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ABSTRACT 

In order to control riots in crowds, it is helpful to get the ringleader under control. A great support to achieve this task is 
the capability to automatically track individual persons in a video sequence taken from a crowd. In this paper we address 
the robustness of such a tracking function.  

We start from the results of a previous evaluation of tracking methods, where a so-called Covariance-Tracker was found 
to be most appropriate. This tracker uses covariance matrices as object descriptors, as proposed by Porikli et al. The set 
of all covariance matrices describes a Riemannian manifold that is used to compare and update the covariance 
descriptors during tracking.  

We propose Covariance-Tracker adaptations to improve its performance. Furthermore, we summarize the performance 
evaluation results of the original method and compare these with the results of the adapted one. The result is a robust 
method for tracking people in crowds which can improve situational awareness. 
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1. INTRODUCTION 
In these days political demonstrations belong to civil liberty and take place all over the world. Unfortunately peaceful 
demonstrations sometimes turn over to become violent. In these situations surveillance systems can assist security guards 
to re-establish order. We defined a system which supports the tracking and seizure of an offender in a crowd. 

In this contribution we focus on the tracking of individual persons in crowds from elevated observation points or 
unmanned aerial vehicles. Observing crowds, especially tracking people in crowds from moving platforms, is a major 
challenge in many computer vision applications. In past years, quit a number of tracking methods have been developed. 
One consequence is that there are today many different suggestions for object representations. Of course the 
representations depend on the sensor system, for example color information is not available from grayscale or infrared 
cameras. For this reason a generic object representation is of interest that can take any object feature as an input. Porikli 
et al. introduced such an object representation, so-called covariance descriptors. The idea is to describe spatial and 
statistical properties as well as the correlations of an image region by means of a covariance matrix. As pointed out in [8] 
there are several advantages of using covariance descriptors:  
 

• Low-dimensional descriptors 
• Support of scale invariant features/properties 
• Invariant to mean changes (e.g. invariant to identical shifting of color values) 
• Insensitive to noise 
• Simple replacing of features  
• Efficient fusion of multiple features 

The authors obtained excellent results in several tracking tasks by using covariance descriptors [8], and in [5] it was 
shown that these descriptors are also suitable for object detections tasks. In [2] we evaluated the performance of the 
Covariance-Tracker for tracking people in crowds and compared the results to other tracking methods. This evaluation 
confirmed the advantage of covariance descriptors. These convincing results and the generic-like object representation 
encouraged us to concentrate on Covariance-Tracker. 
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In the following section we first summarize the mathematical background of tracking with covariance descriptors. In 
Section 3, we describe the original Covariance-Tracker of Porikli et al. and propose several adaptations. We then present 
our data set used in this work as well as summarize the results obtained by the original and the adapted tracker in Section 
4. Furthermore, we show the results of our extended Covariance-Tracker.  

 

2. MATHEMATICAL BACKGROUND 
A covariance matrix contains information about statistical dispersions and linear relationships of random variables. Let ଵܺ, … , ܺ௡ be quadratic integrable random variables, with expected values E( ଵܺሻ, … , Eሺܺ௡ሻ and  ݒ݋ܥ൫ ௜ܺ, ௝ܺ൯ ൌ ሾ ቀܧ ௜ܺ െ ሺܧ  ௜ܺሻቁ ቀ ௝ܺ  െ ൫ܧ  ௝ܺ൯ቁ ሿ , ݅ ൌ 1 … ݊, ݆ ൌ 1 … ݊,  (1) 

the pairwise covariances, the covariance matrix ∑ is then given by 

൭ݒ݋ܥሺ ଵܺ, ଵܺሻ ڮ ሺݒ݋ܥ ଵܺ, ܺ௡ሻڭ ڰ ,ሺܺ௡ݒ݋ܥڭ ଵܺሻ ڮ ,ሺܺ௡ݒ݋ܥ ܺ௡ሻ൱. (2) 

The set of positive definite covariance matrices (positive definite symmetric matrices) describes a Riemannian manifold 
and is denoted by ܵ݉ݕ௡ା. A Riemannian manifold or Riemannian space is a topological space that is only locally 
Euclidean: there is a tangent space at each element of the manifold (in our case at each covariance matrix). So Euclidean 
geometry is not appropriate to compare covariance matrices. In past years functions like the trace or determinant have 
been used to measure the similarity. However, these measures are not suitable [1] and so Pennec et al. [7]  and Foerstner 
et al. [1] deduced invariant Riemannian metrics. These metrics are equivalent, thus it is sufficient to concentrate on 
Pennec’s: ൏ ,ݕ ݖ ൐∑భൌ  are determined by a diffeomorphism ݖ and ݕ .are elements of the tangent space at ∑ଵ ݖ ,ݕ ଵିభమሻ, (3) ∑ଵ is a covariance matrix and∑ݖଵିଵ∑ݕሺ∑ଵିభమݎݐ
which maps elements of the tangent spaces into the manifold of covariance matrices. Associated to the Riemannian 
metric (3) it is defined by the exponential map ݁݌ݔ∑భሺݕሻ = ∑ଵభమ exp ሺ∑ଵି భమy∑ଵି భమሻ∑ଵభమ.  (4) 

The exponential map is global in ܵ݉ݕ௡ା and thus there is an inverse mapping (logarithmic map) which is uniquely 
defined everywhere: ݈݃݋∑భሺ∑ଶሻ=∑ଵభమ log ሺ∑ଵି భమ∑ଶ∑ଵି భమሻ∑ଵభమ.  (5) 

It maps points of the manifold into tangent spaces, and by substituting ݕ and ݖ from equation (1) by ݈݃݋∑భሺ∑ଵሻ and ݈݃݋∑భሺ∑ଶሻ, respectively, we get the following equation for Pennec’s metric: ൏ ,ݕ ݖ ൐∑భ ൌ ଶሺ∑ଵି݃݋ሺ݈ݎݐ  భమ∑ଶ∑ଵି భమሻሻ  ൌ  ൏ ,భ ሺ∑ଵ ሻ∑݃݋݈ భ ሺ∑ଶ ሻ∑݃݋݈ ൐∑భ . (6) 

 

Covariance distance 
The distances between elements of one tangent space are defined by the Euclidean distance. Thus, it can be used to 
determine the distance between any two covariance matrices mapped into one tangent space, if it is a tangent space at the 
position of one of either matrices. Under this condition the distance between two covariance matrices ∑ଵ and ∑ଶ is given 
by  ݀ሺ∑ଵ, ∑ଶሻ ൐  ൌ   ට൏ ,భ ሺ∑ଵ ሻ∑݃݋݈ భ ሺ∑ଶ ሻ∑݃݋݈ ൐∑భ .  (7) 
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Empirical mean value 
There are several definitions of the (empirical) mean value for a set of measures of the same positive definite symmetric 
matrix [6]. One applicable mean is the so-called Karcher or Fréchet mean which minimizes the sum of the squared 
distances between the matrices. According to [3], [4] and [6] this mean exists and is even unique in ܵ݉ݕ௡ା, as this 
manifold has a non-positive curvature [9]. 

We are interested in an empirical mean value which can be determined by a gradient descent algorithm [6]. To this, 
matrices are mapped into the tangent space first, where then the Euclidean mean is calculated. Eventually, the mean 
value of the covariance matrices is given by mapping back the Euclidean mean. Let ∑ଵ … ∑N be a set of ܰ measures of 
the positive definite symmetric matrix ∑ഥ௧, then the new mean ∑ഥ௧ାଵ of this set is given by ∑ഥ௧ାଵ ൌ exp∑ഥ೟ ቀଵே ∑ log∑ഥ೟ே௜ୀଵ ሺ∑௜ሻቁ.  (8) 

An important point for this algorithm is to determine a good starting point. If there is no ∑ഥ௧, an element of ∑ଵ … ∑N can 
be selected randomly as starting point here. In the case of the original Covariance-Tracker it is the initial covariance 
descriptor (details can be found in Section 3). 

Additionally, the matrices can be weighted differently, for example by their distances to the mean value [8]. In this 
contribution we didn’t weight the matrices, since it hadn’t resulted in significant enhancements. 

 

Empirical covariance matrix 
Let ∑1 … ∑N be a set of ܰ positive definite symmetric matrices with the empirical mean value ∑ഥ. According to [6] the 
empirical covariance matrix which is a generalization of the usual definition, is given by 
ഥ∑ݒ݋ܥ  ൌ ଵேିଵ ∑ ܸ݁ܿ∑ഥ ሺ∑ഥ∑నሬሬሬሬሬሬሬԦሻ ܸ݁ܿ∑ഥሺ∑ഥ∑నሬሬሬሬሬሬሬԦሻ்ே௜ୀଵ . (9) ܸ݁ܿ∑ഥ  is an isomorphism between the tangent space at ∑ഥ and Թ௡ሺ௡ାଵሻ/ଶ: ܸ݁ܿ∑ഥ ሺ∑ഥΛሬሬሬሬሬԦሻ ൌ ܸ݁ܿூௗሺ݈݃݋ሺ∑ഥିభమΛ∑ഥିభమTሻሻ, (10) 

where ܸ݁ܿூௗሺܹሻ ൌ ൫ݓଵ,ଵ, ,ଵ,ଶݓ2√ ,ଶ,ଶݓ ,ଵ,ଷݓ2√ ,ଶ,ଷݓ2√ ,ଷ,ଷݓ … ,ଵ,௡ݓ2√ … ,ሺ௡ିଵሻ,௡ݓ2√   .௡,௡൯்ݓ
 

Mahalanobis distance and ࣑૛ distribution 
Now we have definitions for the empirical mean and the empirical covariance matrix. Moreover, one may also define a 
Mahalanobis distance ߤሺ∑ഥ,஼௢௩∑ഥ  ሻ in ܵ݉ݕ௡ା [6] which is well defined for any distribution of a random point ∑ ~ሺ∑ഥ,  :ഥ ሻ∑ݒ݋ܥ

ሺ∑ഥ,஼௢௩∑ഥߤ  ሻ ൌ ටܸ݁ܿ∑ഥ ሺ∑ഥ∑෡ሬሬሬሬሬሬԦሻ் ݒ݋ܥ∑ഥି ଵ ܸ݁ܿ∑ഥ ሺ∑ഥ∑෡ሬሬሬሬሬሬԦሻ, 

where ܸ݁ܿ∑ഥ  is the same isomorphism as defined by (10). The Mahalanobis distance measures the distance between an 
observation ∑෡ and the mean ∑ഥ according to ݒ݋ܥ∑ഥି ଵ. 

Furthermore, Pennec generalized the normal distribution for complete Riemannian manifolds such as ܵ݉ݕ௡ା by looking 
for the probability density function that minimizes the entropy with a constrained mean and covariance. Assuming the 
random point ∑ ~ሺ∑ഥ,  ഥ ሻ is normal and ∑෡ an observation, then the Mahalanobis distance should be ߯ଶ distributed if∑ݒ݋ܥ
the observation is correct. Then a ߯ଶ test can be used for determining outliers (details about the normal and the ߯ଶ 
distribution as well as the ߯ଶ test can be found in [6]). 
 
 

Proc. of SPIE Vol. 7341  73410T-3

Downloaded from SPIE Digital Library on 19 Jan 2010 to 153.96.14.101. Terms of Use:  http://spiedl.org/terms



Start

Image
Sequence

Extract Features

Initial Object
Position

Object
Model / Update Model

Calculate
Covariajice

Descriptor(s)

Detenuine
Search Region
in the Target

Image

Compare
Covariance
Descriptors

Select Descriptor
with minimal

Distance
New Position /

 

 

3. COVARIANCE-TRACKER 
The main idea of the Covariance-Tracker of Porikli et al. is to describe image regions by covariance matrices [8]. For 
each region of interest (ROI) a number of features such as position, color and gradients of pixels is measured and coded 
in a covariance matrix. To this, a d-dimensional feature vector at each pixel inside the ROI is constructed first. As 
features we use the x- and y-coordinates of a pixel, RGB color values and gradient information. 

Let ሼ ௜݂ሽ௜ୀଵ…௡ be a set of features vectors of a ܹ-width and ܪ-height rectangular ROI ܴଵand 

௜݂ ൌ ሺݔ, ,ݕ ܴሺݔ, ,ሻݕ ,ݔሺܩ ,ሻݕ ,ݔሺܤ ,ሻݕ ,ݔ௫ሺܫ ,ሻݕ ,ݔ௬ሺܫ ,ሻݕ ,ݔ௫௫ሺܫ ,ሻݕ ,ݔ௬௬ሺܫ  ሻሻ்ݕ

a feature vector at the pixel with the coordinates ሺݔ,   ሻ. The covariance matrix for ܴଵ is then given byݕ

ோభݒ݋ܥ ൌ ܪ1ܹ ෍ሺ ௜݂ െ ோሻሺߤ ௜݂ െ ோሻ்,ௐுߤ
௜ୀଵ  

where ߤோ is the mean-vector of  ሼ ௜݂ሽ௜ୀଵ…௡ .  ݒ݋ܥோభ, also referred to as covariance descriptor, contains information about spatial and statistical properties of the object 
as well as linear correlations between these properties. 

After the detection of the region of interest the covariance descriptor is computed and stored in an object model. In the 
next step the model is searched in a target image. To this, the original algorithm determines the descriptor that has the 
minimum covariance distance to the object model, and assigns its region center as the estimated object position. In order 
to adapt to illuminations or object variations the object model is additionally updated by calculating the mean of the 
last  ݊ found descriptors. The number ݊ is, for example, depending on the frame rate or variation speed of the target 
object. Fig. 1 gives an overview of the Covariance-Tracker (details can be found in [8]).  

 

 
Fig. 1. Covariance-Tracker 

 
The original Covariance-Tracker estimates the new object position by finding the best covariance descriptor (covariance 
descriptor that has the minimum covariance distance to the object model). Thereby, through noise or similar regions 
beside the object, it can happen that the best covariance descriptor does not contain the object anymore. Thus, the object 
model would be updated using a false descriptor and the tracker could lose the object. In order to avoid this, we 
additionally consider the neighbor regions in the object localization. Furthermore, we replaced the covariance distance 
by the Mahalanobis distance.  
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 Generally, the covariance distances around the position of the best covariance descriptor weakly increase in direction 
away from this one, and moreover, they increase for different regions differently. The idea is now, to confirm 
respectively disconfirm the new object position by considering these observations. Therefore we introduce several 
conditions that the tracker has to fulfill.  
 
Let ࣬ be the region around the position of the best covariance descriptor (descriptor that has the minimum Mahalanobis 
distance to the object model) with the radius ݎ and let us define descriptors inside ࣬ that have a small Mahalanobis 
distance to the object model as object-like-models. Furthermore, let us assume that the covariance descriptors inside ࣬ 
are normal distributed around the best descriptor. Then the conditions are defined as follows: 
 

1. The Mahalanobis distances inside ࣬ have to increase in direction away from the best covariance descriptor. 
2. The number of object-like-models has to be higher than a threshold. 
3. The number of object-like-models inside ࣬ may not be strongly changed during the tracking. 
4. The variance of the descriptors inside ࣬ has to be small. 

There are several ways to apply these conditions. In this work we update neither the object position nor the object model, 
if one is not fulfilled. 
 

4. RESULTS 
In performance evaluation we used data which we collected during a Crowd and Riot Control (CRC) training. For the 
acquisition of the supervised areas we installed cameras on elevated observation points. The cameras were installed 25 
meter high on a crane platform and recorded data from nadir view (see Fig. 2). The CRC scenarios consisted of three 
different levels of escalation. First the crowd started with a peaceful demonstration. Later there were violent protests, and 
third, escalations of the riot where offenders bumped into the chain of guards. 

 
Fig. 2. Technical data acquisition details 

 

In data acquisition we used a single-chip CMOS camera with a 20Hz sampling rate and a resolution of 752 x 480 pixels. 
The resolution of an individual is about 16 x 16 pixels. Each pixel of the image sensor chip captures only 8 bit: one of 
the three basic colors red, green or blue. The 24 bit color information for each pixel is computed in an embedded 
software module.  

As a result of the nadir view there are only few object occlusions which simplify the tracking task. On the other hand, 
pictures from unmanned aerial vehicles contain a crowd consisting of small individuals which is a challenge for tracking 
methods (compare Fig. 3). Additionally, in our real data sets we have got to deal with variations of contrast of the 
individuals to the background. There are individuals with weak (see Fig. 4 Circle 1) and significant (see Fig. 4 Circle 2) 
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contrast to the background. Another challenge is the similarity of objects (see Fig. 4 Circle 3). As a consequence of fast 
changing lightning conditions there are local and global variations of luminance linked with strong shadowing effects 
(see right image in Fig. 3). 

 
 

 
Fig. 3. Snapshots from the CRC data set 
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Fig. 4. Data set challenges 

 

 

In [2] we evaluated the performance of three different tracking methods that are shown as suitable for tracking  
individual people in crowds from elevated observation points or unmanned aerial vehicles. The results are summarized  
in Table 1. 
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Metrics KLT Covariance ColHist 
Total ground truth 1000 1000 1000 
False Negative Rate (1- ௡݂) 7,44% 3,74% 46,27% 
True Positive Rate ሺ ௡݂ሻ  92,56% 96,26% 53,73% 
OTE 11,0 9,8 31,0 

 
Table 1. Performance evaluation overview. The evaluated tracking methods were a color based Kanade-Lucas Tracker (KLT), a 
Color-Histogram-Tracker (ColHist) and the original Covariance-Tracker (Covariance). The (original) Covariance-Tracker obtained 
the best True Positive Rate/Positive Prediction respectively False Negative Rate/False Alarm Rate and Object Tracking Error. 
 
 
 

 
Fig. 5. Snapshots of the evaluated image sequence. Yellow squares show examples of challenging tracking tasks.  

 
 
Here we concentrate on the Covariance-Tracker. We evaluated the performance of the original and our adapted method 
on difficult to track individuals (see Fig. 5). To this, we used the following metrics: 

• False Negative Rate ௡݂: The relation between the numbers of not detected objects ( ிܰே) and the number of 
ground truth objects ( ீ்ܰ): 

௡݂ ൌ ிܰேீ்ܰ  . 
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• The Object Tracking Error (OTE): The Euclidean Distance of the ground truth center of gravity and the 
hypothesis center of gravity for one ground truth object of an image:  ܱܶܧ ൌ 1ܰ௥௚ ෍ ට൫ݔ௜௚ െ ௜௥൯ଶݔ ൅ ൫ݕ௜௚ െ ௥ሺ௧೔ሻٿ௚ሺ௧೔ሻא௜௥൯ଶ௜ݕ , 
whereas ௥ܰ௚ is the number of images containing both ground truths and tracking results. ݔ௜௚ and ݕ௜௚ define the 
x- and y-coordinate of the ground truth center of gravity in the ݅௧௛ image respectively ݔ௜௥ and ݕ௜௥ are the 
coordinates of the hypothesis center of gravity in the ݅௧௛ image. 

 

We obtained slight better results by replacing the covariance distance by the Mahalanobis distance. Furthermore, 
consideration of statistical conditions could further increase the performance. The results of the original and the adapted 
Covariance-Tracker (Mahalanobis distance + statistical conditions) are summarized in Table 2. 

 

Metrics Covariance
Adapted 

Covariance
Total ground truth 2000 2000
False Negative Rate ሺ ௡݂ሻ 44,21 % 25,09 %
True Positive Rate (1- ௡݂) 55,79 % 74,91 %
OTE 76,31 14,11

 
Table 2. Covariance-Tracker evaluation 

 
 

5. SUMMARY 
We proposed adaptations for the Covariance-Tracker of Porikli et al. and evaluated the original and adapted one on a riot 
control image sequence observed from an elevated observation point. The performance evaluation confirms the 
usefulness of tracking people with covariance descriptors in such scenarios. Furthermore, we showed that the 
consideration of statistical measures for covariance descriptors can further improve the performance. The result is a 
robust method for tracking people in crowds which can improve situational awareness. 
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