SPECIAL-PURPOSE WEATHER ROUTING: AUTONOMOUS AND WIND-DRIVEN SHIPS

COMPIT 2015

Dipl.-Ing. Laura Walther, MTM

Motivation

Ship design process generally driven by three pillars

- Safety of human life
- Protection of the environment
- Economic feasibility
- Development of innovative ship concepts
 - Autonomous ships, such as DNV-GL's ReVolt, by Rolls-Royce or MUNIN
 - Wind-driven ships, such as Vindskip[™]
- → Need for optimisation not only in design but also operation

1. Motivation

2. Fundamentals

- 3. Requirements of innovative ship concepts
- 4. Generic weather routing framework
- 5. Test scenarios
- 6. Conclusions

Fundamentals of safe, ecologic and efficient operation

Safe operation

Three quarters of all losses in 2013 due to foundering with bad weather as significant driver (Safety and Shipping Review 2014)

Ecologic operation

- Airborne emissions are regulated in MARPOL Annex VI
- Different fuel oils used by many ships to comply with limits in ECAs

Economic operation

- Mandatory measures concerning fuel efficiency by IMO
- Energy Efficiency Design Index (EEDI)

General weather routing requirements

Optimising each voyage requires

- Variation of heading \rightarrow Route optimisation
- Variation of speed \rightarrow Speed optimisation
- Quality of the optimised route strongly depends on
 - Weather forecast quality
 - Optimisation method
 - Consideration of ship specific data
- → Innovative and complex ships necessitate accurate consideration of ship specific characteristics by customised solution to optimise safe, ecologic and economic operation

- 1. Motivation
- 2. Fundamentals

3. Requirements of innovative ship concepts

- 1. Autonomous ships
- 2. Wind-driven ships
- 4. Generic weather routing framework
- 5. Test scenarios
- 6. Conclusions

The MUNIN project

- Autonomous and unmanned dry bulk carrier (L=225m, B=32.26m)
- Intercontinental deep-sea voyage
- Autonomous navigation system follows voyage plan, makes decisions within operational envelope supported by real-time sensor data
- Monitoring and intervention possibilities by shore control centre

Requirements of autonomous ships

Objective

Operate at least as safe as manned vessel

Requirements regarding weather routing

- Logging, monitoring and intervention possibilities by a shore control centre
- On-board version executable and autonomously operating without satellite communication link
- Combination of weather routing with collision avoidance
- Integration of strategic weather routing and operational routing
- Consideration of advanced sensor data

The Vindskip[™] project

- Developed by Terje Lade, Lade AS
- Wind-driven hybrid merchant vessel with innovative hull shaped like symmetrical air foil (L=200m, B=49m)
- Relative wind generates aerodynamic lift pulling ship forward
- Additionally equipped with LNG electric propulsion system

The Vindskip[™] concept

Pressure distribution air foil

Drag and lift coefficient

Requirements of wind-driven ships

Objective

Utilise available wind energy as efficiently as possible

Requirements regarding weather routing

- Accurate consideration of wind forecasts and resulting apparent wind
- Customised calculation methods for wind resistance based on aerodynamic data
- Enhanced calculation methods to derive hydrodynamic forces and moments

- 1. Motivation
- 2. Fundamentals
- 3. Requirements of innovative ship concepts

4. Generic weather routing framework

- 5. Test scenarios
- 6. Conclusions

Generic weather routing framework

Algorithm Weather routing problem

Problem

Finding route with the lowest fuel consumption considering weather forecasts and avoiding obstacles

Approach

- Variations of Dijkstra's algorithm generally deployed
- Special purpose weather routing modules use A* algorithm
- Optimisation based on 2D grid defined by GRIB data
- Extension in temporal domain to allow optimisation of ship's speed
- Consideration of route, safety and operational restrictions

Algorithm

Target function and variables

Target function

 $F(k) = G(k) + H(k) \le \min\{G(i) + H(i) \mid i \in B\}$

- Minimise fuel-consumption, and thus costs per voyage
- Combines exact costs G(k) of path from start to any vertex k with heuristic estimated cost H(k) from this vertex to destination

- Position of waypoint φ_k , λ_k [°,°]
- Time at waypoint t_k [h]

- 1. Motivation
- 2. Fundamentals
- 3. Requirements of innovative ship concepts
- 4. Generic weather routing framework

5. Test scenarios

- 1. MUNIN
- 2. Vindskip[™]
- 6. Conclusions

MUNIN's strategic routing test

Transatlantic route

MUNIN's operational routing test

Ship's behaviour almost in head waves and sea state 8

Ship's route

Polar plot

- 1. Motivation
- 2. Fundamentals
- 3. Requirements of innovative ship concepts
- 4. Generic weather routing framework

5. Test scenarios

- 1. MUNIN
- 2. Vindskip[™]
- 6. Conclusions

Vindskip[™]'s routing test Wind speed forecast on 2013/12/16

Vindskip[™]'s routing test Wind speed forecast on 2013/12/23

Vindskip[™]'s routing test Route from Ireland to Florida

Vindskip[™]'s routing test

Wind assessment on route from Ireland to Florida

Angle of attack of apparent wind

Vindskip[™]'s routing test Route from Florida to Ireland

Vindskip[™]'s routing test

Wind assessment on route from Florida to Ireland

11% 6% 54% 29% ■ <90 ■ 90 < Angle < 180 ■ 180 < Angle < 270 ■ >270

True wind direction

Angle of attack of apparent wind

- 1. Motivation
- 2. Fundamentals
- 3. Requirements of innovative ship concepts
- 4. Generic weather routing framework
- 5. Test scenarios
- 6. Conclusions

Conclusions

MUNIN

- Strategic routing can avoid strong winds and high waves
- Operational routing can react according to weather situation
- Vindskip[™]
 - Optimal wind directions are favoured in route optimisation
 - Occurrence of unfavourable angles of attack minimised
- Further developments
 - Extensive testing and route smoothing to quantitatively assess the potential of the examined innovation ship concepts

Thank You Very Much For Your Attention!

Prof. Dr.-Ing. Carlos Jahn carlos.jahn@cml.fraunhofer.de Tel. +49 40 42878 4450

and the second second