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1 Introduction

The realistic modeling of many physical problems involves different physical processes
acting and depending on each other. These kind of problems are called multifield or mul-
tiphysics problems. Fluid-structure interactions are a special case of multifield problems.
The blood flow through an aorta or the airflow around a wind turbine are examples for
this class of problems. The flow of the fluid conforms to the deformation of the structure,
while the pressure within the fluid exerts a surface force on the structure. According to
this force, the structure deforms into a new configuration, influencing the fluid again.
This illustrates that these physical processes cannot be treated isolated.

The fluid and structure only interact on parts of their boundary, called the interface.
This allows to partition the problem into a fluid and a structure sub problem, where the
interaction is taken into account through the boundary conditions. Both sub problems
can be modeled, discretized and solved separately, considering the different properties of
the problems, leading to a highly flexible approach, called partitioned coupling. Further-
more, already existing and optimized software can be applied to the sub problems, only
the interaction between the solvers has to be added.

The simplest method to incorporate the interaction is to exchange data on the in-
terface between both sub problems once per time step. With the received data new
boundary conditions are imposed. At least one solver must use data from the previous
time step, resulting in a loss of accuracy. For compressible fluids this approach is still ap-
propriate. However, solutions for incompressible fluids become unconditionally unstable
if the ratio between the structural density and fluid density is close to one. This is caused
by the so called added mass effect. For compressible fluids, this effect does not appear.

To circumvent this instability without changing the solvers for the sub problem, the
solution in each time step is formulated as the solution to a fixpoint problem. Newton’s
method is not applicable, because the solver for both sub problems are handled as black
boxes. It is assumed that no information except the output of a solver is known, which
is often the case for commercial solvers. Especially the derivatives of the solvers are
unknown. Currently, the most common solver for the fixpoint problem without use of
derivatives is a under relaxation or Aitken’s methods. Quasi-Newton methods had been
considered only recently, most prominently in [14] and [5].

This thesis aims to bring these previously introduced quasi-Newton method into a
more general context. More specifically, their relation to the generalized Broyden meth-
ods is shown. These methods build an approximative Jacobi matrix which minimizes the
change regarding some matrix under the constraint of satisfying some secant equations.
Through numerical tests the stability of a selection of quasi-Newton methods is displayed
and influences of the added mass effect on the simulation are examined.

The second chapter gives an introduction into the mathematical models for the fluid
and structure sub problem and their interaction. The fluid model encompasses incom-
pressible fluids with moving boundary. The structural model allows for large deformation
with small strains.

Discretization techniques for both models are discussed in chapter three. For the
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fluid part the finite volume method is employed, while the finite element method is used
for the structural part.

Chapter four introduces coupling methods for the partitioned approach, with a focus
on the added mass effect.

In chapter five the generalized Broyden methods are derived and explained. Addi-
tionally, some details on the implementation of the methods is given. They are applied
to numerical examples in chapter six, to examine the performance of different quasi-
Newton methods. Furthermore, the impact of the added mass effect on implicit coupling
is analysed.

The final chapter seven gives a summary of the thesis and an outlook for further
investigations.
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2 Mathematical Model for Fluid-Structure Interactions

This chapter aims to introduce the basic physical models, used for fluid-structure interac-
tions. Figure 1 depicts the general geometry for such problems. The first part introduces
some general equations governing the behavior of the material. In the second part, in-
dividual assumptions of the materials elaborate on these equations for the materials of
interest in this thesis. More on the general theory of continuum mechanics can be found
in [40] and [17].

Fluid

Structure

Interface

Figure 1: The left figure shows an abstract fluid-structure interaction problem. The
right pictures an actual fluid-structure interaction simulation, appearing in section 6.2.
It shows the velocity vectors, colored by magnitude, and the pressure at the interface.

Later on, the following material properties are assumed. The fluid material is incom-
pressible and viscous, meaning the density does not change over time and internal friction
hinders the flow. The structure is geometric nonlinear, allowing for larger movements.
Furthermore its stress depends linear on the strain, leading to a materially linear struc-
ture. Both materials are isotherm, i.e. with constant temperature, and homogeneous,
i.e. with constant density with respect to the space variable.

Generally valid models for the movement both of fluids and structure rely on the
so-called conservation laws. These laws state that the following characteristics of a
continuum

• mass,

• momentum and

• energy

do not change without external influences. Such external influences may be gravity, al-
tering the momentum of a continuum, or radiation, increasing the energy of a continuum.

The conservation of mass and momentum are sufficient to describe the velocity of a
flow and the pressure within. For the deformation of a structure, only the conservation
momentum is needed. If, in addition, the temperature is variable, the conservation law
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for energy is also needed. Since, both the fluid and the structure are considered to be
isotherm, the following discussion omits the conservation of energy.

The first part of this section introduces some preliminary notions and theorems. Then
the general conservation laws are derived and specified for fluid and structure models
respectively.

2.1 Reynold’s Transport Theorem

To derive the equations governing the conservation of the previous stated characteristics,
the physical body is interpreted as a domain Ω ⊂ Rd. The domain Ω is open, connected
and bounded. It is called the reference configuration and the points X ∈ Ω are material
points. This represents the body without forces acting on it.

Through time, the domain may undergo changes. For example external forces may
deform the body. The map φ : [0, T ]× Ω 7→ Rd, called motion, describes these changes.
The derivative Dφ, with respect to X, is called deformation gradient. At time t, Ωt :=
φ(t,Ω) denotes the current configuration. The derivation of the conservation laws needs
some assumptions on φ:

A1 φ(0,X) = X,

A2 φ is continuously differentiable in X and invertible for every time t,

A3 φ maintains its original orientation, i.e. J(t,X) := det(Dφ(t,X)) is positive for all
t.

For a quantity defined on the material there are two different ways to observe it:

• observe the same material point X ∈ Ω at different times t, with different spatial
points x ∈ Ωt,

• observe the same spatial point x ∈ φ(t,Ω) at different times t, with different ma-
terial points X ∈ Ω passing by.

The first view describes the quantity in Lagrangian coordinates and uses upper case
letters. The second one characterizes the quantity in Eulerian coordinates, using lower
case letters. As an example

• Q(t,X) denotes the value of a property at the material point X ∈ Ω at time t, and

• q(t, x) denotes the value of a property at the material point X ∈ Ω which is at the
spatial point x = φ(t,X) at time t.

These two view are related by q(t, φ(t,X)) = Q(t,X).
Some of the following theorems depend on the velocity of the material points, defined

by

• V (t,X) = ∂φ
∂t (t,X) in Lagrangian coordinates and
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• v(t, x) = ∂φ
∂t (t, φ−1(t, x)) in Eulerian Coordinates.

With this definition, the partial time derivative of a quantity Q in Lagrangian coordinates
can be written in terms of Eulerian coordinates x = φ(t,X). This leads to the material
derivative of q,

Dtq(t, x) : =
∂

∂t
Q(t,X) =

∂

∂t
q(t, φ(t,X))

=
∂q

∂t
(t, φ(t,X)) +

∂φ

∂t
(t,X) · ∇xq(t, φ(t,X))

=
∂q

∂t
(t, x) + v(t, x) · ∇xq(t, x), (2.1)

where ∇x denotes the spatial derivative. The underscore is left out from here on. In
addition to the change in time of q, the convective term v · ∇q takes the movement of
the material into consideration.

The following example underlines the significance of the convective term. Let Q
describe the concentration of a material inside a flow with constant velocity v. Since
the material is moving with the fluid, the concentration at each material point does not
change in time, i.e. ∂tQ = 0. In contrast, the time derivative of q at each spatial point
x must satisfy the equation

∂q

∂t
+ v · ∇q = 0. (2.2)

This is a simplified version of the transport equation, see [18].
Most quantities characterizing the movement of fluids or structures are proportional

to the size of the continuum, called extensive quantities. Such quantities are mass, volume
and energy. Pressure is an example for a quantity that is independent of the continuum’s
size.

An extensive quantity U is often characterized by some density function um, defined
per mass. The value of U(V ), for a volume V ⊂ Rd, is then given through integration

U(V ) =

∫
V
ρum dx, (2.3)

with mass density ρ of the material.
The conservation laws state that the considered quantities only change through ex-

ternal influences. Therefore the rate of change of quantities in the form of 2.3, with
respect to time, is considered. First, examine the change of Ω. Application of the diver-
gence theorem yields

d

dt
|Ωt| =

d

dt

∫
Ωt

dx =

∫
Ω

∂J

∂t
(t,X) dX, (2.4)

with determinant of the configuration J, as stated in assumption A3. The time derivative
of the determinant has an explicit formula, given by the following theorem.
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Theorem 1. If φ satisfies the assumptions A1-3 and has a continuous time derivative,
then J(t,X) is continuously differentiable in time with

∂J

∂t
(t,X) = ∇ · v(t, x)|x=φ(t,X)J(t,X). (2.5)

For a proof see [17].
Now, a general quantity with some density Q is examined. In Lagrangian coordinates

the rate of change is simply

d

dt

∫
Ω
Q(t,X) dX =

∫
Ω

∂Q

∂t
(t,X) dX, (2.6)

since Q is defined on the reference configuration. An analog relation for Eulerian coordin-
ate is more complicated. The quantity is defined on a moving domain Ωt and therefore
differentiation and integration cannot be interchanged easily. Instead the following Reyn-
old’s transport theorem gives the appropriate relation.

Theorem 2 (Reynold’s Transport Theorem). The map φ satisfies A1-3 and the functions
v(t, x) and q(t, x) are continuously differentiable. Then, for any connected subdomain
V ⊂ Ω with configuration Vt = φ(t, V ) it holds that

d

dt

∫
Vt

q(t, x) dx =

∫
Vt

∂q

∂t
(t, x) +∇ · (q(t, x) · v(t, x)) dx. (2.7)

Proof. In the first step, transforming Vt into the reference configuration leads to

d

dt

∫
Vt

q(t, x) dx =
d

dt

∫
V
q(t, φ(t,X))J(t,X) dX. (2.8)

In the reference configuration, integration and differentiation can be interchanged. With
application of the formula for the partial time derivative of J (2.5), the equation reads

d

dt

∫
V
q(t, φ(t,X))J(t,X) dX =

∫
V

(
∂q

∂t
(t, φ(t,X))

+ q(t, φ(t,X))∇ · v(t, φ(t,X))

)
J(t,X) dX.

The use of the material derivative Dtq (2.1) along with the identity

∇ · (u · w) = u(∇ · w) +∇u · w (2.9)

gives the final equation

d

dt

∫
Vt

q(t, x) dx =

∫
Vt

Dtq(t, x) + q(t, x)∇ · v(t, x) dx

=

∫
Vt

∂q

∂t
(t, x) +∇q(t, x) · v(t, x) + q(t, x)∇ · v(t, x) dx

=

∫
Vt

∂q

∂t
(t, x) +∇ · (q(t, x) · v(t, x)) dx.
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Remark. The first term on the right hand side takes the rate of change of q into account,
without considering the changes of Vt. The second term can be stated as an surface integral
over Vt, ∫

Vt

∇ · (q · v) dx =

∫
∂Vt

(q · v) · n dS. (2.10)

Therefore, this term describes the change over the boundary of Vt, while assuming no
modification of q.

2.2 Conservation Laws

Reynold’s Transport Theorem allows the derivation of the equations, governing the con-
servation of mass and momentum in Eulerian formulation. . The rest of this section uses
the following functions,

• ρ : [0, T ]× Ω 7→ R the mass density of material,

• v : [0, T ]× Ω 7→ Rd the velocity of material,

• t : [0, T ]× ∂Ω 7→ Rd a force vector acting on the surface of the material,

• f : [0, T ]× Ω 7→ Rd a force vector acting on the volume of the material.

All functions are written in Eulerian coordinates.
The first equation to derive is the continuity equation. It is a consequence of the fact

that mass is neither created nor destroyed. Therefore the mass of Ωt must equal the
mass of Ω, for all t ≥ 0. With the mass density ρ, the mass of Ω is defined as

mass(Ωt) =

∫
Ωt

ρ(t, x) dx. (2.11)

In terms of its derivative the conservation of mass reads

d

dt
mass(Ωt) =

d

dt

∫
Ωt

ρ(t, x) dx = 0. (2.12)

The application of Reynold’s Transport Theorem with q = ρ leads to the continuity
equation in integral form∫

Ωt

∂ρ

∂t
(t, x) +∇ · (ρ(t, x)v(t, x)) dx = 0. (2.13)

Since the mass is maintained for every sub domain V of Ω, the integral form is true for
every sub domain Vt ⊂ Ωt. This is only the case if the integrand is zero on Ωt. With
sufficient smoothness of ρ and v the continuity equation in differential form reads

∂tρ+∇ · (ρv) = 0 (2.14)

Newton’s second law of motion acts as basis for the derivation of the conservation of
(linear) momentum. It states that the change of momentum p = mv of a mass equals
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the total force F acting on the mass. The total force divides into a surface force t only
acting on the surface of the mass and a body force f acting on its volume. Gravity is an
example for such a body force.

The integral formulation of Newton’s second law reads, with normal vector n

d

dt

∫
Ωt

ρv dx =

∫
Ωt

ρf dx+

∫
∂Ωt

tdS. (2.15)

With help from Reynold’s Transport Theorem, the left hand side is formulated as an
integral over Ωt. Component wise it reads(

d

dt

∫
Ωt

ρ(t, x)v(t, x) dx

)
j

=

∫
Ωt

∂t(ρvj) +∇ · (ρvvj) dx. (2.16)

To write surface integral of t over ∂Ωt as a volume integral over Ωt, more information
on the surface force is needed. Under the assumption of Newton’s second law, Cauchy’s
theorem [17] gives a linear dependency between the surface force t and the normal vector
n, i.e.

t(x, n) = σ(x) · n(x), σ(x) ∈ R3×3. (2.17)

The matrix valued function σ, is called Cauchy stress tensor. It is a measurement for
the forces acting on an area in the current configuration Ωt.

The divergence theorem, applied to the surface integral over ∂Ωt, and the Reynold’s
Transport Theorem used for the left hand side of (2.16) now lead to the component wise
integral formulation of the conservation of momentum∫

Ωt

∂ρvj
∂t

+∇ · (ρvvj)− ρfj − (∇ · σ)j dx = 0. (2.18)

Using the same argument as for the continuity equation (2.14), the first version of the
differential form reads

∂t(ρvj) +∇ · (ρvvj)− ρfj − (∇ · σ)j = 0. (2.19)

The simplified conservation of momentum equation is achieved by plugging in the con-
tinuity equation (2.14) and the differentiable operator v · ∇ =

∑d
j=1 vj∂xj ,

ρ(∂tv + (v · ∇)v)−∇ · σ = ρf. (2.20)

Summary

The conservation laws governing the behavior of both fluid and structure are

• the continuity equation:

∂tρ+∇ · (ρv) = 0 in Ωt, (2.21)
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• and the conservation of momentum equation:

ρ∂tv + ρ(v · ∇)v −∇ · σ = ρf in Ωt. (2.22)

The derivation of the stress tensor σ differs for each material, depending on its in-
dividual properties. Air, for example has little internal friction and uses therefore a
different stress tensor than water. The following sections explain the stress tensors for
the particular choices of material.

2.3 Model for Incompressible, Viscous Fluids

This section discusses the assumptions made on the fluid material and derives the Navier-
Stokes equation. The incompressibility simplifies the continuity equation, and the vis-
cosity defines the stress tensor. Furthermore a brief introduction into the Arbitrary
Lagrangian Eulerian formulation is given. This plays a key role for the consideration
of moving boundaries. The works [3] and [11] provide a detailed introduction into fluid
dynamics. The Arbitrary Lagrangian Eulerian formulation is discussed in [16].

Flows are usually observed in some fixed domain Ωf ⊂ Rd, d = 2, 3, with the fluid
passing through it. Examples are gas flowing through a section of a pipe, or blood
through an aorta. Both cases consider only a small part of a larger system, i.e. the
circulatory system. As a result, the Eulerian formulation of the conservation equations
has to be applied.

As stated in the beginning of the chapter, the fluid is incompressible. Therefore, the
volume of any subset in the reference configuration V ⊂ Ω does not change in time. With
the transformation determinant J and its time derivative 1 this leads to

dVt
dt

=
d

dt

∫
Vt

dx =

∫
Vt

∇ · v dx = 0 ∀ V ⊂ Ω. (2.23)

Because of the arbitrary choice of V the divergence of v has to be zero in Ωf . It follows
now from the continuity equation that the mass density ρ must be constant, since

∂tρ+ ρ∇ · v︸ ︷︷ ︸
=0

= 0 in Ωf . (2.24)

Thus, the continuity equation can be reduced to

∇ · v = 0 in Ωt. (2.25)

Since the fluid is viscous, frictions within the fluids are significant. In addition to
pressure based forces pI, the stress tensor also consists of viscous forces τ . To avoid
confusion in the notation, σf denotes the stress tensor with respect to the fluid. Under
the assumptions that τ only depends on the velocity differences Dv, the stress tensor has
the following form,

σf = 2νε(v)− pI. (2.26)
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Here, ν denotes the dynamic viscosity and

ε(v) =
1

2
(Dv + (Dv)T ) (2.27)

the symmetric part of Dv, also known as the rate-of-strain tensor. The divergence of the
stress tensor then takes the form

∇ · σf = ν∆v −∇p. (2.28)

Plugging in the divergence of σf into the conservation of momentum equation (2.22)
together with the divergence free condition (2.25) leads to the Navier-Stokes equations

Continuity: ∇ · v = 0 in Ωf , (2.29)
Momentum: ρ ∂tv + ρ(v · ∇)v +∇p = ν∆v + ρf in Ωf . (2.30)

The complete description a flow in a domain Ωf over a time interval [0, T ] needs initial
conditions and boundary conditions. For initial conditions the velocity is set to some
value v0 : Ωf 7→ Rd,

v(0, ·) = v0(·) on Ωf . (2.31)

The initial velocity must also satisfy the divergence free condition (2.25). On the bound-
ary of Ωf , combinations of Dirichlet and Neumann boundary conditions for v and p are
possible. First, the boundary is divided into two disjoint sets ∂Ωf = Γ1

f ∪ Γ2
f . On the

first set Γ1
f Dirichlet boundary conditions are imposed on the velocity

v = vb on (0, T ]× Γ1
f . (2.32)

The boundary condition on Γ2
f then provides Neumann condition for the stress tensor,

σf · n = t on (0, T ]× Γ2
f . (2.33)

Arbitrary Lagrangian-Eulerian Formulation

Neither the Eulerian formulation of the Navier-Stokes equations nor an Lagrangian for-
mulation is well suited for fluid-structure interactions. In the Eulerian formulation, the
domain Ωf is fixed. However, fluid-structure interactions consider the effects of a moving
structure on a fluid. Parts of the boundary of Ωf must adapt to the motion of the struc-
ture. Therefore the domain cannot remain immobile. On the other hand, the Lagrangian
formulation is not appropriate for large deformations, such as the motion of a fluid.

To contribute for the moving boundary the Arbitrary Lagrangian-Eulerian (ALE)
formulation is introduced. This formulation uses a new reference domain ΩALE ⊂ Rd
with the continuously differentiable and invertible motion ψ : [0, T ] × ΩALE 7→ Ωf .
In general, ΩALE and its motion are different from the reference configuration Ω and
motion φ, introduced in the beginning of this chapter. The points Y ∈ ΩALE are the
ALE-coordinates.
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Section 3.1 defines a mesh for the discretization of the fluid equations. The ALE-
coordinates represent these mesh points. With the motion ψ the mesh points can move
independently of the material coordinates. Therefore, a displacement at the boundary
can be transfered fairly easy to the mesh points.

To derive the ALE equations for the conservation of mass and momentum, a variant
of the transport theorem 2 is applied. For any V ⊂ Ωf and a scalar or vector valued
function q it holds that

d

dt

∫
V
q dx =

∫
V

∂q

∂t
+∇ · (q · v̂) dx, (2.34)

where v̂(t, x) = ∂ψ
∂t (t, ψ−1(t, x)) denotes the velocity of the ALE-coordinates. Hence, the

integral formulation of the conservation of mass (2.13) reads in the ALE-formulation as

d

dt

∫
Ωf

ρdx +

∫
Ωf

ρ∇ · (v − v̂) dx = 0, (2.35)

and the conservation of momentum in each component (2.18) as

d

dt

∫
Ωf

ρvi dx +

∫
Ωf

∇ · (ρvi(v − v̂))− (∇ · σf )i dx =

∫
Ω
ρf i dx. (2.36)

These equations are the basis for the discretization techniques of section 3.1.
The motion ψ is not arbitrary, instead its velocity must satisfy the geometric conser-

vation law (GCL)
d

dt

∫
Ωf

dx−
∫

Ωf

∇ · v̂ dx = 0. (2.37)

This condition arises from the conservation laws for a constant fluid velocity v = const.
With a reference velocity conforming to the GCL, the conservation of mass (2.35) is
reduced to the divergence free condition for the fluid velocity.

2.4 Model for Nonlinear Structures

This section defines the structural model, used for this thesis. The model needs to enable
potentially large and elastic deformations. However, only small strains will be examined.
An extensive discussion of structural mechanics is found in [41] or [13].

Equations for the structural model usually employ the Lagrangian formulation. This
is reasonable, because the deformed coordinates are the outcome of a computation, which
needs to take place first. The use of the Lagrangian formulation also reduces the conser-
vation equations, since it loses the material derivative (2.1). For this section, Ωs ⊂ Rd,
d = 2, 3, refers to the reference configuration.

Instead of the position in the current configuration, this section considers the dis-
placement d(t,X) = φ(t,X) − X of a material point X. Furthermore, F := Dφ denotes
the deformation gradient. With this, the strain E is defined by

E =
1

2
(F TF − I) =

1

2
(∇d+ (∇d)T + (∇d)T∇d). (2.38)
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The stress tensor σs, introduced in 2.2, measures forces acting on the current configur-
ation. Applying the transformation theorem for integrals leads to the first Piola-Kirchhoff
stress tensor P , defined on the reference configuration,

P = JσsF
−T . (2.39)

Using this stress tensor, the conservation of momentum in the reference configuration
reads

ρ ∂ttd−∇ · P = f. (2.40)

The 1. Piola-Kirchhoff stress tensor produces a stress vector T = PN , based at a
point x in the current configuration. Pulling back this stress vector into the reference
gives the second Piola-Kirchhoff stress tensor

S = F−1P. (2.41)

Furthermore, this stress tensor is symmetric, whereas the 1. Piola-Kirchhoff stress tensor
P is not. Now, the conservation of momentum in the reference configuration, using the
2. Piola-Kirchhoff stress tensor reads as

ρ ∂ttd−∇ · (F S) = ρf in Ωs. (2.42)

Next, the relation between the geometric quantities, displacement d and strain E,
and the 2. Piola-Kirchhoff stress is clarified. For this thesis, the St. Venant-Kirchhoff
model provides the relation between strain E and stress S. Assuming this model is an
appropriate choice, the stress tensor S has the form

S = λ tr(E)I + 2µE, (2.43)

with the two Lamé constants λ and µ. Instead of the Lamé constants the Young’s modulus
E and Poisson’s ratio ν are often used. They are related to the Lamé constants via

µ =
Eν

(1 + ν)(1− 2ν)
, λ =

E

2(1 + v)
. (2.44)

The St. Venant-Kirchhoff model implies a linear relation between strain E and stress
S, which is suitable for small strains. For the modeling of large strains, other material
models, for example the Mooney-Rivlin model, are a better choice.

For completeness, the conservation of momentum equation (2.42) requires additional
initial and boundary conditions, to describe a physical problem. Since (2.42) is a hy-
perbolic differential eqation, it needs, together with an initial displacement d0, an initial
velocity field v0, i.e.

d(0, ·) = d0, ∂td(0, ·) = v0 on Ωs. (2.45)

Similar to the fluid model, the boundary of Ωs is split into two parts, ∂Ωs = Γ1
s ∪Γ2

s. On
the first part, Dirichlet conditions are prescribed,

d = db on (0, T ]× Γ1
s, (2.46)

and on the second part Neumann conditions are imposed,

FS · n = s on (0, T ]× Γ2
s. (2.47)
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2.5 Model for Interactions between Fluids and Structures

This part examines the modeling of the influences and dependencies of fluids and struc-
tures, acting upon each other. The fluid and the structure share a common boundary
Γ(t) = ∂Ωf (t) ∩ ∂Ωs(t), also called interface. Here Ωf (t) and Ωs(t) denote the cur-
rent configuration of the fluid and structure domain respectively. On the interface, the
solutions to each sub model must take the other solution into account respectively. For
example a moving structure imposes the velocity of the fluid at the interface. On the
other hand, the fluid exerts a force on the interface counteracting or aiding the movement
of the structure.

To model the physical behavior, the following interface constraints on the structure
and fluid model are introduced:

1. The geometries of both models must match at the interface. In particular, both
configurations Ωf (t) and Ωs(t) may not overlap or seperate.

2. The velocities on the interface must be equal,

v(t, x) = ∂td(t, x) ∀ t ∈ [0, T ] and x ∈ Γ(t). (2.48)

3. The forces on the interface must be in equilibrium. Therefore, they must sum up
to zero,

σf · nf + σs · ns = 0 ∀ t ∈ [0, T ] and x ∈ Γ(t), (2.49)

where nf and ns are the outer normal vectors on the fluid and stucture domain,
respectively.

The first two constraints are the kinematic constraints, the third one is the dynamic
constraint. It applies the constraint on the stress tensor σs in the current configuration.
However, the structure model uses the 2. Piola-Kirchhoff stress tensor S in the reference
configuration. The two stress tensors are related through

σs = J−1FSF T , (2.50)

which follows from the definitions of the 1. and 2. Piola-Kirchhoff stress tensors (2.39), (2.41).
These constraints prescribe boundary conditions on the interface. Kinematic con-

straints provide Dirichlet boundary conditions and dynamic constraints yield Neumann
boundary conditions. Most commonly, the fluid model implements the kinematic inter-
face constraints, while the structure model enforces the dynamic interface constraints.
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3 Numerical Model of Fluid and Structure Problem

This chapter introduces general ideas on how to solve actual fluid-structure problems.
The mathematical models described in section 2 have no analytic solution in general.
There exist some special cases with analytic solutions, see [17], although these are not of
use for practical applications. Instead, starting with the models from section 2, approx-
imate versions, the numerical models, are derived. The aim in this chapter is to reduce
the mathematical models, defined on an infinite number of points in space and time, to
a finite number of equations.

The first section introduces the numerical fluid model, including mesh motion. The
second part establishes the techniques for the structural model. The last part of this
section discusses the discretized interface conditions. The different concepts used in the
fluid and structure model are acknowledged there.

3.1 Discretized Fluid Model

This part gives a short overview of the numerical models used for computational fluid dy-
namics (CFD). First, the domain Ω is discretized with the finite volume method (FVM).
Another possible spatial discretization, the finite element method (FEM), is as discussed
as part of the numerical structure model. The second part illustrates methods employed
for temporal discretization. The books [37], [58] and [56] give a detailed introduction
into CFD and the finite volume method.

Spatial Discretization via FVM

At first, the domain Ω is divided into N c control volumes C, also called cells. The cells
have simple geometric shapes, for two dimensional applications triangles or rectangles,
and for three dimensional applications tetrahedrons, hexahedrons, or prisms. Figure 2
show examples for different cell shapes. The division of the domain into cells is called
mesh and the vertices of the cells are the mesh points. For a cell C, Pc denotes the
midpoint of the cell.

Pc

(a) Triangular shaped cell

Pc

(b) Hexahedral shaped cell

Figure 2: Examples for different cell shapes.

The idea of the finite volume method is that the conservation laws hold for each
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control volume C. The integral form of the Navier-Stokes equations for a cell C reads∫
C
∇ · v dx = 0, (3.1)

d

dt

∫
C
ρvi dx +

∫
C
ρ∇ · (vi(v − v̂))− ν∆vi dx +

∫
C
∂xip dx =

∫
C
ρf i dx, (3.2)

where vi is the i-th velocity component. It is assumed the geometric conservation law is
satisfied. The application of the divergence theorem transforms the volume integral over
C into a boundary integral, ∫

∂C
v · n dS = 0, (3.3)

d

dt

∫
C
ρvi dx +

∫
∂C

(ρvi(v − v̂)− ν∇vi) · n dS +

∫
∂C
pni dS =

∫
C
ρf dx. (3.4)

This formulation needs less regularity of the solution, since only first order derivatives
under the integral appear.

To solve the equations (3.3) numerically, the integrals are discretized. A simple
choice is the midpoint method, which takes the function value at the midpoint Pc as an
approximation for the function on C, i.e.

d

dt

∫
C
ρv(t, x) dx ≈ d

dt
|C|ρvPc(t). (3.5)

Here vPc(t) denotes the approximation for the velocity at the midpoint of the cell at time
t. The right hand side term is handled in a similar fashion.

For the integration over the surface, the boundary ∂C is split into its d−1 dimensional
faces S(C). Let Mf denote the midpoint of a face f ∈ S(C), see figure 3. Then, the
midpoint method for integrating the pressure part reads∫

∂C
pn dS =

∑
f∈S(C)

∫
f
pndS ≈

∑
f∈S(C)

|f |pMf
nf . (3.6)

The pressure at the face midpoint Mf is interpolated from the midpoints of the two cells
sharing the face f , if f is not on the boundary of Ω. For faces on the boundary ∂Ω, the
boundary conditions are employed. The discretization of the continuity equations follows
in the same manner.

The most straight forward interpolation scheme is the central difference scheme. For
two cells C and D, sharing the face f , the central difference scheme defines the approx-
imated value of p(Mf ) as the average of the values at the midpoints,

pMf
=
pPc + pPd

2
. (3.7)

This scheme has second order accuracy [37].

18



Pc

C

Pd

D

Mf

nf

C
∩
D

Figure 3: Two cells sharing one face. Midpoint and normal vector of the common face
are displayed.

The computation of the convective term involves some extra work. The midpoint
method for integration of the convective term, disregarding the constant density, results
in ∫

∂C
vi(v − v̂) · n dS ≈

∑
f∈S(C)

|f |viMf
(v − v̂)Mf

nf . (3.8)

The choice of a suitable interpolation scheme for the midpoint velocities is crucial to the
stability of the finite volume method. For small time steps the central difference scheme
exhibits instabilities [37]. Therefore, other interpolation scheme are better suited.

The method of characteristics shows that for a linear hyperbolic equations, like (2.2),
quantities travel along certain lines [18]. In the case of the Navier-Stokes equation the
term v − v̂ describes this direction. For a cell C with face f the flux

Φf = |f |(v − v̂)Mf
· nf (3.9)

indicates in which direction quantities flow. If Φf is positive, the angle between relative
velocity and outer normal vector is less then 90◦. Therefore, a quantity flows outward of
the cell. For a negative flux Φf , the reversed relation holds.

The upwind scheme takes the direction of the flow into account. For a face f with
the adjacent cells C and D, and normal vector in direction D, the upwind scheme reads

v(Mf )Φf ≈ max(Φf , 0)v(Pc) + min(Φf , 0)v(Pd). (3.10)

The upwind scheme assigns the value of the cell, where the flow comes from, to the
midpoint of f . This scheme has better stability than the central difference scheme. As a
drawback, it is only first order convergent [37].

The gradient term ∇vi leads to further difficulties. The discretization of gradient
uses the midpoint method (3.6) for the integral combined with the central difference
scheme (3.7) for the face midpoint value. This leads to∫

∂C
∇vi dx ≈

∑
D

|C ∩D|
∇viPc +∇viPd

2
, (3.11)

which requires the evaluation of ∇vi at the cell midpoints. The following method applies
the divergence theorem to the volume integral of ∇vi over the cell D. Using the midpoint
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rule for the volume and boundary integral, the approximate gradient at cell midpoint Pd
reads as

∇viPd(t) ≈
1

|D|

∫
D
∇vi dx =

1

|D|

∫
∂D

vin dS (3.12)

≈ 1

|D|
∑

f∈S(D)

viMf
nf |f |. (3.13)

Again, the midpoint values viMf
must be computed. The simplest approach is the central

difference method, i.e. taking viMf
as the average of the two neighbouring cells. For

irregular meshes, approaches using the average of values at the vertices of the face tend
to be more accurate, although at a higher computational cost [30].

Using these discretization techniques leads to a set of ordinary differential equations,

d

dt
ρMv′ + N(v) + Gp = f (3.14)

Dv = 0, (3.15)

with the constraint that the velocity has to be divergence free. The vector v and p
contain the velocity and pressure at the cell midpoints. The diagonal matrix M contains
the volume of the cells. The nonlinear coefficients (3.8) and (3.11) are summarized in
N. The matrices G and D represent the discretization of the boundary integral of the
pressure and the continuity equation (3.6). The right hand side f already incorporates
the boundary conditions.

Time Discretization

The ordinary differential equation (3.14) can be formulated as

d

dt
y(t) = f(y, t), (3.16)

with y(t) the vector of unknown quantities at cell midpoint and a nonlinear function
f . To solve these kinds of ODEs, the time interval [0, T ] is divided into a number of
time steps 0 = t0 < t1 < · · · < tN = T . The numerical methods for the solution of the
ODE (3.16) approximate the derivative of y, for example with a difference scheme like

d

dt
y(tn+1) ≈ yn+1 − yn

∆tn+1
, (3.17)

with ∆tn+1 = tn+1 − tn and yn+1 and yn values of y at the time steps tn+1, tn.
So called explicit methods then use the value of y at time tn for the computation

of the right hand side. These methods are usually fast to compute, since they need
only one evaluation of f . The approximation at the new time step is then simply a
linear combination of, possible multiple, previous approximations yn and f(yn, tn). The
drawback of explicit methods is that the time step size ∆tmust satisfy the CFL condition,
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∆t < consth, where h is the maximal spatial discretization, h = max |C|, and the
constant factor depends on the velocity field. Therefore a fine spatial discretization
implies an even finer time discretization.

Implicit methods use the value f(yn+1, tn+1) for their right hand side. The simplest
implicit method is the implicit Euler method, which applies the backward differential
quotient to the ODE (3.16). The update reads as follows

yn+1 = yn + ∆tn+1f(yn+1, tn+1). (3.18)

This method is convergent of order one and stable even for larger time step sizes [29].
But instead of a straightforward linear combination a possibly nonlinear system must be
solved.

An implicit method, convergent of order two, is the backward differentiation formula
(BDF2) [15]. Additionally, it takes the y value at time tn−1 into account. The update
formula is given by

yn+1 =
1

4
yn −

1

3
yn−1 +

2

3
∆tf(yn+1, tn+1). (3.19)

As an example, choosing the implicit Euler method for the time discretization results
in the nonlinear system

ρvn+1 = vn + ∆tn+1

(
f −N

(
vn+1

)
+ Gpn+1

)
, (3.20)

Dvn+1 = 0. (3.21)

This system can be solved either in a coupled manner for both the velocity and the
pressure or in a segregated manner. In both cases, application of Newton’s method
yields a linearized version the system. Chapter 5 discusses Newton’s method in a general
setting.

In the segregated case, at first, a prediction v∗ of the new velocity is computed.
This prediction applies the already calculated pressure form the current time step to
the momentum equation. Usually, the divergence free condition is not satisfied by the
velocity prediction. Therefore, a pressure correction method calculates the new pressure
and velocity. The SIMPLE [45], [44] and the PISO [32] algorithm operate using this
scheme, both with different pressure correction methods.

Mesh motion

The ALE formulation of the Navier-Stokes equations needs the velocity v̂ of the reference
system. The motion of the structure provides the displacement at the common interface.
Through some mesh deforming algorithm, the finite volume mesh has to adjust itself
to the displacement. Otherwise, the moving boundary leads to degenerated cells. The
motion of the cell vertices then determines the approximate reference velocity v̂.

There are different options on how to transfer the displacement of the interface nodes
into the domain. A first idea is to associate each mesh point within Ω with one mesh point
at the moving boundary. By means of interpolation, for example linear or quadratic, the
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motion of the mesh point is then computed. For rectilinear meshes, it is fairly easy to
decide which boundary point is associated with a mesh point. On general meshes the
decision is not clear.

An alternative method interprets the mesh as a system of springs [4]. Then, Hook’s
law describes the motion of each mesh point. This leads to the linear system

Kd̂ = f , (3.22)

where d̂ is the displacement of the mesh points.
The matrix K contains the stiffness kij of the imaginary spring between two points

xi and xj . Usually, the stiffness is the inverse distance between the points, i.e.

kij =
κ

||xi − xj ||
, (3.23)

with some factor κ.
The force vector f is a linear transformation of the displacements at the interface,

based on Hook’s law. For cell shapes different from simplices, additional degrees of
freedom can be added, for example by taking diagonals into consideration.

The reference velocity can be approximated using the newly computed displacements
of the mesh points. To satisfy the geometric conservation law (2.37), the approximation
must be exact of the same order as the time discretization, see [36] and [33]. For the
implicit Euler method this results in

v̂ =
d̂n+1 − d̂n

∆t
, (3.24)

and for the BDF2 method the approximation reads

v̂ =
3d̂n+1 − 4d̂n + d̂n−1

2∆t
. (3.25)

3.2 Discretized Structure Model

In this part, a short introduction into the numerical solution of the structural is given.
As before, firstly the spatial discretization of Ω, the finite element method is worked out.
Because of the second time derivative, the temporal discretization varies from the one
in the discretized fluid model. More information on the finite element method and its
application to elasticity problems can be found in [6], [12], and [31].

Spatial Discretization via FEM

The finite element method uses the weak formulation of the structural equation (2.42)
as a starting point. First, the equation is multiplied by a test function v ∈ H1

0 (Ω).
The Sobolev space H1

0 (Ω) contains all weakly differentiable functions on Ω, fulfilling zero
Dirichlet conditions on Γ1. Integrating then leads to the equation

ρ

∫
Ωs

∂ttd · v dX−
∫

Ωs

(∇ · (FS)) · v dX = ρ

∫
Ωs

f · v dX. (3.26)
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The divergence theorem applied to the stress tensor term, together with the Neumann
boundary condition FS · n = s · n on Γ2 and Dirichlet conditions on Γ1, reduces the
equation to

ρ ∂tt

∫
Ωs

d · v dX +

∫
Ωs

FS : ∇v dX = ρ

∫
Ωs

f · v dX +

∫
Γ2
s

v · (s · n) dS (3.27)

Here A : B denotes the scalar product for matrices. This formulation requires only one
weak derivative of d to be well defined.

The weak formulation of the structural problem now reads as follows: Find d ∈
C2([0, T ], H1

g ) such that

ρ ∂tta(d(t), v) + k(d(t), v) = F (t)(v) ∀ v ∈ H1
0 , (3.28)

where
a(u, v) :=

∫
Ω
u · v dX (3.29)

is a bilinear form,

k(u, v) :=

∫
Ω

(FS)(u) : ∇v dX (3.30)

is linear in its second component, but nonlinear in its first component and

F (t)(v) := ρ

∫
Ω
f(t) · v dX +

∫
Γ2

v · (s · n) dS (3.31)

is a time dependent linear form on H1
0 . The Sobolev space H1

g incorporates the Dirichlet
boundary condition g on d.

The finite element method seeks an approximate solution dh in some finite dimen-
sional space Vh,g ⊂ H0

g . Let {φi, i = 1, . . . , N b} be a basis of the space Vh,g. Every
function in Vh,g has a representation as linear combination of the basis functions φi.
Thus, the approximation dh has the expansion

dh(t,X) =
Nb∑
i=1

di(t)φi(X), (3.32)

with time dependent coefficients d : [0, T ] 7→ Rd.
In the same manner, the test space H1

0 is discretized into the finite dimensional space
Vh. The spaces Vh and Vh,g differ only in the applied Dirichlet boundary conditions. For
simplicity’s sake, the Dirichlet condition for d is set to zero. Hence, φ is also a basis of
Vh.

Since the weak formulation holds true for every v ∈ H1
0 , it must also hold for every

basis function φi, leading to N b equations. Using the representation (3.32) of dh, the
equations can be written compactly as,

ρMd′′ + K(d) = F, (3.33)
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where d(t) are again the coefficients of dh. The coefficients of the mass matrix M , the
stiffness vector K, and the force vector F are

Mi,j = a(φi, φj), (3.34)
K(d)j = k(d, φj), (3.35)

Fj = F (t)(φj). (3.36)

Therefore, the approximation dh is the solution to a nonlinear system of N b ordinary
differential equations. In linear elasticity theory, the nonlinear terms in the strain E are
disregarded. This leads to a linear system for d, because k(·, ·), as a consequence, is also
a bilinear form.

The choice of basis functions φi is still left open. It should lead to a sparse matrix M
and easy calculable integrals K(d)j and Fj . This is the case, if each function has only a
limited support.

The domain Ω is again divided into N e elements Ts. For two dimensional applications
the elements are usually triangles and for three dimensional applications tetrahedrons or
hexahedrons are a common choice. Figure 4 show an example triangulation of the unit
square with missing square [0.5, 1]2. The integrals appearing in equations (3.34) are split
into integrals over each element, i.e. for some functions u, v ∈ H1

0∫
Ω
u · v dX =

∑
T

∫
T
u · v dX. (3.37)

Figure 4: Example trianulation of a square with missing lower left sub square.

Therefore, it suffices to define the basis functions locally for each element T . On the
element T the basis functions φTi are polynomials and satisfies the condition

φTi (vj) = δij , (3.38)

with the nodes of the element vj . For linear basis functions, only the vertices of the
element are considered as nodes. Quadratic polynomials require additionally the edge
midpoints. For 1D application, figure 5 sketches an example for piecewise linear basis
functions.

Aggregating all local basis functions sharing the same node vi results in the globally
defined function φi. The globally defined function φi(x) is set to φTi (x) if the point x
lies within an element T sharing the node vi. If the element containing x does not share
this node, the function φi equals zero. Thus, the global functions are polynomial on each
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vi−1 vi vi+1 vi+2

φi φi+1

Figure 5: 1D example of global basis functions, satisfying φi(vj) = δij .

element and have limited support. It is also continuous on the whole domain, because
of the condition φi(vj) = δij . Functions, which are piecewise smooth, and continuous on
the whole domain, belong to H1(Ω) [6]. Thus the functions φi are a basis of Vh,g.

To integrate over an element T , it is transformed into a reference element T̂ , via an
affine linear function G : T̂ 7→ T . This approach needs to define basis functions only on
the reference element. Moreover, it is sufficient to compute the integrals a(·, ·), k(·, ·) and
f(·) for the basis on the reference element exclusively. The integrals on other elements
vary only by the constant detDG. Integration on the reference element is done either
exactly or using numerical quadrature rules.

Time Discretization

The software ABAQUS uses the Hilber-Hughes-Taylor α method (HHT-α) for time integ-
ration. This is an extension to the Newmark β method. Both methods operate directly
on an ODE of second order. The implicit Euler method and the BDF2 method, described
in the fluid discretization 3.1, expect a system of first order. Although every ODE of
second order can be transformed into a system of first order ODE’s, the application of
the HHT-α method is more direct.

With the coefficients of the discretized acceleration a and velocity w, the HHT-α
method reads

ρMan+1 + K(dn+α) = Fn+α. (3.39)

The values with subscript n+α are a convex combination of the values at time step n+1
and n, defined by

dn+α = (1− α)dn+1 + αdn, (3.40)
wn+α = (1− α)wn+1 + αwn, (3.41)
Fn+α = F ((1− α)tn+1 + αtn). (3.42)

They are an approximation for the displacement, velocity and force vector at a interme-
diate time tn+α. The displacement and velocity at the new time step are given by

dn+1 = dn + ∆twn + δt2
((

1

2
− β

)
an + βan+1

)
, (3.43)

wn+1 = wn + ∆t ((1− γ)an + γan+1) . (3.44)

25



The time step size ∆t is defined in the same manner as in time discretization of the fluid
problem. The parameters α, β, and γ are characteristics of the HHT-α method. For a
linearized stiffness matrix K the choice

α ∈
[
−1

3
, 0

]
, β =

(1− α)2

4
, and γ =

1− 2α

2
(3.45)

results in stable time stepping method, convergent of order two. The Newmark-β method
arises from the choice α = 0.

To solve the system (3.39)- (3.42), two approaches are possible. First, the equa-
tion (3.39) is solved in terms of an+1, with the definition of dn+1 and wn+1 plugged
in. The second possible approach is to rewrite an+1 in terms of dn+1 using again the
definition of dn+1 and wn+1. Then, the solution of equation (3.39) is computed with
respect to dn+1. Since both approaches lead to a nonlinear system, the Newton method
has to be applied. Chapter 5 discusses variants of the Newton method in detail.

3.3 Discretization of the Interface Constraints

This part discusses the discretization of the interface constraints. With the time and
space discretized quantities, the conditions employed on the fluid and the structure are

vh,n+1 = wh,n+1, (3.46)

σfh,n+1 · n+ σsh,n+1 · n = 0. (3.47)

These constraints only hold at the mesh points of each part respectively, since in the
discretization the boundary conditions only apply pointwise. In particular, they are not
satisfied on the whole interface.

The partitioned approach in the solution of fluid-structure problems leads to different
discretizations on both parts, exemplified in figure 6. Each part has a different mesh at
the interface and thus the mesh points on the interface do not match. The quantities
must be transfered to the mesh points of the other mesh accordingly.

Fluid

Interface

Structure

Figure 6: Non matching grids at the interface.

There are two possible approaches to transfer a quantity at a non matching mesh
point x. On the one hand, only the direct neighbor elements or cells influence the value
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at the mesh point x. This leads to local methods. On the other hand, the quantity at
all elements or cells at the interface determines the quantity at x. Methods, relying on
this approach, are called global.

A simple local method is to interpolate the quantity, see [10] and [21]. The interpol-
ation takes place in the scope of the part, defining the quantity. For example, consider
the displacement at a point xf in the fluid mesh unknown. First, the point is projected
onto the point xS within the nearest element T of the structure mesh. Using the basis
function φTi defined on the element, the fluid displacement dx is interpolated by

dx =

NT∑
i=1

φTi (xS)dTi , (3.48)

with the displacement of the nodes of the element dTi . This method is called consistent
interpolation, since it uses the basis functions of the displacement to interpolate the
displacement in the fluid mesh. The interpolation of the force at structure node follows
similar lines.

An example for the global method is the Mortar-element method [21] and [34]. This
method is energy conserving, but requires the solution of a dense linear system. Inter-
polation methods are usually not conserving.

27



28



4 Coupling Methods

The solvers of each sub problem act mostly independent from each other, the interface
constraints and the corresponding boundary conditions beeing the only intersection of
the solvers. To couple both solvers, two different approaches are available. First, the
interface quantities are exchanged only once between both solvers in each time step. This
method is called explicit coupling or weak coupling. Enforcing the interface conditions
in a nearly exact way requires more exchanges between both solvers. Methods, based on
this, are called implicit coupling or strong coupling. The work of Felippa et al. [24] gives
a detailed overview of coupling methods.

The first part of this chapter discusses explicit coupling schemes. For incompressible
flows a special phenomena, the added-mass effect, occurs. A derivation of this effect is
presented in the second part. Lastly, implicit methods are shortly described.

To simplify the notation for the fluid-structure interaction, solution operators for
both sub parts are introduced. The solution operator

Sn+1 : f 7→ dn+1 (4.1)

maps a discretized interface force f to a new displacement dn+1 at time step tn+1, using
for example the discretized structure equations. Boundary conditions on other parts of
the boundary than the interface are already included. Analogous, the solution operator

Fn+1 : d 7→ fn+1 (4.2)

computes the interface force fn+1, resulting from the solution to the Navier-Stokes equa-
tion at time step tn+1 with interface displacement d. Since both operators are defined
on different meshes, the inputs are interpolated, to match the mesh of each operator
respectively. If there is no confusion about the time step, the superscript on the operator
is dropped.

4.1 Explicit Coupling

An explicit coupling scheme uses the solution value at the current time step tn as input
for at least one operator. Therefore, the next time step can be computed with only one
application of each solver. This shows the main advantage of the weak coupling schemes;
they have minimal computational cost. The disadvantage of weak coupling schemes is
that the interface constraints are not satisfied, since at least one solver uses old inputs.

The most common explicit method is the staggered coupling scheme, see [23]. With
this method, the operators are executed in a sequential manner, for example

F(dn) = fn+1, (4.3)

S(fn+1) = dn+1. (4.4)

This sequence leads to satisfied dynamic interface constraints. However, the forces fn+1

are not the ‘true’ interface forces for the time step tn+1, since they were computed on the
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old domain Ωn
f . Moreover, the kinematic interface constraints are not met. Thus, this

sequence of solvers is called space discontinuous method. The data flow for this coupling
method is depicted in figure 7.

Swapping the order of execution, results in a space continuous method. This sequence
satisfies the kinematic interface constraints, but not the dynamic constraints. Usually, it
shows a greater instability [46], and therefore it is the worse choice.

To fully utilize parallel computing, the operators can be coupled in the following
manner,

F(dn) = fn+1, (4.5)

S(fn) = dn+1. (4.6)

This is called parallel coupling, displayed idealized in figure 7. The disadvantage is that
this scheme obviously satisfies no interface constraint. An additional exchange at the
midpoint of the time step can improve the stability of the parallel coupling scheme [22].

S:

F :

tn tn+14

2

1
3

(a) Staggered coupling scheme.

S:

F :

tn tn+12

2

1

(b) Parallel coupling scheme.

Figure 7: Data flow for one time step, showing different coupling schemes. The red arrow
implies one evaluation of the structure solver and the blue arrows one evaluation of the
fluid solver. Gray arrows stand for data transfer.

All explicit schemes have in common that they violate at least one interface con-
straint. Therefore, the explicit coupling is not absolutely stable, even if each sub solver
is absolutely stable respectively, see [59], [47]. To achieve a stable simulation, a small
time step size has to be used. Moreover, there are two techniques to enhance the stability
and accuracy of the explicit coupling schemes.

Subcycling [48] enables one solver to use a smaller time step size than the other
solver. Often, fluid problems need to satisfy a small time step size, while larger sizes are
possible for the structure problem. Instead of setting the structure time step size to the
smaller one, the fluid solver computes several smaller time steps with out coupling with
structure. The coupling between the two solvers happens only at the larger time step. If
the structural solver needs a smaller time step, the roles are reversed.

Another stabilizing technique is the use of a structural predictor. Instead of the
displacement of the current time step, a extrapolation of the displacement d̃ is used as
input of the fluid solver. The choice

d̃n+1 = dn (4.7)
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gives a predictor of zeroth order. A first order accurate extrapolation reads as follows

d̃n+1 = dn + ∆twn. (4.8)

Higher order predictors are also possible [46].

4.2 Added-Mass Effect

Of special interest are explicit coupling strategies applied to fluid-structure interactions
with incompressible flows. For these cases, the inexact interface constraints result in
instabilities, which are known as the added-mass effect. Descriptions are found in [35]
and [57]. For compressible fluid, these instabilities do not occure, if the time step size is
sufficiently small, see [55].

The numerical implications of the added-mass effect are well understood. For density
ratios ρs/ρf close to 1 the time stepping methods become unstable. Attempts to avoid
these instabilities by reducing the time step size result in an earlier occurrence of the
instabilities. Furthermore, the structural predictor (4.8) decreases the stability of the
explicit coupling scheme, instead of improving it, as it would be the case for compressible
flows.

The reasoning for the added-mass effect mostly relies on heuristics. Approaches to
derive a theoretical background were made in the publications of Causin et al. [9] and
Förster et al. [26], [25]. Both methods use simplified models to obtain a mathematical
foundation for the added-mass effect.

Causin’s at al. work focuses on the special case of a two dimensional flexible tube.
There, they develop the so called added-mass operator, based on the weak formulation
of the fluid-structure interaction problem. They then go on to show that, regardless of
the actual spatial discretization, the chosen time stepping method for the structure is
unconditionally unstable if the ratio of the two densities is close to one.

The work by Förster et al. uses the spatial discretized equations for a general fluid-
structure interaction model. Therefore, they derive a discretized version of the added-
mass operator. Since this derivation is applicable to more general problems than the on
in Causin’s publication, it is considered here.

To simplify the notation for the analysis, the spatial discretization is done via FEM
for the structure and the fluid problem. The FEM for the Navier-Stokes equation is
explained in [27] or [16]. Moreover the meshes of both sub problems coincide on the
interface. Therefore, the exchange between the two solvers needs no interpolation of
interface quantities. The basic equations for this part read as follows

Fluid: ρfMfv′ + N(u) + Gp = ffΓ , (4.9)

GTu = 0, (4.10)
Structure: ρsMsd′′ + K(d) = f sΓ, (4.11)

Interface: d′ = v, and ffΓ + f sΓ = 0. (4.12)

The finite volume discretization leads to a similar problem, except for the continuity
equation.
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The derivation of the added-mass operator requires further assumptions on the dis-
cretized models:

1. The mesh motion has only small a impact on the fluid equations. This leads to
time independent matrices. For early time steps this simplification is reasonable.

2. There are no external forces, except the interface forces, acting on the structure.

3. The fluid and structure stiffness vectors N and K can be omitted. This is justified
for smaller time steps sizes, where the added-mass effect is stronger, because the
mass matrices Mf and Ms dominate the equations.

These assumptions mostly lead to simplified equations and ease the notation later on.
The removing of nonlinear factors appears rather strict, but, especially at earlier time
steps, the acceleration terms determine the solution. Numerical examples show that the
results still hold with all nonlinearities taken into consideration.

The sequentially staggered coupling (4.3) is chosen as coupling scheme. Other explicit
coupling methods have worse stability, thus they are disregarded for the analysis. The
aim is to rewrite the coupling scheme as only one time step of the structural solver.
Therefore, the fluid force ff is computed in terms of the interface acceleration.

Assumption 1 allows to apply the time derivative on the divergence of the velocity,

dGTv

dt
= GTv′. (4.13)

With the separation of the fluid equations the inner degrees of freedom v′I and the degrees
of freedom on the interface v′Γ, equation(4.9) now reads asρf Mf

II ρf Mf
IΓ GI

ρf Mf
ΓI ρf Mf

ΓΓ GΓ

GT
I GT

Γ 0

v′Iv′Γ
p

 =

 0

ffΓ
0

 (4.14)

The last block equation yields

GT
I v
′
I = −GT

Γv
′
Γ, (4.15)

and the first block equation is

v′I = − 1

ρf
(Mf

II)
−1(ρfMf

IΓv
′
Γ + GIp). (4.16)

By inserting the equation of the velocity on the inner degrees of freedom into the last
block equation

1

ρf
GT

I (Mf
II)
−1(Mf

IΓv
′
Γ + GIp) = GT

Γv
′
Γ, (4.17)

the pressure, expressed in terms of the fluid interface velocity, is

p = ρf (GT
I (Mf

II)
−1GI)

−1(GT
Γ −GT

I (Mf
II)
−1Mf

IΓ)v′Γ. (4.18)
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Rewriting the velocity inside the domain with the pressure equation above results in

v′I = −
{

(Mf
II)
−1Mf

IΓ+GI(G
T
I (Mf

II)
−1GI)

−1

·(GT
Γ −GT

I (Mf
II)
−1Mf

IΓ

}
v′Γ. (4.19)

The middle block equation gives the following relation for the fluid interface force and
fluid interface acceleration

ffΓ = ρfMf
ΓIv
′
I + ρfMf

ΓΓv
′
Γ + GΓp

= ρfMAv
′
Γ, (4.20)

with the added-mass operator

MA =

(
Mf

ΓI

(
Mf

II

)−1
GI −GΓ

)(
GT

I

(
Mf

II

)−1
GI

)−1

·
(
GT

I

(
Mf

II

)−1
Mf

IΓ −GT
Γ

)
+ Mf

ΓΓ −Mf
ΓI

(
Mf

II

)−1
Mf

IΓ. (4.21)

The term (GT
I (Mf

II)
−1GI)

−1 is positive definite, since Mf
II is positive definite and GI

has full rank. With Mf
ΓI = (Mf

IΓ)T it follows that the first term is also positive. The
remainig terms are the Schur complement of the fluid mass matrix Mf and therefore
positive. Thus, the operator MA is positive and additionally symmetric. It represents
the condensed solution operator of the fluid problem. The finite volume discretization
would result in a similar linear relation between the fluid interface acceleration and force,
under the assumptions above. For consistent meshes, the force equilibrium leads to

f sΓ = −ρfMA v′Γ. (4.22)

Separating the degrees of freedom for the structural equation, similar to the approach
above, gives the reduced structural equation

ρs
[
Ms

II Ms
IΓ

Ms
ΓI Ms

ΓΓ

] [
d′′I
d′′Γ

]
=

[
0

−ρfMA v′Γ

]
. (4.23)

Now, the staggered coupling scheme consists only of the structural equation, with the
solution of the fluid problem hidden in the added-mass operator. In this formulation it
becomes evident, why the phenomena is called added-mass effect. Since the fluid interface
acceleration is an approximation of the structural acceleration, the equation shows that
the fluid solution acts on the structural acceleration at the interface additionally through
the operatorMA.

The ordinary differential equation is discretized in time with the HHT-αmethod (3.39).
For α = 0, the acceleration reads as

d′′ =
1

∆t2
(
2dn+1 − 5dn + 4dn−1 − dn−2

)
. (4.24)
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The computation of interface acceleration v′n+1
Γ needs to be formulated in terms of the

displacements d of the interface. Applying the backwards Euler method to the interface
acceleration results in

v′n+1
Γ =

v̂n+1
Γ − v̂nΓ

∆t
, (4.25)

where v̂n+1
Γ is the ALE reference velocity at the interface. With the definition of the refer-

ence velocity v̂ (3.24) and use of the staggered coupling scheme, the interface acceleration
is given by

v′n+1
Γ =

dnΓ − 2dn−1
Γ + dn−2

Γ

∆t2
, (4.26)

since the fluid solver can employ only the previous displacements. Overall, the time
stepping method is formulated as

1

∆t2
ρsMs(2dn+1 − 5dn + 4dn−1 − dn−2) = fn+1, (4.27)

with

fn+1 =

[
0

− 1
∆t2

ρfMA

(
dnΓ − 2dn−1

Γ + dn−2
Γ

)] . (4.28)

Lumping the structural mass matrix into a diagonal matrix Ml and limiting the
equation to the degrees of freedom on the interface, simplifies the equation to,

ρsMl

(
2dn+1

Γ − 5dnΓ + 4dn−1
Γ − dn−2

Γ

)
+ ρfMA

(
dnΓ − 2dn−1

Γ + dn−2
Γ

)
= 0. (4.29)

SinceMA is positive, each vector has a representation in terms of the eigenvectors wi,

dlΓ =
∑
i

dliwi. (4.30)

Therefore, the coefficient di need to solve

ρsmi

(
2dn+1

i − 5dni + 4dn−1
i − dn−2

i

)
+ ρfµi

(
dni − 2dn−1

i + dn−2
i

)
= 0, (4.31)

where mi is the mass assigned to the interface node i, and µi is the eigenvalue corres-
ponding to the eigenvector wi. The eigenvalues are not considered in detail. For the
model case examined by Causin et al., they give a derivation for the eigenvalues of the
continuous added mass operator, indicating a dependency on the geometry.

This defines a characteristic polynomial for the multistep method (4.31),

pi(λ) = ρsmi(2λ
3 − 5λ2 + 4λ− 1) + ρfµi(λ

2 − 2λ+ 1) = 0. (4.32)

The multistep method is stable, if and only if the roots of each polynomial have an
absolute value of less than 1, see for example [15]. If the value at −1 is greater than zero,
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the polynomial has a root strictly less then −1, since it is of third degree. This leads to
the unstability condition

pi(−1) = −12ρsmi + 4ρfµi > 0 ⇔ ρs

ρf
<

µi
3mi

. (4.33)

Thus, for small enough density ratios the staggered coupling scheme described above is
unstable. Förster et al. show the a more general result for arbitrary multistep methods
used for the time discretization of (4.23).

Theorem 3 (Förster). Under the assumptions 1-3, every sequentially staggered scheme
for the solution of (4.9) has a mass ration ρs/ρf at which the overall algorithm becomes
unstable.

The derivation for the added-mass effect presented here, relies heavily on the assump-
tions 1-3. Without the simplifications it seems quite difficult to obtain a similar result.
Numerical examples, such as in chapter 6, show that the result still holds for the general
fluid-structure interaction model.

Influences of other parameters are not captured by this approach. By omitting non-
linear effects of other material parameters, such as the fluid viscosity or the Young’s
modulus and Poisson’s ratio of the structure, their impact on the stability cannot be
measured here. Förster et al. note that the structural stiffness has a stabilizing effect,
while the fluid viscosity acts destabilizing.

4.3 Implicit Coupling

The advantage of explicit coupling schemes stems from their minimal computational cost.
For some cases, especially for incompressible flows combined with low structural density,
as demonstrated by the previous section, explicit coupling is not a viable choice. In those
cases the instability of explicit methods outweighs the low computational cost.

The aim now is to enforce exact interface constraints, up to some precision, through
the equilibrium

F
(
dn+1
∗
)

= fn+1
∗ ,

S
(
fn+1
∗

)
= dn+1

∗ .
(4.34)

With these interface values, the stability analysis in 4.2 does not hold any more, because
the exact interface constraints result in both terms of the characteristic polynomial (4.32)
having the same degree. This problem can be reformulated as one of the following
equivalent fixpoint systems,

(a) S
(
F(dn+1)

) !
= dn+1,

(b) F
(
S(fn+1)

) !
= fn+1,

(c)
[

0 F
S 0

] [
fn+1

dn+1

]
!

=

[
fn+1

dn+1

]
.
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The equilibrium is achived by coupling the solvers multiple times within one time
step. Without advancing in time, the output of the solvers serves as the input for the
next iterations. These repeated application of the solvers, within one time step, are called
inner iterations. If the inner iterations converge, the interface constraints are satisfied,
up to the precision criteria.

The inner iterations can consist of sequentially or parallel information exchange
between the two solvers, depending on which fixpoint formulation (a)-(c) is considered.
At time step tn+1 the sequential scheme for fixpoint system (a) leads to the inner iteration

F (dk) = fk+1,

S (fk+1) = dk+1,
(4.35)

where the time super script of the quantities has been dropped. Figure 8 depicts a
schematic representation of this coupling method. A predictor gives the initial input
d0 = d̃n+1. Usually, the convergence criteria

||dk+1 − dk||
||dk+1||+ ||dk||

< ε (4.36)

is enforced, with some norm ||·|| and a desired precision ε. Alternatively, both interface
quantities must meet this criteria simultaneously. This is one step of the Gauß-Seidel
method, therefore the sequentially staggered scheme is called Gauß-Seidel iteration. Sim-
ilarly, the parallel coupling scheme results in a Jacobi method and this scheme is called
Jacobi iteration.

S

F

tn tn+1

conv?

k = 0

no

k = k + 1

yes

yes

Figure 8: Schematic view of implicit coupling with fixpoint formulation (a). The inner
iterations are counted by k.

Iterative methods satisfy the interface constraints up to the precision ε. These implicit
methods suffer from the disadvantage that they need multiple solver applications to
achieve convergence. Thus, the computational cost is several factors higher than for the
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explicit methods. A deeper analysis on the convergence of the Gauß-Seidel and Jacobi
method can be found in [50].

A common method to reduce the number of inner iterations is the under- or over-
relaxation, see for example [43]. Instead of using the output doutk+1 of the Gauß-Seidel
iteration (4.35) as new iterate for the next inner iteration, a linear combination of the
new output and the previous iterate is applied,

dk+1 = ωk+1d
out
k+1 + (1− ωk+1)dk, (4.37)

with ωk ∈ (0, 2). The right choice of ωk is deeply problem dependent. Simply setting the
relaxation parameter to constant ωk = ω can lead to a high number of iterations or no
convergence at all, if the constant is inferior, see the numerical examples in [43].

With the aid of Aitken’s method, a faster convergence can be accomplished. Rather
than setting ωk to a constant value, the parameter is adjusted in each iteration. First,
an Aitken factor µk+1 is computed by

µk+1 = µk + (µk − 1)
(∆dk −∆dk+1)T ·∆dk+1

||∆dk −∆dk+1||22
, (4.38)

with the difference
∆di = di−1 − douti . (4.39)

Then, the relaxation parameter in(4.37) reads as follows

ωk+1 = 1− µk+1. (4.40)

The advantage of this method is that it automatically chooses an appropriate ωk+1

and numerical examination indicates that the convergence is faster than the constant
relaxation, see [43].
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5 Quasi-Newton Methods

This chapter introduces quasi-Newton methods, to accelerate the convergence of the
inner iterations of the implicit coupling schemes. To bring the problem of section 4.3
into more general terms, the aim is to solve the fixpoint equation

H(x) = x, (5.1)

with some nonlinear function H : D ⊂ RN 7→ RN . The dimension N of the domain
depends on the discretization of the interface and the coupling scheme for the inner
iterations. In the case of the sequentially staggered scheme of (4.35) the fixed point
problem H is given by

H(d) = S (F (d)) (5.2)

and therefore the dimension of the domain of H is the number of degrees of freedom
for the interface displacement. Other coupling choices for the inner iterations result in
different functions H. Unrelated to the particular selection of coupling schemes, function
evaluations of H are expensive, since it computes one time step of each sub problem.
Furthermore, the function H is assumed to act as a black box. This means, no further
information than the output to a specific input is available, especially no derivatives of
H.

The problem (5.1) is equivalent to solving the nonlinear system

R(x) := H(x)− x = 0. (5.3)

Before formulating a method to solve this nonlinear system, the residuum needs some
regularities. The function H needs to be continuously differentiable and there exists
exactly one fixpoint x∗ of H in the domain D. Furthermore, the Jacobian matrices of H
and R must be invertible and bounded for all x ∈ D.

The most widely used solver for the nonlinear system (5.3), Newton’s Method, seeks
a new iteration improving on the previous

xk+1 = xk + p. (5.4)

The new iterate would be ideal, if the increment satisfies R(xk + p) = 0. To find an
approximate increment, the truncated Taylor series

R(xk + p) ≈ R(xk) + DR(xk)p (5.5)

gives the relation
DR(xk)p = −R(xk). (5.6)

This results in the iteration

xk+1 = xk −DR(xk)
−1R(xk). (5.7)

Under the assumptions above, convergence of this sequence is given by the following
theorem, if the initial vector x0 is close to the fixpoint x∗.

39



Theorem 4. Let D ⊂ RN be open and convex. The function R : D 7→ RN is continu-
ously differentiable with invertible Jacobi matrix DR(x) and

||DR(x)−1||2 ≤ α ∀x ∈ D. (5.8)

Additionally, DR(x) is Lipschitz continuous on D with constant β. The point x∗ is root
of R and x0 is the initial vector with x0 ∈ B(x∗, γ), where γ is small enough, such that
B(x∗, γ) ⊂ D and 0 < γ < 2

αβ . Then, the sequence defined by (5.7) stays in the ball
B(x∗, γ) and converges quadratically to x∗, i.e.

||xk+1 − x∗||2 ≤
αβ

2
||xk − x∗||22 ∀ k ∈ N. (5.9)

A prove can be found in [29]. Generally, the algorithms presented in the following
sections do not have convergence results. Therefore, this theorem, especially its assump-
tions, acts as a surrogate.

Usually, the nonlinear equations of the discretized fluid and structure model in sec-
tion 3.1 and 3.2 are solved with Newton’s method. The Jacobi matrix is computed analyt-
ically, depending on the discretization technique. In contrast, partitioned fluid-structure
interactions use both solvers as black boxes. Therefore, implicit coupling schemes cannot
rely on any derivatives of the sub problem solvers. Attempts to approximate the Jacobian
through finite differences can be found in [42]. This approximative version of Newton’s
method has the same convergence properties, but one Newton iteration needs at least 10
solutions to each sub problem. The methods described in the next part do not converge
quadratically, but they require only one application of both sub problem solvers for one
iteration.

5.1 Generalized Broyden Method

This part derives a quasi-Newton variant, the generalized Broyden method, which ap-
proximates the Jacobi matrix with only one solution to each sub problem per inner
iteration. It is an extension to the classical Broyden method [7], and was introduced
in [20]. For m+1 iterates xk−m, . . . , xk the Taylor series expansion leads to the following
secant equations for the Jacobian of the residuum

DR(xk)∆xi = ∆Ri ∀ i = k −m, . . . , k − 1, (5.10)

with an error of order O(||xi − xk||2). The differences ∆xi, ∆Ri are defined by

∆xi = xi − xk,
∆Ri = R(xi)−R(xk).

(5.11)

Therefore, an approximation Gk of DR(xk) should satisfy the same secant equations

Gk∆xi = ∆Ri ∀ i = k −m, . . . , k − 1, (5.12)
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and an approximation Jk of DR(xk)
−1 the equations

Jk∆Ri = ∆xi ∀ i = k −m, . . . , k − 1. (5.13)

For m < N , both sets of equations result in underdetermined linear systems

GkW = V, and JkV = W, (5.14)

with the difference matrices

V = [∆Rk−m, . . . ,∆Rk] ∈ Rd×k,
W = [∆xk−m, . . . ,∆xk] ∈ Rd×k.

(5.15)

It is always assumed that both matrices have full rank. If m = N and k > N + 1, the
approximation of DR(xk) is given by

Gk = V W−1. (5.16)

Also, the relation G−1
k = Jk holds. Since the dimension of the nonlinear system R is

associated with the degrees of freedom on the interface of the fluid-structure problem, it
is not feasible to have n evaluations of R.

To derive suitable matrices Gk or Jk in the case m < N , a second condition must
be imposed. First, only the matrix Jk is considered. It should give the same outcome
as Jk−m for a direction q if and only if the direction is orthogonal to Im(W ) or Im(V )
respectively. In the following, only Jk is considered, since the derivation for Gk is ana-
logous. For Jk this no-change condition reads

(Jk − Jk−m)q = 0 ⇔ ∀ q ⊥ Im(V ). (5.17)

With the identity Ker(Jk − Jk−m)⊥ = Im((Jk − Jk−m)T ), this shows that Im(V ) =
Im((Jk − Jk−m)T ). Thus there exists a matrix Z ∈ Rm×N such that

(Jk − Jk−m)T = V Z. (5.18)

Transposing and multiplying with V from right leads to

(Jk − Jk−m)V = ZTV TV. (5.19)

Therefore, the matrix Z can be computed by

ZT = (Jk − Jk−m)V (V TV )−1 = (W − Jk−mV )(V TV )−1, (5.20)

using the secant equation (5.13) for Jk. Plugging the formulation for Z into (5.18) yields
the update formula for the approximate inverse Jacobian

Jk = Jk−m + (W − Jk−mV )(V TV )−1V T . (5.21)
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The new iterate xk+1 is now obtained through

xk+1 = xk − JkR(xk)

= xk − Jk−mR(xk)− (W − Jk−mV )(V TV )−1V TR(xk).
(5.22)

An alternative derivation [19] of this update formula seeks Jk as a minimizer of

||Jk − Jk−m||2F (5.23)

under the constraint that Jk satisfies the secant equation (5.13).
The approximation of the Jacobi matrix DR(xk) follows the same procedure. Ad-

ditionally, the Sherman-Morrison-Woodbury formula provides an explicit formulation of
the inverse of Gk,

G−1
k = G−1

k−m + (W −G−1
k−mV )(WG−1

k−mV )−1WG−1
k−m. (5.24)

Therefore, the update scheme involving the approximate Jacobian requires only one
matrix vector multiplication with G−1

k instead of solving a system of linear equations
with Gk.

The algorithm 1 summarizes the generalized Broyden method, resulting from choosing
the inverse Jacobi matrix as a starting point. It already contains the additional practical
considerations from section 5.3. Currently, there is no result on the convergence of the
algorithm for an arbitrary number of secant equations m. The following two sections
consider special cases of m, 1 and ∞, and their resulting algorithms. Other possible
choices are not examined, since finding the ideal number of secant equations is highly
problem dependent, see [20].

Algorithm 1: Generalized Broyden Method
Input : initial guesses x0 and J0, number of secant equations m
Output: converged solution x∗, approximative Jacobian J∗

1 for k = 0, 1, . . . until converged do
2 yk = H(xk)
3 Rk = yk − xk
4 V = [∆Rk−m, . . . ,∆Rk−1], with ∆Ri = Ri −Rk
5 W = [∆xk−m, . . . ,∆xk−1], with ∆xi = xi − xk
6 α = arg minβ∈Rd ||V β +Rk||
7 xk+1 = xk − Jk−mRk − (W − Jk−mV )α
8 if k>m then
9 Jk+1 = Jk−m + (W − Jk−mV )(V TV )−1V T

Remark. It is possible to construct the difference matrices V and W in a different
manner. For that, the differences ∆xi and ∆Ri are defined by

∆xi = xi+1 − xi
∆Ri = R(xi+1)−R(xi)

. (5.25)
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Then, the matrices V and W are not computed anew each iteration. Instead, the current
secant equation DR(xk)∆xk ≈ ∆Rk is appended to V and W . The disadvantage of
this approach is that the Jacobian does not satisfies DR(xk)W ≈ V anymore. In the
works [20] and [19] it is shown numerically that the generalized Broyden method still
converges. Since it reduces the computational cost of the difference matrices to a constant,
this approach is used for the implementation of these methods.

Case m = 1

The choice m = 1 leads to the well known Broyden method. Although this is one of
the standard method for the solution of nonlinear equations, the Broyden method has
not been applied to implicit coupling of fluid-structure interactions until recently, see [5].
The Broyden variant related to the approximation of the inverse Jacobian is known as
Broyden’s ‘bad’ method, while the other variant is called Broyden’s ‘good’ method. In
spite of this notation, there is no general evidence in favor of one or the other method.

Broyden’s bad method satisfies only one secant equation Jk∆Rk−1 = ∆xk−1, while
minimizing ||Jk − Jk−1||2F . This leads to the update formula

Jk = Jk−1 +
∆xk−1 − Jk−1∆Rk−1

||∆Rk−1||22
∆RTk−1

xk+1 = xk − JkR(xk).

(5.26)

Noting that Jk−1∆Rk−1 = Jk−1R(xk) + ∆xk−1 reduces the rank one update to

Jk = Jk−1 −
Jk−1R(xk)

||∆Rk−1||22
∆RTk−1. (5.27)

For any initial guess J0 close to DR(x∗)
−1 this method converges superlinearly, see [8].

Case m =∞

Choosing m =∞, results in a method, satisfying always the maximal amount of secant
equations. The appropriate minimizer is ||Jk − J0||2F . The approximation Jk+1 is never
computed explicitly, since it only depends on the initial guess matrix and the difference
matrices V and W . Therefore, the corresponding update formula reads as follows

xk+1 = xk − J0R(xk)− (W − J0V )(V TV )−1V TR(xk). (5.28)

This method depends greatly on the choice of the initial guess J0. In case of black
box coupling, no further information on the solvers than their output is available. Thus,
no educated guess of the initial matrix J0 based on properties of the sub problems is
possible. Instead, a reasonable guess is a scaled unity matrix, i.e. J0 = −βI, β > 0.
The Anderson mixing scheme, introduced in [1], is equivalent to the generalized Broyden
method with this choice ofm, see [20]. Recently, the r-linear convergence of the Anderson
mixing has been shown, see [51], under the additional assumption that the function H is
a contraction.
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The fixpoint problem is part of a time stepping method. At time step tn+1 the an
approximation Jn∗ from the previous time step has already been computed. By using
the last approximation Jn∗ as initial guess, information from the previous time step is
available for the generalized Broyden method. This can lead to a faster convergence,
since, heuristically speaking, the fixpoint problems for two consecutive time steps are
closely related, especially for small time steps. The effect of the initial guess is examined
in the numerical example 6.

5.2 Inverse Generalized Broyden Method

The publications [14] and [5] introduce iterative methods to solve the fixed point prob-
lem (5.1), occurring in fluid-structure interactions. Although they can be classified as
quasi-Newton methods, see [38], their connection to other quasi-Newton methods like
the generalized Broyden methods is difficult to recognize. These methods solve a differ-
ent nonlinear system, resulting in slightly adjusted methods, which is introduced in the
following.

Instead of the residuum R(x), the ‘inverse’ residuum

R̃(y) = y −H−1(y) (5.29)

is considered. The inverse function of H exist in a neighborhood around x∗, because H
is continuously differentiable with invertible Jacobian. Since H and H−1 have the same
fixed points, both problems are equivalent in the domain D. Applying the generalized
Broyden method, described above, leads to the iteration scheme

yk+1 = yk − JkR̃(yk), (5.30)

where Jk minimizes ||Jk − J0||2F with an appropriate choice for the initial guess.
It is possible to choose Jk as minimizer of ||Jk − Jk−m|| satisfying m < ∞ secant

equations. Similarly to the generalized Broyden case, the only variant of interest for this
type is the choice m = 1. In every test case considered, this inverse generalized Broyden
method diverged and therefore it is not examined further. Currently, it is not clear if
this behavior holds true for all m <∞.

The inverse function H is not given explicitly. Therefore, the inverse residuum cannot
be evaluated for arbitrary y ∈ RN . Instead, computing an intermediate update xk+1 with
the update formula above (5.30) and then applying the function H, i.e.

xk+1 = yk − JkR̃(yk),

yk+1 = H(xk+1),
(5.31)

gives a new iterate, with an easy to determine residuum. In this case, the inverse residuum
is simply

R̃(yk+1) = H(xk+1)− xk+1 = R(xk+1). (5.32)

Thus, the quasi-Newton iterations needs only one calculation of H, the same amount
as for the generalized Broyden method. In the following, this quasi-Newton method is
denoted as inverse generalized Broyden method. Algorithm 2 displays the full method.
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Algorithm 2: Inverse Generalized Broyden Method
Input : initial guesses x0 and J0

Output: converged solution x∗, approximative Jacobian J∗
1 for k = 0, 1, . . . until converged do
2 yk = H(xk)
3 Rk = yk − xk
4 V = [∆Rk−m, . . . ,∆Rk−1], with ∆Ri = Ri −Rk
5 W = [∆yk−m, . . . ,∆yk−1], with ∆yi = yi − yk
6 α = arg minβ∈Rd ||V β +Rk||
7 xk+1 = yk − J0Rk − (W − J0V )α

The selection of J0 characterizes the method further. The same choices as for the
generalized Broyden method are possible. The algorithm, obtained by choosing J0 =
−βI, is closely related to the Anderson mixing method.

Bogaers introduced the multi-vector update quasi-Newton (MVQN) method in [5]
using the same update formula (5.31) with the Jacobi approximate defined by

Jk = Jn∗ + (W − Jn∗ V )
(
V TV

)−1
V T . (5.33)

Carrying over the approximation of the fixpoint problem from the previous time step
in the inverse generalized Broyden’s method, i.e. J0 = Jn∗ , results in the same update
method for Jk. Thus, the MVQN method is a special case of the inverse generalized
Broden’s method.

If no previous approximation Jn∗ exist, for example in the very first time step of a
coupled simulation, Bogaers suggested to use J0 = 0 as an initial guess. In the following
another approach is used. As in the case of Anderson mixing, the initial guess is set to
J0 = −βI. Since the Jacobian is invertible it seems more reasonable to start with an
approximation which is also invertible.

The inverse generalized Broyden method allows for a further alternative to the afore-
mentioned initial matrices. With J0 = 0, the method is equal to the quasi-Newton
least square (QNLS) method, described in [14]. Again, the author employed the update
formula (5.31) and for the approximation they used

Jk = W
(
V TV

)−1
V T . (5.34)

This shows that the LSQN method is also a special case of the inverse generalized Broy-
den’s method.

The corresponding generalized Broyden method creates iterates xk only within the
two dimensional space span{x0, x1}. Therefore it cannot converge for any x∗ not in the
linear span. This follows from induction.

Let x0 and x1 be the first two iterates of the generalized Broyden algorithm 1 with
m =∞ and J0 = 0. Then, for the second iteration it holds that

x2 = x1 +Wα = x1 + α(x1 − x0) ∈ span{x0, x1}, (5.35)
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with some scalar α ∈ RN . For k > 2 assume that xi ∈ span{x0, x1}, i = 0, . . . , k.
The image of W is a subspace of span{x0, x1}, since ∆xi, i = 0, . . . , k − 1, are a linear
combination of x0 and x1. Thus, the new iteration

xk+1 = xk + Wα︸︷︷︸
∈ span{x0,x1}

, (5.36)

with arbitrary α ∈ Rk, also lies in the linear span of x0 and x1.
The inverse generalized Broyden method does not suffer from this deficiency. The

intermediate value xk+1, computed by (5.30), is always in the linear span of y0, . . . , yk
but the new iterate yk+1 = H(xk+1) is not generally in this subspace. Therefore, the
search space does not stagnate in each iteration.

5.3 Implementation Details

This final section gives some notes on the actual implementation of the methods presented
above. The generalized Broyden method with m = 1 can be simplified as seen before.
For the case m =∞, simplification are also possible.

The first thing to note is that the methods with m =∞ do not explicitly require the
matrix Jk at any point. The matrix vector product JkR(xk) or JkR̃(xk) is completely
defined by the initial guess J0 and the difference matrices V and W , compare (5.21).

In the generalized Broyden method and the inverse generalized Broyden method , the
matrix vector multiplication involves the product

α = (V TV )−1V T z, z ∈ RN , (5.37)

with V ∈ RN×k and α ∈ Rk, which is the solution of the normal equation to V α = z.
This is a least square problem

||V α− z||2 → min (5.38)

for k < N and the most common solution technique for it is the column pivoting QR
decomposition.

Near the fixpoint x∗ the sequence xk becomes almost linear dependent. Thus, the
least square problem is ill conditioned for growing k. To compute a stable solution, the
QR decomposition is regularized. The decomposition

V P = Q ·
[
R11 R12

0 R22

]
(5.39)

is adjusted, such that R11 is the largest upper triangular block matrix with a condi-
tion number below a certain threshold. Then, the block R22 is set to zero. With an
additionally orthogonal transformation

(R11, R12)Q̃ = (R̃110), (5.40)

the solution to the least square system (5.38) is

α = PQ̃

[
R̃−1

11 Q
T
1 z

0

]
, (5.41)
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where Q1 consists of the columns of Q corresponding to R11.
With the solution to the least square problem α, the matrix vector multiplication

with Jk reduces to
JkR(xk) = J0R(xk) + (W − J0V )α. (5.42)

The computation of α needs O(k2d) operations and in the case J0 ∈ {0,−βI} the product
of α and (W − J0V ) is done in O(kN). Thus, the overall complexity for one iteration
of the quasi-Newton methods with m =∞ and J0 ∈ {0,−β} is O(k2N). If the matrices
V and W are defined as in the remark above, the QR decomposition from the previous
quasi-Newton iteration can be updated with only one Givens rotation, see [28]. This
results in a complexity of O(kN) for the methods mentioned above.

The choice J0 = Jn∗ brings some additional cost. The matrix vector multiplication
(W − Jn∗ V )α and Jn∗R(xk) now require O(N2) operations, since the matrix Jn∗ is dense.
Moreover, at the beginning of a new time step or at the end of the current time step,
the approximated inverse Jacobian Jn∗ must be computed explicitly. In this instance, the
matrix product

Z = (V TV )−1V T (5.43)

cannot be considered as a least square problem. Instead the linear system

(V TV )Z = V T (5.44)

needs to be solved. Since the matrix V TV is symmetric and positive definite if V has full
rank, the Cholesky decomposition of V can be aplied. The decomposition needs O(k3)
operations, which is feasible for small k << m. The overall complexity for the solution
is O(k3 + k2N). An alternative solution approach for the linear system is to use the QR
decomposition of V again, which exhibited stability issues over the course of this thesis
and therefore was disregarded.

Convergence Improvements

After a large number of time steps, the matrix Jn∗ tends to be a poor initial guess. It
incorporates information from all previous time steps, which can become inconsistent.
The quasi-Newton methods without J0 = Jn∗ can exhibit the same problem, if the number
of quasi-Newton iterations grows large. In such cases the quasi-Newton method needs to
restart.

It is difficult to predict, when a restart is necessary. If, within one time step, the
residuum R(xk) increases by a factor of more than r, where r > 0 is a restart parameter,
i.e.

||Rk|| > r ||Rk−1|| , (5.45)

this indicates that the approximation Jk is not suitable anymore. The parameter is chosen
large enough, that restarts only happen rarely. Furthermore, if the residuum decreases
in every inner iteration for a small amount of time steps, a second restart criteria can be
implemented. In this case, after two consecutive iterations without decreasing residuum,
i.e.

min {||Rk|| , ||Rk−1||} > ||Rk−2|| , (5.46)
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a restart is appropriate. If the convergence is rather slow and the residuum is not
decreasing for each iteration even for a low number of time steps, this restarting criteria
is unsuitable.

For a restart, all iterates are discarded, except either iterates k−1 or k−2 respectively,
the last iterations with a reasonable decrease of the residuum. Then, this iterate is the
new initial vector for the quasi-Newton method. Additionally, the initial guess is set to
−βI or 0 again.

Another convergence enhancing technique is the damping of the new search direction
−JkR(xk). This can even guarantee global convergence. The cost for that are several
evaluations of H to find a fitting damping parameter. Therefore, these methods are not
considered further.

5.4 Integration into MpCCI

To apply these quasi-Newton methods to fluid-structure interactions, they must be im-
plemented into a coupling software package. MpCCI offers the possibility to couple,
explicitly or implicitly, a wide range of commercial and non-commercial software pack-
ages. The architecture of MpCCI consists of one coupling server and two separate code
adapters, for each solver individually. This is depicted in figure 9. The code adapters
communicate with the solver and then send data to or receive data from the server. The
server interpolates received data to make it compatible with the mesh of the target solver.

F

MpCCI code adapter MpCCI coupling server MpCCI code adapter

S

recv f interpolate quasi-Newton send f i

send di quasi-Newton interpolate recv d

Figure 9: Simplified architecture of MpCCI with newly implemented quasi-Newton step.

The quasi-Newton methods implemented into the coupling server of MpCCI over the
course of this thesis are summarized in table 1. After the interpolation of the received
data, one quasi-Newton step is performed. In the case m = ∞, this quasi-Newton step
consists of the following parts:

1. if J0 = Jn∗ , compute Jn∗ = Jn−1
∗ + (W − Jn−1

∗ V )(V TV )−1V T at the start of a new
time step,

2. save the current value of H, for example yk = f i, and compute Rk = xk − yk,
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3. update the difference matrices V and W according to the remark in section 5.1,

4. solve the least square problem ||V α+Rk||2 and

5. compute the new step xk+1 = xk − J0Rk − (W − J0V )α or
xk+1 = yk − J0Rk − (W − J0V )α for inverse methods.

The least square problem ||V α+RK || and the linear system (V TV )−1V T are solved
using the techniques described in section 5.3. For the case m = 1, the update for xk+1

and Jk simplifies to (5.26), as mentioned earlier. The concrete implementation of the
linear algebra methods uses the LAPACK library, version 3.6.0 [2].

GB(Jk) GB(−βI) I-GB(−βI) I-GB(0) GB(Jn∗ ) I-GB(Jn∗ )

m 1 ∞ ∞ ∞ ∞ ∞
J0 Jn∗ −βI −βI 0 Jn∗ Jn∗

Fixpoint
problem

H H H−1 H−1 H H−1

Table 1: Comparison of implemented quasi-Newton methods.

Currently, the quasi-Newton methods can only handle inner iterations using the se-
quential coupling schemes. The parallel coupling scheme needs both quantities available
in the same place to compute the residuum. This is not possible in the current version
of MpCCI, since between the interpolation and the send command of one quantity the
other one is not needed. In [54] and [38] the authors showed an clear advantage of the se-
quential coupling methods compared to the parallel ones. Thus, enabling the possibility
of parallel coupling was not a priority.
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6 Numerical Investigation

This chapter applies the quasi-Newton methods from the previous chapter applied to
fluid-structure interactions. The fluid problems are solved by the commercial software
package FLUENT. For the solution of the structural problems, the commercial software
package ABAQUS is employed. Both solvers are coupled by the software package MpCCI.
The parameter β, appearing in the definition of the initial matrix, is always set to 0.1. A
in detail analysis of this parameter is omitted, since it would entail testing the numerical
examples with a large number of possible choices. The quasi-Newton methods use the
fixpoint function H = F ◦ S.

The convergence of the quasi-Newton methods above is examined. The quasi-Newton
methods use exactly one solution to both sub problems in one iteration, thus its per-
formance determines the computational effort of the whole simulation. Furthermore, it
is compared with Aitken’s method, the solver for implicit coupling currently used by
MpCCI. The first example additionally explores the effects of the added mass on the
implicit coupling.

6.1 Driven Cavity with Moving Bottom

The first example is an extension of the classic 2D driven cavity model, where the bottom
is not fixed. The oscillating movement of the top induces currents within the fluid, which
in turns results in over- or underpressure on the bottom. This creates the motion of the
bottom. Figure 10 shows the geometry for the example. The edges are 1m long and the
slits are 0.2m wide.

ux(t) = 1− cos2πt
5

A

Flexible

Figure 10: Geometry of the driven cavity example with flexible bottom.

No slip boundary conditions are imposed on the vertical walls for the fluid. The
motion of the bottom changes the area of the geometry and therefore a pressure inlet
and outlet near the top are needed, since the fluid is incompressible. The structure is
fixed on both ends with zero stress on the downward facing boundary.

The fluid density is set to ρf = 1kg/m3 and the viscosity to νf = 0.01kg/ms. The
structural density varies from ρs = 25kg/m2 to 500kg/m3 with a Young’s modulus E =
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250N/m2 and Poisson’s ratio νs = 0. The low structural stiffness leads to a strong added
mass effect.

The fluid domain is discretized with 24 × 24 rectilinear cells. The Navier-Stokes
equations (3.14) are solved with the backwards Euler formula in a coupled manner.
The structure discretization uses three layers of 80 bilinear elements each. For time
integration, the HHT-α method with α = −0.005 is used.

Stability Results

To illustrate the instabilities stemming from the added mass effect, the fluid and structure
solvers are coupled explicitly, with the Gauß-Seidel scheme H = F ◦ S. Figure 11
shows the displacement of the reference node A. The simulation is stable on the interval
[0, 40s] with structural density ρs = 500kg/m3 and time step size ∆t = 0.1s. Reducing
the density to ρs = 250kg/m2 results in a diverging simulation after about 10s. The
computation is not stabilised by reducing the time step size to ∆t = 0.05s, instead with
this time step the previous stable simulation becomes unstable after 20s.

0 5 10 15 20 25 30 35 40
Time

0.00

0.05

0.10

0.15

0.20

0.25

u
y
(A

)

∆t= 0. 1s

ρs = 500

ρs = 250

0 5 10 15 20 25 30 35 40
Time

0.00

0.05

0.10

0.15

0.20

0.25

u
y
(A

)

∆t= 0. 05s

ρs = 500

ρs = 500

Figure 11: Displacement of the point A computed with explicit coupling and different
parameters.

In contrast, implicit coupling, with any of the quasi-Newton methods named above,
is stable for the previous stated combinations of structural density and time step size.
The figure 12 depicts the solution for the parameters ρs = 250kg/m3 and ∆t = 0.05s,
computed with the quasi-Newton method I-GB(Jn∗ ). This shows that the application of
implicit coupling avoids the instabilities of the added mass effect. The disadvantage of
these implicit coupling schemes is the higher computational cost. About six iterations of
the I-GB(Jn∗ ) method are needed to achieve a relative error less than 10−7, i.e.

||Rk||∞
||xk||∞ + ||H(xk)||∞

< 10−7, (6.1)

within each time step. Therefore, the quasi-Newton method is six times as expensive as
a stable explicit coupling would be.
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(a) t = 30.9s (b) t = 32.15s (c) t = 33.4s (d) t = 34.65s

Figure 12: Pressure and velocity direction at the bottom of the solution with density
ρs = 250kg/m3 and ∆t = 0.05s, computed by GB(Jn∗ ), at different times of one oscilation.

Although the low structural density does not result in divergence anymore, c.f. fig-
ure 12, it has a negative effect on the convergence of the quasi-Newton methods. The
left graph in figure 13 shows the impact lower structural density has on the convergence
of different quasi-Newton methods with time step size ∆t = 0.1s. The mean number
of iterations to achieve the convergence criteria above rises with decreasing density ra-
tio. Aitken’s method is affected the most, its mean number of iterations is more than
doubled for the lowest density ρs = 25kg/m3. The quasi-Newton methods require around
1.6− 1.7 times as many iterations on the lowest density setting compared to the simula-
tion with the highest density. This indicates that the regularities of the fixpoint problem
are reduced by decreasing the density ratio.

100200300400500

Structural Density kg/m3

4

6

8

10

12

14

16

18

20

22

 I
te

ra
ti

o
n
s

Aitken

GB(Jk)

I-GB(0)

GB(Jn)

GB(− βI)
I-GB(Jn)

I-GB(− βI)

10-210-1

Time step size ∆t

4

5

6

7

8

9

10

11

 I
te

ra
ti

o
n
s

Figure 13: Mean number of iterations until convergence for varying structural densities
with constant time step ∆t = 0.1s on the left. The right shows the mean number of
iterations for variing time step sizes with density set to ρs = 250kg/m3.

As seen in figure 11, lowering the time step size has a destabilizing effect on the
explicit simulation. This does not hold for implicit coupling. Furthermore, the time step
size has only negligible influence on the convergence of the implicit coupling schemes,
as shown in the right graph in figure 13. The only negative effect of a small step size
is the larger amount of time steps needed to complete the simulation, which increases
the probability of restarting the quasi-Newton methods. In the second example 6.2 the
effects of restarting a quasi-Newton iteration are discussed in more detail.
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Performance Results

The first graph in figure 13 shows a clear advantage of the quasi-Newton methods over
the Aitken’s method with respect to their performance. For every considered density,
all quasi-Newton methods are faster than Aitken’s method on average, with a speed up
of 1.7 − 2.6 for the lowest structural density. The inverse generalized Broyden method
I-GB(Jn∗ ) with initial guess J0 = Jn∗ and m =∞ shows the best convergence overall.

Next, the influences of the different parameters of the quasi-Newton method, the
initial guess J0, the number of secant equations m and the choice of residuum, R or R̃,
are examined. For this purpose, the simulation with structural density ρs = 150kg/m3

and ∆t = 0.1s is looked at more thoroughly.
To show the impact of the initial matrix, Broyden’s method with J0 = −βI and

J0 = Jn∗ are compared. The number of iterations to achieve convergence (6.1) for each
time step is displayed in figure 14. The convergence speed of the Broyden method without
reuse of information from earlier time steps is independent of the current time step. This
method usually requires 12 − 13 iteration until convergence. In contrast, the reuse of
the approximated inverse Jacobi matrix leads to convergence within 10 iterations or less
after 100 time steps. The number of iterations decreases even further such that after 200
time steps only 5− 6 iterations are sufficient.
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Figure 14: Number of iterations until convergence within each time step for the simulation
with density ρs = 150kg/m3 and time step ∆t = 0.1s. Both methods use the standard
residuum and only one secant equations. The graph on the left uses the method with
J0 = −βI, while on the right the method reuses information through J0 = Jn∗ .

This shows that with the reuse of information from previous time steps a speed-up
of factor 2 can be achieved, after enough time steps. A further comparison between
GB(−βI) and GB(Jn∗ ) and between their inverse variants I-GB(−βI) and I-GB(Jn∗ ), as
seen in figure 13, support this notion. In all cases the version with initial guess J0 = Jn∗
is 1.3− 1.7 times faster than the version with J0 = −βI. It should be noted that a too
large amount of time steps can slow down convergence. This can be seen in the later
example, which uses a large amount of time steps.

Comparing Broyden’s method with J0 = −βI and GB(−βI) highlights the influence
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of the number of secant equations m. Broyden’s method uses one secant equation, while
Anderson’s mixing incorporates all available equations. Figure 15 shows that the method
using all secant equations needs 3− 4 less iterations to converge, which amounts to a 1.4
times faster simulation. The comparison of GB(Jk) and GB(Jn∗ ) in figure 13 reinforce
this result with a speed-up of 1.1 − 1.4. Since, in all cases, the number of iterations
until convergence is relatively small, a different behavior might be observed for a larger
number of quasi-Newton iterations, see [20].
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Figure 15: Number of iterations until convergence within each time step for the simulation
with density ρs = 150kg/m3 and time step ∆t = 0.1s. Both methods use the standard
residuum and the initial guess J0 = −βI. The graph on the left uses the method with only
one secant equation, while on the right the method uses all available secant equations.

Lastly, the impact of the choice of residuum, R(x) = H(x) − x or R̃(y) = y −
H−1(y), is considered in figure 16. Both methods, GB(Jn∗ ) and I-GB(Jn∗ ), accelerate their
convergence over multiple time steps until 4 quasi-Newton iterations are sufficient. The
inverse method achieves this about 100 time steps earlier than the generalized Broyden
method. Additionally, within the first 100 time step I-GB(Jn∗ ) converges considerably
faster than GB(Jn∗ ). Overall, the inverse generalized Broyden method is around 1.3 times
faster, which can also be seen from comparing GB(−βI) and I-GB(−βI) in figure 13.

6.2 FSI Benchmark by Turek

The second numerical example is the benchmark proposed by Turek et al. [52], which is
used to evaluate different fluid-structure interactions solvers. A wide range of different
solution techniques has been applied to this problem, see [53]. This benchmark allows
an examination of the performance of the quasi-Newton methods for a greater number
of time steps than the driven cavity example. Figure 17 sketches the geometry of the
model.

The channel is 2.5m long and 0.41m high. The cylinder with radius 0.05m is posi-
tioned around the point (0.2m, 0.2m). The flexible beam has a length of 0.35m and a
height of 0.02m.
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Figure 16: Number of iterations until convergence within each time step for the simulation
with density ρs = 150kg/m3 and time step ∆t = 0.1s. Both methods use the inital guess
J0 = Jn∗ and all available secant equations. The graph on the left uses the method with
the standard residuum R = H − I, while on the right the method employes the inverse
residuum R̃ = I −H−1.
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Figure 17: Geometry of the benchmark propsed by Turek [52].

The fluid model is incompressible and viscous with density ρf = 1000kg/m3 and
νf = 10−3kg/ms. The structure model uses a linear elastic material model and allows
for large deformation. The Young’s modulus is set to E = 5.6 · 106kg/ms2, the Poisson’s
ratio to νs = 0.4 and the structural density to ρs = 1000kg/m3. This leads to a strong
added mass effect, although weakened by the high structural stiffness.

On the left channel side a velocity inlet with parabolic profile

vp(0, y) =
12

0.412
y(0.41− y) (6.2)

is prescribed. The inlet velocity slowly increses until t = 2s, leading to the boundary
condition

vb(t, 0, y) =

{
1−cos(π2 t)

2 vp(0, y) if t < 2,

vp(0, y) otherwise.
(6.3)
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On the right channel side outflow conditions are imposed and no slip conditions on the
top and bottom boundary parts. The structure is fixed on the left side to the cylinder.

The fluid solver uses an unstructured mesh with 27361 cells. The time stepping
method is again the backwards Euler method and the discretized continuity and con-
servation of momentum equation are solved by the SIMPLE algorithm. The structural
domain is discretized with 5 layers of 70 bilinear elements, resulting in 568 nodes. The
HHT-α method with α = −0.005 is applied. For both sub problems the time step size is
∆t = 0.001s.

Explicit coupling methods break down after around 20 time steps, see [39]. Implicit
coupling withH = F◦S is stable over the interval [0s, 10s] for any quasi-Newton method.
The periodic currents in the fluid induce a periodic motion of the structure after around
4s. The motion of the structure is measured by the displacement of the point A, c.f.
figure 17. Table 2 shows the oscillating movement of the point A computed by the quasi-
Newton methods and Aitken’s method and additionally the reference solution given by
Turek et al. [52]. The first value in the second and third column display the mean value
of the x and y displacement respectively and the second value shows the amplitude. The
last two columns show the frequencies of the motions.

Additionally, figure 18 shows the x and y displacement for the last 0.5 seconds of
the simulation, computed by GB(Jn∗ ). In figure 19 the magnitude of the velocity on the
whole domain is given on the interval [9.604s, 9.744s], showing one oscilation of the y
motion.

Method dx(A)× 10−3 dy(A)× 10−3 fx fy
Reference −2.68± 2.53 1.48± 34.38 10.9 5.3
Aitken −2.07± 1.96 1.87± 29.56 10.8 5.4
GB(−βI) −2.05± 2.00 1.70± 30.55 10.8 5.4
GB(Jn) −2.05± 2.00 1.70± 30.55 10.8 5.4
GB(Jk) −2.05± 2.00 1.70± 30.55 10.8 5.4

I-GB(−βI) −2.05± 2.00 1.70± 30.55 10.8 5.4
I-GB(Jn) −2.05± 2.00 1.70± 30.55 10.8 5.4
I-GB(0) −2.05± 2.00 1.70± 30.55 10.8 5.4

Table 2: Comparison of the oscillating motion of the control point A. In the first and
second column, the values m ± a denote the mean value m and the amplitude a of the
oscilation. The frequencies are found in the last two columns

All quasi-Newton methods result in the same motion of A, nearly identical to the
simulation with Aitken’s method. This indicates that the quasi-Newton methods work
correctly. The here computed simulations show a lower amplitude than the reference
solution, which most likely stems from the spatial and time discretization of the fluid
and structure. Because of temporal constraints, a simulation with finer meshes or time
step sizes has not been done.
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Figure 18: Displacement in x and y direction of the control point A, computed by I-
GB(Jn∗ )

Performance Results

This part examines the performance of the quasi-Newton methods in detail. Table 3
gives an overview of the convergence of each method. The minimal, maximal and mean
number of iterations to achieve convergence refer to the simulation after the oscillation
is fully developed. The last column considers the whole simulation.

Method min max mean sum
Aitken 19 50 25.86 251641
GB(−βI) 13 19 15.88 147024
GB(Jn∗ ) 9 27 12.33 114834
GB(Jk) 7 39 9.52 87698

I-GB(−βI) 13 15 14.18 132679
I-GB(Jn∗ ) 6 19 7.21 66254
I-GB(0) 12 13 12.77 119129

Table 3: Minimal, maximal and mean number of iterations until convergence within one
time step for each method as well as the number of iteration for the whole simulation. The
minimal, maximal and mean values are restricted to the time steps after the oscilation
is fully developed.

All quasi-Newton are substantially faster than Aitken’s method. The slowest quasi-
Newton method GB(−βI) requires ten iterations less than Aitken’s method, on average.
This leads to a speed-up of 1.7. Again, the best performance is achieved by I-GB(Jn∗ ),
resulting in a speed-up of 3.7 compared to Aitken’s method.

Broyden’s method is the second fastest variant, while for the previous example it
is the second slowest quasi-Newton method. It profits from the larger number of time
steps, as already suggested. Furthermore, Broyden’s method is faster than the GB(Jn∗ )
method, indicating an advantage of a lower number of secant equations. This conclusion
is not as definitive as in the driven cavity example, since no other method with a low
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(a) t = 9.604s

(b) t = 9.651s

(c) t = 9.697s

(d) t = 9.744s

Figure 19: Velocity magnitude of the solution computed by I-GB(Jn∗ ) at different times
of one y oscilation.
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number of secant equation is considered.
Figure 23 allows for a closer comparison of all quasi-Newton methods. The methods in

the left column use the standard residuum R(x) = H(x)−x and the ones on the right use
the inverse residuum R̃(y) = y−H−1(y). It becomes evident that the inverse generalized
Broyden’s methods converge faster than their generalized Broyden’s counterparts.

The quasi-Newton methods without reusing information from earlier time steps show
nearly no variation in the speed of convergence after the oscillation is fully developed.
The least deviation is displayed by the GB(0) method.

In contrast, the methods with J0 = Jn∗ exhibit clear peaks in their number of iterations
until convergence. This is a crucial disadvantage of reusing information. Incorporating
information of a too large number of time steps leads to an unsuitable initial guess. Thus
the convergence speed decreases after a certain number of time steps. In the previous
driven cavity example this is not a problem, since only 400 time steps are considered.
Publications testing the quasi-Newton method I-GB(Jn∗ ) for similar problems do not
report such behavior, see for example [49] or [5]. In these works, the I-GB(Jn∗ ) method
shows a deviation from the mean value comparable to the deviation of the I-GB(0)
method.

To obtain the same convergence speed as before, the quasi-Newton iterations are
restarted, as explained in section 5.3. Figure 20 illustrates the effect of the restarts. It
shows the convergence behavior for GB(Jk), GB(Jn∗ ) and I-GB(Jn∗ ) in detail for the time
frame [4.6s, 6.6s], marking time steps where a restart occurred. The required amount of
iterations increases abruptly for all methods. This triggers the restarts, since either the
residuum increases drastically or the method is not converging.

The I-GB(Jn∗ ) methods always restarts because of the not decreasing criteria (5.46).
Both other methods restart because of an sudden increase in the residuum (5.45). As
can be seen from the behavior of the GB(Jn∗ ) method in figure 20a, the criterions are not
optimal. The number of iteration increases well before the criteria triggers the restart,
worsening the performance.

After the restarts, the convergence speed increases again and some time steps later,
depending on the method, the convergence is as good as before. The inverse generalized
Broyden method I-GB(Jn∗ ) has the same speed as before nearly immediately after restart,
while the standard version GB(Jn∗ ) needs a couple of hundreds time steps to regain its
convergence speed. The restarts appear to occur periodically with roughly 500 time steps
between two restarts, although the exact distance depends on the method.

The number of time steps between two consecutive restarts is displayed in table 4,
after the oscillation is build up. The shown distances lie in the range between 400− 700
time steps with some outliers, but they do not seem to follow any clear pattern. It is
currently uncertain, if the distance between restarts depends solely on the method used,
or additionally on the examined problem. Further examples with a large enough sample
seize of time steps are needed to get a conclusive answer.

Lastly, table 5 shows the computational time needed for each quasi-Newton method.
The min,max, and mean column refer to the time with the oscillating movement of the
structure. Additionally the max column contains the iteration with maximal computa-
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Figure 20: Number of iterations until convergence on the interval [4.6s, 6.6s] for the
quasi-Newton methods GB(Jk), GB(Jn∗ ) and I-GB(Jn∗ ). Additionally, time steps with a
restart of the iterations are marked.
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Distance between restarts
GB(Jk) 562 562 649 738 708 600 477
GB(Jn∗ ) 932 519 1026 1 48 428 114 618 546

I-GB(Jn∗ ) 422 694 1221 736 562 638 648 387

Table 4: The number of time steps between two consecutive restarts, after the oscillation
builds up.

tional time. The last column gives the overall computational cost of the quasi-Newton
methods for the whole simulation. All times disregard the time for the evaluation of the
sub solver.

Method min max [k] mean sum
GB(−βI) 0.07ms 0.48ms [14] 0.19ms 26.99s
GB(Jn∗ ) 0.32ms 0.90ms [24] 0.44ms 61.64s
GB(Jk) 0.51ms 0.68ms [ 8] 0.61ms 53.48s

I-GB(−βI) 0.07ms 0.43ms [14] 0.17ms 21.49s
I-GB(Jn∗ ) 0.34ms 0.56ms [ 7] 0.37ms 24.86s
I-GB(0) 0.07ms 0.39ms [12] 0.15ms 17.67s

Table 5: Minimal, maximal and mean time consumption for one iteration within a time
step for each method. The column with the maximal time consumption also displays
which iteration took the longest. In addition the last column shows the whole time spent
on each method for the whole simulation. Again, the minimal, maximal and mean values
are restricted to the time steps after the oscilation is fully developed.

Broyden’s method, which considers only one secant equation, has little variation in
its computational cost. In contrast, the methods using all available secant equations
increase their computational cost with each iteration. Since the number of iteration until
convergence is quite small, the computation time stays below 1ms.

Matrix free methods, i.e. J0 ∈ {0,−βI}, need the least amount of time, because they
do not require any operation with a cost of O(N2). The overall lowest computational
cost has the I-GB(0) method, which converges faster and uses two vector additions less
than the other matrix free methods.

The quasi-Newton methods with J0 = Jn∗ have a higher base cost of around 0.3ms,
since they always need two matrix vector multiplications with N × N matrices. The
additional computational time from the increasing number of secant equations is com-
paratively low. It amounts only to a three times higher cost at worst. In contrast, matrix
free methods increase their time until they need around five to seven times longer than
the first iteration within a time step.

The computational cost for every quasi-Newton methods is minimal compared to
the overall simulation. At worst, the quasi-Newton method needs around 1min for all
iterations of the simulation combined, while the whole simulation time, with evaluation
of both sub solvers, takes around 1.5 days to complete. This difference is due to the
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fact that the interface is small compared to at least one sub problem. For problems
with larger interfaces, in comparison to both sub problems, the computational cost of
the quasi-Newton methods can become considerable. In this case, especially the methods
with J0 = Jn∗ are at disadvantage, since their cost depends quadratically on the degrees
of freedom on the interface. This is explored in the following example.

6.3 Pressure Wave within Flexible Tube

For the third example, a 3D case with high discretization is examined. On the left side
of a tube pressure is applied, leading to a wave traveling through the tube. The solution
does not exhibit any oscillation like in the examples before. This example is described,
for example, in [5].

The fluid is incompressible with density ρf = 1000kg/m3 and viscosity νf = 6 ·
10−6kg/ms. The structure model uses a linear elastic material model with geometric
nonlinearities. The density is set to ρs = 1200kg/m3, the Young’s modulus to E =
3 · 106kg/ms2 and the Possion’s ratio to νs = 0.3.

The tube is 50mm long in z direction with an inner radius of 5mm and an outer
radius of 6mm. On the left inlet, a smooth pressure impuls is applied, i.e.

pi(t) =

{
1−cos( 2π

0.003
t)

2 1333 · 104 if t < 0.003,

0 otherwise,
(6.4)

and a pressure outlet is prescribed on the right end. The structure is fixed only at the
inlet and outlet. Figure 21 shows the geometry of the tube.

Figure 21: Geometry of the pressure wave example.

The fluid discretization uses 200, 000 hexahedral cells. The structure domain is dis-
cretized with 60480 hexahedral 8-node elements, leading to 76230 degrees of freedom.
The simulation is conducted over the interval [0s, 0.01s]. For both problems, the time
step size ∆t = 10−4 is chosen. The same time stepping methods as in the previous
examples are used. Since the structural discretization has 15246 nodes on the interface,
the dimension of the fixpoint problem for this example is quite large.
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Explicit coupling cannot produce a stable simulation for 100 time steps. All im-
plemented quasi-Newton methods lead to a stable simulation. Figure 22 shows a cross
section view of the pressure within the tube, computed by I-GB(−βI).

Table 6 summarizes the performance of the quasi-Newton methods. Because of time
constraints, Aitken’s acceleration was not applied to the simulation. The table shows
the minimal, maximal and mean number of iteration to achieve a relative residual less
than 10−4. These values do not consider the first eight time steps, since the methods
converged considerably worse in these time steps, with some methods not converging
within 25 iterations. Additionally, the number of quasi-Newton iterations needed for the
whole simulation is displayed.

min max mean sum
GB(−βI) 10 19 12.09 1112
GB(Jn∗ ) 7 17 11.62 1069
GB(Jk) 9 18 11.80 1086

I-GB(−βI) 11 16 11.93 1098
I-GB(Jn∗ ) 8 16 11.00 1012
I-GB(0) 11 16 11.64 1071

Table 6: Minimal, maximal and mean number of iterations until convergence within one
time step for each method as well as the number of iteration for the whole simulation.
The minimal, maximal and mean values disregard the first eight time steps, because all
methods showed considerably worse convergence in those time steps.

All methods need nearly the same number of iterations until convergence. Over the
whole simulation the differences accumulate only to 100 iterations between the fastest
and the slowest method. Therefore, this example is not suitable to judge the performance
of this method, although it still aligns with the results from the two previous examples.
More time steps, or a higher proposed accuracy could lead to a more decisive comparison
for this case.

Even though the convergence results are not as informative as in the previous sec-
tions, this example illustrates clearly the advantage of the matrix free methods, their
low computational cost. In table 7, the minimal, maximal and mean computation time
for one iteration can be found. Again, the first eight time steps are disregarded, since
all methods exhibit worse convergence in those time steps, and therefore they are not
representative. Additionally, the time spent on quasi-Newton methods is displayed in
the last column.

The matrix free method, i.e. methods with J0 ∈ {0,−βI}, are at least about 50
times faster than the methods with J0 = Jn∗ in their computation. Over the course
of the simulation, the quasi-Newton methods GB(−βI), I-GB(−βI), and I-GB(0) need
4−5 seconds for the computation of the quasi-Newton steps. The other methods require
at least 10 minutes computation time.

This significant difference is due to the matrix vector multiplication with a dense
N × N matrix, needed by GB(Jk), GB(Jn∗ ), and I-GB(Jn∗ ). The matrix free methods
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(a) t = 0.0025s

(b) t = 0.005s

(c) t = 0.0075s

(d) t = 0.01s

Figure 22: Cross section view of the pressure within the tube.
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Method min max [k] mean sum
GB(−βI) 0.13ms 11.03ms [18] 2.85ms 4.91s
GB(Jn∗ ) 452.33ms 478.71ms [11] 459.89ms 680.21s
GB(Jk) 962.89ms 1209.61ms [ 3] 977.99ms 1147.50s

I-GB(−βI) 0.13ms 8.70ms [15] 2.77ms 4.32s
I-GB(Jn∗ ) 452.15ms 484.81ms [ 2] 459.89ms 651.14s
I-GB(0) 0.12ms 8.68ms [15] 2.66ms 4.29s

Table 7: Minimal, maximal and mean time consumption for one iteration within a time
step for each method. The column with the maximal time consumption also displays
which iteration took the longest. In addition the last column shows the whole time
spent on each method for the whole simulation. Again, the minimal, maximal and mean
values disregard the first eight time steps, because all methods showed considerably worse
convergence in those time steps.

use only N × k matrices, where k is the number of iterations, resulting in a much faster
computation for larger N . Broyden’s method GB(Jk) needs twice as long as GB(Jn∗ ) and
I-GB(Jn∗ ), because of an inefficient implementation. Since the whole simulation needs
about 21 hours to complete, the 10− 20 minutes spent on the quasi-Newton methods is
still negligible.
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Figure 23: Number of iterations until convergence for each time steps and all considered quasi-Newton
methods.
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7 Conclusion

This work was aimed to solve fluid-structure interactions efficiently. The partitioned
approach split the problem into a fluid and structure sub problem, where the interaction
is modeled through appropriate boundary conditions. This allowed to employ already
existing solution techniques to each sub problem separately.

The solver for each sub problem could be coupled explicitly, only one data exchange
per time step, or implicitly, multiple data exchanges for one time step. The explicit
coupling method was simpler and more efficient, but led to unstable simulations for
incompressible fluids. These instabilities were caused by the added mass effect. A stable
simulation was achieved by using implicit coupling, at a higher computational cost.

To reduce the cost of the implicit coupling, generalized Broyden’s methods were
examined. Furthermore, this work introduced the ‘inverse’ generalized Broyden’s method
based on the inverse of the fixpoint equation appearing in implicit coupling. The known
quasi-Newton methods for implicit coupling, least square quasi-Newton and multi-vector
update quasi-Newton, were shown to be special cases of the inverse generalized Broyden’s
method, allowing for comparison with different cases of generalized Broyden’s method.

A numerical example showed that the implicit coupling with quasi-Newton methods
still has remnants from the added mass effect. Although the computation were stable,
decreasing the density ratio led to slower convergence, irregardless of the quasi-Newton
method employed. However, reducing the time step size had no negative effect on the
convergence.

Furthermore, the performance of the selected quasi-Newton methods was examined.
Overall, the inverse generalized Broyden’s methods exhibited better convergence than
their standard counterparts. Additionally, the reuse of information from previous time
steps, through the initial guess for the approximation of the Jacobian, proved to be
advantageous. For simulations with a large number of time steps, this reuse must be
treated carefully, by eventually restarting the time step, to avoid divergence.

The introduction of the inverse generalized Broyden’s method leaves some questions
open. The approximate Jacobian was constructed incorporating all available secant equa-
tions within one time step. Other choices for the number of secant equation were not
considered, leaving the possibility open for better convergence with a certain number
of secant equations. Since this number is most likely problem dependent, considering
methods to adaptively choose the number of secant equations may be worthwhile, even
for the generalized Broyden’s method.

The initial guess for the approximate Jacobian plays an integral role in the conver-
gence of the quasi-Newton methods. Therefore, new ways to deduce a initial matrix could
lead to a better convergence. For example, variables like displacement or velocity are of-
ten extrapolated for the next time step, and thus similar approaches to the approximate
Jacobi matrix could be possible.

As a final remark, the established quasi-Newton methods implement only indirect the
fact that the fixpoint problem is part of a time stepping method. Thus, more sophistic-
ated ways to integrate the time dependency would be an interesting field of research.
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