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On the general equivalence of the Fried
parameter and coherence radius for
non-Kolmogorov and oceanic turbulence
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Abstract: This article aims to discuss the general equivalence between two main metrics used
in laser beam propagation through random media and imaging: the Fried parameter and the
coherence radius. In particular, we show that their relationship deduced for Kolmogorov and
non-Kolmogorov turbulence stays valid for other media as long as their spectral power laws are
equal.
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1. Introduction

Fried parameter, r0 is among the most used metrics to quantify the effects of optical turbulence
on imaging, while the coherence radius, ρ0 is more commonly used in problems involving laser
beam propagation. The former is based on asymptotic behavior of the resolution metric [1] while
the latter is deduced from the wave structure function [2]. If the Kolmogorov power spectrum of
the fluctuations of the index of refraction is used to describe turbulence, it is well known that r0
and ρ0 are related by the simple equation r0 = 2.1 · ρ0 [2]. However, it is very useful to extend
this equivalence also to cases of different power spectra such as the non-Kolmogorov power
spectra [3,4] or the oceanic turbulence power spectrum [5].

2. General coherence ratio

Let us to find how r0 and ρ0 are related if the following power law-dependent non-Kolmogorov
power spectrum is used [3]:

Φn(κ,α) = A(α) · C̃2
n · κ

−α, 3<α<4 (1)

where A(α) Γ(α−1)4π2 cos
(
α π

2
)
, ®κ ≡ (κx, κy, κz) is the spatial wavenumber vector, α is the power law,

C̃2
n = β · C2

n is the generalized structure parameter with units [m3−α], β is a dimensional constant
with units [m11/3−α] and symbol Γ(x) denotes the Gamma function. Equation (1) is valid only in
the inertial sub-range, 2π/L0<<κ<<2π/l0, where l0 is the inner scale and L0 is the outer scale of
turbulence. Kolmogorov power law assumes value α = 11/3, and then the generalized structure
parameter reduces to the structure parameter C2

n with units [m−2/3].
In this article, we aim to find the general equivalence r0(α) = c0(α) · ρ0(α) between the Fried

parameter and coherence radius valid also for non-Kolmogorov turbulence or oceanic turbulence
and that reduces to the Kolmogorov case, r0 = 2.1 · ρ0 when α = 11/3.

The coherence radius, ρ0(α) is defined by the 1/e point of the modulus of the complex degree
of coherence DOC, which is given by

DOC(ρ,α) = exp
[
−
1
2

D(ρ,α)
]

(2)

where D(ρ,α) is the wave structure function and ρ is the separation distance.
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The wave structure function D(ρ,α) is the sum of the phase structure function, DS(ρ,α) and
the log-amplitude structure function, Dχ(ρ,α). We make the usual assumption that DS(ρ,α) is
the dominant term:

D(ρ,α) = DS(ρ,α) + Dχ(ρ,α) � DS(ρ,α) (3)

Note that Dχ(ρ,α) = 0 if the geometric optics approximation is invoked (see pag. 195 in Ref.
[2]), therefore Eq. (3) is valid for separation distance ρ>>

√
L/k.

The 1/e point of the modulus of the complex degree of coherence DOC is reached by imposing
DS(ρ0,α) = 2, which allows us to extract ρ0(α). If non-Kolmogorov spectrum, (1), is used, we
can express the phase structure function as

DS(ρ,α) = 2 ·
[

ρ

ρ0(α)

]α−2
(4)

For a given horizontal propagation path of length L, a given structure constant C̃2
n and wavelength

λ, the plane wave phase structure function can obtained from Eq. (8) in Ref. [4] setting inner
scale equal to zero and outer scale equal to infinite,

DS(ρ,α) = −4π2A(α) · k2 · L · C̃2
n ·
Γ(1 − α/2)
Γ(α/2)

·

( ρ
2

)α−2
= Katm(α) · ρ

α−2 (5)

where
Katm(α) = −4π2A(α) · k2 · L · C̃2

n ·
Γ(1 − α/2)
Γ(α/2)

· 22−α (6)

and k = 2π/λ is the wavenumber.
Imposing DS(ρ0,α) = 2 leads to the coherence radius

ρ0(α) =

[
−

2α · Γ(α/2)
8π2A(α) · k2 · L · C̃2

n · Γ(1 − α/2)

] 1
α−2

(7)

The Fried parameter r0(α) can be related to the phase structure function by

DS(r,α) = c1(α) ·
[

r
r0(α)

]α−2
(8)

where c1(α = 11/3) = 6.88 for the Kolmogorov case.
Stribling et al. [6] found the expression for c1(α). He followed the approach of Fried [1], who set

the constant c1 based on the asymptotic behavior of the resolution metric R/Rmax = SR · (D/r0)2,
where SR is the Strehl ratio, D is the diameter of the receiver aperture, R is the resolution and
Rmax is the maximum resolution. The resolution is defined as

R = 2π
∞∫

0

ω · H(ω)dω

where H(ω) is the long exposure optical transfer function (OTF) of an incoherent imaging system
in the presence of turbulence. Also, the maximum resolution is defined as the resolution of an
imaging system in turbulence with an infinite aperture diameter, Rmax = lim

D→∞
R.
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For completeness, we show here the main steps Stribling et al. [6] followed to obtain c1(α).
First, we observe that [6]

R
Rmax

=
32
π

D/r0∫
0

1
2

(
cos−1

( r0 · x
D

)
−

( r0 · x
D

) √
1 −

( r0 · x
D

)2)
exp

[
−
1
2

c1(α) · xα−2
]

xdx (9)

then, as suggested by Fried [1], let us increase the diameter D to infinity:

lim
D→∞

R
Rmax

= 8 ·
∞∫

0

exp
[
−
1
2

c1(α) · xα−2
]

xdx (10)

Bymaking the change of variable t = c1
2 xα−2 and using the formula Γ(x) = sx ·

∞∫
0

exp(−s · t) · tx−1dt,

Eq. (10) reduces to

lim
D→∞

R
Rmax

=
8

α − 2
· Γ

(
2

α − 2

)
·

[
2

c1(α)

] 2
α−2

(11)

Because lim
D→∞

R
Rmax
= 1, we can extract

c1(α) = 2
[

8
α − 2

· Γ

(
2

α − 2

)] α−2
2

(12)

Equation (12) was already obtained by Stribling [6]. Note that c1(α = 11/3) = 6.88 (as previously
stated) is the well-known value for Kolmogorov turbulence.
Now, by replacing r = c0(α) · ρ in Eq. (8) we deduce that

DS(r,α) = DS[c0(α) · ρ,α] = c1(α) ·
(

c0(α) · ρ
c0(α) · ρ0(α)

)α−2
= c1(α) ·

DS(ρ,α)
2

(13)

After that, using Eqs. (5) and (13), we deduce that DS(r,α) = DS[c0(α) · ρ,α] is equivalent to
the equation

Katm(α) · [c0(α) · ρ]α−2 = Katm(α) ·
c1(α)
2
· ρα−2 (14)

Using Eq. (12) and Eq. (14) the equivalent coherence ratio for non-Kolmogorov turbulence is

c0(α) =
[
c1(α)
2

] 1
α−2

=

[
8

α − 2
· Γ

(
2

α − 2

)] 1
2

(15)

We plot in Fig. 1 the equivalent coherence ratio c0(α) as function of the power law α. We deduce
that the coherence ratio can assume values in the range 2 ≤ c0(α) ≤ 2.83 depending on the α
value.

Note that the constant Katm(α) does not play any role in the equivalence. It means that
for a different turbulence model, let’s say oceanic turbulence, c0(α) remains the same if the
oceanic wave structure function has the same power law as the atmospheric case. Also, note
that, for α = 11/3 Eq. (15) reduces to the well-known value for the Kolmogorov turbulence case,
c0(α = 11/3) = 2.1.

The requirement of the same power law between two wave structure functions is quite strong
but not prohibitive. In fact, even very different random media, in the inertial range, may show the
same power laws (the atmosphere and the ocean for example show approximately the same power
law 11/3). Let us describe this possible situation.
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Fig. 1. Equivalence of the coherence ratio c0(α) as function of the power law α.

3. Equivalent coherence ratio for oceanic turbulence

The fluctuations of the index of refraction in the ocean can be modeled by the following power
spectrum [5]

Φn(κ) = 0.388 · 10−8 · ε−1/3 · κ−11/3 · [1 + 2.35(κη)2/3] ·
XT

w2 · (w
2 · e−AT ·δ + e−AS ·δ − 2 · e−ATS ·δ)

(16)
Here, κ is the spatial wavenumber, ε is the rate of dissipation of kinetic energy per unit mass of
fluid, XT is the rate of dissipation of mean-squared temperature, η is the Kolmogorov microscale,
w is a unit-less parameter specifying the ratio of temperature to salinity contributions to the
refractive index spectrum, −5 ≤ w<0, where w = −5 means temperature dominated turbulence
and w→ 0 salinity dominated. Note that power spectrum (16) is not valid for the case w = 0, see
Appendix B of Ref. [5]. In addition:

AT = 1.863 · 10−2;AS = 1.9 · 10−4;ATS = 9.41 · 10−3 δ = 8.284 · (κη)
4
3 + 12.978 · (κη)2.

The wave structure function of a plane wave in turbulence is [2]

D(ρ,L) = 8π2 · k2 · L ·
∞∫

0

κ · Φn(κ) · e−
ΛL
k ·ξ

2 ·κ2 · [1 − J0(κρ)]dκ (17)

Equation (17) was solved in Ref. [5] for oceanic turbulence by using the software Mathematica.
We solved it in closed form and found

D(ρ,L) = 8π2 · k2 · L · χT · ε
− 1

3 · 0.388 · 10−8 · w−2 ·
[
w2 ·

(
ST ,−11/3 + 2.35η

2
3 ST ,3

)
+

(
SS,−11/3 + 2.35η

2
3 SS,3

)
− 2w

(
STS,−11/3 + 2.35η

2
3 STS,3

)] (18)

where

Si=[T ,S,TS],−11/3 = (Ai · a4)
5
6−

2
3 n·

∞∑
n=0

(−1)n

2
(Ai · a3)n

n!
Γ

(
2
3

n −
5
6

)
·

[
1 − 1F1

(
2
3

n −
5
6
; 1;−

ρ2

4 · a4 · Ai

)]
(19)
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and

Si=[T ,S,TS],−3 = (Ai · a4)
1
2−

2
3 n·

∞∑
n=0

(−1)n

2
(Ai · a3·)n

n!
Γ

(
2
3

n −
1
2

)
·

[
1 − 1F1

(
2
3

n −
1
2
; 1;−

ρ2

4 · a4 · Ai

)]
(20)

Here, a3 = 8.284 · η4/3 and a4 = 12.978 · η2 and 1F1 is the hypergeometric function
Retaining only the term n= 0 of the series, using the approximation [2,5]

1F1(a; c;−z) �
Γ(c)
Γ(c − a)

· z−a, Re(z)>>1 (21)

and under the condition ρ>>η we obtain

DS(ρ)ocean = Kocean · ρ
5
3 (22)

where

Kocean = −3.6303 · 10−7 ·
Γ(−5/6)
Γ(11/6)

· 2−
8
3 · k2 · L · ε−

1
3 ·

χT

w2 · (w
2 + 1 − 2w) (23)

Closed-form Eq. (22) is equivalent to Eq. (10) in Ref. [5] where the authors used Mathematica.
Note that the condition ρ>>η is satisfied if separation distance ρ>>0.3cm (Kolmogorov scale

is η � 10−3m) which is quite realistic. Please see Ref. [5] where authors use this value in Figs. 1,
2 and 3.

We also note that the exponent in Eq. (22) is α−2 = 5/3 which is equivalent to the Kolmogorov
case, α = 11/3, therefore c0(α = 11/3) = 2.1 and we deduce that, although under approximation
(retaining only the term n= 0 of the series and under the condition ρ>>η) the equivalence
between the Fried parameter and coherence radius for oceanic turbulence is the same as for
Kolmogorov turbulence, r0 = 2.1 · ρ0. Similar conclusion can be made for light propagation in
other media if the wave structure function shows the 5/3 power law.

4. Summary

In general, for a random medium having the wave structure function that can be expressed in the
form

DS(ρ)medium = Kmedium · ρ
α−2, 3<α<4 (24)

the equivalent coherence ratio c0(α) will be always given by Eq. (15) whatever the medium is.
The equivalent coherence ratio, c0(α), allows one to relate the coherence radius to the Fried

parameter for any randommediumwith a wave structure function having the form of Eq. (22). This
result is useful for several applications involving laser beam propagation through the atmosphere,
the ocean, and even in tissue [7]. In optical imaging, for example, it is very convenient to express
the phase variances as a function of the ratio D/r0, therefore the equivalent coherence ratio c0(α)
can allow to do that if the coherence radius ρ0(α) is known.

We report here, for completeness, another useful relationship which is not explicitly shown in
Ref. [6], to relate the coherence radius of a spherical wave to the coherence radius of a plane
wave in non-Kolmogorov turbulence:

ρ0 spherical

ρ0 plane
=

r0 spherical

r0 plane
= (α − 1)

1
α−2 (25)

Note that Eq. (25) reduces to ρ0 spherical = 1.8 · ρ0 plane for the Kolmogorov case. It is shown
in Ref. [2] that the coherence radius of a Gaussian beam propagating in weak Kolmogorov
turbulence assumes values in the range 1 ≤ ρ0_G ≤ 1.8. Consequently we deduce that the same
range of values stays valid for weak oceanic turbulence (under approximation).
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Also, we deduce from Eq. (25) that the coherence radius of a Gaussian beam propagating in
weak non-Kolmogorov turbulence assumes values in the range 1 ≤ ρ0_G(α) ≤ (α − 1)

1
α−2 .

Finally, we mention here two recent papers showing the equivalent refractive index structure
constant in non-Kolmogorov turbulence [8] and how to express oceanic turbulence parameters by
atmospheric structure constant [9].
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