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1. Introduction 
Electromobility may be powerful in reducing the CO2-emission inherent to traffic. 
Electric vehicles do not directly emit CO2. The overall CO2-emission of the vehicles 
may be reduced to almost zero, assuming that energy used for charging is based on 
renewable energy sources (Brake, 2009; Heider, Büttner, Link & Wittwer, 2009).  
Technological solutions like vehicle-to-grid (V2G) concepts link renewable energies 
and electromobility by optimizing the integration of the electric vehicles into the grid. 
The charging process is controlled by a technological unit (intelligent load 
management system, ILMS). The ILMS is an interface between the vehicles and the 
grid encouraging a smart integration of the vehicles. That is, the system charges the 
vehicle’s battery when energy is available. In times of raised energy demand in the 
grid, the battery may serve as storage providing energy to the grid. In the future, 
smart integration of electric vehicles might constitute a broad framework including 
smart homes, electric vehicles, and smart grid technologies. Figure 1 demonstrates 
such a scenario: The ILMS controls the energy flow between the energy grid, the 
smart home and the electric vehicle. Self-generated energy (e.g. from photovoltaic 
systems) may be used for charging or stored in the vehicle battery for future demand.  
The technological requirements of such systems are uncontested and decisive for 
the economic as well as the ecological success of electromobility. However-besides 
technological demands-the consideration of user variables is crucial in the context of 
a smart integration of electric vehicles. The present paper introduces psychological 
theory and methods as well as inferences from studies focusing on user variables 
related to a smart integration of electromobility.  

2. Psychological Research in the Context of V2G- State of the Art 
Figure 1 illustrates the impact of user variables on constituents relevant to a smart 
integration of electric vehicles. The three components electric vehicle, ILMS and 
smart home are directly affected by user variables. The impact of user variables 



 

differs depending on the constituent. Behaviour patterns (habits) are especially 
important in context of smart homes and electric vehicles. User participation and 
skills are most relevant in drivers’ interaction with ILMS that require information about 
upcoming trips to set a time interval for optimized charging. System characteristics 
and its impact on users’ behavioural patterns affect the appraisal of each component. 
The appraisal-in turn-strongly affects the market success of each technology.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
2.1. Smart Homes/ Energy Consumption 
From the current perspective, mobility seems to be fairly independent of habitation. 
The simultaneous development of electromobility and smart home concepts may 
approximate mobility and housing. Unlike conventional vehicles, electric cars can be 
charged at house-hold sockets. Increasing installation of domestic photovoltaic and 
block heating systems enables future house owners to charge their vehicles with self-
generated energy.  
Concepts of smart homes may provide valuable advantages in comfort and energy 
efficiency but are accompanied by considerable changes in user behaviour. 
Currently, it is still unclear how inhabitants react to such changes like increasing 
automaticity and to what extent they are willing to change their behaviour in the 
context of smart homes. 
Studies have provided first information about the influence of energy related 
feedback on consumption behaviour and the stability of domestic behaviour patterns 
(Schleich, Klobasa, Brunner, Gölz et al., 2011; for an overview see Abrahamse, 
2005). Different effects of feedback on energy consumption reaching from 5 to 15 % 
have been reported (Darby, 2006). Findings in terms of stability of the effects are 

Figure 1. A schematic illustration of user variables relevant in future V2G scenarios. 



 

ambiguous. While some studies report continuous energy saving in the medium-term 
(Bittle et al. 1979) others report declining effects on energy saving over time (Van 
Dam et al., 2010).  
In a recently conducted research project more than 2000 households have been 
observed in their usage behaviour of an individual feedback-homepage. One major 
result shows that the log-in numbers tremendously declined after the first month of 
usage. This indicates that most inhabitants are open to information about their own 
energy consumption but further interventions are necessary to affect behaviour 
sustainably (Sunderer, Götz, Gölz, in print).  
Findings can be partially transferred to smart home concepts and indicate a general 
tendency to respond to individual energy related information and to change habitual 
behaviour in the domestic domain. Nonetheless, results inferred from feedback 
studies only display an excerpt of the broad range of smart home concepts. For 
example, inhabitants’ reaction to increasing automaticity has not been investigated in 
previous research and need to be assessed by future studies. 

2.2. Electromobility  
In Figure 1, electromobility is separated from ILMS and defined as an independent 
component. From a human factors perspective, this distinction is reasonable to 
discriminate between drivers’ mobility patterns, their appraisal of electromobility and 
their skills to plan their mobility as demanded by ILMS. 
The impact of ILMS depends on market success of electric vehicles. Small numbers 
of electric vehicles do not strain the grid and do not necessarily demand a smart 
integration of the vehicles (Birnbaum et al. 2008). In this case, the ecological impact 
would be fairly small. Hence, research is necessary that allows for accurately 
determining factors relevant to the market success of electromobility. Findings would 
enable future research and development to concentrate on influencing variables of 
electromobility in order to enhance user acceptance as well as market success of the 
technology. 
Previous research predominantly focused on technological differences between 
electric vehicles and common combustion engine vehicles like cruising range or 
charging time. Studies analysing mobility data showed that average daily cruising 
ranges are between 28 and 45 kilometres (Birnbaum et al. 2008; Wu et al., 2010). 
Such ranges are feasible by most current electric vehicle models (Brake, 2009).  
Nonetheless, objective data do not assess the users’ subjective needs and 
constraints related to mobility. Research showed that driving does not constitute an 
entire rational action (Steg, 2005). Hence, although people only drive short distances 



 

with their current vehicle, they may have the encompassing need to cover long 
driving ranges when desired. In this mind, cruising ranges based on solely objective 
data will not necessarily be evaluated as being adequate by the user. This may lead 
to negative evaluation or even rejection of electromobility. First studies point to a 
considerable difference between objective driving behaviour and subjective needs 
regarding mobility. A questionnaire based study revealed that only 50 percent of 
current drivers accept cruising ranges of electric vehicles of less than 300 kilometres. 
Even 30 percent of all users wish cruising ranges between 450 to 1000 kilometres 
(VDE, 2010).  
Research investigating the influence of market penetration on the evaluation of 
hybrid electric vehicles has shown that ratings of different vehicle features like 
cruising range depend on the users’ perceived market penetration of the vehicles 
(Axsen, Mountain & Jaccard, 2009). That is, when participants assumed that a lot of 
people use hybrid vehicles, they accepted shorter driving ranges, higher prices 
and/or less warranty (Axsen et al., 2009).  
Psychological research investigating organizational change processes revealed 
individual differences in reacting to changes in the environment. These individual 
dispositions also influence the appraisal and usage of innovative products (Oreg, 
2003). Such findings indicate that consumer decisions are affected by individual 
dispositions rather than entire rational processes strongly related to users’ real 
behaviours.  

2.3. Intelligent Load Management Systems (ILMS)  
ILMS are highly reliant on users’ participation and skills. The efficiency of the 
technology strongly depends on the utilization of intelligent loading processes as well 
as users’ predictions of their mobility. Misestimations may lead to inefficient loading 
processes or-even worse-to insufficient battery levels.  
Besides technological studies, psychological research is needed focusing on the 
user, providing information about drivers’ motivation and skills to forecast upcoming 
departure times and route lengths. Planning of future trips undeniably constitutes a 
change in current mobility patterns. The predetermination of future trips might be 
perceived as restricting flexibility. Currently, it is unclear in how far users are willing to 
take part in this process.  
Moreover, future research also needs to concentrate on the skill perspective, 
assessing users’ ability to accurately forecast upcoming departure times and route 
lengths. First studies investigating drivers’ ability to plan their own mobility on a 
general level provide first insights. Gärling, Gillholm and Gärling (1998) asked 



 

participants to predict their mobility behaviour of the upcoming week. Subsequently, 
subjects recorded their actual mobility behaviour using a provided logbook. 
Participants were also asked to classify their trips so that the influence of trip type 
(work, leisure and shopping) on the accuracy of mobility forecasts could be 
assessed.  
Findings indicate an effect of trip type on the accuracy of mobility predictions. 
Estimations were best for leisure trips. Shopping trips had the worst prediction rate. 
The accuracy of work trip estimations was between that of leisure and shopping trips. 
In sum, participants tended to underestimate their mobility behaviour. That is, people 
err on the unsafe side, predicting to be less mobile than they actually are. In the 
context of electromobility, we consider underestimations as being critical to safety 
since spontaneous or early trips may result in insufficient battery levels. 
Results were partially replicated in a study by Jakobsson (2004). In this study, 
participants also predicted their mobility behaviour for one week in advance. In 
addition, subjects also forecasted the length of each trip. Again, the number of real 
trips exceeded the number of estimated trips. Estimations of trip length were fairly 
accurate (on average 3.35 km). Analysis of trip type revealed that shopping trips had 
the worst prediction rate. In contrast to Gärling et al. (1998), the most accurate 
estimations were yielded for work trips. The error rate of leisure trips was between 
that of work and shopping trips.  
Although the reported studies did not explicitly focus on ILMS and related mobility 
predictions, these studies give a first insight into humans’ ability to estimate their 
future mobility behaviour. However, past studies used long prediction intervals of one 
week. Future ILMS do not demand to predict the mobility behaviour of such long time 
periods. Additionally, previous studies did not assess estimations of departure time.  
In the framework of a final thesis project conducted in the work group of the authors 
of the present paper, drivers’ abilities to forecast their own mobility were tested in 
conditions similar to ILMS scenarios (Maiwald, 2011). Findings allow for more 
accurate assumptions about drivers’ abilities related to ILMS as compared to studies 
investigating mobility forecasts on a general level. For two weeks, participants were 
asked to estimate departure time and route length of their next trip after arriving at 
home with their own car. Real mobility behaviour was reported in a logbook. 
Additionally, GPS tracking devices were installed in the vehicles to verify reported 
mobility data.   
Findings showed that in general, the number of actual trips exceeded the number of 
predicted trips. This is in line with previous studies indicating that subjects tend to 



 

underestimate their own mobility (Gärling et al., 1998; Jakobsson, 2004). Also, 
participants’ estimations of departure times and trip lengths-as demanded by ILMS-
were fairly accurate. This holds for estimations of trip lengths in particular (average 
absolute error: m = 8.1 km). The average absolute error in departure time estimations 
was 30.87 min. Trip type had a significant effect on the accuracy of departure time as 
well as trip length estimations. The best predictions of departure time were yielded 
for work trips, followed by leisure and shopping trips. There was no difference in the 
accuracy of trip length estimations between work and shopping trips while error rates 
of both of these were significantly lower than those of leisure trips. In general, 
findings with respect to trip type were replicated in an ILMS scenario but show 
important differences between departure time and trip length estimations. These 
differences need to be considered in the development of ILMS. 

3. Conclusion 
The present paper introduces human factors psychology to the field of V2G-
concepts. We suggest a multi-facet approach including users’ habits, needs, 
participation, and skills. The influence of these user variables varies between the 
components smart home, ILMS, and electromobility.  
Previous research regarding habits in the domestic domain mainly concentrated on 
energy consumption and its changeability trough feedback. The rising technological 
efforts in the development of smart home concepts demand studies assessing users’ 
responsiveness to information provided in the broader context of smart homes.  
Since reported effects of feedback on energy consumption were partially instable 
(Van Dam et al., 2010), we suggest dynamic approaches providing the user with 
varying information over time. In addition, solutions based on one control unit are 
desired to focus the user’s attention on one system rather than installing several 
independent units. This, however, requires a certain degree of standardization to 
guarantee conformance and in particular interoperability of several devices 
connected to one control unit (Rohbogner, Feuerhahn, Zillgith, & Wittwer, 2010).  
The future market success of electromobility is still uncertain. Previous studies 
predominately focused on real mobility behaviour (Birnbaum et al., 2008; Wu et al., 
2010). Research analyzing real mobility data is valuable but inferences based 
entirely on objective data might be distorted and do not cover consumer decisions 
comprehensively. To gain more information about perceived user needs regarding 
mobility as well as differences between real behaviour and subjective needs, 
research is needed which combines subjective and objective data. Based on such 
studies, determinants influencing users’ appraisal of electromobility may be assessed 



 

more precisely offering an empirical base to more accurately predict the future 
market success of the technology.  
Increasing market penetration of electromobility will raise the need for a smart 
integration of electric vehicles. Solutions based on ILMS are promising but demand 
users’ participation and skills. Findings from mobility research are necessary to adapt 
future ILMS to users’ abilities. First results reveal that the majority of drivers’ mobility 
predictions as required by ILMS are fairly accurate but extreme values need to be 
taken into account. Further, battery security buffers should be based on empirical 
data to avoid negative experiences with the system. First results from studies 
applying ILMS scenarios indicate an effect of trip type on mobility forecasts and 
suggest the development of ILMS that consider such differences in forecast accuracy 
between trip types to yield more efficient optimization (Maiwald, 2011).  
Technological ambitions to encourage electromobility and its smart integration in the 
future energy grid are far-reaching but most systems are still at a prototype stage. 
Thus, it is difficult to comprehensively anticipate future conditions. Nonetheless, it is 
necessary to take user variables into account in an early developmental stage to 
construct technology that is adapted on users’ strengths and weaknesses. 
Technological solutions which fail to meet users’ expectations and needs are likely to 
fail market success. In the context of a smart integration of electric vehicles, this 
would be particularly consequential since electromobility has the power to 
substantially reduce local as well as global CO2-emissions. 
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