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Battery materials and cells
Current focus topics of Fraunhofer ISE

Aqueous batteries for Silicon based anodes as New materials and process
stationary applications drop-in replacement for technology for solid state
lithium-lon battery cells batteries
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Battery systems and applications
R&D and services of Fraunhofer ISE

Battery system technology

From cells to systems

Battery management
System ﬁ aw

Modules “' i' “
Module i‘

Cells '

- Cell characterization

- Module and system design

- Battery management

- Thermal management

- Algorithms for state
estimation and life time
prediction

- Optimized charging and
operating control strategies

Storage applications
System design, integration
and quality assurance

Photo: CSIRO: Off=grid power
supply for SKA1 low radio telescope

- Consultancy during planning
phase

- System design and analysis

- Simulation based storage
sizing

- Elaboration of specifications

- Energy management systems

- Site inspections and testing

- Monitoring

Testing
Electrical, thermal,
mechanical

Safety: Components, systems
including functional safety

Aging: Calendric, cyclic
Performance: Efficiency and
effectiveness

Reliability: Consideration of
operating conditions and
system performance with
aged components
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Independent engineering services of Fraunhofer ISE
Along the whole project life time

Planning phase
- Evaluation of project idea
- Potential analysis

- Definition of project
requirements

- Identification of
challenges

- Identification of risks

- Identification of
chances and benefij

Implementatio hase
- Commissioning tests

- Ongoing quality
monitoring

ppment phase

imulation based system
design and optimization

- Elaboration of specifications

- Support in component
selection and system setup

- Laboratory tests - Frequent reporting

- Consultancy in product selection _support in

- Neutral contact point for Decommissioning
financial and insurance sector

- Identification of component
and system failures

- Identification of
optimization potential

- Consultancy in terms of
- Consultancy for construction recycling
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Overview of global electrical energy storage trends

Services and
benefits

Source: F. Gattiglio: Battery
energy storage in the EU,
ees conference, Munich 2017.
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Overview of global electrical energy storage trends
Example Germany: PV self consumption / self sufficiency

Estimated number of newly installed Home PV-battery systems in Germany

# of units

60000 -

20000

40000 -

30000 -

20000 -

10000 -

2015 2016 2017 2018 2019 2020
B Number of new battery systems with new PV installations B Number of new battery systems with retrofit installations

Note: assumptions: new annual PV installations 2015-2020: 1.4 GWp. Source: year 2015: Federal Network Agency, Kfw Speichermonitoring 2016; year 2016: preliminary
projection by ISEA RWTH Aachen; years 2017-2020; own calculation and estimate, 2017

Source: A. Brautigam: Business models for energy storage in Germany and hot spot markets, ees conference, Munich 2017.
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Overview of global electrical energy storage trends
Example USA: Solar firming (PV power plants)

W Stabilization of solar output for 5 min
ramp rate grid regulation
M Approach with ultracapacitors

Input form Net output smoothed to
1. SOlararray «  Onehour Elm)n ramplrate

Tirme {min)

* >
Raw Solar Power Smoothed Solar Power

Source: K. McGrath: Increasing the value of PV: Integration ultracapacitors with renewables, NAATBatt storage workshop July 10, 2014.
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Overview of global electrical energy storage trends
Example Italy: Batteries for grid support

The Context #Zlerna
T,
——

*Economic crisis and subsequent
loss of many big consumers (i.e.
national demand decreased 7%
from 340 TWh to 318 TWh)

s Aggressive policy of incentives
promoting RES + imminence of
grid parity

*Short time to fortify and develop
the grid to support new scenarios

. J

* Fast and massive growth of RES:
—Rise in congestion-related curtailments
(i.e. 2010 ~500 GWh lost)
—Rise in demand for non-spinning
reserve
» Traditional power plants running at
minimum load:
— Loss of inertia in smaller insular
systems (i.e. Sicily and Sardinia)

— Loss of available frequency reserves

L

Solutions

Y oy I

Optimize integration of RES and
increase flexibility of national
grid (i.e. smarter grid)

15t Phase Storage Lab 2nd Phase

™)

- - |
i

+ wiQptimize RES
Integration and

e ol
Sardinia: i ,.._' Sardinia
a8MwW £ 12 MW
.
g 4
Sicily: Sicily:
8 MW 12 MW
L

n&n_ n'._‘__r} _mcrem:ystem‘s \\

Cumulative ESS Deployment 40 MW

Total to be deployed in 2" phase 24MW

]_/

' “Benevento 2 — Bisaccia 380"

228 MW
—
. _ 8 Scampitella
for low inertitiuy [ Cumulative ESS Deployment 35 MW ]

In the South of Italy on the 150 kV Backbone:
“Benevento 2 - Celle San Vito”
o [C1zmw |

GINESIa | oecie
o

In the South of Italy on the 150 kV Backbone:

Source: A. Tortora, Terna Group, Energy Storage World Forum, Rome, 2015.
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Overview of global electrical energy storage trends
Example Germany: Primary control power

Total large-scale batteries in Germany

Power capacity [MW]
200 400
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0 0
2012-2015 2016 2017 2018
(announced)

*preliminary figures;
Note: no claim for completeness

228

e®%

2 ©

@ . Li-lon

. Hybrid: Li-lon + X

e . Li-lon second life

‘ Lead-acid

@ battery capacity in MW

Source: A. Brautigam: Business models for energy storage in Germany and hot spot markets, ees conference, Munich 2017.
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Key factors affecting bankability of renewable energy +
storage projects

— 1T
el

Investment Total cost of
cost ownership
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Efficiency

Quality assurance for residential PV battery systems
System testing — Analyses of efficiencies

Energy Conversion Efficiency path of PV2AC (naysac)

100%
95%
g oo
Test system (Labview) with data programmable é oo
acquisition (Gantner / Janitza) AC load ©
B0
PV Simulator: [
16 kW ~ E 5%
1000V DC — | A= 0 01 0,2 03 04 05 06 07 08 09
PV -> GRID Normalized rated AC power of inverter (kW)

—=SystemA/D  —@=SystemB =—@=System

PV -> BAT

Grid

Energy Conversion Efficiency path of PV2BAT (Npyan)
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N lizad rated charging P f battery (kW) 0 0,1 02 03 04 05 06 07 03 04 1
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Quality assurance for residential PV battery systems
System testing — Analyses of effectiveness
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Quality assurance for larger PV battery systems
Power plants, commercial applications and mini-grids

Concept and range of services

ANALYSES OF LOAD PROFILES

QUALITY MONITORING

L
14 ~ Fraunhofer
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Project examples — System simulation and analyses
Commercial PV battery system — Load and PV generation

Load (bakery):

: 120 .
. . ] I I
g; g SI\L;I\TVF;;C/IO”' Weekly Time Series of Load and PV Power
a Power [kW] | |
B Max. power: -y | Load Consumption PV Generation
118 kW | %
PV example: <4 B R ‘ —t 4
. Size: 80 - .i.' E-'.->' =
150 kWp ""-. j 1
B Production: N '
135 MWh 60 “
40 # é
20 , £ ik J J
. of L &
0 2 3 4  Day of Week [Monday... Sunday] 7
15 -
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Project examples — System simulation and analyses
Commercial PV battery system — Control strategy

Load (bakery):
B Consumption:

335 MWh/a Grid
® Max. power: Connection
118 kW
Integration of a PV Prio 3a: Feeding-in Prio 3b: Purchasing
system and a lithium-ion from PV to Grid from Grid to Load
battery storage:
W Variation of PV PV System Prio 1: Direct Self Cunsumptmn
system size (Modules + ; Load
B Variation of battery Inverter) from PV to Load
storage size
Prio 2a: Charging Prio 2b: Dlscharglng
from PV to Storage from Storage to Load
Storage
(Battery System +
Inverter)
16 —
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Project examples — System simulation and analyses

Commercial PV battery system — Results

Levelized cost of consumed electricity

0,30
Levelized cost of consumed electricity
=0.17 ... 0.22 €/kWh; composed of:
0,28 7 PV generation: 0.052 €/kWh
Grid feed-in tariff: 0.10 €/kWh
0.2 Grid end-user tariff: 0.30 €/kWh

'Electricity Storage: 0.17 ... 0.29 €/kWh

0,24

[€/kWh]

0,22
0,20
0,18

0,16 - -
0 500 1000

-e-PV: 260 kWp; Batt: C/P =7h
~+-PV: 320 kWp; Batt: C/P =7h
--PV: 400 kWp; Batt: C/P =7h
~»-PV: 700 kWp; Batt: C/P = 7h
--PV: 1 MWp; Batt: C/P=7h
-=-PV: 2 MWp; Batt: C/P=7h

Battery capacity [kWh]

1500 2000

17
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Project examples — System simulation and analyses
Commercial PV battery system — Results

Battery storage: Aging as a function of usable storage capacity and PV power

Storage degradation: Decreased capacity after 20 years
75% -
70% /
T
3
© |
® -e-PV: 260 kWp; Batt: C/P =7h
£ —=-PV: 320 kWp; Batt: C/P = 7h
65%
a‘g --PV: 400 kWp; Batt: C/P =7h
< -e-PV: 700 kWp; Batt: C/P = 7h
--PV: 1MWp; Batt: C/P=7h
--PV: 2 MWp; Batt: C/P=7h
60%
Battery capacity [kWh]
55%
0 500 1000 1500 2000
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Project examples — System simulation and analyses

Commercial PV battery system — Results

Battery storage: Annual average storage efficiencies

95%
Storage efficiency: Annual average ---PV: 2 MWp; Batt: C/P = 7h
--PV: 1 MWp; Batt: C/P=7h
9% -=-PV: 700 kWp; Batt: C/P = 7h
S -e-PV: 400 kWp; Batt: C/P =7h
939 — -=-PV: 320 kWp; Batt: C/P = 7h
‘-
-=-PV: 260 kWp; Batt: C/P =7h
92% -
91% 1
p
p
90% ,
p
89%
Battery capacity [kWh]
500 1000 1500 - 2000
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Project examples — System simulation and analyses
Layout and sizing for “Smart Green Tower” in Freiburg

Smart Green PV system
Tower Smart Green Tower

Facad
acade -3 AC supply

‘ * =3 Supply of DC grid

= Supply via DC grid
DC supply of

_| ' =3 Exchange with public AC grid
e I
selected loads *

—b@é M DC intermediate circuit ]

(il

AC supply
(PV self consumption + grid)

Energy management ~L
- Delivery and feeding-in of energy I Jl
- Optimization of self-sufficiency

- Grid services I + I m

Battery
storage
—

(“Living Lab")

Battery storage
-1 MW /0.5 MWh
- Modular concept

A
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Project examples — System simulation and analyses
Grid connected PV battery power plant

M Optimal control problem:

Maximization of the 10° OC alg. uses VRF model: Optimal revenue: 452507.05 EUR
5 I T T T I \ T T T
revenues P : : : : : x»o;t-n-x
- Optimal dispatch plan 22 L —Peu j | e 1
» 9 —_ : ¥ :
for the storage power 82 Psto Pttt oottt
58 |-w-R
a o a
o
- \ i
0 5 10 15 20 25 30 35 40 45 50
[Pvaras | Time/h
ER £ !
’ [ x N
|Py>0 =
! p2‘nnm == P2 o i -~
Nac, 25— [ ~/] | storage c
ﬂ Py>0 Pp<0 /=[] system 0 . :
\ 3=P1+P; § : | : : | :
ﬁzf\jTrafo E 0.2 / : \ :
Power 8 0 i | | i i i | | i
measurement| P..; | Residual power = actual power - setpoint power 0 5 10 15 20 25 30 35 40 45 50
&rid PresiduaJ=P3'Pdemand Tlme / h
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Project examples — System simulation and analyses
PV battery integration into light-rail system at new
SC Freiburg soccer stadium --

Smart sector coupling

Efficient DC integration of a PV battery
system into the light-rail system of VAG

B Peak load:
Up to 950 kW

B Energy consumption:
~1MWh/ day 750 kWp

B PV battery system: Ea ..1 _ ‘— :7] : . aboinla o
750 kWp and 55 kWh | E = : I 60% of power

i i E E Dump Load (?)
can cover in average i | I ol s
60 % of required power| L

~ .

— Modifizierter
Wechselrichter;

® Via direct marketing to

VAG economics of the AR v e \I
PV battery system can '

be improved

le gegen Unterwerk 20 kv

Ein el
Zaunes Straba DC Netz Gwoal

nspe
Ende
ar

OCEinpeisung Blockichantsn 171018 v]vsal8 50201

isestel
des

2 2 Gefordert durch den ?

Innovationsfonds ba d e n ova CV_A’G/ % F ra u n hOfe r

Klima- und Wasserschutz Energie. Tag fiir Tag S
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Project examples — System simulation and analyses
Layout and sizing of a PV mini-grid for SKA1 low radio
telescope

Design proposal

® Central power plant powering 80 % of total
telescope load (2.4 MW in average)

» PVsystem: 17 MW,

» Lithium-ion battery storage:
40 MWh /5.5 MW

» Diesel genset: 3.2 MW

B 20 % outermost antenna clusters

» Powered locally

» 15 RPFs
(distance from CPF > 10 km)

m LCOE: ~ 0.307 €kWh

23
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Project examples — System simulation and analyses

Techno-economical evaluation of a PV mini-grid in
Uganda

B Example Uganda B PV Diesel hybrid system:

® Load: » PV system (incl. power electronics): 1.5 Euro/Wp

» Peak load: 200 kW » Battery system: 220 Euro/kWh
> Annual consumpt.: 574 MWh > Diesel: Invest 273 $/kW: Fuel 1$/l;: Maintenance: 0.7 $/h

Levelized cost of electricity

<

0,40€ ~ . . . — -
T \PrOJect life time: 20 years !!! —=—PV Diesel hybrid system

0,35€ -

< T

E \

2 030¢

2

0,20€W=H=H===i===""

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Solar share

24
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Project examples — Monitoring and system evaluation
District storage system - “Weinsberg”

. . DSO
Optimization criteria: ———m e L Boarder of
« e . . LSO property
Minimization of grid dependency - -
Physically not only accumulated v PV system
ACAD1 142 kW,
AC-ID2
(Ms EZA
0—@
I. Current sensor
+
AC-ID3
Loads . =M
L0

M CHP unit
+ ACIDS + 6 -12 kW,
IAC—IDﬁ IAC-ID4 €

Heat pump 25,
35 and 45 kW,

= 520
i

M i ae"*'!.“‘a;_ Battery storage 120 kW / 150 kWh
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Project examples — Monitoring and system evaluation
District storage system - “Weinsberg”

Accumulated annual electrical energy quantities

Simulation Monitoring 2015/ 2016

2%

3%

PV direct x 1.20

PV via storage x0.75

CHP direct x 0.80 |:>
CHP via storage x 0.30
Grid fraction x 2.00

Reasons for differences:
» Problems with air conditioning = To high temperatures in operation room - Shut-down of

CHP unit and battery inverter
» Necessary maintenance interval of CHP unit in winter (!)

» End-users do not behave 100 % as predicted (!)
26 E® = Fraunhofer

Partner
ISE
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Project examples — Monitoring and system evaluation
District storage system - “Weinsberg”

120% -

Battery storage

-~ Normalized charge per

day [% of Cy]
=+ Normalized discharge

| per day [% of C]

s 4
\\1 { Daily average energy

efficiency [%]

100% -

80% -

60% -

Annual average values:

B Charging with 67 %

40% - * of nominal capacity

B Discharging with 54 %
of nominal capacity

20% - - .
B Energy efficiency: 81 %
. } Calendar week
OA) XXXXXXXXXXXXXXXXXXXXXXXXX L\" 2015/2016
27 29 31 33 35 37 39 41 43 45 47 49 51 53 02 04 06 08 10 12 14 16 18 20 22 24 26
z m =
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Conclusions

W Large-scale integration of fluctuating renewable energies in power supply
systems require storage (grid-connected and isolated mini-grid applications)

B Battery storage systems:
» Modularity — Solutions from a view kWh to the Multi-MWh class

» Advanced solutions along the whole value chain of the power supply
(behind-the-meter and before-the-meter)

B Integration of battery storage requires several steps of quality assurance
enabling bankable projects:

» From detailed analyses of load pattern to system simulation and
application specific system design

» From characterization of components and systems in the laboratory to
system testing in the field as well as quality monitoring

B Field experiences with “new” battery technologies still show huge
optimization potential - Component and system level

B Renewable energy shares in power supply systems, e.g. mini-grids:

» Economic optimum strongly depends on the considered project life-time
(Levelized cost of energy computation)

28
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Thanks for your attention !!!

Fraunhofer Institute for Solar Energy Systems ISE

Dr. Matthias Vetter

www.ise.fraunhofer.de
matthias.vetter@ise.fraunhofer.de
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