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Abstract

Pathway enrichment analysis has become a widely used knowledge-based approach for the interpretation of biomedical data. Its
popularity has led to an explosion of both enrichment methods and pathway databases. While the elegance of pathway enrichment
lies in its simplicity, multiple factors can impact the results of such an analysis, which may not be accounted for. Researchers may
fail to give influential aspects their due, resorting instead to popular methods and gene set collections, or default settings. Despite
ongoing efforts to establish set guidelines, meaningful results are still hampered by a lack of consensus or gold standards around
how enrichment analysis should be conducted. Nonetheless, such concerns have prompted a series of benchmark studies specifically
focused on evaluating the influence of various factors on pathway enrichment results. In this review, we organize and summarize
the findings of these benchmarks to provide a comprehensive overview on the influence of these factors. Our work covers a broad
spectrum of factors, spanning from methodological assumptions to those related to prior biological knowledge, such as pathway
definitions and database choice. In doing so, we aim to shed light on how these aspects can lead to insignificant, uninteresting or
even contradictory results. Finally, we conclude the review by proposing future benchmarks as well as solutions to overcome some of
the challenges, which originate from the outlined factors.
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Introduction
Pathway enrichment analysis has become one of the
foremost methods for the interpretation of biological
data as it facilitates the reduction of high-dimensional
information to just a handful of biological processes
underlying specific phenotypes. Over the last decade,
the popularity of pathway enrichment analysis has led
to the development of numerous different methods
that can be categorized into three generations: (i)
over-representation analysis (ORA), (ii) functional class
scoring (FCS) and (ii) pathway topology (PT)-based, each
of which adds an increasing layer of complexity to the
analysis [1]. ORA, the first of the three, refers to a class
of methods designed to identify gene sets that share
a larger number of genes in common with a list of
differentially expressed genes (DEGs) than would be
expected by chance. Given a list of DEGs, a gene set
and their complements, a statistical test is conducted

to assess whether DEGs are over-represented in the
gene set. Though simple to conduct, ORA methods
rely upon arbitrary, and at times harsh, cutoffs to
determine what constitutes a DEG. To remedy this
problem, FCS methods test whether genes of a gene
set have coordinated activity with the phenotype under
study by using metrics to assign differential expression
scores to each gene in the experiment. Genes are then
ranked by their scores, which are subsequently used
to calculate gene set scores and determine gene sets
that are interesting in some statistically significant way.
Finally, PT-based approaches build upon the latter class
of methods and are characterized as additionally taking
PT information into account, rather than solely relying
upon gene sets, which lack interaction information. Thus,
a formal distinction can be made between gene sets
and pathways. Specifically, a gene set refers to a set of
unranked genes which can be variously grouped, such
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as by their membership within a biological pathway or
chromosomal position, while a pathway refers to a set of
genes as well as any pairwise interactions between them.
While the simplicity and accessibility of enrichment
methods have been the main drivers to their widespread
adoption by the community, the broad pool of methods
at hand and the lack of gold standards pose a challenge
in evaluating the variability of enrichment results.
Consequently, several guidelines have been published in
recent years on recommendations for the experimental
design of an enrichment analysis [2–4].

An analogous but more philosophical debate in the
community pertains to the choice of pathway or gene
set database. Its selection is arguably one of the most
decisive factors influencing the results of enrichment
analyses as it determines the possible gene sets that can
be enriched (i.e. genes within a gene set are enriched in an
examined list of genes). The number of public databases
has continued to grow in the past years in parallel with
novel enrichment methods. However, the list of the most
widely used databases has not changed in the last decade
as enrichment analyses are predominantly conducted
exclusively on one of the following three databases:
KEGG [5], Reactome [6] and Gene Ontology (GO) [7]. While
this selected group of databases comes with several
advantages (e.g. large coverage of biological processes
and regular updates), definitions of what constitutes
a given pathway or gene set may be arbitrarily drawn
across databases.

At present, users are offered a wide spectrum of
enrichment methods and databases when performing
enrichment analyses. This poses a challenge when
considering the numerous factors that play a role
in results of enrichment analysis, which can lead to
insignificant, irrelevant or even contradictory results.
Thus, in recent years, several benchmark studies have
been conducted to evaluate the effects of various aspects
of pathway analysis for practical guidelines.

In this work, we review the findings of major bench-
marks conducted on different factors that influence the
results of pathway enrichment analysis (Figure 1). The
goal of our paper is to both inform the broader commu-
nity of researchers using pathway enrichment analysis
of these factors and to summarize the findings of all
the most recent benchmarks. Finally, we also discuss
possible solutions to address these factors as well as
other factors that have not yet been investigated but can
be benchmarked in the future.

Comparative studies on enrichment
methods
Given the popularity of pathway enrichment analysis,
at least 70 different methods have been developed as
well as hundreds of variants [8, 9] (see Xie et al. [10]
for an exhaustive survey of methods and benchmarks).
The implementations of these methods can differ based
on a number of factors, such as the gene-level statistic

(e.g. t-test statistic and fold change), the gene set–level
statistic (e.g. Kolmogorov–Smirnov (KS) statistic [11] and
Wilcoxon rank sum test [12]), the formulation of the
null and alternative hypotheses and the significance
estimate. Many of the most commonly employed
pathway enrichment methods have been compared in
several major benchmarks and reviews. In this section,
we outline the findings of 12 comprehensive comparative
studies on enrichment methods (Table 1; for more
details, see Supplementary Tables 1–3 available online
at https://academic.oup.com/bib).

Metrics for method evaluation
A particular challenge in the design of comparative stud-
ies on enrichment methods is that in the absence of a
comprehensive understanding of the complex biologi-
cal processes involved across experimental conditions,
results are often not verifiable beyond retrospective eval-
uations. That is to say, without a gold standard with
which to compare the results produced by any given
method, conclusive assessments are often difficult to
make. Nonetheless, several techniques to compare meth-
ods are widely used, while benchmark datasets have also
been proposed. Specifically, datasets used by benchmark
studies reviewed herein have largely been real, exper-
imental datasets investigating a particular phenotype
(i.e. the object of study in the experiment). Following
Tarca et al. [23], several studies [2, 3, 9, 13, 25] have
selected evaluation datasets as those which correspond
to a pathway or gene set from the chosen database (e.g.
dataset investigating the breast cancer versus normal
phenotype and the breast cancer pathway). Others [14,
16, 24] have focused on measuring consistency across
methods by selecting various datasets that study the
same phenotype. Finally, comparative studies [3, 13, 14,
18, 22] have also employed simulated datasets to bench-
mark methods as various features of the data can be
tuned and the method can be studied under these known
features of the data. In line with Tarca et al. [23], the
majority of studies have evaluated the performance of an
enrichment method on these datasets based on at least
one of the following metrics: prioritization, specificity or
sensitivity.

Prioritization is evaluated based on whether a target
gene set that has been identified a priori as showing high
relevance to a phenotype associated with the dataset
under investigation is ranked near the top (e.g. the breast
cancer pathway is expected to hold the topmost rank-
ing for a dataset measuring transcriptomic differences
between the breast cancer versus normal phenotypes).
Specificity refers to the proportion of gene sets that
are correctly identified by a method as true negatives;
thus, methods with a high specificity will generate fewer
false positives. Finally, of all the gene sets detected as
significant by a given method, sensitivity measures the
proportion of gene sets that are actually relevant to the
phenotype associated with the dataset under study (i.e.
true positives).
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Figure 1. Illustration of major factors that influence the results of pathway enrichment analysis discussed in this review. The height and color of the
bars are symbolic and do not correlate with importance. The two networks depicted above represent two biological pathways mapped to gene expression
data (matrix below).

Of the various comparative studies done to date,
the above-mentioned metrics have been among the
most commonly used for the empirical evaluation of
enrichment methods. Nonetheless, the metrics used
and the methods benchmarked by an individual study
can vary greatly, with the most popular methods, not
surprisingly, studied the most frequently. Yet despite
the numerous benchmark studies conducted thus far,
a comprehensive and standardized assessment of the
many enrichment methods available has yet to be
performed. Moreover, of the benchmark studies that
have attempted such an assessment, no specific method
has been shown to yield consistent results across all
evaluated settings. Nevertheless, trends do emerge
regarding the individual performance of a method on a
given metric (Supplementary Tables 4–6 available online

at https://academic.oup.com/bib). Thus, in the following,
we report the trends observed across comparative
studies for methods that consistently show superior
performance on metrics in two or more studies without
showing a poor performance on that same metric.

With regard to sensitivity, MRGSE [26], GlobalTest [27]
and PLAGE [28] ranked highly in studies by Tarca et al.
[23] and Zyla et al. [25] (Supplementary Table 4 available
online at https://academic.oup.com/bib). However, high
sensitivity may also imply a lower specificity. This was
indeed observed for MRGSE and PLAGE, both of which
reported a larger than expected number of false positives
in at least one study, though also a good performance
in prioritization (Supplementary Table 6 available online
at https://academic.oup.com/bib). This is not surprising
given that both methods have also been shown to report
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Table 1. Comparative studies evaluating differences across enrichment methods

No. Review Methods tested Datasets Database (# of gene sets/pathways) Types of evaluated methods

1 [13] 7 36 KEGG (116) Topology- and non-topology-based methods
2 [2] 10 75 KEGG (323) and GO (4631) ORA and FCS methods
3 [3] 7 118 KEGG (232) Topology-based methods
4 [14] 6 20 KEGG (86) Topology- and non-topology-based methods
5 [15] 9 3 KEGG (114) Topology-based methods
6 [16] 13 6 GO gene set collection extracted from

MSigDB [17] v6.1 (5917)
Widely used pathway enrichment methods

7 [18] 8 3 MSigDB v5.0 (10,295) Widely used pathway enrichment methods
8 [9] 10 86 KEGG; 150 pathways for all methods

except 130 for PathNet [19] and 186 for
CePa [20, 21]

Topology- and non-topology-based methods

9 [22] 11 1 C2 collection from MSigDB v4.0 (4722) Methods differing based on null hypothesis
10 [23] 16 42 KEGG (259) and Metacore™ (88) ORA and FCS methods
11 [24] 5 6 KEGG (192) ORA and FCS methods
12 [25] 7 38 KEGG (189) ORA and FCS methods

In the third column, we report the number of enrichment methods compared in each study (see Supplementary Tables 2 and 3, available online at
https://academic.oup.com/bib, for details on the methods tested). Here, we would like to note that we differentiate between methods and tools/web applications
based on Geistlinger et al. [2]. In the fourth column, we report the number of datasets each study performed comparisons on, all of which were experimental
datasets except in [3, 13, 14, 18, 22], which included both experimental and simulated datasets. Finally, the fifth column reports the pathway databases used in
each study while the number of pathways is shown between parentheses.

a majority of gene sets as significant [24, 25]. Similarly,
classical statistical tests, including the KS test and the
Wilcoxon rank sum test, were highly sensitive in Bay-
erlová et al. [13] and Nguyen et al. [9], though results
were inconsistent regarding their specificity. Notably, of
the above-mentioned methods, GlobalTest was the only
investigated method to consistently demonstrate high
sensitivity as well as high specificity in studies by Tarca
et al. [23] and Zyla et al. [25].

In assessments of specificity, SPIA [29] and CAM-
ERA [30] have shown high specificity in at least two
studies (Supplementary Table 5 available online at
https://academic.oup.com/bib), though results have
been mixed or poor with regard to sensitivity and
target pathway prioritization. Furthermore, GSA [31],
PADOG [32] and PathNet showed good results with
regard to prioritization (Supplementary Table 6 available
online at https://academic.oup.com/bib) but mixed
results for sensitivity and specificity. Finally, across all
studies, GSEA [33] and ORA (or a variant) were the
most investigated enrichment methods, with 8 of 12
comparative studies assessing either one or both of
these methods (Supplementary Table 3 available online
at https://academic.oup.com/bib). Here, we observed
that, although they were the most commonly used
methods for enrichment analysis, results regarding their
sensitivity, specificity and prioritization were altogether
inconsistent (Supplementary Tables 4–6 available online
at https://academic.oup.com/bib).

Hypothesis testing and significance assessment
Much of the focus of comparative analyses on gene set
analysis methods has been on the implications of alter-
native definitions of the null hypothesis. In their seminal
work, Goeman and Bühlmann [34] characterized meth-
ods by the null hypothesis assumed in the statistical test.
Enrichment methods, they assert, can be categorized as

being competitive methods if they test the competitive
null hypothesis [i.e. those which assume that genes in a
gene set are not differentially expressed with respect to
their complement (typically the rest of the genes in the
experiment)] or self-contained methods if they test the
self-contained null hypothesis (i.e. those which assume
that genes in a gene set are not differentially expressed
across phenotypes). Choosing one category of methods
over another can confer several advantages, which we
explicate through a brief review of studies that have
assessed the performance of methods, which differ based
on this distinction.

Rahmatallah et al. [22] recapitulated earlier work [35–
37], generally noting that the power of self-contained
methods was greater than that of competitive ones
(Table 1; Supplementary Tables 2 and 3 available online
at https://academic.oup.com/bib). Self-contained meth-
ods were also more robust to sample size and het-
erogeneity, with these methods showing the highest
sensitivity among all the ones they evaluated, even as
the sample sizes decreased [22] (Supplementary Table 7
available online at https://academic.oup.com/bib). Specif-
ically, they found that ROAST [38] and SAM-GS [39]
yielded the best performance on this metric.

Geistlinger et al. [2] noted that the proportions of
gene sets reported as significant by methods differed
based on the type of null hypothesis tested. Out of 10
investigated methods (Supplementary Table 3 available
online at https://academic.oup.com/bib), they found
that the majority of self-contained ones, including
GlobalTest, detected a larger fraction of gene sets as
significant. In Zyla et al. [25], the self-contained methods
GlobalTest and PLAGE also reported the largest number
of gene sets as significant among all benchmarked
methods (Supplementary Table 3 available online at
https://academic.oup.com/bib). In contrast to these
findings, Wu and Lin [37] found that GlobalTest reported
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fewer gene sets as significantly enriched in comparison
with competitive methods.

Furthermore, Geistlinger et al. [2] found that self-
contained methods, particularly GlobalTest and SAM-
GS, were especially sensitive to gene set size, with
a propensity toward detecting larger gene sets as
significant (Supplementary Table 8 available online
at https://academic.oup.com/bib). For example, even
when random gene sets were assembled, GlobalTest
and SAM-GS identified all gene sets with over 50
genes as significant. However, Maleki et al. [16] noted
that GlobalTest was among the methods more likely
to identify gene sets of smaller sizes as significant
(Table 1; Supplementary Table 3 available online at
https://academic.oup.com/bib), albeit, in this case, the
upper bound for genes in a given gene set was nearly
2000, while in Geistlinger et al. [2], it was 500.

These contradictory findings are a prime example of
the challenges associated with benchmarking methods
for gene set analysis. Such glaring variability in results
yielded by the same method investigated in different
studies may be due to several factors, such as gene
set size or differing proportions of DEGs in the studied
datasets. For instance, GlobalTest tends to perform sub-
optimally when only a few genes in a given gene set are
differentially expressed and the majority of genes are
not, and it conversely tends to be better suited for when
there are many genes with small changes in differential
expression in a gene set [37, 40]. We further discuss the
impact of gene set size on results in a subsequent section
as well as in Supplementary Text 1 (available online at
https://academic.oup.com/bib).

If opting to select a competitive method instead,
one must consider that testing the competitive null
hypothesis often inherently implies the intended asso-
ciation not only between the phenotype and the genes
within a given gene set but also between the phenotype
and the genes in the complement of the set [40]. That
said, competitive methods can be appropriate when
the goal is to test for excessive amounts of differential
expression among genes in a gene set. For instance, the
popular ORA method was noted as suitable when there
are large levels of differential expression [2]. However,
ORA also tends to prioritize larger gene sets, assigning
them lower P-values [16, 23]. Nonetheless, in Geistlinger
et al. [2], ORA and other competitive methods outper-
formed the self-contained ones in ranking phenotype
relevant gene sets near the top (Supplementary Table 9
available online at https://academic.oup.com/bib). In
contrast, although ORA performed favorably on the
prioritization of relevant gene sets in Tarca et al. [23],
no clear discernment could be made with regard to the
performance of competitive and self-contained methods
on this measure (Supplementary Table 6 available online
at https://academic.oup.com/bib). Furthermore, while
self-contained methods tended to identify a larger
proportion of gene sets as significant in Geistlinger et al.
[2], the majority of competitive methods (i.e. SAFE [41],

GSEA, GSA and PADOG) did not identify any significant
gene sets.

Intimately linked to the formulation of the null
hypothesis is the calculation of the P-value [34]. Diver-
gent approaches to assign a P-value to a gene set address
the following question: What is the sampling unit? If
the sampling unit is the gene, for each gene set of a
given size, an equal number of genes are randomly
drawn from all genes under investigation to sample
the null distribution. If, however, the sampling unit
is the subject, the phenotypic labels of subjects are
randomly permuted to sample the null distribution
instead. While methods that test a self-contained null
hypothesis are generally linked with sample permutation
and competitive methods with gene permutation, the
latter group of methods can be modified to make them
self-contained [40].

Sample permutation is often regarded as the preferred
approach to obtain the empirical null distribution as its
setup tends to pertain more naturally to the research
question at hand of whether or not an association exists
between a gene set and a phenotype. In contrast, meth-
ods that calculate significance by gene permutations
suffer from the assumption that genes are independent
and identically distributed (iid). It is well established,
however, that this premise does not hold true in a real
biological context where gene correlations (i.e. the coor-
dinated expression of genes) can be observed and where
sets of genes are known to work in tandem [37]. Thus,
in the case of gene permutations, while significant gene
sets may be reflective of either gene correlations that
arise regardless of experimental condition and/or actual
phenotypic differences, it is the latter that is often far
more interesting, and the former can inflate the number
of false positives [37, 40, 42, 43].

The effects of correlations within gene sets have been
observed in various studies. Tamayo and colleagues [44]
show that these correlations can have major implica-
tions on the results of enrichment analysis by com-
paring the results of GSEA against a simple parametric
approach in 50 datasets. They observed that the paramet-
ric approach, which assumes differential gene expres-
sion scores are both independent and follow a normal
distribution, yields a larger number of significant gene
sets than GSEA, but many of these are speculated to be
false positives. Similarly, in experiments on simulated
data in Maciejewski [40], the author demonstrated that
when gene correlations were present in the gene set
yet there were no DEGs either in the gene set or its
complement, false positive rates for methods that make
the iid assumption (e.g. parametric methods proposed in
Irizarry et al. [45] and competitive methods with gene per-
mutation) were greater than expected. Thus, the authors
of these studies caution that methods that assume gene
independence may report gene sets as significantly asso-
ciated with a phenotype when in fact gene correlations
account for the purported, significant results. However, it
is also worth noting that the influence of correlations can
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be somewhat mitigated by reducing redundancies within
gene sets.

In Maciejewski [40], the author observed that among
methods with a sample permutation procedure, Glob-
alTest, GSEA and GSA and its variant achieved higher
power. Furthermore, GSEA, a competitive method with
sample permutation, had higher power than several
other methods tested (i.e. GSA and its variant, PAGE [46],
Wilcoxon rank sum test, Q1 [47] and SAFE), although as
the number of DEGs in a gene set increased, so too did
the power of the other methods.

Nevertheless, sample permutation requires an ade-
quate number of samples as without a sufficiently
large sample size, the calculated P-value may never
achieve significance, in which case, gene permutation
is recommended. For instance, in their comparative
analysis, Maleki et al. [48] found that, across 10 replicate
datasets, GSEA with sample permutation was unable
to detect any gene set as enriched when sample
sizes were small, suggesting a lower bound of 10
samples for this particular method. The robustness of
various methods to changes in sample size is further
discussed in Supplementary Text 2 (available online at
https://academic.oup.com/bib).

Other methods have been proposed that attempt
to address some of the drawbacks associated with
sample and gene permutation approaches by conducting
both sample permutations and gene randomizations
in a method known as restandardization, as with GSA,
through the use of rotations for gene set testing, as with
FRY [49] and ROAST, or via bootstrapping methods, as in
Zahn et al. [50] and Barry et al. [43].

Topology- and non-topology-based methods
Methods for enrichment analysis can also be classified
as those which are topology-based or non-topology-
based. The latter group of methods can be further
sub-classified into the aforementioned ORA and FCS
methods, the so-called first- and second-generation
approaches, respectively [1]. PT- or topology-based
methods fall into the category of third-generation
approaches, intuitively more advanced as, unlike ORA
and FCS methods, they leverage the topological structure
of genes in a pathway. Nonetheless, results from
multiple benchmarks on topology- and non-topology-
based methods are inconclusive as to the superiority
of one group of methods over another, with studies
suggesting topology-based methods have the upper
hand.

In Bayerlová et al. [13], authors noted that whether
a method was topology-based or not was inconse-
quential to performance when original KEGG pathways
(which tend to contain overlapping genes) were used in
experiments (Supplementary Tables 3–6 available online
at https://academic.oup.com/bib). Notably, while CePa
includes pathways from both KEGG and the Pathway
Interaction Database [51], other topology-based methods

evaluated in the study (i.e. PathNet and SPIA) are only
compatible with pathways formatted in a custom-XML
format (i.e. KEGG Markup Language). This result is par-
ticularly striking, considering KEGG contains overlapping
pathways, thus limiting the potential of topology-based
methods by restricting users to pathways formatted
in the manner specified by this database. In contrast,
experiments done using non-overlapping pathways
resulted in topology-based methods outperforming non-
topology-based ones [13]. In line with these findings,
comparative studies by Jaakkola and Elo [14] and Nguyen
et al. [9] similarly suggested that topology-based methods
exhibit an improved performance over non-topology-
based ones under certain conditions, albeit, contrary to
findings by Bayerlová et al. [13], these conclusions were
drawn exclusively using KEGG as the choice of pathway
database.

More particularly, results from Nguyen et al. [9] indicate
that topology-based methods have a slight upper hand
in detecting target pathways as compared to non-
topology-based ones (Supplementary Table 6 available
online at https://academic.oup.com/bib), though results
were mixed regarding the P-values of target pathways.
In Jaakkola and Elo [14], topology-based methods (i.e.
SPIA, CePa and NetGSA [52]) detected a larger number of
significant pathways than non-topology-based ones (i.e.
GSEA, Pathifier [53] and DAVID [54]). However, in a more
challenging dataset where differences across groups
were subtle, nearly all studied methods identified either
no pathways or relatively few pathways as significantly
enriched.

Ihnatova et al. [3] conducted several experiments,
which assessed the influence of various parameters
on topology-based methods [e.g. sensitivity to pathway
and sample size (Supplementary Table 7 available
online at https://academic.oup.com/bib), specificity
(Supplementary Table 5 available online at https://acade
mic.oup.com/bib) and exclusion of topological infor-
mation]. As a proxy to study the latter parameter (i.e.
whether topological information affects results for a
given topological method), the authors evaluated the
influence of single genes on the fraction of pathways that
were considered enriched, assuming that a setup that
fails to take into account PT is one in which individual
genes have an equal impact on results. To that end, they
found that TopologyGSA [55] and Clipper [56] yielded no
difference in performance when topological information
was excluded, while for all other methods, the exclusion
of topological information led to the identification of a
smaller fraction of enriched pathways. In addition, in
assessing whether the ranks/P-values of target pathways
change when topological information is incorporated,
the authors found that both the ranks and P-values
of target pathways decreased for PRS [57] and CePa,
while for all other methods, the inclusion of topological
information resulted in either no change or an increase
in ranks/P-values of target pathways (at times caused by
pathway-specific effects).
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Additional methodological considerations and
consensus approaches
Besides the above-mentioned common measures and
classifications, several comparative studies have used
to draw distinctions between enrichment methods,
the performance of methods on a number of addi-
tional aspects has also been benchmarked. We refer
to the studies that evaluate other aspects, including
accuracy (Supplementary Table 10 available online at
https://academic.oup.com/bib), type I error rate, power,
runtime and assessments of reproducibility across
datasets, among others in Supplementary Table 11
(available online at https://academic.oup.com/bib).
Furthermore, we outline additional methodological
considerations, including the steps used in data pre-
processing and biases, which arise from experiments
(Supplementary Text 3 available online at https://acade
mic.oup.com/bib), the gene- and gene set–level statistics
selected (Supplementary Texts 4 and 5 available online
at https://academic.oup.com/bib), the applicability of
enrichment analysis to various omics dataset types
(Supplementary Text 6 available online at https://academ
ic.oup.com/bib) and the choice of background
(Supplementary Text 7 available online at https://academ
ic.oup.com/bib).

Given the vast variety of enrichment methods, often
with tunable settings, hundreds of methods and variants
are at the disposal of life science researchers. As results
can acutely vary according to the method selected,
such a broad variability has prompted the development
of tools to conduct enrichment analysis in concert.
While the techniques to do so can differ, generally a
consensus is taken across several methods to determine
the final set of pathways that are interesting in some
statistically significant way. Examples to do so include
the R packages EGSEA [58], EnrichmentBrowser [59],
Piano [60] and decoupleR [61] as well as the ML-based
approach, CGPS [62] and the CPA web application [63].
Details on each of these ensemble techniques are
provided in Supplementary Text 8 (available online at
https://academic.oup.com/bib).

Impact of pathway database and gene set
size
While variations of enrichment methods have been
among the most studied factors that influence the
results of an enrichment analysis, there are several other
considerations to be made in the design of an experiment
to ensure biologically meaningful results. In this section,
we introduce studies, including notable benchmarks,
that have investigated the impact of additional factors
on the results of enrichment analysis, such as database
choice and pathway size.

One of the most critical factors the results of an enrich-
ment analysis can hinge upon is the choice of a ref-
erence pathway database(s). It is common practice for
researchers to solely rely upon a single database for
an enrichment analysis, which can be due, in part, to

a researcher’s preferences, the popularity of a partic-
ular database or its ease of usage, among other fac-
tors. Indeed, we observed that the majority of studies
that benchmarked the performance of enrichment meth-
ods (Table 1) were almost always conducted on a single
database, and that too, primarily KEGG.

A first investigation on the importance of selecting
a collection of gene sets was performed by Bateman
et al. [64]. In this study, the authors demonstrated how
the seven standard collections housed within MSigDB
yielded different results when conducting GSEA within
the context of a drug response cancer dataset. Among
other findings, the results of this study indicated that
some collections were able to yield a significantly larger
number of enriched pathways relevant to the studied
phenotype than others. Furthermore, the authors argued
that the choice of gene set collections should not be
made arbitrarily as certain gene sets may be more or less
suitable for a particular dataset than others. In a recent
study on best practices for the popular ORA method on
metabolomics data [65], the authors also found that the
results of pathway analysis substantially differed based
on the choice of pathway database (i.e. KEGG, Reactome
and BioCyc [66]).

Similar conclusions were drawn in our previous work
[67] in which we evaluated whether enrichment results
are in consensus for any given pathway that can be found
across three major pathway databases (i.e. KEGG, Reac-
tome and WikiPathways [68]) and multiple enrichment
methods. Our study revealed the advantages of com-
bining multiple databases by using equivalent pathway
mappings, demonstrating that an integrative resource
can yield more consistent results than an individual one.
Overall, these studies demonstrate the importance of
database choice, a crucial factor given the differences
in coverage across databases [69, 70]. Finally, we would
also like to note the importance of database size as
the total number of pathways present in a database
has an influence when multiple correction methods are
applied.

An additional factor that is related to database choice
is gene set (pathway) size, corresponding to the number
of genes within a gene set for enrichment methods that
do not consider PT, or the number of nodes (genes) and
edges for those that do consider it. The effect of path-
way size has recently been studied in Karp et al. [71]
by comparing the significance of six equivalent pathway
definitions from KEGG and EcoCyc [72]. Given the differ-
ences in the average size of a pathway across the two
databases (i.e. KEGG pathways are significantly larger
than their respective homologs in EcoCyc), the authors
investigated the degree to which size could influence
results, finding that pathway size can have a stronger
effect than the statistical corrections used. Furthermore,
the authors found that KEGG pathways required up to
two times as many significant genes in order to attain
the same P-value as their EcoCyc counterparts.

Notably, size differences between equivalent pathways
have not only been examined for these two databases but
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also across other major resources, such as Reactome, and
WikiPathways. In this work, the authors argue that using
pathway definitions that span across several biological
processes (e.g. signal transduction) can lead to misinter-
pretations as when these pathways are enriched, it is
difficult to construe whether this implicates all or only a
subset of the pathway. These broadly defined pathways
can also be less informative, contributing little in terms
of novelty to the overall understanding of the distinc-
tions between the phenotypes under study. Nonetheless,
smaller pathways can lead to exceedingly long results
and overly strict multiple testing corrections [4].

Possible solutions for mitigating the impact of gene
set size on results are defining the minimum and max-
imum number of genes within a gene set (e.g. between
10 and 500), careful consideration of the enrichment
analysis method selected (see ‘Hypothesis testing and
significance assessment’ section) as well as addressing
redundancies within gene sets, as proposed in [73]. In
their approach, the authors suggest discarding signifi-
cant gene sets that overlap with others in order to ensure
that the enrichment of a particular pathway is not a
result of the overlay.

While database choice and pathway size are two criti-
cal factors to consider, we foresee several approaches to
offset the challenges they create. In the case of database
choice, a study by Maleki et al. [74] proposed two simple
metrics (i.e. permeability and maximum achievable cov-
erage scores) to assess the degree of overlap between a
gene list of relevance and all gene sets within a database.
The goal of these metrics is to provide an intuition of
whether or not the genes of a phenotype under investiga-
tion are well covered by a particular database. Thus, the
authors argue that this approach can reduce database
bias and arbitrary database selection as the two scores
can guide users to rationally decide upon the most appro-
priate database.

Another solution that we propose is that the enrich-
ment results generated from a reference database could
be validated against an additional database using equiva-
lent pathway mappings across them. By leveraging path-
way mappings, one can assess the similarity between the
results obtained from different databases (i.e. reference
and ‘validation’ database) to confirm whether they are in
consensus, or re-evaluate them if they are not. In earlier
work, we leveraged this technique by generating equiva-
lent pathway mappings across four pathway databases
[75]. A web tool (i.e. DecoPath) subsequently enables
users to evaluate similarities and differences at the gene
and pathway level for a given pathway across databases
and enrichment methods. For instance, a particular path-
way in one database can have a slightly different gene
set than the same pathway in another database, which
can ultimately explain why a pathway is detected as
significantly enriched in one database but not in another.

Similarly, pathway mappings can also be employed
to systematically study the impact of pathway size on
results. Here, one could leverage hierarchical mappings

(i.e. pathway A is part of pathway B) from pathway
ontologies to evaluate whether related pathways are
similarly enriched. Although a pathway ontology was
earlier proposed by [76], it has neither been adopted by
nor linked to any major database. Instead, each database
utilizes its own pathway terminology, though some
databases such as Reactome and GO also incorporate
a hierarchical organization within their schema. In
fact, Reactome recently adopted such an approach to
facilitate the interpretation of enrichment analyses
through implementing ReacFoam, a visualization for
navigating through its pathway hierarchy and exploring
the degree of enrichment of pathways at different levels.

The growth of biomedical literature is reflected in
pathway databases as their pathway definitions change
over time. A study by Wadi et al. [77] demonstrated the
impact of outdated pathway definitions in several web-
based tools as well as highlighted that the number of
pathways/biological processes doubled in 7 years (2009–
16) in major resources such as Reactome and GO. Fur-
thermore, it revealed that the majority of the studies
analyzed were conducted using outdated pathway def-
initions, constituting a major issue as the results pre-
sented in such studies could have potentially changed.
We believe this problem can be partially mitigated if
users are alerted by pathway enrichment tools when the
underlying pathway database(s) has not been recently
updated. Furthermore, updating the information from
pathway databases in a tool has been greatly simplified
by the APIs and services offered by major resources
such as Reactome, GO and WikiPathways. Finally, we
encourage researchers to include both the version of the
database(s) used in the analysis as well as the version of
the tool(s) employed.

Impact of additional factors on enrichment
analysis and possible future benchmarks
While the factors mentioned thus far have each been
benchmarked with regard to their impact on pathway
enrichment results, there exist other factors that have
not yet been explored in detail. First, at a more granular
level, individual genes can also have an impact on results.
A study by Ballouz et al. [78] raised the challenges asso-
ciated with annotation bias and redundancies in gene
sets. The annotation of a single gene to many functions
(i.e. multifunctional genes) can potentially confound the
results of a pathway analysis as these genes may result
in a sizeable number of enriched pathways that are
largely irrelevant. For example, several pathways with
multifunctional genes may be considered enriched in the
results, though the enrichment of these pathways could
be due to the presence of multifunctional genes rather
than the relevance of the pathway to the phenotype of
interest. One approach the authors propose to control
this effect is by performing repeated runs of the analysis
while removing the topmost multifunctional genes in the
dataset in order to identify the most robust pathways.
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Furthermore, other ways to reduce the effect of multi-
functional genes can include assigning weights to genes
based on their promiscuity, though this approach might
also have drawbacks.

A second factor that has not yet been investigated,
which is related both to database updates and choice,
is the size of a database measured by the number of
pathways. This factor is not only important due to its
correlation with the coverage of biological processes but
also because the size of the database can influence the
significance of the results when correcting for multiple
testing (see Supplementary Text 9 available online
at https://academic.oup.com/bib). As a consequence,
depending on the size of a database, the same pathway
in one database may or may not be enriched in another
after applying multiple testing correction. This is often
the case when comparing popular databases, such as
KEGG and Reactome, whose number of pathways can
differ by an order of magnitude.

Finally, we would like to note that there are other
interesting factors, which could potentially be analyzed
in the future. First, for topology-based methods, the par-
ticular network structure of some pathways may make
them more susceptible to enrichment than others given
the topological differences identified by [79]. Thus, one
future possible benchmark could investigate the effect
of network sparsity on pathway enrichment, or if hubs
within a network correlate with greater enrichment. Sec-
ond, another factor to evaluate is the degree to which
a bias toward certain indications in pathway knowl-
edge influences results. For example, there is an over-
representation of interactions characterized in widely
studied indication areas, such as cancer [80, 81], and thus,
pathways containing these interactions may appear in
the results of enrichment, while possessing little rele-
vance to the studied phenotype. To investigate this factor,
resources such as BioGrid [82] where protein–protein
interactions are annotated with experimental metadata
can be leveraged since the majority of databases do
not provide information on the provenance supporting
each interaction. Third, only a minute fraction of known
proteins have been experimentally annotated with func-
tional characterizations, while functional annotations
for the vast majority of proteins are either inferred, pre-
sumptive or unknown [83, 84]. Several computational
methods exist for protein function prediction, and while
such methods are routinely benchmarked [85], the effect
of experimental versus predicted functional annotations
of proteins on downstream analyses also warrants fur-
ther study. This is of particular importance to GO enrich-
ment, where numerous algorithms have been developed
to predict GO terms for proteins [86].

Discussion
The last decade has seen an explosion in the usage
of pathway enrichment analysis, spearheaded by both
an abundance in the volume of available data and the

interpretive power of these analyses [10]. Prompted by a
wide range of available enrichment methods and path-
way resources, several comparative studies have evalu-
ated how different factors can influence the results of
such an analysis. Here, we have reviewed the findings
of these studies in order to provide a comprehensive
overview on the impact of these factors. Furthermore, we
have suggested possible approaches to overcome some
of the limitations discussed as well as possibilities for
additional benchmark studies on other, under studied
factors.

In the first section of this review, we have outlined
the results of 12 comparative studies that have investi-
gated differences across pathway enrichment methods.
Many of these studies have specifically focused on the
performance of individual methods on popular metrics
(e.g. prioritization, sensitivity and specificity), keeping in
mind that without gold standards to conclude whether
the results from any given method are biologically sound,
objective evaluations can be difficult to make. Overall,
we have found many inconsistencies in the performance
of methods across metrics as well as across studies.
While there is no consensus across studies on whether
a specific method outperforms others, we have reported
trends we have observed regarding the top-performing
methods for each metric.

Though we note that the performance of the majority
of methods on these and other metrics is inconclusive,
whether a particular method is a reasonable choice for a
certain use case can depend on a number of factors, such
as the goal of the experiment, the dataset in question
or particulars of the gene set collection. Nevertheless,
trade-offs between performances on certain metrics can
be important considerations in the selection of a method.
For example, given a dataset where changes in differen-
tial gene expression between experimental groups are
subtle, a highly sensitive method can increase the like-
lihood of detecting a signal. Thus, a large number of gene
sets that are truly significant can be identified, essen-
tially ruling out nearly all gene sets that are not detected,
albeit at the expense of producing a greater number of
false positives. If, however, changes in differential gene
expression between experimental groups are generally
more pronounced, a method ranked high in specificity
may be preferable to preclude the detection of too many
gene sets, which can complicate interpretation.

We have also examined comparative studies that have
evaluated the differences between distinct categories of
enrichment methods, such as how the null hypothesis
is formulated and the sampling unit is defined, noting
that the selection of one category of methods over
another can have serious repercussions on the fraction
of gene sets that are significant and their ranks. In
addition, a major categorical distinction is drawn
between topology- and non-topology-based methods,
which have been reviewed in several benchmarks. We
have found that, though topology-based approaches
are more advanced, for some methods, the removal
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of topological information yields no differences in
results, for other methods, it can improve results, and
several are constrained in that they only cater to KEGG
pathways (or pathways in an equivalent format). Finally,
we reviewed studies that have assessed the influence
of particular, modular aspects of a typical enrichment
analysis as well as outlined additional aspects one must
be cognizant of that can affect the behavior of a given
method, which ultimately reflects in the overall results of
an analysis.

We have reviewed several other factors apart from
enrichment methods, such as pathway size and database
choice. Notably, the latter can be subjective, with both
researcher preferences and distinct research goals tak-
ing precedence over set guidelines. However, we have
outlined approaches that leverage pathway mappings
to mitigate the effect of these factors. An additional
aspect discussed in this review is the lack of regular
updates to enrichment tools, which reflect updates made
to pathway databases. Fortunately, this issue has, at least,
partially been addressed by the adoption of API services
by major pathway resources. Nevertheless, the amount
of literature published on a daily basis continues to
grow, making the task of maintaining up-to-date path-
way definitions difficult, particularly for public and aca-
demic resources. Thus, we envisage that the path forward
to address this shortfall is to improve interoperability
across databases via mappings [70] or through the use
of common database formats [87].

Finally, we would like to mention possible future
benchmarks beyond the ones we have previously
proposed. First, future benchmarks can benefit from the
existence of a gold standard prioritization approach, for
instance, one that leverages well-established pathway-
disease associations from genetic disorders, similar
to the assessment proposed in [9], which exploits
knockout datasets. Second, given the rise of multi-omics
datasets, we anticipate the development of enrichment
methods that operate on other modalities beyond mRNA
data, such as metabolomics (see Supplementary Text 6
available online at https://academic.oup.com/bib). Last,
we foresee that the insights gained from multi-omics
experiments will also be reflected in pathway definitions
in two ways: (i) the appearance of ‘dynamic pathways’
(i.e. contextualized pathways representing particular
pathway states as opposed to general, static diagrams)
and (ii) a shift from traditional gene sets to sets of
multimodal biological entities.

Conclusion
In conclusion, the effect of various factors on pathway
enrichment analysis is apparent. Numerous studies have
demonstrated how variations in the design of an enrich-
ment analysis can lead to altogether different findings.
At the extremes, comparative studies have shown how
certain experimental setups can detect either all or no

gene sets as interesting in some statistically significant
way. We summarize the key findings of studies reviewed
herein as follows:

Formulation of null hypothesis and significance
assessment
One must be cognizant of how the null hypothesis is
formulated (i.e. competitive or self-contained) as meth-
ods categorized into one or another approach behave
differently in terms of the fraction of gene sets reported
as significant, as well as their sensitivity to gene set size,
sample size and sample heterogeneity. Self-contained
methods also tend to have greater power than compet-
itive methods and careful consideration should be made
taking into account the proportion of genes that are
differentially expressed in the dataset. Similarly, in order
to calculate a P-value for each gene set, one must bear in
mind that disparate approaches can impact the results of
an enrichment analysis, and depending on the approach
taken, introduce false positives.

Pathway and sample size considerations
Certain enrichment methods have been observed to be
more or less robust to pathway and sample size than
certain others. Sensitive methods may detect larger gene
sets as significantly enriched and their sensitivity can be
tied with whether they are competitive or self-contained
methods. Not surprisingly, a method’s performance
tends to deteriorate with decreasing sample size,
although some methods are more robust on this factor
than others.

Topology- versus non-topology-based methods
Topology-based methods are intuitively more advanced
than non-topology-based ones. Incorporation of topolog-
ical information tends to improve the ranks and P-values
of relevant pathways for some topology-based methods,
yet this may not be the case for all. Nonetheless, some
topology-based methods are limited or at least partial to
specific pathway databases.

Choice of gene set collection or pathway database
The selection of one gene set collection over another can
lead to different results. Some collections or databases
may be more suitable than others for a given dataset. The
selection of a database is complicated by variable defini-
tions of pathway boundaries as well as by redundancies
and outdated pathway definitions.

The errors from these steps that propagate through
an enrichment analysis may be inconsequential at best
and misleading at worst. Although there is no singular
method or gene set collection/pathway database, which
is advisable for enrichment analysis over all others, well-
informed choices can be made and solutions to mitigate
the impact of various factors are available. Furthermore,
recently, many ensemble approaches have been devel-
oped so that users can benefit from multiple databases
and/or methods.
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Key Points

• Pathway enrichment analysis is a widely used technique
for the interpretation of biological data

• In recent years, the advent of a multitude of enrich-
ment methods and pathway databases has led to several
benchmarks to study the impact of various factors on the
results of enrichment analysis

• This review outlines key aspects of enrichment analysis
and summarizes results of studies, which have evaluated
their influence

• We propose solutions to mitigate the effect of these
factors and identify possible future benchmarks
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