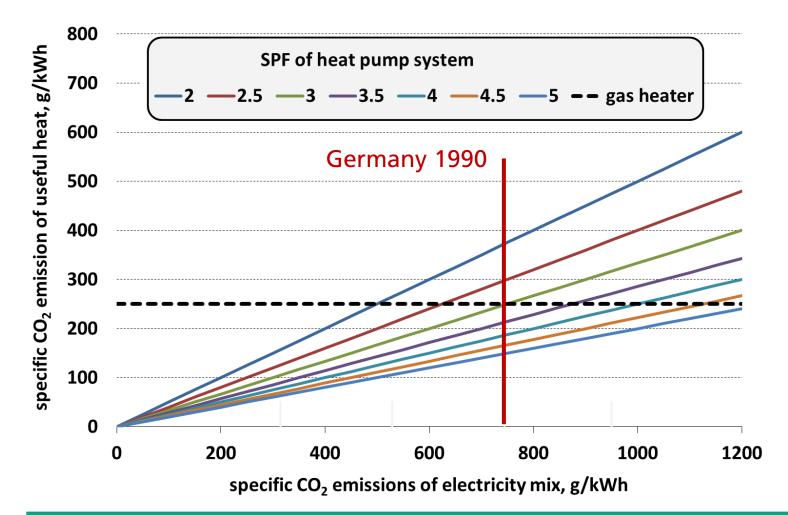
Low carbon heating technologies

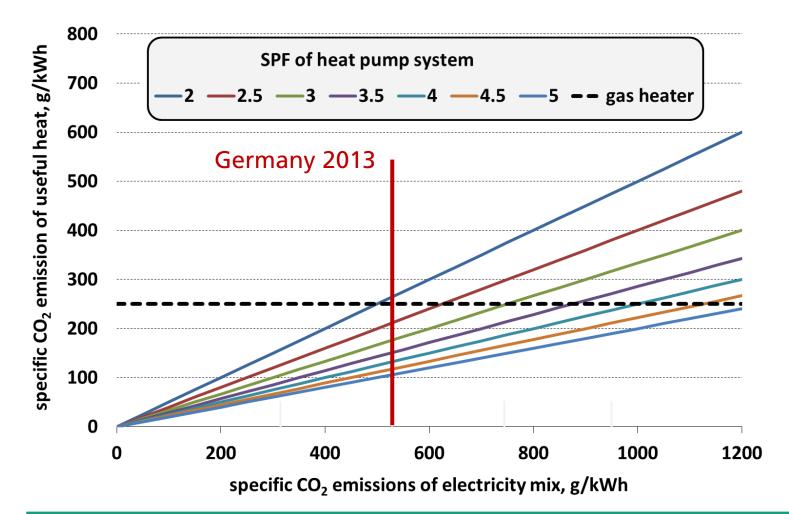

Cogeneration system (combined heat & power)

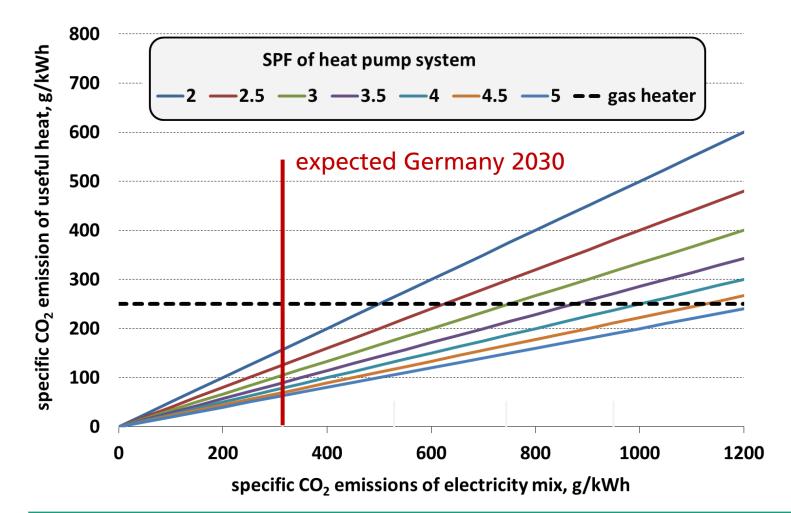
- Decreasing attractiveness with decreasing primary CO₂ emissions of electricity production
- Increasing operation control following electricity demand
 interaction with electricity grid
- Fuel cell CHP promising, but far from economic operation today
- Electric heat pumps
 - Increasing attractivness with decreasing primary CO₂ emissions of electricity production
 - Operation allows flexible electricity use (→ smart grid), in particular in combination with heat storage or hybrid heat pumps (energy switch)











Overview

- German climate policy targets and the building sector
- Technologies for decarbonizing the heating sector
- Transformation pathway of the German energy system
- Summary & conclusions

Optimization of Germany's future energy system

Mimimize total annual cost (operation, maintenance, ...)

REMod-D

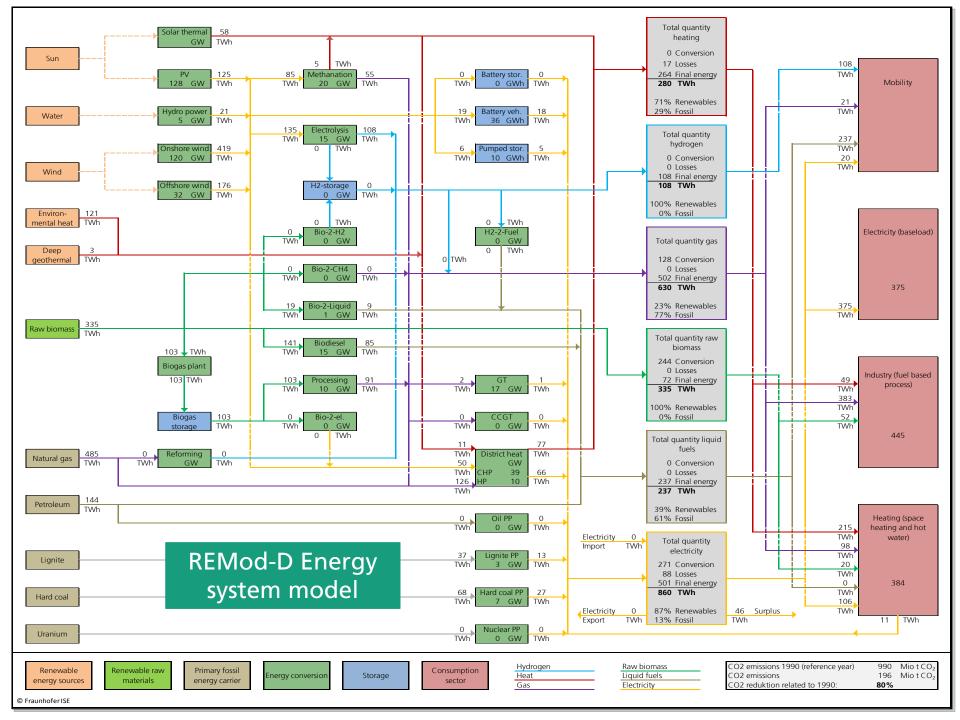
Renewable Energy Model – Deutschland

Techno-economic optimization based on comprehensive simulation (hourly time scale) Electricity generation, storage and end-use

Mobility (batteryelectric, hydrogen, conv. fuel mix) Fuels (including biomass and synthetic fuels from RE)

Heat

(buildings,


incl. storage

and heating

networks)

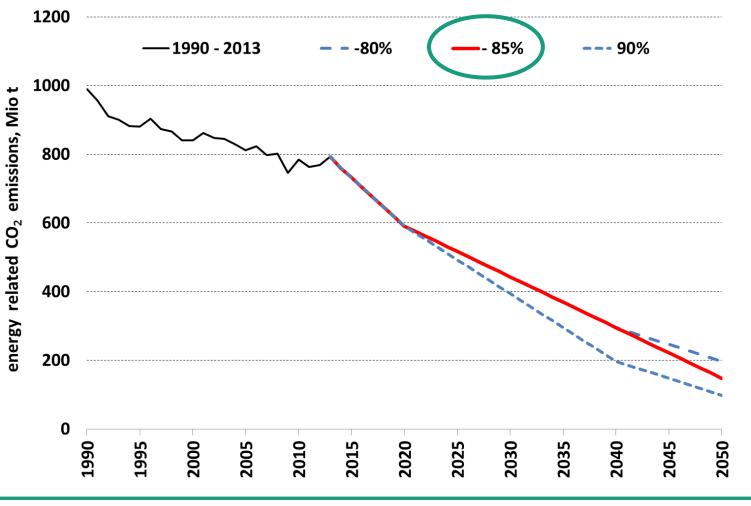
Processes in industry and tertiary sector

Guiding question

What is the cost-optimal transformation pathway of the German overall energy sytem including all end-use sectors under the boundary condition that the political goals of reducing greenhouse gas emissions are fulfilled – both for the target value and in each single year?

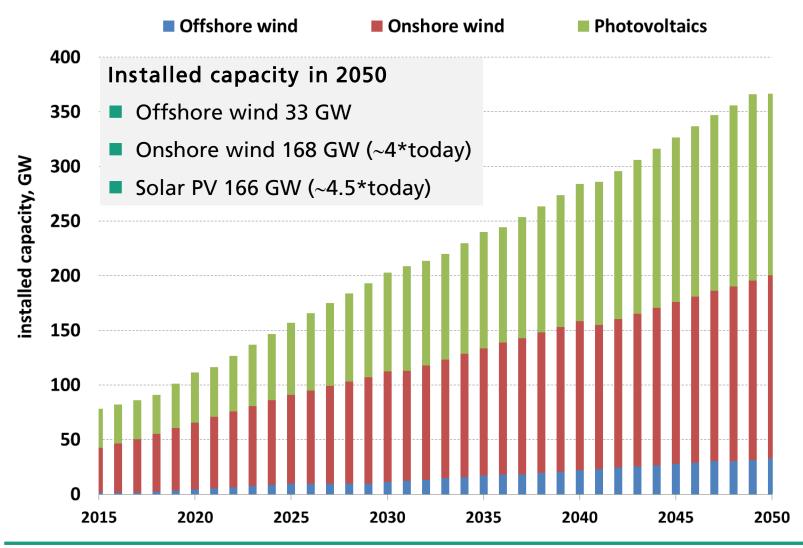
Further boundary conditions

- Fade-out of nuclear energy until 2022
- No large scale implementation of CCS technology (carbon capture and sequestration) in fossil power plants

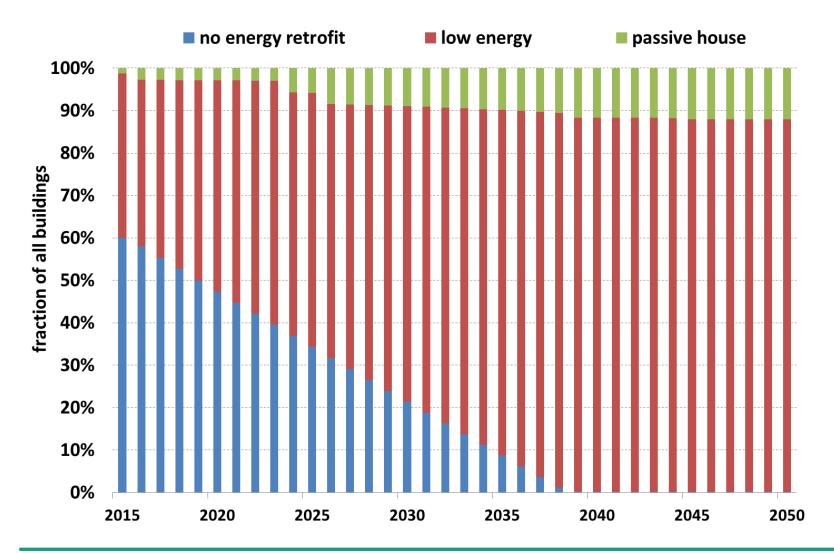


Methodology

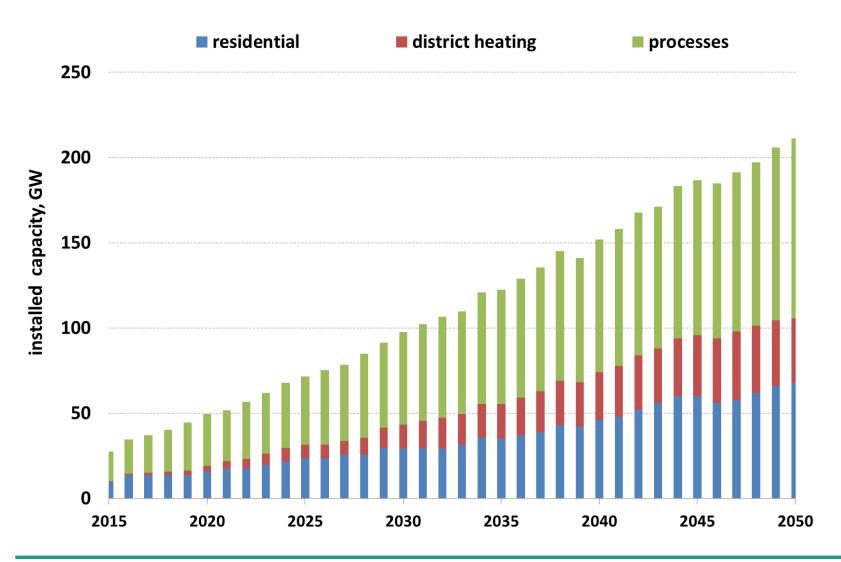
- Hourly simulation of the total energy system from January 1, 2014 until December 31, 2050 (using data from 2011, 2012 and 2013)
- Optimization of the development of the system composition considering all future options
 - Renewables
 - Storage and power-to-gas/fuel/heat technologies
 - Energy retrofit of building sector
- Goal function: minimal overall transformation cost
- Results of a scenario with a reduction energy related CO₂-emissions by 85 % compared to 1990 (Kyoto protocol reference value)
- Presentation of the full study: November5, 2015 in Berlin


Boundary condition – CO₂ reduction pathway

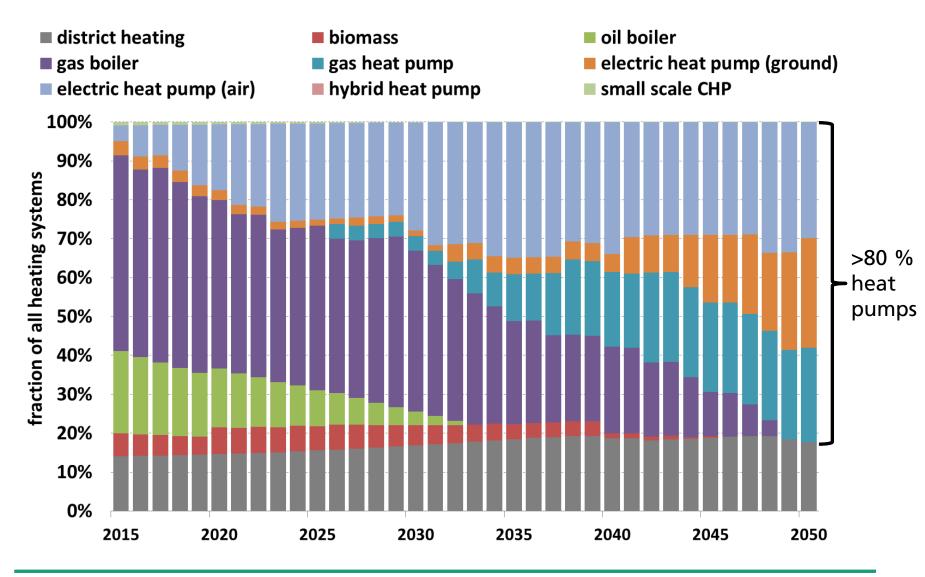
Folie 27 © Fraunhofer ISE



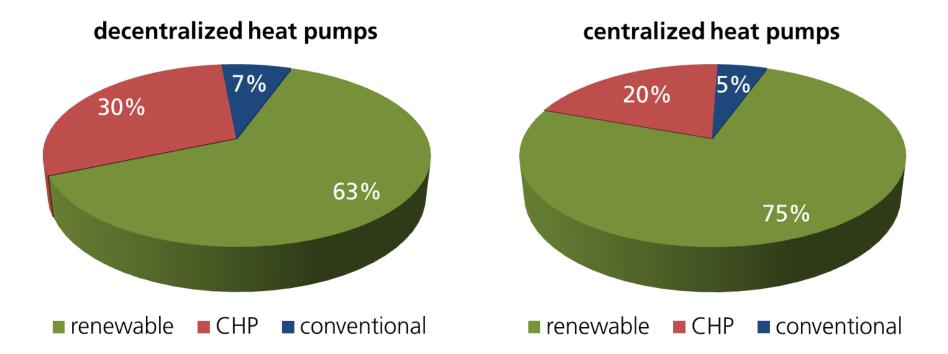
Fluctuating renewable energies: solar, wind



Development of building energy efficiency



Solar thermal collectors

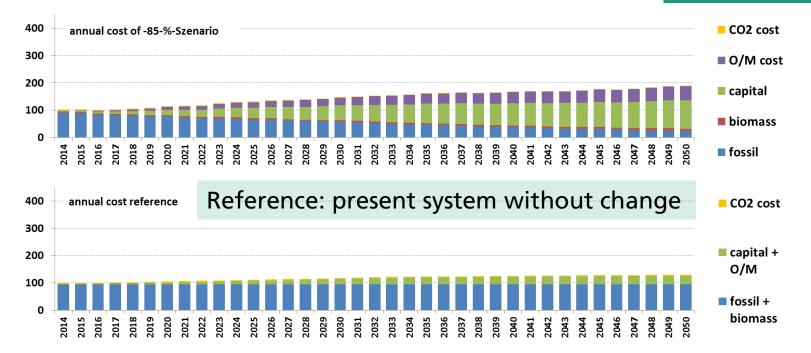


Development of heating technologies

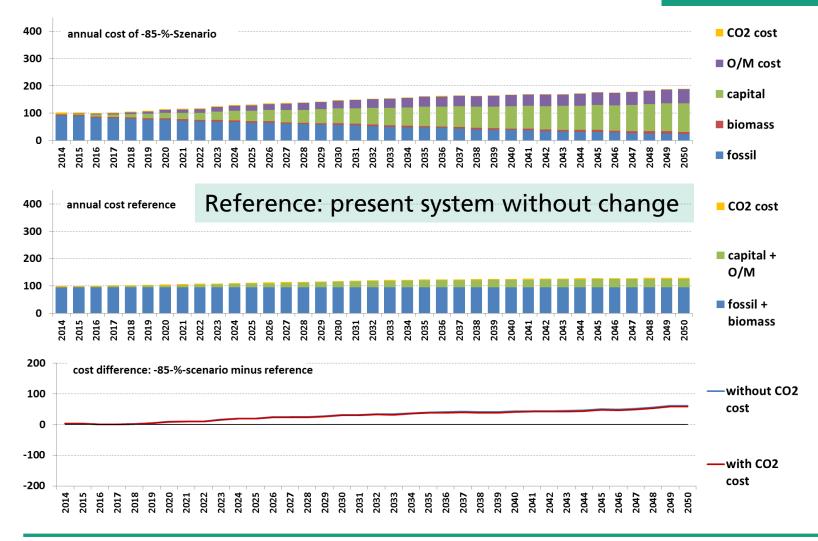
Origin of electricity for heat pump operation

- Based on hour-by-hour analysis of electricity composition
- Electricity from fluctuating renewable energy sources dominant
- Thermal buffer storage important for flexible operation

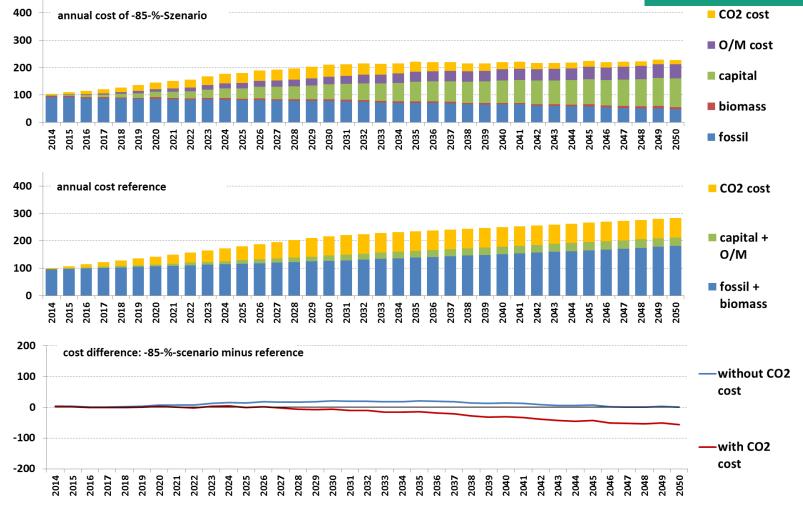
■ Constant penalty for CO₂ emissions 5 €/ton


No increase of prices for fossil fuels

Constant penalty for CO₂ emissions 5 €/ton

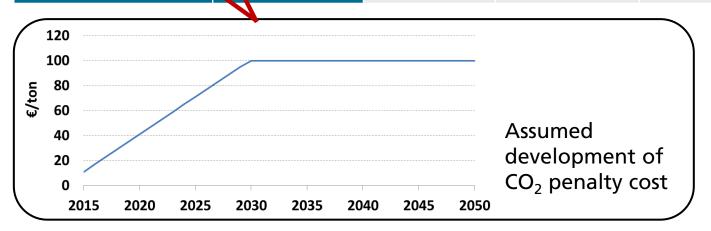

No increase of prices for fossil fuels

■ Constant penalty for CO₂ emissions 5 €/ton


No increase of prices for fossil fuels

Increase of penalty for CO₂ emissions up to 100 €/ton in 2030; afterwards const.

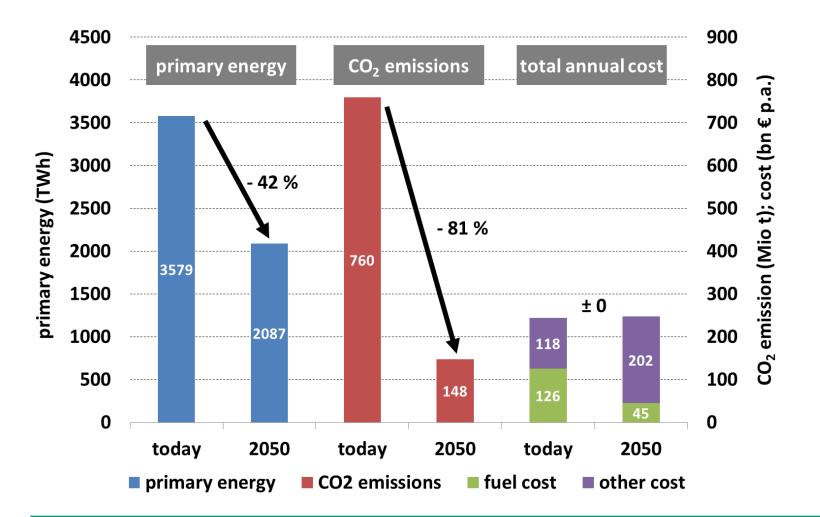
2 % annual price increase for fossil fuels



Folie 38 © Fraunhofer ISE

Cumulative overall cost comparison 2014-2050

CO ₂ cost	price increase fossil fuels	– 85-%- scenario	reference	– 85-%-scenario minus reference
		bn €	bn €	bn € (%)
5 €/ton	0 % p.a.	5417	4322	+ 1095 (+ 25 %)
up to 100 €/ton	0 % p.a.	6346	6246	+ 100 (+ 2 %)
5 €/ton	2 % p.a.	6126	5757	+ 369 (+ 6 %)
up to 100 €/ton ,	2 % p.a.	7056	7681	- 625 (- 8 %)

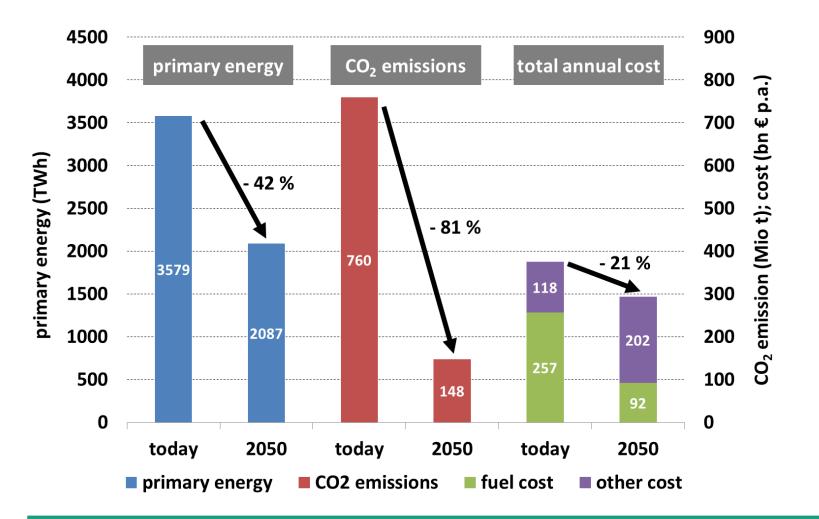


Folie 39 © Fraunhofer ISE

2050-system versus today – cost after completed transformation

■ Constant cost for CO₂ emissions 5 €/ton

No increase of prices for fossil fuels



Fraunhofer

2050-system versus today – cost after completed transformation

■ Constant cost for CO₂ emissions 5 €/ton

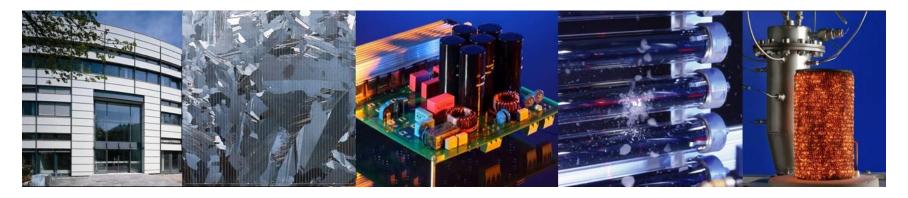
2 % annual price increase for fossil fuels

Overview

- German climate policy targets and the building sector
- Technologies for decarbonizing the heating sector
- Transformation pathway of the German energy system
- Summary & conclusions

Summary (1/2)

- Energy efficient building retrofit and decarbonizing heating technologies are needed in order to achieve targets for GHG emission reduction in the building sector
- Efficient overall systems using renewable energy will replace todays heating systems based on burning fossil fuels
- Increasing convergence of electricity and heating sector
- The heating sector provides promissing options for flexible electricity use in combination with a strong increase of electricity from fluctuating renewables (solar, wind) → smart grid
- In the medium to long term heat pumps (electric, gas) will dominate heating of buildings
- Electric heat pumps are the upmost efficient technology in combination with decarbonized electricity production



Summary (2/2)

- Achieving a CO₂ reduction of 85 % (compared to 1990) is possible by a significant increase in the use of renewable energies in combination with increased energy efficiency (e.g. in the building sector)
- Transformation of the German energy system to achieve a CO₂ reduction by 85 % will cost about 1000 bn € more for the time period 2015 – 2050 in case of stable prices for fossil energy sources and no increase in CO₂ penalties; this value corresponds to about 0.8 % of the German gross national product
- The transformation will be cost neutral in case of an annual increase of prices for fossil fuel by 2 % per year
- Once the transformation is completed the total annual cost of the energy system will not be higher than the cost of todays system, even in case of long term stable prices for fossil fuels
- The transformation of the energy system implies a shift of expenses from import of fossil fuels to local employment and value creation

... thank you for your attention.

Fraunhofer Institute for Solar Energy Systems ISE

Hans-Martin Henning www.ise.fraunhofer.de hans-martin.henning@ise.fraunhofer.de

Folie 46 © Fraunhofer ISE