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We consider the modeling and simulation of flows composed of a fluid with an 
immersed particulate solid phase within a two-way coupled scheme. We embed it 
into the generalized finite difference framework of the finite pointset method (FPM). 
Both phases are described in a Lagrangian formalism and are represented by point 
clouds. This allows us to treat all phases in a common framework and to take 
advantage of synergies in terms of data structures and algorithms. A key challenge 
which is introduced by the generalized finite difference setting is the calculation of 
averaged quantities. Due to the properties of our mesh-free approach which is 
missing an inherent definition of cell volume, conventional averaging strategies from 
mesh-based schemes are not directly applicable. We employ an approach which 
circumvents these problems and takes the finite difference nature of the FPM into 
account. Additionally, we bring to light the required changes to a projection method 
for the fluid phase to incorporate the multi-phase setting. The solid phase solver, 
averaging scheme, and fluid solver are embedded into a coupled algorithm with a 
substepping procedure to improve efficiency.
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Abstract
EN
We consider the modeling and simulation of flows composed of a fluid with an immersed par-
ticulate solid phase within a two-way coupled scheme. We embed it into the generalized finite
difference framework of the finite pointset method (FPM). Both phases are described in a
Lagrangian formalism and are represented by point clouds. This allows us to treat all phases
in a common framework and to take advantage of synergies in terms of data structures and
algorithms. A key challenge which is introduced by the generalized finite difference setting
is the calculation of averaged quantities. Due to the properties of our mesh-free approach
which is missing an inherent definition of cell volume, conventional averaging strategies from
mesh-based schemes are not directly applicable. We employ an approach which circumvents
these problems and takes the finite difference nature of the FPM into account. Additionally,
we bring to light the required changes to a projection method for the fluid phase to incorpo-
rate the multi-phase setting. The solid phase solver, averaging scheme, and fluid solver are
embedded into a coupled algorithm with a substepping procedure to improve efficiency.

DE
Wir beschreiben die Modellierung und Simulation von Strömungen bestehend aus einem
Fluid und einer dispersen Feststoff-Phase innerhalb eines zweiseitig gekoppelten Verfahrens.
Dieses wird in das verallgemeinerte Finite-Differenzen-Schema der Finite Pointset Metho-
de (FPM) eingebettet. Beide Phasen werden dabei in einem Lagrangeschen Formalismus
beschrieben und durch bewegte Punktewolken repräsentiert. Das erlaubt uns alle Phasen
auf einer gemeinsamen Grundlage zu beschreiben und Synergien bei Datenstrukturen und
Algorithmen auszunutzen. Dabei entstehen jedoch durch die Nutzung von verallgemeiner-
ten Finiten Differenzen Herausforderungen in Bezug auf die Berechnung gemittelter Größen.
Durch die Eigenschaften unserer gitterfreien Methode, in der eine natürliche Definition von
Zell-Volumina fehlt, sind herkömmliche Mittelungsverfahren von gitterbasierten Methoden
nicht direkt anwendbar. Dieser Umstand wird diskutiert und wir präsentieren ein Verfah-
ren welches dieses Problem umgeht und sich für den Finite-Differenzen-Ansatz der FPM
eignet. Weiterhin wird auf der Basis eines Projektionsansatzes ein numerisches Schema für
die Fluid-Phase an die mehrphasige Problemstellung angepasst. Dabei werden die Verfah-
ren für Feststoff-Phase, Mittelung und Fluid-Phase in einem gekoppelten Algorithmus mit
Teilschritten in der Feststoff-Phase eingebettet.
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Introduction
Particulate media occurs in a wide variety of forms and on many different scales in nature
and industry. It is not restricted to specific phases, since atomic constituents, liquid droplets
or solid bodies can all be considered as particles. In this thesis we will restrict our attention
towards particles which represent components of granular materials. By a granular material
we denote a system of many solid particles which are small in comparison to the extent
of the bulk, but far larger than the atomic scale. Such aggregations of solid particles can
range from powders to sand, and from larger minerals to coffee beans and pills, which
already suggests a wide spectrum of possible applications. We consider a numerical scheme
to simulate the dynamics of such particle systems, which can be adapted to represent most
of the above-mentioned scales. The number of particles which can be realized in these kind
of approaches is however practically limited due to the scaling of computational cost with
number of solid entities in the bulk. Therefore, in the case of fine sand and other powders,
such as flour or ground coffee, it will only be possible to simulate rather small accumulations
of this type, with the computational capacity which is currently available. Nevertheless,
the simulation of granular media with larger grain sizes is highly relevant, for example, in
different types of mixers [2, 89], for grinding in mineral processing [106], as well as screw-
conveying mechanisms in chemical, food and pharmaceutical industry [107, 113]. Beyond
these examples, where only the solid phase behavior needs to be simulated, applications like
fluidized beds (used in the roasting of coffee beans and in many chemical reactors [46, 173]),
the pneumatic conveying of different granular matter [91, 128] as well as cyclone devices
(used for coal preparation and separation processes [18, 19]), suggest the importance of
interactions between a fluid carrier phase and solid particles.

Traditionally, the dynamics of the carrier phase are resolved by a mesh-based numerical
scheme such as finite volume or finite element methods. In these schemes, the creation of
meshes for complex domains as well as the update of existing meshes due to moving parts
or free surfaces is a difficult and time consuming task. This is where meshfree methods such
as the Finite Pointset Method (FPM) can provide significant advantages. The FPM, which
is a Lagrangian generalized finite difference method (GFDM), is based on irregularly spaced
numerical points on which differential operators are approximated through a least-squares
procedure. Due to its Lagrangian nature, points are moved with the continuum velocity,
such that free surfaces and changes of the discretization caused by moving geometries are
naturally represented. Additionally, most of the discretization process can be automated so
that the generation of meshes as a manual pre-processing step is not necessary any more.

In this thesis, we introduce a Lagrangian-Lagrangian fluid-solid coupling in the FPM set-
ting. Coupling, in this context, has to be understood as numerical coupling in the sense
that the numerical schemes, which are introduced to describe different phases, are intercon-
nected and embedded into an overarching solution procedure. While the rather general term
fluid-solid coupling can also include fluid-structure interactions (FSI), we reiterate that this
work is targeted towards the treatment of the above-mentioned reciprocal influence between
a fluid phase and a large number of comparatively small solid entities which are immersed
in this phase. We note that FSI problems have already been solved to great success within
the finite pointset method [155] and were a driving force in the initial development of this
numerical framework.
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Introduction

For the introduction of a numerical scheme describing the solid phase motion there are
two major approaches which can be employed - a description of the macroscopic behavior of
a large assembly of particles via continuous equations, on the one hand, or the tracking of
individual particles and their interactions, on the other. Since the former approach can be
solved with similar schemes on the same discretization as the fluid phase, it is often referred
to as Eulerian-Eulerian coupling in the context of Eulerian mesh-based fluid solvers. On
the other hand, the latter approach leads to a Lagrangian description in the solid phase
and consequently to a Eulerian-Lagrangian coupling in the context of Eulerian mesh-based
fluid solvers. This means that a Lagrangian framework needs to be maintained next to the
Eulerian one. In conjunction with this, the necessity for mapping data between these two
formulations arises. In the FPM, we are instead able to describe both phases in the same
Lagrangian framework, thus resulting in a Lagrangian-Lagrangian coupling which provides
us with useful synergies in terms of data structures and algorithms. The coupling approach
we employ does not resolve individual particle surfaces by the fluid phase discretization, but
relies on volume averaged equations in the fluid phase and the use of closure relations to
model physical phenomena such as drag. While a mapping from fluid to solid phase is natural
in the proposed framework, the reverse mapping will necessitate an averaging procedure
which we analyze closely. In particular, due to the absence of an inherent definition of volume
associated with entities of our numerical discretization, averaging schemes commonly used
in Eulerian-Lagrangian algorithms can not be directly applied to our framework. We discuss
ways of constructing such a notion of volume and present a procedure which circumvents
the problem while taking the finite difference nature of the FPM into account. Then the
remaining major component of our numerical coupling, the numerical solution of volume
averaged equations in the fluid phase is presented. For this, we adapt the projection scheme
of the FPM to the multiphase setting by accounting for changes in volume fraction and
discuss the treatment of coupling source terms. The solid phase scheme, averaging procedure
and fluid phase scheme are finally embedded into a coupled procedure with the possibility
of taking several sub steps in the solid phase during each iteration of the coupled scheme.
This substepping procedure reduces computational cost by preventing the strict time step
restriction for the solid phase from severely limiting the fluid solver time step.

The structure of this thesis follows the narrative of this introduction. In particular, the first
two chapters establish the mathematical model for the fluid phase and the generalized finite
difference framework of the FPM. In the third chapter, the discussion of different solution
procedures for the solid phase and types of coupling is picked up again and our choice of
coupling scheme is properly motivated. The rest of this chapter will then be devoted to
establishing the theoretical background of the chosen coupling scheme. Subsequently, all
components of the coupled algorithm, which was introduced into the FPM, are detailed in
chapter four. In particular, this includes the scheme for the solid phase motion, the averaging
procedure and projection scheme for the fluid phase. Lastly, in chapter five, several test cases
of increasing complexity are considered to analyze the capabilities of our coupled algorithm.
In this context, we will also shed some light onto the changes to boundary conditions which
have to be made in the fluid phase. We note that the test cases in chapter five only represent
a subset of those problems which can be addressed with the presented algorithm and that
the approach is not tailored towards one specific application, but we aimed to provide a
general framework for multiphase problems of the discussed type within the FPM. Following
this discussion of numerical results, this thesis is concluded by a summary of the presented
work and we provide an outlook with suggestions for future extension.
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Chapter 1

Foundations of fluid mechanics
The treatment of multiphase flows requires a good understanding of the mechanisms in
single phase flows. This is why we first have to thoroughly derive the models employed in
describing the relevant phases without the additional complications of interphase coupling.
Along the way, we point out limitations and model assumptions that are inherent in the
single phase descriptions and consequently also appear in the coupled models.

The fluid dynamical foundations discussed in the following can be found in numerous
standard textbooks. We specifically adopt notations from and base our discussions on the
lecture notes by Childress [16] and the book by Spurk and Aksel [142] (for which there is
also an English version [141]) and the reader may consult these sources for more in-depth
treatments.

A fluid phase is characterized by the fact that it deforms indefinitely under shear stresses
and shows no resistance to deformation when the velocities vanish. In contrast to that, a
solid material can support a shear stress in static equilibrium. As is evident from the above
definition, we subsume both, liquids and gases, in the term fluid and refrain from the collo-
quial use of fluid as a synonym for liquid. The above material properties are consequences of
microscopic structures, with the mean free paths of molecules being one important attribute.
While liquids have a mean distance on the scale of a single molecule diameter, resulting in
frequent interactions, a gas will have much larger mean free paths and interactions will oc-
cur comparatively rarely. For the continuum theory developed in the following, we consider
observable quantities, such as pressure, that vary above these microscopic scales and are
calculated as averages over volumes containing many molecules. Such a volume, called fluid
parcel, is the smallest entity of matter that we consider. It needs to be small compared to the
technical scale, relevant in the problems that should be modeled by the continuum theory,
but has to be large enough to include sufficient numbers of molecules for a sensible definition
of averages. In such a volume we define the important continuum property of fluid (mass)
density ρf as the sum of molecule masses inside a parcel divided by its volume. With this,
we can clarify an aspect of what a “sensible definition” is, namely that the volume is large
enough that further increasing it would not alter the value of the density or any averaged
quantity. On the other hand the continuum theory considers the fluid parcel as infinitely
small compared to the fluid length scale of interest. This is why fluid parcels are treated
as material points and the observable quantities as continuous functions in space and time.
These assumptions can be considered valid for a wide variety of applications and form the
basis for the treatment of fluid phases in this thesis, but it is important to note that they are
by no means universally fulfilled. Examples where the continuum hypothesis is erroneous
can be found by considering very small problems domains, extremely low gas densities or
shock waves [6, 141].
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Chapter 1 Foundations of fluid mechanics

1.1 Eulerian and Lagrangian descriptions
The movement of a single material point is given by its time dependent position vector
xf(t) ∈ Rd with d ∈ {1, 2, 3}. However, we want to describe the behavior of a finite volume
of fluid composed of infinitely many material points. Let us assume that the considered fluid
volume at time t0 ∈ R+ := {x ∈ R | x ≥ 0} is given by the open set S0 ⊂ Rd. As the fluid
moves, the material points follow their respective trajectories and at time t ≥ t0 the fluid
will occupy a space St ⊂ Rd. To describe the motion of the considered material volume we
uniquely identify each material point through its original position ξ = xf(t0) ∈ S0 and write

xf = X(ξ, t) (1.1.1)

This formulation in terms of a reference position ξ and time t is called Lagrangian coordinate
of a material point. If we consider a scalar quantity ψ (e.g. density or velocity) attached to the
fluid, then in a Lagrangian description one examines the evolution in time of said quantity
for a fixed set of material points. One can think of this as following the material points
along their trajectories while sampling the quantity of interest. Despite certain advantages
of a Lagrangian description, fluid properties are most commonly measured and prescribed at
fixed points in space. Such a fixed point in space is potentially occupied by different material
points as time progresses. Hence, in this so-called Eulerian description the observation of
the scalar quantity can be written as a mapping of the form

(x, t) 7→ ψ(x, t) (1.1.2)

which means we observe ψ at a fixed point in space x and time t. In this formalism the
Lagrangian description simply reads

(ξ, t) 7→ ψ(X(ξ, t), t) (1.1.3)

With these observations we now want to define the Eulerian velocity field uf(x, t). If we
consider a specific material point, i.e. we keep ξ fixed, its velocity at time t is intuitively
given by the time derivative of its Lagrangian coordinate, leading to the definition

dX
dt

∣∣∣∣∣
ξ

= uf(X(ξ, t), t) (1.1.4)

An implication of this relation is that, given a velocity field uf(x, t), the Lagrangian coordi-
nate of a material point with reference position ξ at time t = 0 can be obtained by solving
the initial value problem

dX
dt = uf(X(t), t)

X(0) = ξ
(1.1.5)

We might also want to examine the change in the scalar quantity ψ while following a material
point. This can be formulated as

d
dtψ(X(ξ, t), t) =

[
∇ψ · dX

dt + ∂ψ

∂t

]
(X(ξ, t), t)

=
[
∇ψ · uf + ∂ψ

∂t

]
(X(ξ, t), t)

(1.1.6)
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of a material point. If we consider a scalar quantity ψ (e.g. density or velocity) attached to the
fluid, then in a Lagrangian description one examines the evolution in time of said quantity
for a fixed set of material points. One can think of this as following the material points
along their trajectories while sampling the quantity of interest. Despite certain advantages
of a Lagrangian description, fluid properties are most commonly measured and prescribed at
fixed points in space. Such a fixed point in space is potentially occupied by different material
points as time progresses. Hence, in this so-called Eulerian description the observation of
the scalar quantity can be written as a mapping of the form

(x, t) 7→ ψ(x, t) (1.1.2)

which means we observe ψ at a fixed point in space x and time t. In this formalism the
Lagrangian description simply reads

(ξ, t) 7→ ψ(X(ξ, t), t) (1.1.3)

With these observations we now want to define the Eulerian velocity field uf(x, t). If we
consider a specific material point, i.e. we keep ξ fixed, its velocity at time t is intuitively
given by the time derivative of its Lagrangian coordinate, leading to the definition

dX
dt

∣∣∣∣∣
ξ

= uf(X(ξ, t), t) (1.1.4)

An implication of this relation is that, given a velocity field uf(x, t), the Lagrangian coordi-
nate of a material point with reference position ξ at time t = 0 can be obtained by solving
the initial value problem

dX
dt = uf(X(t), t)

X(0) = ξ
(1.1.5)

We might also want to examine the change in the scalar quantity ψ while following a material
point. This can be formulated as

d
dtψ(X(ξ, t), t) =

[
∇ψ · dX

dt + ∂ψ

∂t

]
(X(ξ, t), t)

=
[
∇ψ · uf + ∂ψ

∂t

]
(X(ξ, t), t)

(1.1.6)
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Definition 1.1 Let uf : Rd×R+ → R be the Eulerian flow velocity field. The corresponding
Eulerian operator

D
Dt = ∂

∂t
+ uf · ∇ (1.1.7)

is called material or convective derivative.

This operator formulates the Lagrangian time derivative in terms of Eulerian quantities
and will later be of particular importance. Specifically due to the fact that it includes the
convective term uf · ∇ and can be used for the simplification of conservation laws in the
fluid phase. To avoid any ambiguity and clarify our notation, we also want to detail how
the material is applied to a vector field. In this case, the dot product is a product of the
gradient tensor with the fluid velocity from the left, i.e.

Dv
Dt = ∂v

∂t
+ uf · ∇v (1.1.8)

with
uf · ∇v =

(
uf · ∇v(1), . . . ,uf · ∇v(d)

)T
(1.1.9)

We note that all vector and tensor notation within this work follows the tensor calculus
described in Appendix A. The somewhat unusual choice of using superscripts for vector and
tensor components is rooted in the notational difficulties which arise from the combination
of multiphase flows and our numerical scheme.

1.2 Incompressibility
A fluid can be defined as being incompressible if for every material volume St the condition

d
dt

∫

St

1 dV = 0 (1.2.1)

is fulfilled, i.e. the volume occupied by St does not change. It is, however, customary to use
a different, more useful, definition of incompressibility in the context of fluid dynamics. To
derive this, we consider the Jacobian of the Lagrangian coordinate X(ξ, t) with respect to
the reference position ξ at a fixed time t, i.e.

J(i,j)(ξ, t) = ∂X(i)

∂ξ(j)

∣∣∣∣∣
t

(ξ, t) (1.2.2)

Since the Lagrangian coordinate for fixed t can be considered as a map X(·, t) : S0 → St,
we can rewrite the integral ∫

St

1 dV =
∫

S0

1|det(J)| dVξ (1.2.3)

to observe that the incompressibility condition (1.2.1) is fulfilled for every volume S0 ⊂ Rd

if and only if |det(J)| = 1 for all t ∈ R+. Note that we employ the common assumption that
det(J) > 0 so that the map between S0 and St is invertible and we can drop the absolute
value in the following. For the invertible Jacobian J, we use Jacobi’s formula to obtain

∂

∂t
det(J) = tr

(
J−1∂J

∂t

)
det(J) (1.2.4)
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By exchange of spatial and temporal differentiation one can verify that

∂J
∂t

= (∇uf)(X(ξ, t), t)J(ξ, t) (1.2.5)

Now, since ∇uf is square and J invertible, we further simplify

tr
(

J−1∂J
∂t

)
= tr(∇uf) =∇ · uf (1.2.6)

which finally leads to

∂

∂t
det(J)(ξ, t) = [∇ · uf(X(ξ, t), t)] det(J)(ξ, t) (1.2.7)

Together with det(J) = 1 we obtain the condition that is typically used to define incom-
pressible flows in Eulerian variables and stated in the following theorem.

Theorem 1.1 In Eulerian description, a fluid covering a flow domain represented by the
open set Ω ⊂ Rd is incompressible if and only if

∇ · uf = 0 (1.2.8)

for every (x, t) ∈ Ω× R+.

1.3 Convection theorem
Now that we have laid the necessary groundwork, we use fundamental conservation principles
to derive equations that describe the motion of fluids in terms of the aforementioned averaged
quantities. To this end, let us consider a region of material points St ⊂ Rd and a scalar
function ψ : Rd×R+

0 → R. Using the integral transformation to the domain of representative
points S0, we can derive

d
dt

∫

St

ψ(x, t) dVx = d
dt

∫

S0

ψ(X(ξ, t), t) det(J) dVξ (1.3.1)

=
∫

S0

det(J) d
dtψ(X(ξ, t), t) dVξ +

∫

S0

ψ(X(ξ, t), t) ∂
∂t

det(J) dVξ (1.3.2)

Following (1.1.6) and (1.1.7), the first integral on the right-hand side can be rewritten in
the material derivative notation, while for the second term we employ (1.2.7). From this we
obtain

d
dt

∫

St

ψ(x, t) dVx =
∫

S0

[
Dψ
Dt + ψ(∇ · uf)

]
det(J) dVξ (1.3.3)

which, by transforming back to St, results in

Theorem 1.2 Let St ⊂ Rd be a material volume of fluid identified by the reference positions
S0 ⊂ Rd and the Eulerian velocity field uf . If we assume that both, the velocity and a scalar
function ψ, are sufficiently smooth, the relation

d
dt

∫

St

ψ(x, t) dVx =
∫

St

Dψ
Dt + ψ(∇ · uf) dVx (1.3.4)
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holds and is called the convection theorem. When considered in the equivalent form

d
dt

∫

St

ψ(x, t) dVx =
∫

St

∂ψ

∂t
+∇ · (ψuf) dVx (1.3.5)

it is often referred to as Reynolds transport theorem.

1.4 Conservation of mass
The mass of a material volume with initial configuration S0 ⊂ Rd and positions St ⊂ Rd at
time t ∈ R+ can be calculated by integrating the (mass) density ρf , i.e.

m(S0, t) =
∫

St
ρf(x, t) dVx (1.4.1)

When no material is added or removed from the computational domain, there is no possibility
for the mass to change with respect to time, which together with Reynolds transport theorem
can be formulated as the condition

0 = dm
dt =

∫

St

∂ρf

∂t
+∇ · (ρfuf) dVx (1.4.2)

We observe that the integral vanishes for any material volume, from which can conclude
that the integrand evaluates to zero point-wise inside the whole domain covered by the fluid,
finally leading us to

∂ρf

∂t
+∇ · (ρfuf) = 0 (1.4.3)

This important physical law is called mass conservation equation or continuity equation. By
applying product rule to the divergence term we can reformulate the condition to obtain

Dρf

Dt + ρf(∇ · uf) = 0 (1.4.4)

which is the Lagrangian formulation of mass conservation that we make extensive use of
when we consider the chosen numerical scheme for computing fluid flows. If we recall that
an incompressible fluid has vanishing velocity divergence, we observe that the above conser-
vation equation reduces to

Dρf

Dt = 0 (1.4.5)

which means that incompressibility also implies constant density along the paths of material
points.

Remark 1.1 Note that mass addition or removal can be included by a function q(x, t) which
has the dimensions of mass per unit volume and time. This function fulfills

d
dt

∫

R
ρf(x, t) dVx =

∫

R
q(x, t) dVx (1.4.6)

for a fixed subset R ⊂ Rd of the flow domain and one can show [16] that this leads to

Dρf

Dt + ρf(∇ · uf) = q (1.4.7)
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Chapter 1 Foundations of fluid mechanics

In the context of multiphase flows, one can think of cases such as the dissolution of solids
in a fluid phase, where such a term will arise. In the context of this work, we do, however,
restrict ourselves to settings without mass transfer between phases or other mass sources and
sinks in the fluid phase.

1.5 Conservation of momentum
In addition to the density, we also need to determine the velocity components from conser-
vation laws. Since the mass conservation on its own only provides us with a single equation
for the d+1 unknowns ρf , u

(1)
f , . . . , u

(d)
f , it is necessary to derive additional equations to fully

describe the fluid flow. To do so, we apply Newton’s second law to a material volume for
which we define the total momentum by

p(S0, t) =
∫

St
ρfuf dVx (1.5.1)

With total forces f(S0, t) acting on the material volume we obtain

dp
dt = f (1.5.2)

We can split f into contributions from body forces and forces acting on the surface ∂St such
that

d
dt

∫

St
ρfuf dVx =

∫

St

ρfk dVx +
∫

∂St

t dSx (1.5.3)

where k denotes the body force density and t denotes the stress vector. While the body force
density subsumes terms such as magnetic forces or gravity, the stress vector represents the
force onto the material surface due to surrounding fluid. The stress vector can be shown
[141, 142] to have a linear relation t = σfn to the surface normal, where σf denotes the
second order tensor called stress tensor. Applying the divergence theorem we obtain

d
dt

∫

St

ρfuf dVx =
∫

St

ρfk dVx +
∫

St

∇ · σf dVx (1.5.4)

If we apply Reynolds theorem component-wise to ρfu
(i)
f we encounter the terms

∇ ·
(
ρfu

(i)
f uf

)
, i = 1, . . . , d (1.5.5)

which can be rewritten into the vectorial form

∇ · (uf ⊗ uf) =




∇ ·
(
ρfu

(1)
f uf

)

...
∇ ·

(
ρfu

(d)
f uf

)


 (1.5.6)

where the outer product ⊗ and divergence notation for second rank tensors are properly
defined in Appendix A. Putting everything together, we finally obtain the integral equation

∫

St

∂ρfuf

∂t
+∇ · (ρfuf ⊗ uf) dVx =

∫

St

∇ · σf + ρfk dVx (1.5.7)

which, with the same arguments as before, leads to the point-wise momentum conservation
equations in Eulerian form
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∂ρfuf

∂t
+∇ · (ρfuf ⊗ uf) =∇ · σf + ρfk (1.5.8)

If we split the partial time derivative on the left-hand side by product rule and use the
identity

∇ · (u⊗ v) = v · ∇u+ (∇ · v)u (1.5.9)
with u = uf and v = ρfuf , we obtain

∂ρfuf

∂t
+∇ · (ρfuf ⊗ uf) =

[
∂ρf

∂t
+∇ · (ρfuf)

]
uf + ρf

[
∂uf

∂t
+ uf · ∇uf

]
(1.5.10)

We observe that the first summand vanishes due to the mass conservation equation (1.4.3)
and that the second term equals the material derivative of velocity. Thus, we can write down
the equivalent Lagrangian form of momentum conservation as

ρf
Duf

Dt =∇ · σf + ρfk (1.5.11)

This form of the equation is sometimes also referred to as the Cauchy equation and it is
applicable to every continuous phase irrespective of the specific material properties. Since
the body force term k can be considered a given quantity and the second rank stress tensor
is symmetric, we added d(d+ 1)/2 variables while only adding d equations. From this fact it
is already clear that the conservation equations alone are not sufficient to describe the fluid
behavior. As a first step in defining the necessary closure relation, it is customary to split off
a pure normal stress tensor whose identical components take the value of (thermodynamical)
pressure p, i.e.

σf = −p1 + τf (1.5.12)
The remaining, not necessarily deviatoric, tensor τf is called viscous stress tensor. It de-
scribes the stresses due to friction inside the fluid and defines the fluid rheology. Due to
the fact that friction can only arise when there are parts that move relative to each other,
we can directly conclude that τf will in some way depend on spatial derivatives of the fluid
velocity. The specific form of the tensor can, however, vary strongly on a per-material basis
and is enclosed in so-called constitutive equations. They form the transition from universal
conservation laws to material-specific models.

The easiest closure is given by the assumption of inviscid flow, i.e. the frictional stresses
within the fluid are neglected and the stress tensor reduces to only a pressure component.
This closure results in the well-known Euler equations for momentum conservation. While
this might seem like a crude approximation, there is a wide variety of flow configurations
where these equations can be sufficient to describe the flow behavior. It’s applicability is
often decided based on a dimensionless characteristic number, the Reynolds number, which
we introduce later. But before, we want to discuss a slightly more complex and widely used
closure.

This closure considers the internal friction and is obtained by assuming that the stress is
Galilean invariant and fulfills Hooke’s law. This means that the stresses only depend on the
gradients and not the flow velocity itself and does so linearly, i.e.

τf = C : (∇uf) (1.5.13)

where C is a fourth order tensor. Further assuming that the fluid is isotropic and homoge-
neous we obtain the viscous stress tensor of a Newtonian fluid (cf. [87, 141, 142])

τf = λ tr(S)1 + 2µS (1.5.14)
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this might seem like a crude approximation, there is a wide variety of flow configurations
where these equations can be sufficient to describe the flow behavior. It’s applicability is
often decided based on a dimensionless characteristic number, the Reynolds number, which
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closure.
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τf = λ tr(S)1 + 2µS (1.5.14)
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with λ denoting the first Lamé parameter, µ the dynamic viscosity and S the linearized
strain tensor. The matrix representation of S is obtained by splitting the velocity Jacobian
into a symmetric and skew-symmetric part, i.e.

∇uf = S + Ω, S = 1
2
(
∇uf + (∇uf)T

)
, Ω = 1

2
(
∇uf − (∇uf)T

)
(1.5.15)

such that the viscous stress tensor takes the form

τf = λ(∇ · uf)1 + µ
(
∇uf + (∇uf)T

)
(1.5.16)

Although non-Newtonian fluids are by no means rare in industrial applications, the class of
Newtonian fluids includes many practically important liquids and gases such as water, air
and different kinds of oils.Therefore we restrict ourselves to these fluids to simplify the single
phase models while still keeping a foundation which is highly relevant in applications.

Another formulation of the viscous stress tensor, which is commonly used, can be obtained
by splitting the tensor into an isotropic and deviatoric part. From tr(2S) = 2(∇ · uf) and
tr((∇ · uf)1) = 3(∇ · uf) we can easily see that this is fulfilled by

τf = ζ(∇ · uf)1 + µ
(
∇uf + (∇uf)T −

2
3(∇ · uf)1

)
(1.5.17)

with ζ = λ + 2
3µ denoting the volume viscosity, sometimes also called second viscosity. In

particular for liquids, it has been extensively validated that one can, in many cases, neglect
the first term in (1.5.17) such that the viscous stress tensor is equal to the deviatoric part
of the full stress tensor σf (cf. [141, 142]). This assumption is often identified with Stokes’
hypothesis which states that the volume viscosity vanishes, i.e.

ζ = λ+ 2
3µ = 0 (1.5.18)

However, as described in [13], while the simplified equations have shown to be valid, the
assumption ζ = 0 is for many liquids and gases in contradiction to experimental and theo-
retical findings. They further claim that the simplification is still valid since the more general
criterion

|ζ(∇ · uf)| � p (1.5.19)

is fulfilled in all these cases and the whole term ζ(∇ · uf) can be neglected in the stress
tensor due to its negligible magnitude in comparison to the thermodynamic pressure. We
note that (1.5.17), with the volume viscosity term neglected, is used for the viscous stresses
throughout this thesis.

The parameters λ, ζ, µ are, not necessarily constant, material properties which can be
considered given when solving the presented set of equations. So the closure relation obtained
from (1.5.12) and (1.5.16) introduces an additional scalar quantity p while expressing the rest
of the tensor in terms of the existing variable uf . For an incompressible fluid we have already
seen that the mass conservation implies constant density along material point trajectories.
We can thus consider the density as a given quantity since we can always trace back from
the considered Eulerian point x to the reference point ξ, where the value is assumed to
be known. With one variable crossed out, we have a closed set of equations consisting of
the incompressibility condition and the momentum conservation with the simplified viscous
stress

τf = µ
(
∇uf + (∇uf)T

)
(1.5.20)
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The most commonly referenced version of this closed set can be obtained by assuming
spatially non-varying viscosities ζ and µ. Then the divergence of the full stress tensor reads

∇ · σf = −∇p+ µ∇2uf + (λ+ µ)∇(∇ · uf) (1.5.21)

where we used
∇ · (∇uf) =∇(∇ · uf), ∇ ·

(
(∇uf)T

)
= ∇2uf (1.5.22)

For an incompressible fluid, the last term on the right-hand side of (1.5.21) vanishes and we
obtain the closed set of equations

∇ · uf = 0 (1.5.23)

ρf

[
∂uf

∂t
+ uf · ∇uf

]
= −∇p+ µ∇2uf + ρfk (1.5.24)

which are commonly called incompressible Navier-Stokes equations. Note that it is customary
to divide both sides of the momentum equation by the density and define the kinematic
viscosity

η = µ

ρf
(1.5.25)

We further observe that the pressure only occurs through its gradient, such that, without
boundary conditions, it is always only defined up to an additive constant.

If we now consider compressible fluids, the set of equations consisting of mass conserva-
tion (1.4.3) and momentum conservation (1.5.8) with Newtonian stress (1.5.16) is not closed.
This problem is typically solved in fluid dynamics by introducing an additional energy con-
servation equation and an equation of state. While we are faced with varying density flows
in the multiphase setting, these variations are only modifications of the fluid phase density
due to the presence of solid entities. In particular, we neither have to rely on the energy
equation nor on an equation of state, which is why details on these topics are omitted at
this point.

This concludes our discussion on the fundamental equations describing the fluid flow in
a single-phase setting. Below, we have provided two additional remarks which have been
omitted before to improve readability.
Remark 1.2 It is customary to consider the Navier-Stokes equations in a non-dimensionalized
form in order to obtain characteristic numbers, which help to identify similar flow behavior
that may occur on completely different absolute scales. To define such a number, we assume
that the flow has a characteristic length scale L and velocity U and define

x̃ = x

L
, ũf = uf

U
, t̃ = t

L/U , p̃ = p

ρfU2 , ∇̃ =
[

∂
∂x̃(1) . . .

∂
∂x̃(d)

]T

Omitting body forces for now, the momentum equation (1.5.24) can be rewritten as

∂ũf

∂t̃
+ ũf · ∇̃ũf = −∇̃p̃+ 1

Re∇̃ · ∇̃ũf (1.5.26)

where
Re = ρfUL

µ
(1.5.27)

denotes the aforementioned Reynolds number. This quantity will prove to be important at a
later point in this thesis, when we consider expressions that describe the interaction between
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fluid and solid phases. We further note that for large Reynolds numbers the viscous term
clearly looses significance and in these cases it can often be a valid approximation to use the
Euler equations, which we previously obtained from the assumption of a frictionless fluid.
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Chapter 2

The Finite Pointset Method
Before we make the transition from single phase flow to the main goal of this work, the
coupled simulation of fluid-solid multiphase flow, we want to introduce the numerical frame-
work in which we intend to solve this problem. A general understanding of this background
will simplify the constructive discussion on suitable coupling approaches for the targeted
application within the next chapter. The method we employ has been referred to as Finite
Pointset Method (FPM) [40, 73] and is realized in the commercial software MESHFREE1.
It belongs to the group of meshfree generalized finite difference methods (GFDMs).

The idea of GFDMs has first been proposed by Liszka and Orkisz [93], who generalized the
construction of classical finite difference stencils from ordered grids to domains discretized by
disordered points. The approach relies on the use of weighted least squares approximations
to calculate stencils which minimize the error resulting from local Taylor expansions.

In the finite pointset method, these stencils are used to solve partial differential equations
in strong form on points which move with the continuum velocity. This Lagrangian approach
has been developed in order to improve on the boundary handling and accuracy of other
Lagrangian meshfree methods such as the smoothed particle hydrodynamics (SPH) method
[83]. An important distinguishing factor is that points are strictly numerical entities instead
of mass particles, which allows for the addition and deletion of points in order to improve
accuracy and stability.

Since its inception, the finite pointset method (FPM) has shown good results for a range
of different problems including geomechanics [105, 111], automotive engineering [73, 155],
chemical engineering [40] and process design [122, 159]. In addition to MESHFREE, it also
serves as the numerical basis for NOGRID2 and has been incorporated into VPS (formerly
PAM-CRASH ) [155], both of which are commercial software tools.

While the approach is applicable to a wide range of continuum mechanical problems, we
will, in light of the targeted application and for the sake of simplicity, think of the continuum
as a fluid phase. To introduce the differential operators in our GFDM framework, we first
want to discuss how the domain is discretized.

2.1 Spatial discretization and neighboring points
Let us assume that at a time t ∈ R+ the volume Ω(t) ∈ Rd, d ∈ {2, 3}, is occupied by the
fluid phase. In order to solve the differential equations, such as the ones derived in Chapter 1,
we discretize this computational domain by a set of numerical points with positions

xi ∈ Rd, i ∈ {1, . . . , N} (2.1.1)

In contrast to the typical procedure in mesh-based methods, this set of numerical points,
often referred to as point cloud, is constructed through automated filling of the domain. This

1https://www.meshfree.eu
2https://www.nogrid.com
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(a) Initial points on boundary. (b) Result after a few filling
steps.

(c) End result of filling.

Figure 2.1: Successive stages of the initial point filling procedure in the FPM.

is done by first placing points on boundary elements, followed by recursive application of a
hole filling algorithm (see Figure 2.1). Details on this algorithm can be found in [40] and
will not be discussed here. For the purpose of this introduction it suffices to know that the
point cloud is constructed in such as way as to ensure that accurate differential operators
can be calculated at each point position.

Analogous to classical finite differences, the differential operator approximations at a point
xi are based on adjacent points. While the meaning of “adjacent” is quite clear in the mesh-
based finite difference setting, it needs clarification in our setup. Within our framework, the
differential operator approximations at xi are based on all neighboring points xj with index
j in the set

Ni := {j | j ∈ {1, . . . , N}, ‖xi − xj‖ ≤ h} (2.1.2)
where h denotes the so-called smoothing length. In the following we also often refer to this
set of indices, or the corresponding set of points for that matter, as the neighborhood of a
point. We further note that the above definition includes the point xi itself. In addition to
the above notation, we also repeatedly make use of the subscript notation

Ni = {j1, . . . , jni} (2.1.3)

where ni denotes the number of neighbors for particle i. In fact, this is not only a construct
for notational convenience, but also reflects the implementation structure, where each point
has a list of neighbors with local indices k ∈ {1, . . . , ni} which are mapped to global indices
jk when any data is retrieved or modified. For the sake of simplicity we assume that the list
of neighbors is ordered with ascending distance to the center point. In particular, we make
use of the fact that j1 = i in the above set of indices Ni.

Examples of such point neighborhoods, both, close to and far away from the boundary
of the domain depicted in Figure 2.1, are shown in Figure 2.2. In particular, we observe
that, while the number of points in Ni reduces close to boundaries, it still significantly larger
than in many classical FDMs. This is one of the aforementioned ways to ensure accurate
differential operators at the center point, since it helps relax the requirements on regularity of
the point cloud. Typically, for points far away from the boundary, the size of neighborhoods
ni is in the range of 15-20 points for two-dimensional problems and 45-50 in 3D.

We further note that the point clouds are constructed in such a way that the distance to
the nearest neighbor fulfills

rminh ≤ min
j∈Ni
j 6=i
‖xi − xj‖ ≤ rholeh (2.1.4)

for some parameters rmin, rhole ∈ (0, 1). Taking rmin > 0 ensures that points are not too
close to each other while rhole < 1 ensures that no holes of radius rholehi may form within
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h
xi
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xi

Figure 2.2: Left: Neighbor points (blue) for a FPM point (red) close to the boundary (green). Middle:
Complete discretization of computational domain (see Figure 2.1). Right: Neighbor points
(blue) for a FPM point (red) far from the boundary.

the computational domain. From a wealth of experience with our implementation of the
numerical method, values of approximately rmin = 0.15 and rhole = 0.4 have been found
to be appropriate. Since these two parameters are typically kept fixed, we observe a direct
connection between inter-point distances and the smoothing length hi, which is consequently
taken as the primary parameter of spatial discretization and often viewed as an analogue to
the grid spacing in mesh-based methods. For an easier introduction of the above definitions,
we omitted the fact that the smoothing length and thus the numerical resolution can be
varied on a point basis, i.e. there is a value hi = h(xi(t), t) attached to each point. Both,
the spatial and temporal variation of smoothing length, can be necessary to capture complex
physical phenomena and can also be used to coarsen the resolution to reduce computational
load in regions with simple flow behavior. In cases where such a varying smoothing length
is employed, we replace h by an average smoothing length hij between the two points. Two
possible definitions of this value are given by

hij = 1
2(hi + hj) (2.1.5)

or
h2
ij = 2

1
h2
i

+ 1
h2
j

(2.1.6)

where we typically resort to the latter definition. These definitions ensure that points are in
each other’s neighborhood and that distances scaled by smoothing length are symmetric.

With a discretized domain, such as the one in Figure 2.1c, and neighbor relations being
established, we now want to provide a concise introduction to the construction of approxi-
mations to differential operators within the finite pointset method.

2.2 Construction of differential operators
Let us consider the generalized operator ∂∗ which can represent a function value approxima-
tion, a partial derivative with respect to any of the spatial dimensions or other operators such
as the laplacian. Our goal is to determine coefficients c∗ij which provide an approximation

∂∗f(xi) ≈
∑

j∈Ni
c∗ijf(xj) (2.2.1)

based on function values at neighboring points. It is important to note that these coeffi-
cients are independent of the function f , which means that, for a given point configuration,
they only need to be determined once and can then be applied to various quantities in the
underlying differential equation. In the following we refer to the vector of coefficients

c∗i =
(
cij1 , . . . , cijni

)T ∈ Rni (2.2.2)
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cients are independent of the function f , which means that, for a given point configuration,
they only need to be determined once and can then be applied to various quantities in the
underlying differential equation. In the following we refer to the vector of coefficients

c∗i =
(
cij1 , . . . , cijni

)T ∈ Rni (2.2.2)
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as a stencil and denote the vector of all function values at neighboring points by

fNi =
(
f(xj1), . . . , f(xjni )

)T ∈ Rni (2.2.3)

With this notation we can rewrite (2.2.1) as

∂∗f(xi) ≈ c∗i · fNi (2.2.4)

As noted above, the operators represented by the “∗”-symbol include, but are not limited
to, the approximation or smoothing of function values

f(xi) ≈
∑

j∈Ni
c0
ijf(xj) = c0

i · fNi (2.2.5)

and the approximation of first order partial derivatives such as
∂f

∂x
(xi) ≈

∑

j∈Ni
cxijf(xj) = cxi · fNi (2.2.6)

Depending on the form of differential equation and involved higher order derivatives, the
operators can take more general, numerically advantageous, forms. In the case of the in-
compressible Navier-Stokes equations (1.5.23)-(1.5.24), the necessary stencils in R3 are

c0
i , c

x
i , c

y
i , c

z
i , c

∇2

i i = 1, . . . , N (2.2.7)

which correspond to function evaluation, the partial derivatives w.r.t. x, y, z, as well as the
Laplacian. Once these stencils are determined. they are used analogously to classical finite
difference methods to assemble sparse linear systems within the solution procedure of the
PDE.

There are two different ways to derive these stencils which have been shown to be equiv-
alent [144]. On the one hand, we can can follow the classical finite difference approach
of considering Taylor expansions up to the required order and then apply a weighted least
squares approach to minimize the errors resulting from the representation by a finite number
of terms (cf. [40, 146]). This is also the approach which was proposed in the original work on
generalized finite difference methods by Lizska and Orkisz [93]. The alternative approach,
which we describe here in more detail, is based on the idea of prescribing the result that
stencils should provide when applied to given test functions (cf. [73, 136, 147]).

The test functions we employ here are the monomials

Mi =
{

d∏

k=1

1
pk!
(
x(k) − x(k)

i

)pk ∣∣∣∣ pk ∈ N0,
d∑

k=1
pk ≤ P

}
(2.2.8)

in Rd and with maximum order P. We recall from Chapter 1 that superscripts in parenthesis
are used to denote vector components, so that the k-th component of x is given by x(k). The
reasoning behind this notation also becomes apparent now, since we have to distinguish
between point indices, vector components and exponents. To derive stencils of a desired
order, we demand that an application of those stencils to all of the above monomials up to
that order leads to the exact result, i.e.

∂∗f(xi) = c∗i · fNi , ∀f ∈Mi (2.2.9)

Clearly, the same holds true for all polynomials up to the maximum oder P, since M
functions as a basis for the space of polynomials. To collect all these conditions within a
matrix-vector formulation, we first write the set of monomials as

Mi = {f1, f2, . . . , fm} (2.2.10)
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where m is the number of elements inMi given by

m =
(
d+ P
d

)
= (d+ P)!

P!d! (2.2.11)

For a given differential operator ∂∗ we collect the left-hand sides of (2.2.9), i.e. the exact
results of applying the continuous operator to the monomials at the center point xi, in

b∗ = (∂∗f1(xi), ∂∗f2(xi), . . . , ∂∗fm(xi))T ∈ Rm (2.2.12)

This vector provides the right-hand side in our matrix-vector formulation while the stencil
c∗i ∈ Rni evidently is the sought-for variable. To construct the remaining matrix Mi ∈ Rm×ni

based on the fNi in (2.2.9), we define

Mj
i = (f1(xj), f2(xj), . . . , fm(xj))T ∈ Rm (2.2.13)

for j ∈ Ni = {j1, . . . , jni} so that we can simply write

Mi =
[
Mj1
i . . . Mjni

i

]
∈ Rm×ni (2.2.14)

With these notations established, the so-called consistency conditions can be written in the
succinct form

Mic
∗
i = b∗ (2.2.15)

In general we have more neighboring points than monomials such that ni > m and the
system (2.2.15) is under-determined (we have more unknown coefficients than we have equa-
tions). Consequently there might be either none or infinitely many stencils which fulfill
the consistency conditions. As discussed in [135], the former case can only occur if the
points take certain configurations. For example, the author describes a case where there
are as many neighboring points as consistency conditions but they are distributed around
the center point in such a way that it is not possible to find a solution for the laplacian
stencil. These special point configurations are, however, extremely unlikely in the context
of a Lagrangian GFDM where points are moving with continuum velocity and typically do
not assume any ordered state. For now we assume that such special cases do not occur
due to point movement and the implementation of our point cloud management and refer
to the above source for a more in-depth discussion. Before we consider the method we use
to calculate suitable stencils among the infinitely many solutions, we want to provide the
reader with an example which helps to internalize the above derivations in a less convoluted
notation.

Example 2.1 Let us assume that we want to construct the stencils

c0
i , c

x
i , c

y
i , c

∇2

i i = 1, . . . , N (2.2.16)

in two space dimensions, i.e. d = 2, and from monomials up to second order, i.e. P = 2. As
mentioned before, an application of this set of stencils is, for example, the spatial discretiza-
tion of incompressible Navier-Stokes equations. With these choices, the set of monomials in
(2.2.8) becomes

Mi = {1, x− xi, y − yi, (x− xi)(y − yi),
1
2(x− xi)2,

1
2(y − yi)2} (2.2.17)
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where xi, yi denote the first and second component of the position vector xi in 2D. If we
introduce the notations ∆xij = xj − xi, ∆yij = yj − yi for j ∈ Ni the matrix columns in
(2.2.13) can simply be written as

Mj
i =

(
1,∆xij,∆yij,∆xij∆yij,

1
2(∆xij)2,

1
2(∆yij)2

)T
∈ R6 (2.2.18)

We recall that the neighborhood definition (2.1.2) includes the center point for which the
above vector reduces to

Mi
i = (1, 0, 0, 0, 0, 0)T ∈ R6 (2.2.19)

Since we further assumed that j1 = i, the complete matrix takes the form

Mi =




1 1 . . . 1
0 ∆xij2 . . . ∆xijni
0 ∆yij2 . . . ∆yijni
0 ∆xij2∆yij2 . . . ∆xijni∆yijni
0 1

2(∆xij2)2 . . . 1
2(∆xijni )

2

0 1
2(∆yij2)2 . . . 1

2(∆yijni )
2




(2.2.20)

The right-hand sides in (2.2.12) are further given by

b0 = (1, 0, 0, 0, 0, 0)T (2.2.21)
bx = (0, 1, 0, 0, 0, 0)T (2.2.22)
by = (0, 0, 1, 0, 0, 0)T (2.2.23)
b∇

2 = (0, 0, 0, 0, 1, 1)T (2.2.24)

If we were to consider points in R2 that are uniformly distributed along the x- and y-direction
and assume that the neighboring points form the classical five-point stencil, it is easy to show
that the system (2.2.15) with matrix (2.2.20) and right-hand sides (2.2.22)-(2.2.24) leads to
the classical central difference stencils (cf. [136]). This is true despite the fact that we have
more consistency conditions than points, only because the fourth row in (2.2.20) and fourth
component of all right-hand sides equals zero in this configuration. It represents one of
the extremely unlikely cases which could technically occur in moving point clouds (for more
special cases, see [135]).

Now, let us return to the task of determining suitable stencils from the under-determined
systems. As hinted at before, this is typically done in GFDMs by a minimization procedure.
In the polynomial approach, the functional which we minimize is given by

Ji = 1
2
∑

j∈Ni

(
c∗ij
wij

)2

= 1
2
∥∥∥W−1

i c
∗
i

∥∥∥
2

(2.2.25)

with Wi denoting the diagonal matrix

Wi = diag(wij1 , . . . , wijni ) ∈ Rni×ni (2.2.26)

The components wij of this matrix represent the results of evaluating a weigthing function
w : R+

0 → R+
0 with respect to the relative distances

rij = ‖xi − xj‖
hij

(2.2.27)

As was touched upon before, this specific form of the denominator is chosen to ensure that
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Figure 2.3: Gaussian weighting function centered in a FPM point (red) and plotted within a radius given
by the smoothing length.

the distances are symmetric in the sense rij = rji and the points are included in each others
neighborhood. While different choices for this weighting function are possible in the GFDM
[9, 73], we typically use a compactly supported Gaussian (see Figure 2.3), i.e.

w(r) =




e−αr

2
r ≤ 1

0 r > 1
(2.2.28)

With the terms in (2.2.25) being clarified, we want to note that the, at first glance, peculiar
form of the functional with an inverse of Wi giving less weight to the center point is a
consequence of the weighted minimization

J̃i =
∑

j∈Ni
w2
ijε

2
ij (2.2.29)

of errors εij in the equivalent Taylor expansion argument. In one spatial dimension, these
errors would be given through

εij + f(xj) = f(xi) + ∂f

∂x
(xi)(xj − xi) + 1

2
∂2f

∂x2 (xj − xi)2 (2.2.30)

For more details on this subject-matter we refer once more to [144]. With these definitions
one can prove the following result:

Theorem 2.1 Consider the minimization problem

minimize
c∗i∈Rni

Ji(c∗i ) = 1
2
∥∥∥W−1

i c
∗
i

∥∥∥
2

(2.2.31)

subject to Mic
∗
i = b∗i (2.2.32)

If Mi ∈ Rm×ni has full rank, the unique solution to this problem is given by

c∗i = W2
iMT

i

(
MiW2

iMT
i

)−1
b∗ (2.2.33)

Proof: For a proof of this statement via Lagrange multipliers we refer the reader to the
work by Seibold [135]. �

With this result it is clear that we can first solve the linear system

MiW2
iMT

i λi = b∗ (2.2.34)
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with the quadratic matrix MiW2
iMT

i ∈ Rm×m for the Lagrange multipliers λi ∈ Rm, which
can then be used in

c∗i = W2
iMT

i λi (2.2.35)

to obtain the differential operator stencils. It has already been noted in the original work by
Liszka and Orkisz [93] that the main difficulty in applying the presented approach is due to
singularities or ill-conditioned matrices in linear systems. While the matrix MiWi in (2.2.34)
is typically well conditioned [73], local distortion of point clouds can lead to a degradation
of its condition number, which, to make matters even worse, becomes squared in (2.2.34).
While this is less of a problem when considering static point clouds, which can be adjusted
once to ensure numerical stability, this is a critical point in the Lagrangian approach, since
point clouds are constantly evolving. Therefore, it is typically not desirable to directly
use this approach. An alternative approach which avoids the calculation of MiW2

iMT
i and

solution of (2.2.34) is described in [144] and based on a QR decomposition. A problem which
can not be solved by the QR decomposition approach is the case of point clouds which locally
become close to lesser dimensional manifolds such as lines in 2D or planes in 3D. At this
point we only want to note that these rare cases lead to very small or even zero eigenvalues
within MiW2

iMT
i which can, for example, be treated by using a pseudo-inverse calculation

[73]. Many other measures are taken within our method in order to ensure stable differential
operators for given local distributions of neighbors. It would be far beyond the scope of
this thesis to provide a comprehensive overview on all of these and others that have been
investigated, which is why we stop our discussion on this subject-matter. In the following
section we will, however, still discuss ways to improve the given point clouds instead.

An aspect which we did not address so far is the fact that we can choose different test
functions or extend the monomial basis by additional function to impose additional restric-
tion on the stencils [144]. A special example of the latter type, also given in [144], is the
addition of delta functions to improve diagonal dominance in the Laplacian stencils on circu-
lar neighborhoods. This is especially important when implicitly solving PDEs such as heat
or diffusion equations where we want to have a PDE discretization which has the property
of (best possible) positivity. We note that the case of such stencils on non-circular neighbor-
hoods has been presented in [135] but is not be utilized in the context of this work, instead
we restrict ourselves to the neighborhood definition as presented above. Finally one can
also alter the functional that is minimized. An approach which follows this line of thought
has been proposed in [153] where the authors include the partial differential equations in a
discretized form within the functional and thus the optimization procedure. While this has
historically been applied in the FPM and a comparison of this approach with the above-
presented method has recently been presented in [146], it does not find application within
the context of this work.

2.3 Lagrangian GFDM and point cloud management
In the above section, we already mentioned that due to the Lagrangian nature and therefore
constantly changing point clouds, special care needs to be taken in the calculation of differen-
tial operators. In the following we want to discuss a few aspects of point cloud management
that are important to consider in our Lagrangian GFDM approach.

First, in order to maintain the previously stated number of neighbors, we need to continu-
ously check for holes within the point cloud and fill new points whenever needed. Such holes
may, for example, be the result of point movement at inflow boundaries or due to local flow
conditions. Whenever a new point is created as a consequence of a hole filling step one can
use the function approximation stencil c0

i to approximate all necessary quantities at the new
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point position xi from values at neighboring points. Obviously, this is not necessary within
the filling steps which are performed during the initial point cloud creation, since there the
specified initial conditions are applied to newly created points.

Secondly, depending on the flow configuration, clusters with very small point distances
can occur, which is undesirable from a performance standpoint and may lead to numerical
instabilities in the differential operator calculation. Thus, if the distance between two points
becomes smaller than a predefined fraction of the local smoothing length, they are merged,
meaning that they are replaced by a single point. Due to the spatial proximity of the old
points, the position of the new point is of little importance and one can, for example, place
it in the middle between the old point positions. However, as is discussed in more detail
in [47, 135], care needs to be taken when choosing the new function values since adopting
either of the two point values without any interpolation applied, may lead to an incorrect
approximation of discontinuous solutions. Typically this is circumvented by either taking
the average of both values or by employing the function approximation stencil at the new
point position [40].

We observe that the above measures of maintaining point cloud quality necessitate a
treatment of point movement by explicit time integration schemes. A detailed account of
different methods is given in [145]. Within this work we have restricted ourselves to the
most commonly applied second order movement of the form

xn+1 = xn + un∆t+ 1
2
un − un−1

∆t ∆t2 (2.3.1)

where xn, un denote the point position and continuum velocity at the discrete time level
tn = n∆t. Independent of the specific form of point movement, the explicit nature of
the overall scheme introduces a time step restriction. Since our numerical stencils depend
on points within a radius of size h, the CFL condition when solving the fluid dynamical
equations from Chapter 1 locally takes the form

∆t ≤ C hi
‖uf,i‖2

(2.3.2)

with a constant C ∈ (0, 1) which depends on rmin and rhole. In particular, this ensures that
points can not leave their current neighborhood within the next time step. From this, we
further formulate the global time step restriction

∆t ≤ C hmin
‖uf,i‖2,max

(2.3.3)

‖uf‖2,max = max
i=1,...,N

‖uf,i‖2 (2.3.4)

As has been discussed in [136] there is also a criterion which results from the requirement
that particle paths do not cross within a single time step. However, condition (2.3.3) is
actually the more stringent one and the one which is used to determine time steps when an
adaptive time stepping is employed.

To circumvent the time step restrictions which follow from the Lagrangian nature of our
approach, one can also keep the point cloud static, albeit at the cost of having to resolve the
convective terms in Eulerian formulations of the underlying differential equations. For an
in-depth discussion on this subject-matter and solution approaches within the finite pointset
method we refer the interested reader to the work by Seifarth [136].

Aside from considerations of point cloud quality and numerical stability, we also need
to consider computational cost. Due to both, the point movement and management, the
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neighbor relations described in the first section of this chapter are continuously changing and
need to be updated. This process is one of the most time consuming parts of the meshfree
GFDM approach. In the most naive implementation, one could recompute the lists of
neighbors in every time step by checking the distance between every pair of points against
the smoothing length. The implication of this procedure would be a growth of computational
cost per time cycle with O(N2), which is clearly unacceptable. Instead one can construct
a data structure which represents a regular grid of elements in Rd (squares in 2D or cubes
in 3D) with side length h so that the computational domain is covered by these “buckets”
and neighbors of every point can be found in either the buckets the point is located in or its
directly adjacent ones. As is described in [40], by maintaining lists that map between the
bucket indices and point indices, the computational cost of neighbor search can be reduced
to O(N log(N)). However, it is discussed in [94], that this approach becomes increasingly
inefficient with stronger variations in smoothing length. Therefore, we employ an approach
based on a binary search tree structure which does not suffer from this deficiency [143]. We
further want to note that our implementation of the FPM, i.e. the software MESHFREE, is
able to utilize the capabilities of parallel computing on distributed memory via the Message
Passing Interface (MPI) standard. This allows for the solution of continuum mechanical
problems on point clouds with millions of points [73].
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Chapter 3

Multiphase flow
In the last two chapters we have introduced the equations which govern the motion of fluid
phases and the framework in which we intend to solve our original problem, the coupling of
fluid and solid phases. It is within this chapter that we want to discuss solution approaches
and provide an introduction to the theoretical basis for our numerical investigations.

The chapter is structured as follows: We first give a short overview on different models
which are used for the numerical simulations of coupled fluid-solid flows in the literature and
provide the initial motivation for the approach we use in this thesis. We then introduce the
theoretical framework of this method and provide more details on its different realizations
in the literature and the coupling terms that might be involved.

3.1 Models for fluid-solid coupling
The coupled numerical simulation of fluids with immersed solid particles is an important tool
for a wide range of industrial applications. Historically, a big driver for the development
of such methods can be found in chemical engineering applications (see for example [173]
and references therein). A broad overview of different coupling approaches in the context of
gas-solid fluidized beds is presented by Hoef et al. [64], more generally for dense particulate
reaction systems by Zhong et al. [173], and for the coupling of continuous and dispersed
phases by Loth [95] and van Wachem, Almstedt [161]. For text books which provide more
extensive discussions on multiphase models in general, or fluid-solid flows in particular we
refer the reader to [26, 55, 108, 118]. In the following we typically refer to a single entity of
solid material as particle in order to provide clear distinction from the numerical points in
the FPM.

There are several factors which influence the choice of a fitting approach to this coupling.
If we consider a single particle that moves at a low velocity in a comparatively large volume
of fluid and with no proximity to other particles, it is very likely that this particle does not
influence the fluid flow in any significant way. In such cases a so-called one-way coupling
is applicable, meaning that forces exerted by the fluid phase onto individual particles are
calculated but the solid particles are essentially invisible to the fluid phase. However, as
particle size increases or they become clustered, there will be a significant influence by the
bulk of solid entities onto the fluid phase. In such cases it is important to consider a two-way
coupling where also the fluid flow is, in some way, influenced by the dispersed phase. The
specific form of this influence depends on the chosen approach and will be clarified in the
upcoming sections. We also note that in very dilute suspensions, i.e. a mixture of a carrier
fluid and immersed solid entities where the average distance between particles is relatively
large, it is likely sufficient to consider particles which do not interact with each other and
whose movement is solely determined by body forces and the interaction with the fluid phase.
However, with this strong simplification it is not possible to represent cases of accumula-
tions which confine the flow domain or breakage induced by collisions. Thus, within this
work, we devise a scheme for the most general case involving interacting particles, with the
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Figure 3.1: Overview of different approaches for the simulation of coupled fluid-solid flows.

reduction to non-interacting ones being obvious. We note that more detailed classifications
of flow conditions and guidelines for assessing the suitability of different coupling degrees
are presented, for example, in [27, 108]. These are mostly based on the relation of char-
acteristic time scales of the system to the so-called particle relaxation time. This quantity
describes the relaxation of particle velocity towards fluid velocity and is properly introduced
in Section 4.6. We further point out that a bidirectional coupling of fluid and solid phase in
combination with interacting particles is denoted as four-way coupling by the authors in [27,
108]. While this is a convention that can be found in some part of the literature on multi-
phase flows, we stick to the above differentiation between cases where momentum exchange
is unidirectional or bidirectional and denote them as one-way and two-way coupled.

To provide an overview of coupling methods we roughly follow the classification in [64]
and consider them with decreasing computational cost but increasing amount of modeling
involved (see Figure 3.1). A reason for this specific choice of naming convention for the
coupling approaches will be given at a later point. Note that we omit models which consider
scales where the continuum theory developed in Chapter 1 looses its validity, such as the
molecular dynamics model mentioned in [64]. Instead, we first want to consider what we
refer to as resolved discrete coupling in the following.

Resolved discrete coupling

As described, for example, in [118], particles in the solid phase experience a fluid-solid
interaction force Ffs due to interior stresses of the surrounding fluid phase, which can be
obtained by integrating the fluid stress tensor σf over the surface of a particle, i.e.

Ffs =
∫

Sp

ns · σf dS (3.1.1)

where ns denotes the outward pointing unit normal of the particle surface Sp. Assuming we
are able to compute the fluid flow in a coupled numerical simulation so that all fluctuations
close to particle surfaces are resolved, the evaluation of the above integral suffices to fully
represent the forces experienced by the particle, without any modeling involved. On the other
hand, the influence of particles onto the fluid is ensured by considering them as moving
boundaries to the fluid flow domain. Thus, in a resolved discrete coupling scheme one
considers each solid particle as a single discrete entity and solve a single-phase flow problem
in the fluid phase with a numerical discretization that is able to resolve each particle surface
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sufficiently well. The translational movement of each discrete particle is then computed by
the integration of its equations of motion

dxs

dt = vs (3.1.2)

ms
dvs

dt = Ffs + Fb + Fc (3.1.3)

where xs, vs, ms, Fb, Fc denote the particle position, velocity, mass, other body forces
and forces due to collisions with other particles or boundaries, respectively. Typically when
such a discrete representation of the solid phase is considered, one does not resolve internal
stresses and deformations due to collisions. Instead, simplified models, partially derived
from elasticity theory, are employed to reduce computational cost. One of the most common
methods of this type is the so-called discrete element method (DEM), in which the discretely
represented solid entities following (3.1.2), (3.1.3) are allowed to slightly overlap and forces
which act to recover the non-overlapping state are calculated from a measure of overlap
size as well as relative velocities. More details on this methodology are omitted here and
will be provided in Chapter 4, since they are not necessary for the current discussion. The
combination of a continuous phase solver for the fluid phase and the discrete element method
for the solid phase is often referred to as CFD-DEM.

Even when particles are not close to each other (dilute suspension), it is evident that,
since the numerical resolution in the fluid phase is dictated by particle sizes, this approach
quickly becomes infeasible when they are very small compared to the flow domain. This
problem is further aggravated in dense configurations where, for example, liquid bridges [26]
causing adhesive forces might need to be resolved in small gaps between the particles. One
might argue that such small scale effects can be captured with some additional modeling
effort instead of enforcing an increase in fluid phase resolution, however, a strict dependency
on particle size remains. From these considerations, the necessity for a method that relaxes
the requirements on spatial discretization in the continuous phase while keeping the discrete
nature in the solid phase becomes apparent. One class of methods which approach this
problem are those based on the unresolved discrete coupling introduced in the following.

Unresolved discrete coupling

The general idea of an unresolved discrete coupling is that individual particle surfaces are
no longer resolved and the fluid flow is calculated on a scale above the particle dimensions.
Instead of being treated as moving boundaries to the continuous phase, the dispersed phase
is treated as a collection of point sources and sinks of momentum. In particular, the two
phases are not spatially separated any more, i.e. the particles do not exclude volume in the
computational domain from the fluid. To see which effect this has on the form of (3.1.1), we
decompose the fluid stress σf into a part 〈σf〉 which can be resolved by the coarse spatial
discretization in the fluid phase and a part σ′f which subsumes small scale fluctuations, i.e.

σf = 〈σf〉+ σ′f (3.1.4)

Then we can write
Ffs =

∫

Sp

ns · 〈σf〉 dS +
∫

Sp

ns · σ′f dS (3.1.5)

Using the divergence theorem and the fact that 〈σf〉 can be assumed to be approximately
constant within a single particle, we arrive at

Ffs ≈ (∇ · 〈σf〉)Vs +
∫

Sp

ns · σ′f dS (3.1.6)
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where Vs denotes the particle volume. Therefore, if we are solving our fluid phase on a scale
above the individual particle level, the obtained stresses can be directly used to evaluate the
first term. For the second term it is necessary to find an expression that links the forces
due to small scale fluctuations to fields available on the fluid scale. This is typically done
by providing individual formulas for each of the physical phenomena which are products of
these fluctuations, such as drag, lift or virtual mass forces. These formulas are obtained as
empirical correlations either from experiments or resolved simulations and heavily depend
on the considered problem. In particular, while the resolved coupling doesn’t require special
treatment of different particle shapes or configurations of multiple particles, in an unresolved
coupling a strong deviation in either of these factors requires a modification of the correlation.
More details on these expressions are provided in Section 3.4.

With suitable expressions for the forces onto particles at hand, it is further necessary to
provide momentum source terms in the fluid phase which obey Newton’s third law. This
calculation is typically done by some kind of averaging procedure which transfers the quan-
tities attached to single particles onto the fluid phase discretization. The realization of this
step is a major differentiating factor between different CFD-DEM schemes found in litera-
ture. More details on this procedure, often also referred to as coarse graining, are given in
Section 4.2.

While the unresolved approach significantly reduces the computational expense in the
continuous phase, the solid phase is still represented discretely. Thus, the cost associated
with the neighbor search for resolving collisions remains. Furthermore, the computational
effort for both, interpolations onto each solid particle and the aforementioned averaging, scale
with the granular system size. Especially the latter procedure comes at a significant cost and
takes up a major part of the simulation time in an unresolved coupling scheme. To alleviate
this problem, methods have been proposed which subsume many of the physical particles
into representative numerical entities such as the MP-PIC (see [173] and references therein).
But even with such approaches, industry-scale problems can include numbers of particles
large enough such that tracking every single solid entity still comes at a prohibitively large
computational cost.

However, in some of these applications it might be sufficient to only consider macroscopic
averages of the individual particle properties. In such cases a direct computation of these
quantities can drastically reduce the numerical complexity in the solid phase. A class of
methods for coupled fluid-solid flows which build upon this idea are those using a two-fluid
model (TFM).

Two-fluid model

As the name already suggests, the macroscopic solid phase behavior in two-fluid models is
typically described by a similar set of equations as the fluid phase. Thus, the viewpoint of
individual particles is entirely dropped and they are treated as a continuous phase with a
stress tensor and viscosity which are formulated based on the bulk motion of particles. There
is a variety of different theories to perform the necessary transition from individual particle
behavior to macroscopic behavior in a bulk of particles, but the most commonly used one
is based on the kinetic theory of granular flow [55, 161], which uses concepts from kinetic
gas theory. Typically the general form of momentum exchange terms in two-fluid models is
the same as in the unresolved discrete coupling, the only difference is the fact that they are
no longer evaluated for individual particles and then averaged. Instead, they are calculated
directly based on the macroscopic flow quantities of both phases.

Using models of this type enables the simulation of large-scale industrial problems due
to the drastically reduced computational cost within the solid phase. Furthermore, in case
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the particulate phase is modeled with similar equations as the fluid phase, one can also use
similar numerical schemes for both phases.

However, the efficiency of this approach does come at the cost of increased modeling effort.
Rather similar to the transition from unresolved to resolved discrete coupling, one needs to
reflect small-scale phenomena within the solid bulk that are no longer resolved. These
can include the formation of patterns such as particle bridges, which in turn may lead to
clogging within the flow geometry or the segregation of particles in polydisperse suspensions.
Additionally, as noted by Crowe et al. [26], the TFM only makes sense in dense particulate
systems since only then will information (temperature, velocity) travel in all directions, i.e.
diffuse, also in the discrete model. For dilute systems the information follows the motion of
individual particles instead.

This concludes our brief overview on different coupling approaches and we now discuss
our choice of method in the context of the present work. There are specific applications
which can lead to models with even more different combinations of scales, like the discrete
bubble model mentioned in [64], which is specific to gas-solid fluidization. However, we did
want to restrict our attention towards more general models that are applicable in a wider
range of problems and exclude specialized approaches. We also note that, due to the preva-
lence of mesh-based methods in literature, it is common practice to denote phases with a
continuous description as “Eulerian” phase, while those with a discrete one are referred to
as “Lagrangian” phase. In this naming convention one often finds a “Eulerian-Eulerian cou-
pling” to be synonymous with a two-fluid model, while a “Eulerian-Lagrangian coupling”
can either refer to a resolved or unresolved discrete coupling (cf. [173]). Clearly, this type
of naming convention is not suitable for our numerical framework, which is why we resorted
to the one depicted in Figure 3.1 and used throughout the current discussion.

Discussion of models in FPM context

When we consider the above approaches within the Lagrangian GFDM framework of Chap-
ter 2, it is apparent that the integration of a discrete particle method is much more natural
than it is in a mesh-based Eulerian framework. For the detection of collisions we can make
use of the neighbor search algorithms which are necessary for the construction of differential
operators. These algorithms form the major part of computational expense in DEM methods
and the corresponding data structures and parallelizations are already available and have
the capacity to handle millions of points in our framework. This fact is one of the main
reasons why we choose to not pursue a two-fluid approach in favor of a scheme with discrete
solid phase.

Among these schemes, let us first consider the resolved discrete particle model. In this
approach, one could make use of the fact that the Lagrangian FPM is particularly suitable
for flows with moving boundaries, mainly because there is no need for repeated re-meshing
of the domain. This makes the approach rather flexible in terms of particle shape and would
certainly be a useful tool for highly resolved simulations. Their results can then be utilized to
obtain expressions which model small-scale phenomena for an unresolved coupling. However,
for flow problems beyond academic scales it is evident that this approach is not applicable
due to its computational expense and the numerical problems induced in the fluid phase by
dense configurations of particles.

While we retain the details in solid particle movement and can still make use of the unified
Lagrangian framework, an unresolved coupling allows us to consider problem scales which
are much closer to industrial applications. This is why we choose to pursue the unresolved
coupling approach within the context of this work.
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We note that a coupling with non-interacting droplets of fluid has already been realized
in the considered framework by Drumm et al. [40]. However, the approach within this
work does differ from their scheme in many aspects that are discussed at a later point in
Chapter 4. Most notably, we consider how averaging approaches from mesh-based CFD-
DEM can be translated to our setting, despite the absence of static computational cells and
the corresponding natural notion of averaging volumes. In the course of this discussion we
also highlight the difference in our approach compared to mesh free methods which are based
on mass particles, such as SPH.

In the remainder of this chapter we lay the theoretical foundations for the chosen coupling,
before we turn towards their numerical treatment in Chapter 4. First, we introduce the
averaging formalism that leads to a set of generalized Navier-Stokes equations in the fluid
phase and dictates how the momentum exchange terms are defined. With this knowledge we
then consider different versions of unresolved coupling and discuss the necessary empirical
expressions for coupling forces that result from phenomena below the averaging scale.

3.2 Volume averaged Navier-Stokes equations
The foundations for methods like unresolved CFD-DEM and the two-fluid model have been
laid in the 1960s. During that time, several authors independently derived the spatial
averaging theorem which is central to the derivation of those partial differential equations
underlying the above coupling approaches [4, 101, 138, 164, 166]. Although their results
were very similar, the notion of an averaged quantity is different in each of the original
contributions. As is detailed in [120] and more recently in [32], the most general of these
definitions is based on the approach by Marle [101], which makes use of distribution theory.
On the other hand, their formalism is rarely referenced in the context of unresolved CFD-
DEM, while the weighted approach due to Anderson and Jackson [4] and unweighted ones
due to Whitaker [164, 165, 166] and Slattery [138] are much more common. There is also a
variety of other approaches that lead to similar equations, such as the ensemble averaging
approach by Zhang and Prosperetti [170, 171]. Although we only employ Anderson and
Jacksons method to derive the equations we aim to solve numerically, it is worthwhile to
consider a framework that unifies some of the formalisms and helps to put the approach in
this work and in CFD-DEM literature into context. To achieve this, let ψ : Rd → R be a
quantity which is present in both phases so that

ψ = ψfχf + ψsχs =
{
ψf in the fluid phase
ψs in the solid phase

(3.2.1)

where χf , χs denote the indicator functions on the fluid and solid volume, while ψf , ψs are
the fields within a single phase. The generalized averaging formalism, described in [119,
120], is based on the convolution

(w ∗ ψ)(x) =
∫

Rd

w(x− y)ψ(y) dVy (3.2.2)

with a kernel w that is compactly supported and normalized in the sense that
∫

Rd

w dV = 1 (3.2.3)

This allows us to define the superficial fluid phase average

〈ψf〉 = w ∗ (χfψ) (3.2.4)
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and intrinsic fluid phase average

〈ψf〉f = w ∗ (χfψ)
w ∗ χf

(3.2.5)

in a way that is, through the choice of appropriate weighting kernels, consistent with the
specialized averaging procedures discussed in the introduction to this section. One of the
differences between the two definitions is the fact that quantities which are constant within
a phase are exactly reproduced by the corresponding intrinsic averages while the superficial
average can differ. Within this work we are mainly interested in intrinsic averages, which
we may analogously defined for the solid phase, i.e.

〈ψs〉s = w ∗ (χsψ)
w ∗ χs

(3.2.6)

The denominators in (3.2.5) and (3.2.6) also play a key role in the equations we want to
derive. The term

εf = w ∗ χf (3.2.7)
denotes the fluid volume fraction, also called porosity or voidage, while

εs = w ∗ χs (3.2.8)

is the solid volume fraction. As their name suggests, these quantities describe how much of
a certain (averaging) volume is occupied by the respective phase. Due to the kernel being
normalized, the volume fractions further fulfill

εf(x) + εs(x) = 1 ∀ x ∈ Rd (3.2.9)

which represents the intuitive requirement that, in a two-phase flow, adding up the fluid
and solid volume should provide the whole volume on which the fractions were calculated.
To better visualize this and also to see how the different averaging approaches can be ac-
commodated into the convolution formalism, let us first consider the classical unweighted
averaging. This definition due to Slattery [138] can also be found in a variety of textbooks
on multiphase flow [26, 118] and is given by

〈ψf〉f(x) = 1
|Vf |

∫

Vf(x)

ψf dV (3.2.10)

with the fluid volume fraction being defined as

εf = |Vf |/|V| (3.2.11)

Herein, an averaging volume V ⊂ Rd of fixed size and shape is moved with the point of
evaluation so that V(x) is centered in x and Vf(x) denotes the part of V(x) covered by
the fluid phase (see Figure 3.2). Note that we use the calligraphic V for subsets of Rd to
distinguish it from geometric volumes V and denote the volume of a set as

|V| =
∫

V
1 dV (3.2.12)

We observe that the average definition (3.2.10) is recovered from the generalized formalism
(3.2.5) by choosing the piecewise constant kernel

wV(r) = 1
|V|





1 if r ∈ V
0 if r ∈ Rd \ V

(3.2.13)
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Vs(x)
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Figure 3.2: Visualization of a spherical moving averaging volume in the unweighted formalism. Light
shading in the magnified rectangular region denotes the volume inside V(x) that is covered by
fluid, i.e. Vf(x), while dark shaded gray visualizes the solid phase counterpart Vs(x).

often referred to as boxcar or top-hat function. For certain problems other non-smooth
kernels might also be advantageous, as discussed in [32].

On the other hand, the weighted averaging approach by Anderson and Jackson [4] results
from choosing a radially symmetric and smooth kernel given by

w(r) = w̃(‖r‖) (3.2.14)

with w̃ ∈ C∞(R+,R+). Possible choices for w̃ include be the Gaussian

w̃(r) = Cb,d exp
(
−r

2

b2

)
(3.2.15)

or an element of a standard Dirac sequence

w̃(r) = ε−dϕ
(
r

ε

)
(3.2.16)

based on a positive symmetric mollifier such as

ϕ(r) =




Cd exp

(
− 1

1− r2

)
if r < 1

0 if r ≥ 1
(3.2.17)

In both types of weighting function, Cb,d and Cd denote constants that ensure normaliza-
tion of the kernels on Rd. While the averaging volume for a Gaussian kernel is formally
unbounded, the second choice represents a compactly supported function which again leads
to a bounded averaging volume.

We recall that we have already encountered the application of averaging to bridge scales
when deriving the conservation equations for a continuous phase. There we touched upon
the fact that a sensible definition of averages is not always possible. Luckily for multi-phase
flows it has been shown that there is an enormous amount of applications for which such a
definition can be made in a meaningful way. The common assumption underlying derivations
based on the above averages is the existence of a separation of scales:

Assumption: If Lp is the characteristic particle size (radius Rp for spherical particles)
and Lc is the smallest length scales at which relevant changes in the continuous phase
behavior occur, we assume that Lc � Lp holds.
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(a) Quantity without aver-
aging

(b) Lp < Lw < Lc (c) Lc < Lw

Figure 3.3: Effect of weighted averaging for different kernel length scales Lw, when applied to a fluid
quantity with small scale fluctuations. The particle length scale is denoted by Lp while the
smallest scale of interest for the continuous phase is denoted by Lc.

Let us define a characteristic length Lw, which represents the range at which the kernel
values have a relevant magnitude. For an unweighted averaging this is given by the size of
the moving averaging volume, while it is a multiple of the kernel bandwidth in a weighted
averaging. Under the above assumption we can infer, that there is a Lw ∈ (Lp, Lc) so that
small scale fluctuations are smoothed out but the macroscopic variations of interest are kept.
This idea is conceptually depicted in (see Figure 3.3). In the following we also assume that
this averaging enables a splitting of point properties into averages and fluctuating parts

ψ = 〈ψ〉+ ψ′ (3.2.18)

with
〈ψ′〉 = 0 ⇔ 〈〈ψ〉〉 = 〈ψ〉 (3.2.19)

In particular we make use of the identity

〈〈ψf〉f〉s = 〈ψf〉f (3.2.20)

where we note that the double averaging on the left is possible due to the fluid intrinsic
average 〈ψ〉f being defined on the whole domain, including the solid phase volume, even if
ψ is a continuous phase quantity. More in-depth discussions surrounding the separation of
scales assumption and derived identities can be found in many of the cited textbooks on
multiphase problems and for example in [33]. Here, we won’t go into more detail, since this
would quickly go far beyond the scope of this thesis and obscure the main target of this
section, the derivation of conservation laws in terms of averaged quantities. We emphasize
that this derivation is not a novel or original result, but is detailed here for the sake of
clarifying the notations and theoretical background of the coupling considered within this
work.

For this derivation we closely follow the original work by Anderson and Jackson [4]. As
in their work, we replace the integral domain Rd in (3.2.2) by V∞ ⊆ Rd and formulate the
normalization condition as ∫

V∞

w(x− y) dVy = 1 (3.2.21)

We further restrict the possible choice of x to a bounded subset V ⊂ V∞ which fulfills

w(x− y) ≈ 0, ∀ x ∈ V , y ∈ ∂V∞ (3.2.22)

For a compactly supported kernel this condition means that its support is fully inside V∞,
when centered in x ∈ V . Since the kernel used in [4] is the Gaussian with unbounded support,
the above restriction is formulated a bit weaker, i.e. the kernel is approximately zero at the
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that this derivation is not a novel or original result, but is detailed here for the sake of
clarifying the notations and theoretical background of the coupling considered within this
work.

For this derivation we closely follow the original work by Anderson and Jackson [4]. As
in their work, we replace the integral domain Rd in (3.2.2) by V∞ ⊆ Rd and formulate the
normalization condition as ∫

V∞

w(x− y) dVy = 1 (3.2.21)

We further restrict the possible choice of x to a bounded subset V ⊂ V∞ which fulfills

w(x− y) ≈ 0, ∀ x ∈ V , y ∈ ∂V∞ (3.2.22)

For a compactly supported kernel this condition means that its support is fully inside V∞,
when centered in x ∈ V . Since the kernel used in [4] is the Gaussian with unbounded support,
the above restriction is formulated a bit weaker, i.e. the kernel is approximately zero at the

31



Chapter 3 Multiphase flow

domain boundary and the normalization is thus preserved only approximately. This also
motivates the subscript notation in V∞, since formally the surface of the considered flow
domain needs to be infinitely far away from the evaluation point x for the kernel to vanish.
Nevertheless, we retain this restriction in the following derivations without putting too much
emphasis on the slightly more complex formalism that would be necessary to incorporate
averaging close to boundaries. In fact, while the derivations by Anderson and Jackson [4, 72],
which also omit this problem, are frequently cited in the literature on unresolved CFD-DEM
[39, 62, 75, 161, 175, 177], little attention is devoted to this omission. As is also discussed
in [104], it is therefore important to realize that derivations of the multiphase equations
are often presented with lack of mathematical rigor in some aspects and understood as a
modeling tool. However, the amount of literature where this model is successfully applied to
a wide range of applications, illustrates that these simplifications do not give rise to errors
that would impede its usefulness. Thus, we follow the above line of thought and consider
the fluid and solid volume with respect to the flow domain V∞, i.e.

V∞ = Vf∪̇Vs (3.2.23)

in the following. Consequently, the normalization condition (3.2.21), together with the
assumptions on V , ensures

εf(x) + εs(x) = 1 ∀ x ∈ V (3.2.24)

3.2.1 The averaging theorem
With all assumptions and the averaging formalism being clarified, we now turn our attention
towards the derivation of conservation laws formulated in terms of averaged quantities. We
do this by multiplying the point-wise mass and momentum conservation equations of the
fluid phase with the kernel, followed by an integration over Vf . This results in integrals over
temporal and spatial derivatives of the point-wise quantities, which need to be reformulated
in terms of derivatives of the averaged fields. This subsection is devoted to the derivation of
two important identities which enable this reformulation.

For the relation which applies to temporal derivatives, we want to reformulate the convo-
lution

w ∗
(
χf
∂ψf

∂t

)
= εf〈

∂ψf

∂t
〉f (3.2.25)

To achieve this, we apply the Reynolds transport theorem in the form

∂

∂t

∫

Vf(t)

ψf(y, t)w(x− y) dVy =
∫

Vf(t)

∂ψf

∂t
(y, t)w(x− y) dVy

+
∫

∂Vf(t)

ψf(y, t)w(x− y)(vb · nf) dSy
(3.2.26)

with vb · nf representing the dot product of the surface element velocity and the outer unit
normal to ∂Vf(t). We recognize the first integral on the right-hand side as the averaged
temporal derivative such that we can write

∂

∂t

(
εf(x, t)〈ψf〉f(x, t)

)
= εf(x, t)〈

∂ψf

∂t
〉f(x, t) +

∫

∂Vf(t)

ψf(y, t)w(x− y)(vb · nf) dSy (3.2.27)

So far this procedure is identical in all approaches based on the above convolution formalism.
In particular the same derivation can be found in literature based on the approaches by
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Slattery [138] or Whitaker [164, 166]. To reformulate the second term, we split the total
surface of the fluid volume, from now on denoted by Sf(t) = ∂Vf(t), into the interface to
solid particles Sf,s(t) and the remaining surface Sf,∞ defined by the averaging domain V∞.
Note that, when we split integrals over Sf,s(t) into parts corresponding to single particles
Sp,i(t), we usually replace the normals nf by those pointing outwards from the particles, i.e.
ns. The surface integral then reads

∫

∂Vf(t)

ψf(y, t)w(x− y)(vb · nf) dSy

=
∫

Sf,∞

ψf(y, t)w(x− y)(vb · nf) dSy −
Ns∑

i=1

∫

Sp,i(t)

ψf(y, t)w(x− y)(vb · ns) dSy
(3.2.28)

For the far away fluid surface Sf,∞ we assume that it is fixed, i.e. vb = 0, while at the particle
surfaces vb coincides with the fluid velocity. If we restrict ourselves to an impermeable
particulate phase with constant size (see [14] for a more general formulation with time-
varying size), the velocity of fluid and particle along the surface normals have to be identical.
With these simplifications we obtain the first important relation

εf〈
∂ψf

∂t
〉f = ∂

∂t

(
εf〈ψf〉f

)
+

Ns∑

i=1

∫

Sp,i(t)

ψf(y, t)w(x− y)(vs,i · ns) dSy (3.2.29)

where we omitted the dependence on space and time outside integrals for better readability.
Next we want to consider the relation for spatial derivatives, which is referred to as averaging
theorem in [120] and was derived in the generalized formalism by the authors. Here we
restrict ourselves to the Anderson and Jackson formalism and consider the term

∫

Vf(t)

(∇ · af)(y, t)w(x− y) dVy = εf(x, t)〈∇ · af〉f(x, t) (3.2.30)

for a smooth weighting function w and vector valued property of the fluid af(·, t) ∈ C1
(
Rd,Rd

)
.

In order to rewrite this term we observe that

∇ ·
(
εf(x, t)〈af〉f(x, t)

)
=

∫

Vf(t)

af(y, t) · ∇x[w(x− y)] dVy

= −
∫

Vf(t)

af(y, t) · ∇y[w(x− y)] dVy
(3.2.31)

and apply the product rule and the divergence theorem to obtain

∇ ·
(
εf(x, t)〈af〉f(x, t)

)
=

∫

Vf(t)

(∇ · af)(y, t)w(x− y) dVy

−
∫

∂Vf(t)

[af(y, t)w(x− y)] · nf dSy
(3.2.32)

With the same arguments as before, this leads to the averaging theorem in the form

εf〈∇ · af〉f =∇ ·
(
εf〈af〉f

)
−

Ns∑

i=1

∫

Sp,i(t)

w(x− y)af(y, t) · ns dSy (3.2.33)
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3.2.2 Mass conservation
Now that we have provided a way to reformulate the integral terms, we want to derive
averaged versions of the Navier-Stokes equations. Although we will later restrict ourselves
to an incompressible continuous phase, we do not incorporate this into the derivation of
mass and momentum conservation in term of averaged quantities. This is done in order
to provide a framework for possible future extensions. To improve readability, superscripts
denoting the averaging volume will be omitted during the derivations, whenever the averaged
quantity is clearly attached to only one of the phases. Let us first consider the point-wise
mass conservation equation

∂ρf

∂t
+∇ · (ρfuf) = 0 (3.2.34)

For both terms in this equation, we apply a convolution with the weighting function over
the fluid volume, which leads to

∫

Vf(t)

∂ρf

∂t
(y, t)w(x− y) dVy +

∫

Vf(t)

∇ · (ρfuf)(y, t)w(x− y) dVy = 0 (3.2.35)

or in short form
εf〈
∂ρf

∂t
〉+ εf〈∇ · (ρfuf)〉 = 0 (3.2.36)

Setting ψf = ρf in (3.2.29) we directly obtain

εf〈
∂ρf

∂t
〉 = ∂

∂t
(εf〈ρf〉) +

Ns∑

i=1

∫

Sp,i(t)

ρf(y, t)w(x− y)(vs,i · ns) dSy (3.2.37)

while for the second term in (3.2.36) we use (3.2.33) with af = ρfuf , yielding

εf〈∇ · (ρfuf)〉 =∇ · (εf〈ρfuf〉)−
Ns∑

i=1

∫

Sp,i(t)

w(x− y)ρf(y, t)(uf(y, t) · ns) dSy (3.2.38)

As discussed before, the fluid velocity on the particle surface satisfies uf ·ns = vs,i ·ns, such
that the sums on the right side of (3.2.37) as well as (3.2.37) cancel out and we obtain

∂
(
εf〈ρf〉f

)

∂t
+∇ ·

(
εf〈ρfuf〉f

)
= 0 (3.2.39)

Our goal is to obtain a formulation where only averages of individual quantities are taken,
which means that we need to reformulate the term εf〈ρfuf〉 inside the divergence. If we
consider an incompressible fluid, i.e. ρf = const, this becomes trivial since 〈ρfuf〉 = ρf〈uf〉,
while for variable density the analogous formula 〈ρfuf〉 = 〈ρf〉〈uf〉 is not correct and does
in fact neglect small scale contributions. A common way to approach this problem in the
context of turbulence modeling is the introduction of Favre filtering [50, 53], also called mass
averaging [26]. The filtered quantity is then defined by

〈af〉F = 〈ρfaf〉
〈ρf〉

(3.2.40)

and in analogy to the previous averaging, we write

af = 〈af〉F + a′′f (3.2.41)
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with 〈a′′f 〉F = 0. Note that the Favre filtering reduces to the original averaging for a spatially
non-varying density and that an analogous definition with volume fraction instead of material
density leads to the notion of phase averages [50]. With this definition we can rewrite the
averaged mass conservation into

∂
(
εf〈ρf〉f

)

∂t
+∇ ·

(
εf〈ρf〉f〈uf〉fF

)
= 0 (3.2.42)

which, analogously to the single phase equation (1.4.4), can be reformulated into the La-
grangian form

D
(
εf〈ρf〉f

)

Dt + εf〈ρf〉f
(
∇ · 〈uf〉fF

)
= 0 (3.2.43)

Before proceeding with the momentum conservation, we consider the mass conservation in
the solid phase. Let us : Vs × R+ → Rd denote the pointwise continuum velocity inside the
solid phase. Inside each particle we can formulate the same point-wise mass conservation

∂ρs

∂t
+∇ · (ρsus) = 0 (3.2.44)

as in the fluid phase. Another convolution with the weighting function, this time over the
solid volume, followed by the application of product rule and Reynolds transport theorem
results in

∫

Vp,i(t)

∂ρs

∂t
(y, t)w(x− y) dVy

= ∂

∂t

∫

Vp,i(t)

ρs(y, t)w(x− y) dVy −
∫

Ss,i(t)

ρs(y, t)w(x− y)(vb · n) dSy
(3.2.45)

for the first term in (3.2.44) and
∫

Vp,i(t)

∇y · (ρsus)(y, t)(y, t)w(x− y) dVy

= ∇x ·
∫

Vp,i(t)

ρsus(y, t)w(x− y) dVy −
∫

Ss,i(t)

ρs(y, t)w(x− y)(us · n) dSy
(3.2.46)

for the second one. The surface velocity vb is identical to the solid continuum velocity us
such that the surface integrals cancel out upon summation and in analogy to (3.2.39) we
obtain

∂(εs〈ρs〉s)
∂t

+∇ · (εs〈ρsus〉s) = 0 (3.2.47)

Note that if we combine the averaged mass conservation equations of both phases, we get

∂
(
εf〈ρf〉f + εs〈ρs〉s

)

∂t
+∇ ·

(
εf〈ρfuf〉f + εs〈ρsus〉s

)
= 0 (3.2.48)

To reformulate this in a notation commonly used in multiphase flows, we introduce the total
volume average

〈ψ〉t(x, t) = εf(x, t)〈ψ〉f(x, t) + εs(x, t)〈ψ〉s(x, t) (3.2.49)
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defined for quantities that exist in both phases. With this, the above equation reads

∂〈ρ〉t
∂t

+∇ · 〈ρu〉t = 0 (3.2.50)

If both phases have constant density, it can be eliminated from both mass conservation
equations and we can use (3.2.24) to obtain

∇ ·
(
εs〈us〉s + εf〈uf〉f

)
= 0 (3.2.51)

which is also sometimes used in the CFD-DEM context [150]. Considering the nature of our
numerical framework, it might be tempting at this point, to rewrite the solid phase mass
conservation into a Lagrangian formulation and combine it with that of the fluid phase. The
possible pitfall in this is the fact that, the material derivative notation does not sufficiently
represent the convection velocity. So one might accidentally miss the fact that in general

D
(
εf〈ρf〉f

)

Dt + D(εs〈ρs〉s)
Dt 6=

D
(
εf〈ρf〉f + εs〈ρs〉s

)

Dt (3.2.52)

where the right-hand side vanishes for constant densities. Combining the Lagrangian mass
conservation equations and using this erroneous equality yields a misleading equation for
the divergence of averaged fluid velocity.

3.2.3 Momentum conservation
Next, we want to apply the same kind of averaging to the point-wise momentum conservation
equation of the fluid phase

∂(ρfuf)
∂t

+∇ · (ρfuf ⊗ uf) =∇ · σf + ρfg (3.2.53)

After integrating over the time derivative we can again apply (3.2.29), this time component
wise with ψf = ρfu

(j)
f , to obtain
∫

Vf(t)

∂(ρfuf)
∂t

(y, t)w(x− y) dVy

= ∂(εf〈ρfuf〉)
∂t

+
Ns∑

i=1

∫

Sp,i(t)

ρfuf(y, t)w(x− y)(vs,i · ns) dSy
(3.2.54)

Next, we consider the integral over the j-th component of the convective term and use
(3.2.33) with af = ρfu

(j)
f uf to obtain

∫

Vf(t)

∇ ·
(
ρfu

(j)
f uf

)
(y, t)w(x− y) dVy

=∇ ·
(
εf〈ρfu

(j)
f uf〉

)
(x, t)−

Ns∑

i=1

∫

Sp,i(t)

ρfu
(j)
f (y, t)w(x− y)(vs,i · ns) dSy

(3.2.55)

To rewrite the divergence in terms of individual averages, we first use the splitting (3.2.41),
i.e.

〈ρfu
(j)
f uf〉 = 〈ρf〈uf〉(j)F

〈uf〉F〉+ 〈ρf〈uf〉(j)F
u′′f 〉+ 〈ρfu

′′,(j)
f 〈uf〉F〉+ 〈ρfu

′′,(j)
f u′′f 〉 (3.2.56)

36

Chapter 3 Multiphase flow

defined for quantities that exist in both phases. With this, the above equation reads

∂〈ρ〉t
∂t

+∇ · 〈ρu〉t = 0 (3.2.50)
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∇ ·
(
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)
= 0 (3.2.51)
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From the separation of scales assumption and the averaging definitions, we infer that average
values vary little on the characteristic scale of the weighting function and can thus be taken
outside the integration such that

〈ρfu
(j)
f uf〉 = 〈uf〉(j)F

〈uf〉F〈ρf〉+ 〈uf〉(j)F
〈ρfu

′′
f 〉+ 〈ρfu

′′,(j)
f 〉〈uf〉F + 〈ρfu

′′,(j)
f u′′f 〉 (3.2.57)

If we use 〈ρfu
′′
f 〉 = 〈ρf〉〈u′′f 〉F and 〈u′′f 〉F = 0, this simplifies to

〈ρfu
(j)
f uf〉 = 〈uf〉(j)F

〈uf〉F〈ρf〉+ 〈ρfu
′′,(j)
f u′′f 〉 (3.2.58)

and by collecting the results for the row-wise tensor divergence we can write the full convec-
tive term integral as

∫

Vf(t)

∇ · (ρfuf ⊗ uf)(y, t)w(x− y) dVy =∇ · (εf〈ρf〉〈uf〉F ⊗ 〈uf〉F)

+∇ · (εf〈ρfu
′′
f ⊗ u′′f 〉)−

Ns∑

i=1

∫

Sp,i(t)

ρfuf(y, t)w(x− y)(vs,i · ns) dSy
(3.2.59)

Adding this to the result obtained for the momentum density time derivative (3.2.54), the
averaged left-hand side of the point wise momentum equation takes the form

∫

Vf(t)

[
∂(ρfuf)
∂t

+∇ · (ρfuf ⊗ uf)
]
(y, t)w(x− y) dVy

= ∂(εf〈ρf〉〈uf〉F)
∂t

+∇ · (εf〈ρf〉〈uf〉F ⊗ 〈uf〉F) +∇ ·Ru

(3.2.60)

In this reformulation

Ru =
∫

Vf(t)

(ρfu
′′
f ⊗ u′′f )(y, t)w(x− y) dVy (3.2.61)

is the residual stress tensor which is analogous to the Reynolds stresses obtained by temporal
averaging of the Navier-Stokes equations in single-phase turbulent flow. It is effected not
only by the single-phase turbulence but also by the spatial variations in velocity due to the
presence of particles.

Now that we have transferred the left-hand side into an expression in averaged quantities
and a residual term, we want to turn our attention towards the remaining terms on the
right-hand side. For the stress tensor, componentwise application of (3.2.33) leads to

∫

Vf(t)

∇ · σf(y, t)w(x− y) dVy =∇ · (εf〈σf〉)−
Ns∑

i=1

∫

Sp,i(t)

w(x− y)(ns · σf) dSy (3.2.62)

To analyze the integrals over particle surfaces, we split the stress tensor into its average and
fluctuating components, i.e.

∫

Sp,i(t)

w(x− y)(ns · σf) dSy

=
∫

Sp,i(t)

w(x− y)(ns · 〈σf〉) dSy +
∫

Sp,i(t)

w(x− y)(ns · σ′f) dSy
(3.2.63)
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First, we want to rewrite the integral over the averaged stress tensor. We note that 〈σf〉
is defined on the whole domain, including the solid phase, such that we can apply the
divergence theorem on individual particle volumes. Thus

∫

Sp,i(t)

w(x− y)(ns · 〈σf〉) dSy =
∫

Vp,i(t)

∇y · (〈σf〉(y, t)w(x− y)) dVy (3.2.64)

Applying the product rule and changing the argument of differentiation for the weighting
function gradient, we obtain

∫

Sp,i(t)

w(x− y)(ns · 〈σf〉) dSy

=
∫

Vp,i(t)

(∇ · 〈σf〉)(y, t)w(x− y) dVy −∇x ·
∫

Vp,i(t)

〈σf〉(y, t)w(x− y) dVy
(3.2.65)

Summing up the contributions of all particles and recalling the definition of solid phase
averages we can write

Ns∑

i=1

∫

Sp,i(t)

w(x− y)(ns · 〈σf〉) dSy = εs〈∇ · 〈σf〉f〉s −∇ ·
(
εs〈〈σf〉f〉s

)
(3.2.66)

With the assumption (3.2.20), the solid phase average in the second term can be dropped
and by plugging (3.2.63) and (3.2.66) into (3.2.62) we obtain

∫

Vf(t)

∇ · σf(y, t)w(x− y) dVy

=∇ · 〈σf〉 − εs〈∇ · 〈σf〉〉s −
Ns∑

i=1

∫

Sp,i(t)

w(x− y)(ns · σ′f) dSy
(3.2.67)

where we used
∇ · (εf〈σf〉) +∇ · (εs〈σf〉) =∇ · 〈σf〉 (3.2.68)

Next, we want to show that the second and third term in (3.2.67) represent the momentum
exchange between the phases and can be written in terms of weighted averages over forces
onto individual particles. For this, let us consider the total force exerted by the fluid phase
onto a particle, i.e.

Ffs,i =
∫

Sp,i

σfns dS =
∫

Vp,i

∇ · 〈σf〉 dV +
∫

Sp,i

ns · σ′f dS (3.2.69)

We directly observe, that the field ∇ · 〈σf〉, defined on both, the fluid and solid phase,
is a body force volume density acting on the solid phase. We further recognize this term
from (3.2.67), where it is averaged over the whole solid phase and contributes to the fluid
momentum with a negative sign. If we assume that both,∇·〈σf〉 and the weighting function,
are constant within a single particle volume, we can simplify

εs〈∇ · 〈σf〉〉s ≈
Ns∑

i=1
∇ · 〈σf〉(xs,i)Vs,iw(x− xs,i) (3.2.70)

∫

Vp,i

∇ · 〈σf〉 dV ≈∇ · 〈σf〉(xs,i)Vs,i (3.2.71)
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Note that, in implementations of the unresolved CFD-DEM approach, this assumption has
to be made anyway, because the discretization of the continuous phase typically doesn’t
allow a better approximation inside a single particle volume. Let us further assume that

∫

Sp,i(t)

w(x− y)(ns · σ′f) dSy ≈ w(x− xs,i)
∫

Sp,i(t)

ns · σ′f dSy (3.2.72)

is a valid approximation. Combined with the simplifications (3.2.70) and (3.2.71), this allows
us to write ∫

Vf(t)

∇ · σf(y, t)w(x− y) dVy =∇ · 〈σf〉 − ffs (3.2.73)

where

ffs(x) =
Ns∑

i=1
w(x− xs,i)Ffs,i (3.2.74)

Here, the forces onto individual particles are approximated, as discussed above, by

Ffs,i = Vs,i
(
∇ · 〈σf〉f

)
(xs,i) +

∫

Sp,i

ns · σ′f dS (3.2.75)

Anderson and Jackson [4] have shown that an identity of the form
∫

Sp,i

ψ(y)nk(y)w(x− y) dS ≈ w(x− xs,i)
∫

Sp,i

ψ(y)nk(y) dS (3.2.76)

results in a good approximation when the following requirements are met

• The mean value of ψf on the particle surface Sp,i is small when compared to the
variations of this quantity about its mean

• The scalar field ψf varies smoothly over the surface Sp,i

• The particle surface Sp,i is approximately spherical

As is common practice not only within the derivation of volume averaged equations but also
in applications of unresolved CFD-DEM method, we consider perfectly spherical particles
within this thesis, such that the third point is satisfied. According to Anderson and Jackson
[4] the remaining requirements are also fulfilled for the components of the fluctuating stress
tensor, such that (3.2.72) can be considered valid.

We also want to note that, since the coupling force Ffs,i is not defined throughout the solid
volume but once for each particle, it is customary [72, 175] to write (3.2.74) with a different
notion of average as

ffs(x) = np(x)〈Ffs〉p(x) (3.2.77)
In this identity np denotes the particle number density, i.e. the number of particles per unit
volume, given by

np(x) =
Ns∑

i=1
w(x− xs,i) (3.2.78)

and 〈·〉p denotes the particle phase average defined as

np(x)〈ψ〉p(x) =
Ns∑

i=1
w(x− xs,i)ψi (3.2.79)
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for a quantity ψ attached to the solid particles. To simplify an understanding of these
definitions, we use the relation to moving averages via (3.2.13). It is then easy to see that
np represents the number of particles within the averaging volume, while 〈ψ〉p reduces to
the conventional unweighted average over the values ψi of all particles within the averaging
volume. Since we can write

εs(x) ≈
Ns∑

i=1
w(x− xs,i)Vs,j (3.2.80)

it is evident that εs ≈ npVs for particles of identical volume Vs = Vs,i, ∀i ∈ {1, . . . , Ns}.
Additionally, if we have a quantity ψ which is constant within each particle, i.e.

ψs(x) =
Ns∑

j=1
ψs,jχVs,j(x) (3.2.81)

we obtain
εs(x)〈ψs〉s ≈

Ns∑

i=1
w(x− xs,i)s,jVs,j (3.2.82)

and observe that for particles of identical volume the two definitions of volume average and
particle phase average coincide.

Getting back to reformulating the volume averaged right-hand side of (3.2.53), we notice
that, after having dealt with the stress tensor integral, the only remaining part is due to
body forces. Using mass averaging we obtain the additional term

εf〈ρfk〉 = εf〈ρf〉〈k〉F (3.2.83)

If we further split the stress tensor, we obtain

∇ · 〈σf〉 =∇ · 〈−p1 + τf〉 = −∇〈p〉+∇ · 〈τf〉 (3.2.84)

and the final form of the averaged momentum equations for the fluid phase reads

∂
(
εf〈ρf〉f〈uf〉fF

)

∂t
+∇ ·

(
εf〈ρf〉f〈uf〉fF ⊗ 〈uf〉fF

)

= −∇〈p〉f +∇ · 〈τf〉f −∇ ·Ru − ffs + εf〈ρf〉f〈k〉fF
(3.2.85)

Note that, by using the identity (1.5.10) and mass conservation (3.2.39) we can also write

εf〈ρf〉f
D〈uf〉fF
Dt

= −∇〈p〉f +∇ · 〈τf〉f −∇ ·Ru − ffs + εf〈ρf〉f〈k〉fF (3.2.86)

To close this set of equations we have to express the unclosed terms 〈τf〉f , Ru in terms of
the volume fraction εf , averaged density 〈ρf〉, Favre averaged fluid velocity field 〈uf〉f and
average pressure 〈p〉f . This will be discussed in the next section.

At this point, we want to mention that one could proceed to derive an averaged version of
the energy equation to treat compressible fluid phases (see e.g. [26] for a derivation based on
averages without weighting). However, since we do restrict ourselves to the case of constant
density in the continuous phase, we will not pursue this here.

Before diving into typical closure approaches, let us first try to reformulate the average
stress tensor 〈τf〉 for the Newtonian case in terms of averaged quantities and residual com-
ponents below the averaging scale. For the point variables we consider the viscous stress
tensor in the form of (1.5.16) and with constant coefficients of viscosity, i.e.

〈τf(uf)〉 = λ〈∇ · uf〉1 + µ
(
〈∇uf〉+ (〈∇uf〉)T

)
(3.2.87)
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Ns∑
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∂
(
εf〈ρf〉f〈uf〉fF

)
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+∇ ·
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)
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(3.2.85)
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So the two terms we have to reformulate are 〈∇ · uf〉 and 〈∇uf〉. Using the splitting of
point values into average and residual part, one can write

〈∇ · uf〉 = 〈∇ · 〈uf〉〉+ 〈∇ · u′f〉 =∇ · 〈uf〉 − (∇ · 〈uf〉)′ + 〈∇ · u′f〉 (3.2.88)
〈∇uf〉 =∇〈uf〉 − (∇〈uf〉)′ + 〈∇u′f〉 (3.2.89)

such that the averaged viscous stress tensor becomes

〈τf(uf)〉 = τf(〈uf〉) + Rτf (3.2.90)

with residual stress tensor defined as

Rτf = λ
[
〈∇ · u′f〉 − (∇ · 〈uf〉)′

]
1 + µ

([
〈∇u′f〉 − (∇〈uf〉)′

]
+
[
〈∇u′f〉 − (∇〈uf〉)′

]T)

(3.2.91)
This tensor is another quantity which formally needs a closure.

3.2.4 Closures
In an attempt to provide a simple expression for the stresses, Anderson and Jackson [4]
proposed one of the first closures by subsuming all stresses in

〈Π〉 = 〈σf〉 − 〈Ru〉 (3.2.92)

and making the assumption, that the stress tensor 〈Π〉 can be expressed analogously to that
of the point equations. For a Newtonian fluid they proposed the usage of

〈Π〉 = −〈p〉1 + λ(εf)(∇ · 〈uf〉)1 + µ(εf)
[
∇〈uf〉+ (∇〈uf〉)T −

2
3(∇ · 〈uf〉)1

]
(3.2.93)

where λ(εf) and µ(εf) denote the effective bulk and dynamic viscosities and have to be chosen
in such a way as to model both, the stresses from 〈σf〉 as well as 〈Ru〉. Since then, a lot of
closures have been proposed which model both terms separately.

In [14] different closures for the residual viscous stresses Rτf are discussed. The model
that the authors apply is again based on the idea of modeling the Reynolds term in the same
form as the viscous stresses and employing an effective viscosity. For this type of model the
authors refer to [114, 171] and use the effective viscosity derived in [54] for fluidized beds.

Similarly, for the Reynolds type stress from the left-hand side Ru there are a variety of
closures. Most of them are based on analogies to turbulence modeling in single phase flow
(see e.g. [14, 26, 28, 102, 150]).

Nevertheless, it has become common practice in CFD-DEM to neglect both, Rτf and Ru.
Many numerical schemes are built on the resulting simplified model [52, 77, 168, 175] and it
has been shown that good agreement with experimental results can still be obtained. Since
neglecting both Ru and Rτf has been shown to be an acceptable approximation in the above
mentioned literature, we also employ this simplification for the rest of this thesis. Extensions
in this direction are kept in mind for future work after the framework has been sufficiently
established and well tested. We further recall from Chapter 1 that we consider the viscous
stress in volume viscosity formulation with Stokes hypothesis applied, so that the averaged
viscous stress tensor is assumed to be of the form

〈τf(uf)〉 ≈ τf(〈uf〉) = µ
(
∇〈uf〉+ (∇〈uf〉)T −

2
3(∇ · 〈uf〉)1

)
(3.2.94)

Throughout this thesis we also consider the fluid phase to have constant material density.
This reduces the Favre averages to fluid intrinsic averages and we finally obtain the volume
averaged incompressible Navier-Stokes equations in the Lagrangian form
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Dεf

Dt = −εf(∇ · 〈uf〉) (3.2.95)

εfρf
D〈uf〉
Dt

= −∇〈p〉+∇ · τf(〈uf〉)− ffs + εfρf〈k〉 (3.2.96)

For our numerical scheme we consider (3.2.95), (3.2.96) together with (3.2.94) and (3.2.74)
as the set of equations we want to solve. We observe that by introducing the effective fluid
density ρ̄f = ρfεf and multiplying the mass conservation with ρf , this is the same set of
equations as for a single phase, now with a varying density and an additional momentum
source term ffs. For all problems considered within this thesis we further only consider body
forces due to constant gravity so that 〈k〉 = g with gravitational acceleration g.

3.3 Formulations in unresolved CFD-DEM
Now that we have clarified all necessary notations and derived a set of volume averaged
equations we want to put them into the context of existing literature on unresolved CFD-
DEM. We will see that there are slight differences which are not necessarily due to the above
closures but due to the way that the coupling is realized in numerical schemes.

The first occurrence of unresolved CFD-DEM scheme in literature is commonly traced back
to the work by Tsuji et al. [156, 157] in the early 90s. In [156] the authors also used a finite
difference framework, albeit a Eulerian one, and considered volume averaged equations based
on the work by Anderson and Jackson [4] for inviscid fluid flow. Since then, a huge number of
numerical investigations based on the unresolved coupling have been performed for a variety
of different applications. A detailed analysis of all these contributions would certainly go
beyond the scope of this thesis and has already been done in several articles within the past
two decades [48, 75, 175, 177]. Here we only want to concentrate on the different models
based on the above set of equations (3.2.95), (3.2.96). Although not explicitly stated by
the authors, references and equations in the review by Zhou et al. [175] show a restriction
to constant density fluids and omission of residual stresses Ru, Rτf leading to the same
equations as the above derivation. In their article, they identified three different models
which had been previously applied in literature (note that the authors partially use the
notation introduced in (3.2.77)). All the considered models use the same mass conservation
equation

∂(ρfεf)
∂t

+∇ · (ρfεfuf) = 0 (3.3.1)

which is identical to what we previously derived. Note that we have additionally dropped the
average notation for better readability. When considering the right-hand side of momentum
equations, the models start to differ:

Model I & III: ∂(ρfεfuf)
∂t

+∇ · (ρfεfuf ⊗ uf) = −∇p+∇ · τf − f I,III
fs + ρfεfg (3.3.2)

Model II: ∂(ρfεfuf)
∂t

+∇ · (ρfεfuf ⊗ uf) = −εf∇p+ εf∇ · τf − f II
fs + ρfεfg (3.3.3)

We observe that the general form of model I and III coincides with the result of our deriva-
tions in the previous section. The difference between these two models lies in the specific
form of the forces onto solid particles. To understand this, we recall that the force Ffs,i onto
a particle is split into a contribution due to the averaged fluid stress tensor evaluated at the
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particle position and an integral in terms of unresolved stress fluctuations about the mean
(see (3.2.75)). As is the case for the Reynolds type stress tensors, this integral needs to be
modeled and expressed in terms of the available quantities, namely averaged fluid variables
and properties of the individual particles. Employing the same notation as in [175], we write

Ffs,i = Fp,i + Fτ,i + Fd,i + F ′′i (3.3.4)

where the fluid stress is split into a pressure and viscous stress term

Fp,i = − (∇〈p〉)|xs,i
Vs,i (3.3.5)

Fτ,i = (∇ · 〈τf〉)|xs,i
Vs,i (3.3.6)

and the integral over small-scale fluctuations has been split into a drag force Fd,i and non-
drag terms subsumed in F ′′i . This formulation reflects the observation that in many flow
configurations the interaction between fluid and particles is dominated by drag. Following
(3.2.74) the momentum source to the fluid phase is in our notation and for model I given by

f I
fs(x) =

Ns∑

i=1
w(x− xs,i)(Fp,i + Fτ,i + Fd,i + F ′′i ) (3.3.7)

We note that the definition in [175] is slightly different since it is already tailored towards
their choice of a mesh-based numerical scheme. Their notation results from taking the com-
putational cells as averaging volumes. While this can not be directly obtained from the
above weighting function formalism, since it requires a spatially varying weighting function
shape, it bears the same meaning. More details on the calculation of averages in our numer-
ical framework will be given at a later point, namely in Section 4.2. Proceeding with model
III, we observe that the pressure and viscous stress forces are replaced by a buoyancy term
and the forces due to stress fluctuations are scaled with the inverse fluid volume fraction so
that

F III
fs,i = Fd,i + F ′′i

εs(xs,i)
− ρfVs,ig (3.3.8)

and
f III

fs (x) = 1
εf(x)

Ns∑

i=1
w(x− xs,i)(Fd,i + F ′′i )−

Ns∑

i=1
w(x− xs,i)ρfVs,ig (3.3.9)

The applicability of model III and possible advantages over model I have been the subject
of many articles, most notably in Kafui et al. [75] and Feng et al. [48] together with the
corresponding published communications. However, Zhou et al. [175] do show that this
formulation is based on a the simplifying assumption which technically requires a steady
uniform flow in the fluid phase. Although they show that in gas-solid fluidized bed and
pneumatic conveying, which are among the most prominent applications of CFD-DEM, this
model can still provide very similar results, it fails to predict the correct behavior in more
complex flows such as hydroclones. Due to this restriction and since there is also no clear
advantage in choosing model III over the other two methods, we refrain from using this
simplified model in our numerical scheme.

Instead, we only consider model I and II, which can be shown to be mathematically
equivalent with the assumptions from the derivation of volume averaged equations. To
realize this, we recall that, to derive model I, we made use of the assumption that ∇ · 〈σf〉
is constant within a single particle volume. Extending this to the assumption that the term
has negligible variations within the characteristic length scale of the weighting function (as
has been assumed for every averaged quantity) we can write

εs〈∇ · 〈σf〉f〉s ≈ εs
(
∇ · 〈σf〉f

)
(3.3.10)
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Further using the relation (3.2.70) we can write

f I
fs,i = εs∇ · σf + f II

fs,i (3.3.11)

f II
fs,i =

Ns∑

i=1
w(x− xs,i)(Fd,i + F ′′i ) (3.3.12)

in (3.3.2) and collect the stress tensor terms using εf = 1 − εs to obtain (3.3.3). The
equivalence of these two models has also been observed in the numerical results by Zhou et
al. [175]. However, since our numerical scheme does not only deviate from the one in [175]
due to its mesh free nature but also due to the chosen approach to solve the volume averaged
equations, we will still consider both, model I and II, in the upcoming chapters and examine
whether they lead to any significant differences in our framework.

Before we complete this discussion we want to note that, while the derivations in Sec-
tion 3.2 were based on perfectly spherical particles, it has been shown that the above models
of CFD-DEM with the same set of volume averaged Navier-Stokes equations can also be
successfully applied to flows with non-spherical particles ([62, 174]). However, it is not al-
ways clear whether these extensions are based on a similarly solid mathematical foundation
or if they are of heuristic nature and an assessment of this matter is not within the scope of
the present work.

3.4 Coupling forces
In this section we want to shed some light on both, the expressions for the drag force Fd
and terms which are subsumed in the force F ′′. Starting with the latter, a common form of
F ′′i [118] is

F ′′i = Fvm,i + Fl,i + Fh,i (3.4.1)
with Fvm, Fl, Fh denoting the virtual mass force, lift force and history force acting on the
particle. More specifically, it is customary to consider Fl = FSaff + FMag with Saffman and
Magnus lift and the history force Fh = FBass due to Basset [175]. However, depending on the
specific problem, a wide variety of other physical phenomena might need to be included to
obtain a reasonable approximation of the unresolved integral. For more in-depth discussions
of these force terms we refer the reader to [26, 95, 108, 118]. An implementation of virtual
mass and lift force in the context of CFD-DEM can be found, for example, in the solver by
Sun et al. [150]. In most applications of fluid-solid flow the density ratio between fluid and
solid will not be close to unity and in these cases, as noted in [118], the above effects are
negligible compared to the effects of gravity and drag force. Thus, we do not consider these
effects and leave their inclusion for future work, in order to concentrate on the dominant
effect of drag within this thesis.

First, let us consider the drag force on a single isolated particle. Generally, this is expressed
as (cf. [26, 118, 177])

Fd = 1
2CdρfAc‖uf − vs‖(uf − vs) (3.4.2)

where Cd is the drag coefficient and Ac denotes the cross-sectional area of the particle with
respect to the direction of relative velocity uf −vs. For the case of spherical particles, which
we consider here, Ac describes the corresponding circle area such that

Fd = 1
8CdρfπD

2
s‖uf − vs‖(uf − vs) (3.4.3)

The drag coefficient Cd depends on a lot of different factors like the flow configuration,
quantified, for example, in terms of Mach or Reynolds number, on the particles shape and
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Further using the relation (3.2.70) we can write

f I
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fs,i (3.3.11)
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Ns∑
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w(x− xs,i)(Fd,i + F ′′i ) (3.3.12)
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its orientation with respect to the relative flow direction. While we can circumvent the
last dependency for spheres, it is well known that the coefficient can vary strongly with the
single-phase particle Reynolds number

Rep = ρf‖uf − vs‖Ds

µ
(3.4.4)

as is visualized for example in the text book by Crowe at al. [26, p.70]. In the regime of
Stokes flow, Rep < 1, the coefficient is inversely proportional to the Reynolds number, i.e.

Cd = 24
Rep

(3.4.5)

but it tends towards a constant value in the range of 1 � Rep < 750. In the literature on
multiphase flow this transitional regime is modeled by a range of different correlations. A
prominent extension of Stokes drag is commonly attributed to Schiller and Naumann [133]
and given by

Cd = 24
Rep

(1 + 0.15 Re0.687
p ) (3.4.6)

which is applicable for Reynolds numbers lower than 800 [25, 26]. Note that the combined
correlation

Cd =





24
Rep

(1 + 0.15 Re0.687
p ) if Rep < 103

0.44 if Rep > 103
(3.4.7)

is also often attributed to Schiller and Naumann. This combined correlation can be consid-
ered as an attempt to fix the deficiency of (3.4.6), which has the erroneous limit of Cd = 0
for Rep → ∞. Instead, it accounts for the fact that the drag coefficient becomes almost
constant with a variation of only about 13% around Cd = 0.445 [25, 26] within the range
of approximately 750 < Rep < 3.5× 105. This range of Reynolds numbers is sometimes
referred to as Newton regime (cf. [7]). Another correlation which is commonly used in place
of the above expression by Schiller and Naumann, is

Cd =

0.63 + 4.8√

Rep




2

(3.4.8)

This expression is often attributed to Dallavalle [30], but according to [42], its true origin is
apparently still unclear. This correlation does not suffer from the same defect of vanishing
drag for large Reynolds numbers, instead it converges towards a value of Cd = 0.3969 which
is within the above-mentioned 13% range around Cd = 0.445. As is to be expected, there
is a wide variety of additional correlations describing the transitional and Newton regime,
some of which can be found in [7, 25, 26]. Providing an extensive overview on this matter
would certainly go beyond the scope of this thesis. We further limit ourselves to applications
where Rep � 1× 105, such that we do not have to include the pressure drop due to boundary
layers effects, which occur beyond the critical Reynolds number of about 3.5× 105 [26].

So far we have only considered the drag onto a single (spherical) particle and observed
that there are a variety of different expressions. This inevitably results from the fact that,
even for this simple case, the derivation of analytical expressions can become very difficult.
By extension, such exact formulations can not be expected to be available for the wide
range of particle and flow configurations in CFD-DEM applications as well. Historically this
problem has been addressed by estimating forces onto individual particles from empirically
determinable quantities like pressure drop across a packed bed of particles or sedimentation
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velocities [7, 36]. However, due to the rapid increase of computational resources within
the last decades, numerous drag laws have been proposed on the basis of finely resolved
numerical simulations instead of physical experiments. The amount of different correlations
of either type provided in the literature on multiphase flow with dispersed phase and more
specifically in unresolved CFD-DEM, prohibits a complete overview in the context of this
thesis. Instead, we only provide a subset of some of the more commonly applied expressions
to provide the reader with a general form and to simplify comparing our notations to those
found in other publications. Of course, we also include any correlations that might not be
“classical” ones, but will be used in the later verification stages.

Many of these drag laws, experimental as well as numerical, have in common that they
can be classified in one of two groups identified by Beetstra et al. [7]. On the one hand, there
are modifications of single particle drag laws due to the presence of additional particles and
on the other hand there are expressions that extend formulas for particle configurations in
Stokes flow to the inertial regime.

One of the most well known correlations is of the latter type, namely the pressure drop
expression by Ergun [43]. It is based on the Forchheimer equation for porous media, which is
itself an extension of the famous law by Darcy to the inertial regime. The general correlation
proposed by Ergun is often written as

∆p
Lb

= A
µ

D2
s

ε2
s
ε3

f
usf +B

ρf

Ds

εs

ε3
f
u2

sf (3.4.9)

where ∆p denotes the pressure drop across a particle bed of length Lb in flow direction
and usf denotes the so-called superficial velocity, also sometimes referred to as volumetric
flux. The superficial velocity is the one that the fluid phase assumes if there are no particles
present in the flow domain. If we consider a static block of particles, as is common for porous
media, we realize that, since the mass flow needs to remain constant, the superficial velocity
is related to the fluid-phase intrinsic average via

usf = εf〈uf〉f (3.4.10)

For moving dispersed phases it is common to use the correlations for static porous media
and replace the above superficial velocity by the more general definition

usf = εf
(
〈uf〉f − 〈us〉s

)
(3.4.11)

which can be viewed as the difference between the average mixture velocity 〈u〉t and the
solid phase intrinsic average velocity 〈us〉s [118]. With this definition, the Ergun equation
can be written in terms of the pressure gradient in the fluid phase as

−∇p = A
µ

D2
s

ε2
s
ε3

f
usf +B

ρf

Ds

εs

ε3
f
‖usf‖usf (3.4.12)

The parameters A, B in the above equation have been experimentally determined by Ergun
from flows through randomly packed particles at volume fractions of εf ≈ 0.4. Although
this correlation is commonly applied to monodisperse (all particles have the same shape and
size) spherical particles, Beetstra et al. [7] pointed out that the original fitting has been
partially obtained from experimental results on particles which were not exactly spherical.
While the original fitting resulted in A = 150 and B = 1.75, other constant values [98]
and a wide variety of non-constant modifications have been proposed since then. For an
extensive overview we refer the reader to a review article by Yadzchi and Luding [169]. We
further note, that for A = 180 and B = 0 the Ergun equation reduces to the so-called
Kozeny-Carman equation.
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So far we have only considered an expression for the pressure drop within the fluid phase,
although we were originally interested in formulas for the drag force. One can derive a
relation between these two quantities by assuming that the fluid flows with a spatially and
temporally constant velocity through an assembly of particles with fixed porosity (cf. [7]).
Then, the momentum equation in model II (3.3.3) reduces to

− εf∇p+ ρfεfg = f II
fs (3.4.13)

If we further assume that the terms subsumed in F ′′ are negligible and every particle expe-
riences the same drag force, the coupling force density from (3.3.12) becomes

f II
fs (x) = Fd

Ns∑

i=1
w(x− xs,i) = Fdnp(x) (3.4.14)

For particles of identical volume we further saw that εs ≈ npVs, such that we finally refor-
mulate (3.4.13) to obtain

Fd = −εfVs

εs
(∇p− ρfg) (3.4.15)

which coincides with the relation found in [125]. As is also mentioned by the authors in this
article, the gravity term is often neglected such that (see also [7])

Fd = −εfVs

εs
∇p (3.4.16)

which is due to the fact that these relations are often derived for comparatively low fluid
densities, where the gravity term is in fact very small compared to the pressure drop.

If we consider the second one of the above-mentioned groups of correlations, i.e. modifi-
cations of single particle drag laws due to the presence of other particles, they are typically
written as

Fd = 1
8CdρfπD

2
s‖usf‖usfg(εf) (3.4.17)

in our case of spherical particles. When comparing this formulation with (3.4.3), we observe
that the relative velocity is replaced by the superficial velocity and that the so-called voidage
function g has been introduced to account for the presence of other particles. We note that
the particle Reynolds number, used within the drag coefficient, is now also dependent on
the superficial velocity, such that

Rep = εfρf‖uf − vs‖Ds

µ
(3.4.18)

Unless stated otherwise, we usually refer to this definition when talking about the Reynolds
number in the following. For the most important part of the above modification of single
particle drag, i.e. the voidage function, it is very common to assume the form

g(εf) = ε−χf (3.4.19)

where the exponent χ was originally chosen to be a constant value. An example for this
is the well-kown correlation by Wen and Yu [163], which results from the extended Schiller
Naumann drag coefficient (3.4.7) and χ = 3.7. Since the initial work by Wen and Yu, several
authors proposed extensions to non-constant exponents. Di Felice [35] considered a drag law
of the form (3.4.17) with drag coefficient (3.4.8) and concluded from available experimental
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results, that the exponent χ is dependent on the particle Reynolds number. From a fitting
to this data, they obtained

χ = 3.7− 0.65 exp
(
−(1.5− log10(Rep))2

2

)
(3.4.20)

which clearly is a modification of the constant value χ = 3.7 by Wen and Yu. Different
combinations of this exponent and drag coefficients occur in the literature. For example Zhu
et al. [177] use the extended Schiller Naumann coefficient (3.4.7) while Epstein [42] proposed
the usage of

Cd =

0.54 + 4.8√

Rep




2

(3.4.21)

instead of (3.4.8) to increase the range of validity in terms of particle Reynolds number
up to Rep ≤ 3000. According to Epstein, Di Felice’s original result is only applicable for
εf ≥ 0.4, i.e. the solid particles are not allowed to be too densely packed. This goes in line
with the common observation that single particle drag modifications are more suitable for
dilute flows. A different extension which also accounts for dependencies on the Reynolds
number was, for example, proposed by Rong et al. [125] on the basis of lattice Boltzmann
simulations. These modifications aim to resolve the limitation of the original correlation to
rather dilute flow and provide single expressions for a larger range of flow configurations.
Alternatively, combinations of correlations obtained from dense and dilute particulate phases
have been proposed. The commonly used [115, 162, 173] combination of the pressure drop
equation by Ergun and a drag law similar to the one by Wen and Yu is often attributed
to Gidaspow [55]. Since in [55], the author covers two-fluid models, the expression is not
formulated in terms of drag force on individual particles, but via the so-called inter-phase
momentum transfer coefficient or fluid friction coefficient (cf. [108]) β. However, they are
related via (cf. [34, 108, 168])

Fd = Vsβ

εs
(uf − vs) (3.4.22)

which can also be seen from the fact that Gidaspow used the relation

− εf∇p− βA(uf − vs) = 0 (3.4.23)

to obtain β and from the connection between pressure drop and drag force in (3.4.16). From
this it is also clear that β is typically a function of fluid volume fraction and relative velocity
of fluid and solid phase, i.e.

β = β(εf , ‖uf − vs‖) (3.4.24)
and that β in our notation corresponds to friction coefficient βA in model A by Gidaspow.
The combined drag law then takes the form

β =





150 ε2
sµ

εfD2
s

+ 1.75ρf‖uf − vs‖εs

Ds
if εf ≤ 0.8

3
4Cd

ρfεsεf

Ds
‖uf − vs‖ε−2.65

f if εf > 0.8
(3.4.25)

where Cd is given by the extended Schiller Naumann coefficient (3.4.7) and the exponent
has been altered slightly from χ = 3.7, as originally proposed by Wen and Yu, to χ = 3.65
as in [56]. It is important to note that this formulation has a discontinuity at εf = 0.8
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Figure 3.4: Plots of the combined drag law (3.4.25) proposed by Gidaspow and the individual drag laws
by Ergun as well as Wen and Yu. The expressions are evaluated for a particle with Ds = 1 mm
in air (ρf = 1.205 kg/m3 , µ = 1.813× 10−5 Pa s). Two fixed relative velocities are considered
and the magnitude of drag force is plotted over a range of fluid volume fractions.

with a jump that increases with relative velocity between fluid and solid phase. This can be
seen in Figure 3.4, where we plotted the individual drag laws as well as their combination
by Gidaspow over a range of fluid volume fractions at two different relative velocities. The
fluid volume fractions are chosen so that they represent the range of physically reasonable
values for a two-phase flow with monodisperse spherical particles as the solid phase. Clearly,
the continuous fluid phase is able to fill out any volume within the computational domain
which is not occupied by such particles. In particular, regions with no solid particles can
exist and lead to a porosity of εf = 1, which is the trivial upper bound for this quantity. On
the other hand, thinking for example of a cannonball stack, such a configuration of equally
sized spheres will have voids in between the balls. These voids mean that εs < 1 and in our
two-phase setting consequently εf > 0. This already suggests what will be discussed in more
detail in Appendix B, namely that there is a lower bound for the porosity in the setting of
Figure 3.4.

Returning to the analysis of (3.4.25), we also want to note that in terms of volume frac-
tion, the Ergun correlation has been extended far beyond its original experimental setup.
Thus, despite its popularity in CFD-DEM literature, one has to be mindful about possible
instabilities or wrong drag predictions in the intermediate regime of volume fraction. As
noted in [34], this can, to some extent, be alleviated by taking the minimum of both corre-
lations instead of choosing a threshold value. But the authors further conclude that, even
then, more recent drag correlations such as the one by Hill et. al. [61, 78] and Beetstra et
al. [7] have shown better agreement with experiments performed by Link et. al. [92] in the
context of gas-solid fluidized beds.

At this point we want to stop our discussion on drag correlations, since an extensive
review with comments on all the drag expression which are commonly used in unresolved
CFD-DEM would certainly be beyond the scope of this thesis. Instead, we provide tabular
overviews (see Table 3.1 and Table 3.2) on a small subset of important expressions, including
in particular those which have already been discussed and will be used in the numerical
scheme. Comments on the latter ones are postponed to the sections in which they are
applied. Note that the tables have been split into correlations formulated in the voidage
function exponent χ and in the transfer coefficient β for better readability. For a short
analysis on the correlations of the former type we refer to Appendix C.

When searching for further correlations in CFD-DEM literature, we urge the reader to pay
close attention to the force which is described by the proposed expression. This is important
since the experimental or simulation setup which leads to such a correlation can provide the

49

Chapter 3 Multiphase flow

0.4 0.6 0.8 10
2
4
6
8
·10−7

εf

‖F
d‖

Ergun
Wen-Yu
Gidaspow

(a) Relative velocity of ‖uf − vs‖ = 0.1 m/s

0.4 0.6 0.8 10

2

4

·10−4

εf

‖F
d‖

Ergun
Wen-Yu
Gidaspow

(b) Relative velocity of ‖uf − vs‖ = 10 m/s

Figure 3.4: Plots of the combined drag law (3.4.25) proposed by Gidaspow and the individual drag laws
by Ergun as well as Wen and Yu. The expressions are evaluated for a particle with Ds = 1 mm
in air (ρf = 1.205 kg/m3 , µ = 1.813× 10−5 Pa s). Two fixed relative velocities are considered
and the magnitude of drag force is plotted over a range of fluid volume fractions.
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total fluid-solid interaction force Ffs instead of Fd. For monodisperse particle assemblies,
under the specific flow conditions of these experiments, one can reformulate these expressions
via [108]

Fd = εfFfs (3.4.26)

On the other hand, for polydisperse systems this does not hold true, which has led to some
mistakes in literature [44, 130]. In modeling these systems, specialized drag closures are
necessary to represent phenomena such as layer inversion [37]. To cross out another one
of the numerous pitfalls connected to drag laws, we want to highlight the fact that it is
not clear a priori whether the above correlations can be applied in conjunction with volume
fractions from two-dimensional simulations. This is discussed, for example, in [108], where
the authors provide a conversion formula to obtain an equivalent volume fraction which can
be used to evaluate the drag law. While this is not of importance in the context of this
work, since we only consider three dimensional settings, it further emphasizes the amount of
thought which needs to be put into the development of a scheme which realizes the discussed
unresolved two-way coupling. Accordingly, we devote the upcoming chapter solely to this
task.
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Original work Method Voidage function exponent

Wen&Yu (1966) [163] Exp. χ = 3.7

Di Felice (1994) [35] Exp. χ = 3.7− 0.65 exp
[
− (1.5−log10(Rep))2

2

]

Rong et al. (2013) [125] LB χ = 2.65(εf + 1)− (5.3− 3.5εf)ε2
f exp

[
− (1.5−log10(Rep))2

2

]

Table 3.1: Overview of some drag force correlations applicable to spherical monodisperse particles and
formulated in terms of voidage function exponent χ. The “Method” column shows whether
the expression has been derived based on experimental data (Exp.) or from resolved Lattice-
Boltzmann simulations (LB). For a given form of χ, the drag force is obtained from (3.4.17) and
(3.4.19). The drag coefficient Cd is typically chosen as in (3.4.8)

Original work Method Inter-phase momentum transfer coefficient

Ergun (1952) [43] Exp. β = 150 ε2
sµ

εf(Ds)2 + 1.75ρf‖uf−vs‖εs
Ds

Koch&Hill (2001) [78] LB

β = 18µε2
f εs

D2
s

[
A+ 1

2BRep

]

A =





1 + 3
√

εs
2 + 135

64 εs ln (εs) + 16.14εs

1 + 0.681εs − 8.48ε2
s + 8.16ε3

s
if εs < 0.4

10εs
ε3

f
if εs ≥ 0.4

B = 0.0673 + 0.212εs + 0.0232
ε5

f

Beetstra et al. (2007) [7] LB

β = 18µε2
f εs

D2
s

[
A+ 1

2BRep

]

A = 10εs
ε3

f
+ εf(1 + 1.5√εs)

B = 0.413
12ε3

f

[ 1
εf

+ 3εsεf + 8.4 Re−0.343
p

1 + 103εs Re− (1+4εs)/2
p

]

Table 3.2: Overview of some drag force correlations applicable to spherical monodisperse particles and
formulated in terms of momentum transfer coefficient β. The “Method” column shows whether
the expression has been derived based on experimental data (Exp.) or from resolved Lattice-
Boltzmann simulations (LB). For a given form of β, the drag force is obtained from (3.4.22).
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Chapter 4

CFD-DEM in a GFDM framework
In the previous chapter we have derived a set of volume averaged equations that describe
the fluid phase behavior on a scale which is significantly larger than the individual solid
particle size. This model is valid in the whole domain covered by any of the phases, meaning
that we consider inter-penetrating continua. While similar procedures lead to continuous
descriptions in both phases, we also discussed our choice of using a numerical method to
resolve individual particle movement. The phase interaction is, on the one hand, given by
coupling forces such as drag, which represent the unresolved effects on particle surfaces due
to the surrounding fluid. On the other hand, the fluid phase is influenced by the presence
of solid particles through the volume fraction, which creates regions of reduced effective
material density and through momentum source terms, which are calculated according to
Newton’s third law from coupling forces acting on the particles. From these considerations we
can immediately identify three major components of a CFD-DEM scheme, namely the solver
for solid phase motion, the discrete element method, a numerical scheme for calculating the
volume fraction and other averages, often referred to as coarse graining in the context of
CFD-DEM and finally the numerical scheme for solving the volume averaged Navier-Stokes
(VANS) equations. We will embed these components in a time integration loop, as sketched
below in Figure 4.1, which forms the complete CFD-DEM scheme.

DEM solver Coarse graining VANS solver
xn+1

s , vn+1
s

F n
fs

εn+1
s

fn+1
fs

tn → tn+1

Figure 4.1: Rough outline of the main loop within the CFD-DEM algorithm presented in this work.

The reason for this order of computation is the fact that instead of the incompressibility
constraint we have a dependency of velocity divergence on the change in volume fraction
(cf. (3.2.95)). If the particles are moved before the VANS solver, one can use their new
positions to calculate a backward difference approximation to this temporal change and
impose a condition for the velocity divergence at the new time level. More details on this
subject-matter will be given when we consider the numerical scheme for the fluid phase at
a later point within this chapter.

This chapter is structured in the same way that is visualized in the above sketch of our
coupled scheme. First, we shed some light on the methodology behind DEM and describe
some numerical aspects within our framework. Next, we analyze how discrete solid phase
averages are calculated in the FPM to provide the volume fraction and source terms described
analytically in the previous chapter. Finally, we introduce the numerical scheme that is used
to solve the volume averaged equations for the fluid phase and discuss different time step
restrictions in the complete coupled solver.
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4.1 Discrete element method
In Section 3.1 we already described the discrete element method as an approach which typ-
ically considers every solid entity in the physical system as a discrete point in the numerical
scheme and resolves collisions between individual particles to obtain the bulk behavior. This
reveals a tight connection to molecular dynamics simulations from which the method origi-
nated. We note that the term DEM has been ambiguously used in literature for two different
methods of resolving collisions between particles, called soft-sphere and hard-sphere DEM.

In the latter approach, described for example in [34, 66, 97, 161], particles are assumed to
be perfectly rigid and their collisions binary (collisions between exactly two particles) and
instantaneous. Contacts are resolved within a single time step by prescribing the relation
between pre-collisional and post-collisional velocities on the basis of momentum conservation.
This method can be very efficient when collisions occur infrequently, since in this case it is
typically incorporated into so-called event-driven algorithms which are able to integrate
the particle trajectory with large time steps in between successive collisions. The major
downside of this approach is the fact that it is not able to model dense configurations of
particles since they violate the assumptions of binary and instantaneous collisions. We will
see that the more prominent soft-sphere approach does not have this problem, albeit at the
cost of increased computational cost.

As we already remarked in the previous chapter, the method we want to employ is char-
acterized by allowing particles to have an overlap in the numerical scheme. Based on this
overlap, forces are calculated that recover the non-overlapping state and aim to represent
the experimentally observable rebound behavior. This version of DEM is the one typically
referred to as soft-sphere method. The name originates from the concept that overlaps
represent deformations of particles due to collisions. However, it is important to realize
that for solid particles the physically occurring deformations are very small and the overlap
within a simulation is more of a modeling tool than a representation of these deformations.
Clearly, to ensure that this simplification does not misrepresent the true behavior of a gran-
ular assembly, tight bounds on the overlap size and strong repulsive forces are necessary. In
contrast to the hard-sphere approach, particles have to stay in contact for several time steps
in order to ensure an accurate integration of these forces throughout the different phases of
the collision. As we will later see, the strength of these repulsive forces imposes severe time
restrictions on the numerical scheme. We will discuss these restrictions at the end of this
section when we have discussed a few typical contact models. We also note that it has been
common practice to allow for nonphysically large overlaps in order to relax these bounds on
the time step.

4.1.1 Equations of motion
Independent of the individual particle shape, a system of Ns interacting particles with masses
ms,i obeys the Newton equations describing the change in positions xs,i and velocities vs,i
with respect to time

dxs,i

dt = vs,i (4.1.1)

ms,i
dvs,i

dt = Fb,i +
Ns∑

j=1
j 6=i

Fc,ij (4.1.2)

Here we denote by Fb,i all the body forces acting on particle i while Fc,ij denotes the contact
forces due to a collision between particle i and j.
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For the sake of completeness, we note that, if rotations are considered, one would addi-
tionally have to solve the equations

dθs,i

dt = S(θs,i)ωs,i (4.1.3)

Is,i
dωs,i

dt = Tb,i +
Ns∑

j=1
j 6=i

Tc,ij (4.1.4)

for spherical particles with scalar moment of inertia Is,i. The components of θs,i are variables
from the parametrization of the rotation matrix space SO(3) and describe the orientation
of a coordinate system attached to the rotating body relative to a global coordinate system.
The form of S(θs,i) is defined by the specific choice of parametrization. In the second
equation, the variable ωs,i denotes the angular velocity in the global coordinate system while
Tc,ij, Tb,i again denote torques induced by particle interactions of particle i with particle
j and other torques applied directly to the body, respectively. A more precise explanation
on the subject-matter of different coordinate systems and rotational motion is provided in
Appendix D. In order to focus on the coupling and since rotations are not mandatory for
the coupled numerical simulations presented in Chapter 5, we have not considered them in
the context of this work. Still, we provide points of contact with this topic for both, the
interested reader and for later extensions of our work, by including the rotational velocities
when we consider frictional contributions to the contact forces.

Within the generalized finite difference framework introduced in Chapter 2, each solid
particle is represented by a single point. Thus, we keep track of (at least) two point clouds,
one set of points with positions

xf,i, i = 1, . . . , Nf

that represent the fluid phase discretization and one with positions
xs,i, i = 1, . . . , Ns

that represent the actual locations of solid particle centroids. Since points within the solid
point cloud correspond to physical entities rather than a numerical discretization, we ob-
viously do not apply any of the measures discussed in Chapter 2 that would lead to point
addition or removal outside of inflow or outflow boundaries. We will further discuss the
movement of solid points, i.e. the integration scheme for translational motion, separately
from the discretization points to tailor towards the needs of the discrete element method.
As we have described in Chapter 2, the construction of differential operators for a given
point requires the identification of all points of the same phase which are within a distance
determined by the smoothing length h. The attentive reader might already realize that we
are faced with a very similar task in DEM. In order to check if a collision between two
spherical particles occurs, we need to check if the distance between their centroids is larger
than the sum of their radii. We can thus specify a smoothing length equal to the maximum
diameter among particles in the granular assembly and use the same exact algorithms of
neighbor search as for the continuous phase. We note that the same would be possible for
aspherical particles, by instead using the diameter of circumscribed spheres. This effect
provides a very useful synergy, since improvements in the neighbor scheme, which is crucial
for the performance of a discrete element method, can also improve the continuous phase
computations.

4.1.2 Normal contact models
As stated above, the general concept of a soft-sphere discrete element method is to allow
numerically represented particles to penetrate each other and calculate forces from a mea-
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Figure 4.2: Visualization of normal overlap in the collision of two spherical particles.

sure of the created overlap as well as relative velocities. The most obvious measure is the
geometrical volume of the region occupied by both particles. To define a different measure,
we note that two colliding convex particles in Rd create a bounded overlap region in Rd−1.
Taking the normal on these regions in Rd−1, the overlap is then quantified as the maximum
extent along this direction. It is not a priori clear which measure of overlap size to choose
and it certainly depends on the particle shape as well as the contact model used to calculate
the forces. For spherical particles, however, the latter definition is almost exclusively used.
We realize that (see Figure 4.2) for two colliding spherical particles with positions xs,i, xs,j
and radii Rs,i, Rs,j the normal overlap can be simply written as

δnij = Rs,i +Rs,j − ‖xs,i − xs,j‖ (4.1.5)

Furthermore, we define the contact normal

nij = xs,i − xs,j

‖xs,i − xs,j‖
(4.1.6)

which is orthogonal to the overlap region in Rd−1 and oriented towards particle i. With
these definitions a purely elastic collision between particles i and j is typically modeled by
applying a single force

F n
c,ij =




Fel
(
δnij
)
nij if δnij ≥ 0

0 else
(4.1.7)

to particle i and its opposing force

F n
c,ji = −F n

c,ji (4.1.8)

to particle j. We note that, for spherical particles, the normal forces only influence the
translational motion since they are always applied to a material point along the line con-
necting the sphere centroids. We will further discuss this at a later point and assume for
now that F n

c,ij is applied to the centroid of particle i. When we consider extensions of the
above purely elastic force, we also need a notion of normal velocity. To this end we denote
the relative translational velocity of centroids by

vs,ij = vs,i − vs,j (4.1.9)

and define the relative normal velocity

vns,ij = vs,ij · nij (4.1.10)

With this definition it is customary to introduce a dissipative or damping term in addition
to the elastic force in (4.1.7) to obtain

F n
c,ij =

[
Fel
(
δnij
)

+ Fdiss
(
δnij, v

n
ij

)]
nij (4.1.11)
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Note that, in order to improve readability here and in the following, we do not explicitly
state that forces are zero for negative overlap. Now that we have established the general
notation, we want to provide details on the form of Fel and Fdiss. The particular expressions
for these forces, based on overlap and also relative velocities, are commonly referred to as
contact models in DEM.

Fixed stiffness spring models

The origins of the discrete element method are typically traced back to Cundall and Strack
[29], who proposed the usage of a force-displacement law based on springs to model the
behavior of two-dimensional assemblies of discs. In the above notation this leads to a normal
force of the form

F n
c,ij = k∗nδ

n
ijnij (4.1.12)

where k∗n is the (constant) normal spring stiffness and δnij is the normal overlap at the
contact point. We reiterate that the sole purpose of these springs is to prevent unphysical
penetration of particles in the computer simulation of the assembly and that there is no
inherent connection to material properties at this point. Therefore the springs in a constant
spring stiffness model should rather be viewed as “penalty springs” [109]. Regardless, we
need some criterion to choose reasonable values for the coefficient k∗n. A rather simplistic
approach to this problem is presented in [99] where the authors propose the criterion

k∗n ≥
m∗s
(
vn,0s,ij

)2

(
δn,max
ij

)2 (4.1.13)

for a relative normal velocity vn,0s,ij before the collision, a maximum allowed overlap δn,max
ij

and the effective particle mass in a binary interaction

1
m∗s

= 1
ms,i

+ 1
ms,j

⇔ m∗s = ms,ims,j

ms,i +ms,j
(4.1.14)

We make use of the effective mass at several points within this chapter and want to note
that for the contact of a particle i with a (rigid and immovable) wall one recovers m∗s = ms,i
by assigning infinite mass to the wall. The formula (4.1.13) is easily obtained by equating
the kinetic energy before collision and potential energy due to the springs at maximum
deformation. As noted before, the maximum overlap in DEM is typically required to be a
very small fraction of the particle radius and can be specified a priori as part of the modeling,
while the collision velocities within the system might not be known in advance. A rough
guess for this quantity is proposed by the authors [99] as the velocity that a particle obtains
in free fall along the longest path in gravitational direction within the considered system.
Let us assume that the length of this path is given by h0, then one obtains

vn,0s,ij ≥
√

2gh0 (4.1.15)

and
k∗n = 2m∗sgh0(

δn,max
ij

)2 (4.1.16)

Again, this can be obtained by a conservation of energy argument from the potential energies
of the gravitational field and kinetic energy before impact.

We note that in the case of granular assemblies with different types of particles it might
be desirable to assign different penalties, i.e. have spring stiffnesses kn,i assigned individually
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to particles i = 1, . . . , Ns. Then, for two colliding particles let the deformation of the
corresponding springs be denoted by δi, δj. Since the total deformation needs to be identical
to the overlap and the forces onto the particles only differ in direction, we obtain

δnij = δi + δj (4.1.17)
kn,iδi = kn,jδj (4.1.18)

If we solve this for a given overlap this leads to the individual deformations

δi = kn,j

kn,i + kn,j
δnij, δj = kn,i

kn,i + kn,j
δnij (4.1.19)

and we can then calculate the spring stiffness in terms of total overlap as

k∗n = kn,ikn,j

kn,i + kn,j
⇔ 1

k∗n
= 1
kn,i

+ 1
kn,j

(4.1.20)

We note that this definition also reduces to the expected value of kn,i when body j is
considered completely rigid, i.e. kn,j → ∞. Thus, when resolving the collision between two
particles with different spring stiffnesses, one uses (4.1.12) with spring stiffness (4.1.20) to
calculate the force onto particle i, and the force onto particle j is given by the force of same
magnitude but reverse direction.

Elasticity theory and Hertzian contact

A model which addresses the missing relation of contact model parameter and material
properties is the Hertz model. The corresponding Hertzian contact theory provides a rigorous
derivation of pressure distribution and force in the non-adhesive contact of two elastic spheres
based on the theory of elasticity. Details on this derivation can for example be found in the
book by Popov [116], although a short discussion can also be found in the book on DEM by
O’Sullivan [109]. Here, we mostly restrict ourselves to those parts which are relevant within
our context. Following the Hertzian theory, the authors in [116] show that the deformation
in a binary collision of non-adhesive elastic spheres is equivalent to that caused by a point
force of magnitude

F = 4
3Y∗

√
R∗sδ

3
2 (4.1.21)

with R∗s denoting the effective or equivalent particle radius

1
R∗s

= 1
Rs,i

+ 1
Rs,j

⇔ R∗s = Rs,iRs,j

Rs,i +Rs,j
(4.1.22)

The symbol Y∗ further denotes the effective Young modulus calculated from the moduli of
individual particles via

1
Y∗ = 1− ν2

i

Yi

+
1− ν2

j

Yj

(4.1.23)

while ν denotes the Poisson ratio. Both of the latter quantities are material properties,
Young’s modulus being the proportionality coefficient in the linear regime of the stress-
strain relationship (at near-zero stress and strain) and Poisson’s ratio characterizing the
relation between axial elongation and contraction of cross-sectional area within a material.
Again, if the particle j is assumed to be rigid, e.g. when we consider a wall collision, the
effective properties instead become

R∗s = Rs,i, Y∗ = Yi

1− ν2
i

(4.1.24)
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We note that the corresponding contact model can now be written as

F n
c,ij = kH

n

(
δnij
)
δnijnij (4.1.25)

with a varying spring stiffness

kH
n (δ) = k̃H

n
√
δ (4.1.26)

k̃H
n = 4

3Y∗
√
R∗s (4.1.27)

Although there is a theoretical derivation of these expressions from elasticity theory, it is
important to realize the simplifications that were made in its course. A detailed discussion on
this can be found in [109]. Here we only want to point out two assumptions. Namely, that not
every material and deformation follows the presupposed linear elastic behavior and that the
theory assumes frictionless particles which have no surface asperities, i.e. they are perfectly
smooth spheres. These points already make it abundantly clear that not every physical
object or every granular flow configuration is described precisely by the above contact forces.
For example sand grains do typically strongly differ in shape and have nonsmooth surfaces.
Nevertheless, contact models based on the Hertzian theory are well-established, frequently
used and have shown great success in the context of the discrete element method. This is
also emphasized by its wide adoption in both, commercial codes such as EDEM1 and PFC2,
as well as non-commercial ones such as Yade3 and LIGGGHTS4. The principal advantage of
this model is the fact that there is a clear connection between contact model parameters and
material properties. We do however want to note that with the same argument of energy
conservation as before (see (4.1.13)) one can derive the expression

k̃H
n ≥

5
4
m∗s
(
vn,0s,ij

)2

(
δn,max
ij

)5/2 (4.1.28)

which can be used to prescribe a value of k̃H
n based on a maximum overlap and collision

velocity instead of calculating it from material properties. Additionally, by reformulating
the above equation in terms of velocity, replacing k̃H

n by the value from (4.1.27) and setting
δn,max
ij = Rs,i+Rs,j, one can determine the maximum collision velocity which can be supported
by the contact model. Clearly, for such velocities the Hertzian model no longer represents a
realistic elastic behavior. We note that one can analogously calculate the maximum collision
velocity supported by a linear spring by reformulating (4.1.13) in terms of velocity (see also
Appendix E).

Linear spring-dashpot model

So far we have only described purely elastic contact models. However, in a real granular
system kinetic energy is dissipated during collisions due to plastic deformations. A straight-
forward approach to model this phenomenon in the context of DEM is the addition of a
damping term to the purely elastic contact model. For the linear spring model (4.1.12) the
most prominent extension is of the form

F n
c,ij =

[
k∗nδ

n
ij − dnv

n
ij

]
nij (4.1.29)

1https://www.edemsimulation.com
2https://www.itascacg.com/software/pfc
3https://www.yade-dem.org
4https://www.cfdem.com

59

Chapter 4 CFD-DEM in a GFDM framework

We note that the corresponding contact model can now be written as

F n
c,ij = kH

n

(
δnij
)
δnijnij (4.1.25)

with a varying spring stiffness

kH
n (δ) = k̃H

n
√
δ (4.1.26)

k̃H
n = 4

3Y∗
√
R∗s (4.1.27)

Although there is a theoretical derivation of these expressions from elasticity theory, it is
important to realize the simplifications that were made in its course. A detailed discussion on
this can be found in [109]. Here we only want to point out two assumptions. Namely, that not
every material and deformation follows the presupposed linear elastic behavior and that the
theory assumes frictionless particles which have no surface asperities, i.e. they are perfectly
smooth spheres. These points already make it abundantly clear that not every physical
object or every granular flow configuration is described precisely by the above contact forces.
For example sand grains do typically strongly differ in shape and have nonsmooth surfaces.
Nevertheless, contact models based on the Hertzian theory are well-established, frequently
used and have shown great success in the context of the discrete element method. This is
also emphasized by its wide adoption in both, commercial codes such as EDEM1 and PFC2,
as well as non-commercial ones such as Yade3 and LIGGGHTS4. The principal advantage of
this model is the fact that there is a clear connection between contact model parameters and
material properties. We do however want to note that with the same argument of energy
conservation as before (see (4.1.13)) one can derive the expression

k̃H
n ≥

5
4
m∗s
(
vn,0s,ij

)2

(
δn,max
ij

)5/2 (4.1.28)

which can be used to prescribe a value of k̃H
n based on a maximum overlap and collision

velocity instead of calculating it from material properties. Additionally, by reformulating
the above equation in terms of velocity, replacing k̃H

n by the value from (4.1.27) and setting
δn,max
ij = Rs,i+Rs,j, one can determine the maximum collision velocity which can be supported
by the contact model. Clearly, for such velocities the Hertzian model no longer represents a
realistic elastic behavior. We note that one can analogously calculate the maximum collision
velocity supported by a linear spring by reformulating (4.1.13) in terms of velocity (see also
Appendix E).

Linear spring-dashpot model

So far we have only described purely elastic contact models. However, in a real granular
system kinetic energy is dissipated during collisions due to plastic deformations. A straight-
forward approach to model this phenomenon in the context of DEM is the addition of a
damping term to the purely elastic contact model. For the linear spring model (4.1.12) the
most prominent extension is of the form

F n
c,ij =

[
k∗nδ

n
ij − dnv

n
ij

]
nij (4.1.29)

1https://www.edemsimulation.com
2https://www.itascacg.com/software/pfc
3https://www.yade-dem.org
4https://www.cfdem.com

59



Chapter 4 CFD-DEM in a GFDM framework

cn

kn

(a) Visualization of linear spring-dashpot
model as parallel spring and dashpot in
normal contact of two spherical parti-
cles.

0 0.2 0.4 0.6 0.8 1

0

0.5

1
δn

max

δn/δn
max

F
n c
/
F

n c,
m

ax

(b) Evolution of collision force (4.1.29)
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attractive force during unloading in a bi-
nary collision.

Figure 4.3: Visualizations for the linear spring-dashpot contact model.

where a force depending on the relative velocity along the contact normal is introduced. In
analogy to the mechanical device which uses viscous friction to provide damping, the force
is sometimes called viscous damping force and (4.1.29) is referred to as linear spring-dashpot
model in the context of DEM (thus the typical visualization shown in Figure 4.3a).

To choose meaningful values for the damping constant dn it is helpful to consider the
binary collision of two particles. As it turns out, the overlap follows a harmonic oscillator
equation (see Appendix E) and we can define a damping ratio

ζn = dn

2
√
m∗sk

∗
n

(4.1.30)

which determines the amount of dissipation introduced into the model and whether it pre-
vents a particle rebound. For DEM simulations the relevant range of ζn values that still
allow for separation of particles after contact is given by

ζn ∈ [0, 1) (4.1.31)

While this dimensionless coefficient already provides an intuition of the amount of damping
introduced by the dashpot force, it is not the standard measure of this type in DEM. Instead,
it is common to consider the so-called coefficient of restitution en which is defined as the
ratio of velocity before and after the collision, i.e. en = 1 for a purely elastic contact and
en = 0 if the damping prevents separation of particles. In Appendix E it is shown that the
damping coefficient and coefficient of restitution for (4.1.29) are related via

ζn = − ln(en)√
π2 + ln(en)2

(4.1.32)

Remembering that the damping ratio only depends on effective mass and spring stiffness
in the model, we observe that the coefficient of restitution is independent of the collision
velocity. In fact, this observation is in contradiction to experimental results, as discussed
in [132], but can still be acceptable depending on the range of impact velocities within the
considered granular system. This is also backed by the vast pool of literature on DEM which
adapts this contact model.

While its easy formulation and analytical results make (4.1.12) a convenient model choice,
the plot of force evolution with respect to overlap in Figure 4.3b reveals a problem. The
dotted line, representing (4.1.12) and mostly coinciding with the solid line discussed later,
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shows a reversal of sign in the contact force during the separation phase (phase of decreasing
overlap), which means that attractive forces occur. For non-adhesive particles this effect is
typically undesired and eliminated by setting the contact forces to zero as soon as the sign
reversal occurs [103, 134, 152]. This results in

F n
c,ij = max

(
0,
[
k∗nδ

n
ij − dnv

n
ij

])
nij (4.1.33)

and the force-displacement relation is now represented by the solid line in Figure 4.3b.
Setting contact forces to zero at an earlier point during the collision means that the above
analytical results are not strictly valid any more. In particular, we can expect the contact
duration to be overpredicted while the coefficient of restitution is underpredicted. The
correct solution to the case without attractive forces has been presented by Schwager and
Pöschel [134] by adapting the conditions from which the contact duration is derived. For
the readers convenience, the derivation for this modification in our notation can be found
in Appendix E. It turns out that with the adapted contact duration, the derivation of an
expression for the coefficient of restitution in terms of damping ratio is still possible, while
unfortunately the reverse requires a numerical fitting such as the one proposed by Thornton
et al. [152].

Damping in Hertz model

After having extended the purely elastic linear spring model to account for dissipative effects,
we now want to do the same for the Hertzian model (4.1.25) with varying spring stiffness.
First, we want to consider the simplistic extension which is fully analogous to the constant
spring model, i.e.
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with a constant value of dn. This model was critically discussed by Schäfer et al. [132], who
revealed that the combination of Hertzian spring and linear damper produces an increasing
coefficient of restitution with increasing collision velocity, which we recall from the linear
spring-dashpot model is opposite to the experimentally observed behavior. This is one of the
reasons that the above expression only finds rare usage in literature. Instead, as discussed
by Anypov and Elliott [5], the two most prevalent models in DEM use a nonlinear damping
term leading to either
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The former model was proposed by Kuwabare and Kono [85] as well as Brilliantov et al.
[12] for collisions of visco-elastic spherical particles and is able to reproduce an increasing
coefficient of restitution for increasing collision velocity. The latter model is attributed to
Tsuji et al. [157] and results in a constant coefficient of restitution, similar to the linear
spring-dashpot model. For a more detailed discussion we chose to restrict ourselves to
(4.1.36) which has seen adoption in major implementations of the discrete element method
such as the two previously mentioned codes LIGGGHTS and EDEM.

Initially the model was proposed by Tsuji et al. with a constant damping coefficient

dn = α(en)
√
m∗s k̃

H
n (4.1.37)

where we recall that k̃H
n denotes the constant part of the Hertzian spring definition. Due

to the added complexity of nonlinearities in spring and damper force, the correct analytical
relation between dn and en was not available at the time such that the authors only provided
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a graphical representation. Even in more recent articles such as the one by Thornton et
al. [152], this relation had only been given as a numerical fit to DEM simulation results.
Nevertheless, a solution has been proposed by Anypov and Elliott [5] through the use of a
suitable mapping onto the linear spring-dashpot model. The authors found that the correct
relation between α and en is simply given by

α(en) =
√

5ζn(en) (4.1.38)

with ζn(en) as defined in (4.1.32). With this result we can, just as easily as in the linear
spring-dashpot model, choose a damping constant so that experimentally observed rebound
behavior is reproduced. We note that the derivation found in [5] is again based on the
model which allows attractive forces. The authors claim that an extension of their result
is straight-forward and that in many DEM simulations the attractive forces would not be
problematic as long as the correct coefficient of restitution is reproduced. We refrain from
following through with the derivation of the non-adhesive analytical relation and refer to the
fitted equation by Thornton et al. [152] for this case.

At this point we want to stop the discussion on force expressions along the contact normal
direction, since we feel for the purposes of this work the above considerations have conveyed a
sufficiently large portion of the general ideas and problems occurring in this field of modeling.
The presented contact models will also be sufficient for all of our simulations in the next
chapter. For details on further classes of contact models, such as hysteretic spring models,
we instead refer the reader to one of the following review articles [38, 81, 152] or the book
by O’Sullivan [109] and references therein. The careful reader might have noticed that we
specifically limited the end of discussion to normal contacts and in fact we still want to shed
some light onto the inclusion of forces acting within the tangent plane in DEM. This will
be the subject-matter of the following, in comparison rather short, section. Similar to the
previously mentioned treatment of rotations, while work has been done on this topic, the
tangential contact models have not yet been sufficiently validated within the context of this
work. They were therefore not used in the simulations presented in Chapter 5 such that this
subsection should be understood as an outlook and it is up to the reader to skip it.

4.1.3 Tangential contact models
As pointed out in [109, 117], the treatment of tangential forces in DEM as a result of surface
asperities or other deviations from perfectly spherical shape reveals a contradiction to the
assumptions within the derivation of normal contact models such as the Hertzian spring
model. Nevertheless it is common practice to combine the models from last section with
fairly similar ones in tangential direction to model experimentally observed frictional effects.

In the original work by Cundall and Strack [29], the authors extended the linear spring
model which they employed in normal direction by an analogous model within the tangential
contact plane. Clearly, for a fixed point in time there is no immediate geometrical definition
of tangential overlap. Instead, the authors proposed to take the time integral of a tangential
velocity to obtain a measure similar to the normal overlap. To properly introduce such a
model there are two points which warrant a closer look. Firstly, since we do not restrict
ourselves to two dimensional problems, the definition of tangential unit vector is not im-
mediately clear and might be any normalized vector in the contact plane defined by the
normal direction. Secondly, we settled for an application of the force directly to the particle
centroids in the above introduction to normal contact models. As one might imagine, when
we want to consider tangential forces, which primarily aim to model friction between the
spheres, the corresponding forces should be applied to the (deformed) particle surfaces where
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Figure 4.4: Visualization of contact point and unit vectors in the collision of two spherical particles.

the frictional stresses apply. This is typically done by defining a single point within the con-
tact volumes that is common to both particles and where the forces are applied. This point,
which is often called contact point of the collisions, does in fact not have a unique definition
in literature, as is pointed out by Lu et al. [96]. The authors even note that it might be
necessary to distribute among a number of contact points to reproduce physically reasonable
behavior for non-spherical particle contacts. For spherical particles it is however customary
[41, 97, 109, 139] to define the contact point as the middle point of the overlapping volume
along the normal direction, i.e.

xc,ij = xs,j +
(
Rs,j −

δnij
2

)
nij (4.1.39)

xc,ij = xs,i −
(
Rs,i −

δnij
2

)
nij (4.1.40)

This definition is also visualized in Figure 4.4a. From the sketch it is already evident that
this definition does, for different particle radii, not coincide with the centroid of the line or
circular region which are bounded by the intersection of particle surfaces. Before moving
forward to a relative velocity definition, we want to simplify notations by introducing the
so-called reduced radii

R′s,i = Rs,i −
δnij
2 (4.1.41)

which correspond to the radii of spheres centered in xs,i, xs,j that touch in xc,ij. With this
definition we write the velocities due to rigid body motion of the two material points, which
coincide in world frame coordinates (see Appendix D) with the contact point, as

vc,j = vs,j + ωs,j × (xc,ij − xs,j) = vs,j + ωs,j ×
(
R′s,jnij

)
(4.1.42)

vc,i = vs,i + ωs,i× (xc,ij − xs,i) = vs,i − ωs,i×
(
R′s,inij

)
(4.1.43)

where ωs,i, ωs,j denote the angular velocities of the particles (in world frame). The relative
velocity at the contact point are then defined as

vc,ij = vc,i − vc,j = vs,i − vs,j −
(
R′s,iωs,i +R′s,jωs,j

)
× nij (4.1.44)

We notice that upon taking the dot product of this velocity with nij the rotational term
vanishes and the normal component of this velocity reduces to vns,ij, as in (4.1.10). From the
remaining components of velocity one can define a tangential velocity

vts,ij = vs,ij − vns,ijnij (4.1.45)
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The simplest model for frictional forces that has seen application in molecular dynamics and
DEM is purely based on this relative velocity. It is sometimes referred to as Haff-Werner
friction [117] and is given by

F t
c,ij = −min

(
µ
∥∥∥F n

c,ij

∥∥∥, dt
∥∥∥vts,ij

∥∥∥
)
tij (4.1.46)

with tangential unit vector

tij =
vts,ij∥∥∥vts,ij

∥∥∥
(4.1.47)

and sliding friction coefficient µ. Clearly, such a purely dissipative force is not able to support
static configurations such as heaps (see also [103]), but according to Pöschel and Schwager
[117] the method has still seen successful application in molecular dynamics dominated by
contacts of finite duration.

To obtain a model which supports the case of static friction, we can instead introduce the
analogue to normal overlap

ξtij =
t∫

t0ij

vts,ij dt (4.1.48)

which is often referred to as tangential displacement or directional spring deformation. In
this definition t0ij denotes the time at which the particles i and j first came into contact.
A tangential spring model, similar to that proposed by Cundall and Strack, can then be
written as

F t
c,ij = −k∗t ξtij (4.1.49)

While in normal direction the spring force aims to restore the state of zero overlap, i.e. non-
penetrating particles, the tangential force is supposed to model the static friction between
particles, e.g. the interlocking of asperities on particle surfaces. Analogous to the purely
dissipative force presented above, the spring force is typically limited by Coulomb friction,
i.e.

F t
c,ij = min

(
µ
∥∥∥F n

c,ij

∥∥∥,
∥∥∥F t

c,ij

∥∥∥
)
tij (4.1.50)

for a friction coefficient µ (for simplicity we assumed identical static and sliding friction
coefficients) and tangential unit vector

tij =
F t

c,ij∥∥∥F t
c,ij

∥∥∥
(4.1.51)

There are some more intricacies to this model, such as projections to keep the directional
spring within tangential planes, which we do not discuss here. For an easy introduction to
this subject-matter we refer the reader to the article by Luding [97].

Similar to the preceding section we could now elaborate on a wide range of extensions
to this simple spring model, some of which also increment the tangential force instead of
the quantity in (4.1.48). Since the goal of this short section was only to convey the general
idea of tangential contact models, we want to conclude this section with references to more
complete reviews that the interested reader may consult. Apart from the previously cited
book by O’Sullivan [109] we specifically refer to [38, 41, 80, 152]. We further want to note
that one can define other relative velocities to specifically treat rolling friction or friction
due to torsion [1, 69, 74, 97]. While the former one is used frequently in DEM, the latter
one is rarely considered [109].
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4.1.4 Calculation of coupling forces
Aside from forces due to particle contacts, we also want to calculate the coupling forces
discussed in Section 3.4. Here we explain how this is realized in our generalized finite
difference framework. Clearly, in the particle momentum equation (4.1.2) these terms are
subsumed within the body force Fb,i. First, let us consider the pressure gradient and viscous
stress force

Fp,i = − (∇p)|xs,i
Vs,i (4.1.52)

Fτ,i = (∇ · τf)|xs,i
Vs,i (4.1.53)

Note that we omitted the averaging notation since, at this point, it should be clear that we
solve for continuous phase quantities in our numerical scheme that correspond to averages in
the theoretical framework. In Chapter 2 we discussed how to construct differential operators
at a point location from values of neighboring points through a least squares approach.
Clearly, as can be done when a new point is added, we can determine these stencils also at
any other location within the domain discretized by the point cloud. In particular, for a
particle with position xs,i, we can determine the (indices of) fluid phase neighbor points

Nf(xs,i) = {j | j ∈ {1, . . . , Nf}, ‖xf,j − xs,i‖ ≤ hf,i} (4.1.54)

where the smoothing length hf,i has to be chosen based on the local smoothing lengths
of surrounding fluid points. However, this neighbor list has to be constructed for every
particle, which quickly becomes prohibitively costly in terms of computation time. Instead,
for every particle, the closest fluid point is determined and its already available neighbor
list is used to compute stencils at the solid particle position. Throughout this work we have
used monomials up to an order P = 2 to determine the first order stencils cxi , c

y
i , czi . Then

the gradient is obtained by applying these stencils component-wise, i.e.

(∇p)|xs,i
≈




∑
j∈Nf,k

cxijpj
∑

j∈Nf,k
cyijpj

∑
j∈Nf,k

czijpj



, k = arg min

l∈{1,...,Nf}
‖xf,l − xs,i‖ (4.1.55)

We recall from (3.2.96), that the viscous stress is given by

τf = µ
(
∇uf + (∇uf)T −

2
3(∇ · uf)1

)
(4.1.56)

with a constant dynamic viscosity µ. Using the identities in Appendix A, it is easy to verify
that this leads to

Fτ = µ
(
∇ · (∇uf) + 1

3∇ · (∇uf)T
)
Vs (4.1.57)

The second order derivatives within this expression are calculated in two steps. First, each
component of the velocity gradient is calculated in the same way as shown above for the
pressure gradient. These values are stored and in a second step the divergence terms are
calculated by applying the stencils again to the stored gradient and its transposed.

After having dealt with the contributions due to the resolved part of fluid stress, we now
want to turn our attention towards the only expression that is used for the unresolved stress
within this work, namely drag force. In Section 3.4 we saw that the calculation of this force
only requires the knowledge of fluid velocity and porosity at the particle position. Assuming
that both quantities are available in the fluid point cloud, these values at xs,i are easily
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y
i , czi . Then

the gradient is obtained by applying these stencils component-wise, i.e.

(∇p)|xs,i
≈




∑
j∈Nf,k

cxijpj
∑

j∈Nf,k
cyijpj

∑
j∈Nf,k

czijpj



, k = arg min

l∈{1,...,Nf}
‖xf,l − xs,i‖ (4.1.55)

We recall from (3.2.96), that the viscous stress is given by

τf = µ
(
∇uf + (∇uf)T −

2
3(∇ · uf)1

)
(4.1.56)

with a constant dynamic viscosity µ. Using the identities in Appendix A, it is easy to verify
that this leads to

Fτ = µ
(
∇ · (∇uf) + 1

3∇ · (∇uf)T
)
Vs (4.1.57)

The second order derivatives within this expression are calculated in two steps. First, each
component of the velocity gradient is calculated in the same way as shown above for the
pressure gradient. These values are stored and in a second step the divergence terms are
calculated by applying the stencils again to the stored gradient and its transposed.

After having dealt with the contributions due to the resolved part of fluid stress, we now
want to turn our attention towards the only expression that is used for the unresolved stress
within this work, namely drag force. In Section 3.4 we saw that the calculation of this force
only requires the knowledge of fluid velocity and porosity at the particle position. Assuming
that both quantities are available in the fluid point cloud, these values at xs,i are easily
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obtained by applying the function approximation stencil c0
i , which is determined analogously

to the above first order derivative stencils. With the order of calculations presented at the
very beginning of this chapter (see Figure 4.1) it is clear, that all the values attached to fluid
points correspond to either initial conditions or the previous time step. Thus, the way that
these values are determined will be detailed in the upcoming Section 4.2 and Section 4.4.

4.1.5 Time integration
Now that we have introduced all the forces which are expected to form the right-hand side of
(4.1.2), we briefly want to discuss the numerical integration of (4.1.1), (4.1.2). To simplify
notations in the following, we define the particle acceleration

as,i(t) = 1
ms,i

Fb,i(t) + 1
ms,i

Ns∑

j=1
Fc,ij(t) (4.1.58)

so that (4.1.2) becomes
dvs,i

dt = as,i(t) (4.1.59)

We point out that the body force Fb,i typically depends only on the position and velocity of
particle i, i.e.

Fb,i(t) = Fb,i(t,xs,i(t),vs,i(t)) (4.1.60)
while the sum of collision forces formally depends on the position and velocity of all particles,
i.e.

Fc,i(t) = Fc,i(t,Xs(t),Vs(t)) (4.1.61)
with

Xs(t) = {xs,i(t) | i = 1, . . . , Ns}, Vs(t) = {vs,i(t) | i = 1, . . . , Ns} (4.1.62)

We note however, that for particles of spherical shape and with the small overlaps required
in DEM, the number of neighbors for each particle is rather small. In fact for equally sized
spheres an upper bound is formed by the kissing number of 6 in two dimensions and 12 in
three dimensions. Nevertheless, we use the general form

as,i(t) = as,i(t,Xs(t),Vs(t)) (4.1.63)

in the following. Reviews of different time integration schemes can be found in the arti-
cles by Dziugys and Peters [41], Fraige and Langston [51] as well as Kruggel-Emden et al.
[82]. Since for different applications of the discrete element method the restrictions on mem-
ory requirement, number of force evaluations and computational cost of a time integration
scheme might differ, the authors in [82] recommend the usage of rather simple schemes such
as second or third order Taylor expansion schemes for universal application. More complex
methods can certainly still be beneficial in cases where the above restrictions are compar-
atively loose, but since both, in [82] and [51], good results are obtained from the simple
second order Taylor expansion and half-step leapfrog Verlet scheme, we chose a set of rather
simple integrators for our investigations with the possibility of later extensions in mind. In
particular, this does not include any implicit integration schemes, which are rather rare in
the DEM context. An argument for the usage of less complex integration schemes can also
be made from the fact that Kruggel-Emden et al. [79], in their follow-up article to [82], found
that the choice of integrator had little impact on macroscopic observables such as the change
of total mass in a hopper or the velocity profile of a particle assembly. Let us now specify
the schemes which have been considered within the context of this work. We note that, in
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order to simplify later reference to any of the following schemes, we introduce them together
with shorthands which can be found in brackets behind their respective name.

Explicit / forward Euler scheme (EE)
The first scheme which comes to mind, obviously is the classical first order forward or explicit
Euler scheme given by

xs(t+ ∆t) = xs(t) + vs(t)∆t (4.1.64)
vs(t+ ∆t) = vs(t) + as(t,Xs(t),Vs(t))∆t (4.1.65)

The explicit Euler scheme has for example been used in the previously mentioned paper by
Tsuji et al. [157], but it is well known for providing poor stability.

Symplectic / semi-implicit Euler scheme (SE)
In [31, 158] the authors consider the symplectic or semi-implicit Euler scheme of the form

vs(t+ ∆t) = vs(t) + as(t,Xs(t),Vs(t))∆t (4.1.66)
xs(t+ ∆t) = xs(t) + vs(t+ ∆t)∆t (4.1.67)

which is the result of forward Euler applied to velocity and backward Euler to the position.
This scheme is still first order but has the advantage of being a symplectic integrator. The
authors observed this integration method to be the most accurate and robust first order
scheme for both, linear spring-dashpot and Hertzian models. They further recommended
this scheme for usage in the context of CFD-DEM.

Second order Taylor scheme (TY2)
A second order Taylor expansion scheme is described by Dziugys and Peters [41] and Kruggel-
Emden et al. [82]. It is given by

xs(t+ ∆t) = xs(t) + vs(t)∆t+ 1
2as(t,Xs(t),Vs(t))∆t2 (4.1.68)

vs(t+ ∆t) = vs(t) + as(t,Xs(t),Vs(t))∆t (4.1.69)

In [51] instead

vs(t+ ∆t) = vs(t) + as(t,Xs(t),Vs(t))∆t (4.1.70)

xs(t+ ∆t) = xs(t) + vs(t+ ∆t) + vs(t)
2 ∆t (4.1.71)

is denoted as modified Euler scheme. Plugging the vs(t + ∆t) from (4.1.70) into (4.1.71)
reveals the equality to the second order Taylor scheme. This scheme has a truncation error
of O(∆t3) in the position but O(∆t2) in velocity, so it is still first order in velocity.

Central difference / velocity Verlet scheme (CD)
One of the standard integration methods in DEM is given by the second order velocity Verlet
scheme, also known as central difference scheme, which is of the form [41, 51, 70, 82, 88,
126]

vs(t+ ∆t
2 ) = vs(t−

∆t
2 ) + as(t)∆t

xs(t+ ∆t) = xs(t) + vs(t+ ∆t
2 )∆t
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We note that this scheme is also sometimes referred to as (half-step) leap-frog Verlet [41, 51].
This naming convention is not adopted in the following since it appears to be ambiguous, as
can be seen from [82] where it refers to the slightly different position Verlet scheme. Hanley
et al. [70] note that this scheme has also been widely adopted in open-source DEM codes
like the previously mentioned LIGGGHTS and Yade.

We observe that the position and velocity are calculated at shifted points in time. This
introduces an additional complication if we want to consider velocity-dependent forces. In
many articles [41, 88, 126] such forces are not considered or the necessary modification is
not explicitly given. Fraige and Langston [51] on the other hand propose the additional step

vs(t+ ∆t) = vs(t+ ∆t
2 ) + 1

2as(t)∆t (4.1.72)

which is executed after the above calculations, meaning that in their case

as(t) = as(t,Xs(t),Vs(t)) (4.1.73)

They found this scheme to be more accurate and stable than what they call the modified
Euler scheme, which is the above second order Taylor scheme in our naming convention. In
[29, 70, 82] the authors instead use positions and velocities which are half a time step apart
for the evaluation of forces, i.e.

as(t) = as(t,Xs(t),Vs(t−
∆t
2 )) (4.1.74)

Since the initial conditions of position and velocity are typically given at the same point in
time, t = 0 for simplicity, we further need to prescribe a value for vs(−∆t

2 ) in the first time
step. Here we employ

vs(−
∆t
2 ) = vs(0)− 1

2as(0,Xs(0),Vs(0))∆t (4.1.75)

Now that we have introduced a set of integration schemes, we want to do two things. First,
we discuss time step restrictions which are typically imposed and introduce the necessary
notations for our second step. This will be a short analysis of the proposed schemes for
one of the standard test cases in DEM, the collision of a single particle with a wall. We
consider this test case for both, the linear spring-dashpot model and the damped Hertzian
model of type (4.1.36). This serves as an elementary unit test of our DEM scheme and we
use this to decide on the numerical integration scheme which will be used in the following.
We note that, at this point, only time step restrictions due to the DEM contact model are
discussed. The influence of drag forces is postponed to a later point within this chapter,
namely Section 4.7.

Time step restrictions

In discrete element methods it is customary to postulate an upper bound for the time step
of the form [70, 99]

∆ts ≤ Ctc (4.1.76)
where C is a constant which is typically chosen smaller than one and

tc =
√
m∗s
k∗n

(4.1.77)

is the critical time in the harmonic oscillator analogue to the linear spring-dashpot contact
model described in Appendix E. A discussion on the choice of C can be found in the article
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by Malone and Xu [99]. There the authors point out that a wide range of values have been
proposed in DEM literature. Using the central difference scheme and purely elastic linear
spring model they further numerically determined a value of C = 0.2, which they found is
necessary to obtain less than 5% error in potential energy after collision of a single particle
with a wall under the effect of gravity. For two colliding particles with attractive forces
allowed during separation we derived in Appendix E that the contact duration is given by

td = π√
1− ζ2

n
tc (4.1.78)

For the case without attractive forces one instead obtains (see Appendix E)

td = tc√
1− ζ2

n





π − atan

2ζn

√
1− ζ2

n

2ζ2
n − 1


 ζn <

1√
2

atan

2ζn

√
1− ζ2

n

2ζ2
n − 1


 ζn >

1√
2

(4.1.79)

Evidently, in both cases the damping increases the contact duration and without damping
both expressions reduce to the same value of td = πtc. This means that the suggested value
of C = 0.2 leads to at least 15 integration steps within the collision duration. Another
investigation on this subject-matter has been published by O’Sullivan and Bray [110] who
used methods from finite element analysis and considered the central difference scheme and
a linear elastic contact model. For a selection of sphere arrangements in 3D they found the
conservative bound

∆ts ≤ 0.17
√
ms,min

kn,max
(4.1.80)

where the minimum and maximum are taken over the complete system of particles. Otsubo et
al. [112] later extended the considerations from [110] to more realistic particle configurations
and proposed the bound

∆ts ≤
√

ms,min

CN,maxkn,max
(4.1.81)

instead. Here we denote by CN,max the maximum coordination number, i.e. number of
neighbors that a particle interacts with, among all particles. Obviously, CN,max is bounded
by the above mentioned kissing number for spherical particles of equal size in 3D while it
might be significantly larger for polydisperse assemblies. As a conservative bound across all
coordination numbers in their particle configurations they found

∆ts ≤ 0.1
√
ms,min

kn,max
(4.1.82)

in three dimensions. They note that in many cases such a choice might be over conservative
and waste computational resources. They further discuss other means of obtaining estimates
for the critical time step which forms the upper bound to the integration time step.

Finally, for the contact of two spherical particles with a purely elastic Hertzian spring
model one can analytically derive the duration of the collision to be [86, 116]

td = 2.94

15

16
m∗s

Y∗
√
R∗s




2
5( 1
vn,0s,ij

) 1
5

(4.1.83)

We notice that in contrast to the linear spring-dashpot model the contact duration explicitly
depends on the magnitude of relative velocity at the beginning of contact, again denoted
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by vn,0s,ij. Consequently, in order to choose the time step as a specified fraction of contact
duration one needs to estimate the occurring collision velocities within the system. We
recall that the same had to be done to calculate suitable spring stiffnesses from a maximum
allowed overlap in both, the linear and Hertzian model. Thus, even though the equation
(4.1.77) might conceal this fact, there is an implicit dependency of the contact duration on
the maximum possible value of vn,0s,ij in the system. To be precise, choosing k∗n equal to the
right-hand side of (4.1.13) leads to

td = π
δn,max
ij

vn,0s,ij
(4.1.84)

in a purely elastic collision. Similarly, if we combine (4.1.28) with (4.1.83), we obtain

td = 2.94
δn,max
ij

vn,0s,ij
(4.1.85)

From this we can conclude that the choice of contact model between linear and Hertzian
spring has no significant influence on the time step restriction, as long as they are both
chosen based on the same maximum overlap and estimate of collision velocity. We further
derived from this the choice

∆ts ≤
td
Nt,d

, Nt,d ≥ 15 (4.1.86)

which we use within this work for the Hertzian model and which we previously obtained from
∆ts ≤ Ctc and C = 0.2 in the linear model. If instead we compare (4.1.85) to the model
based on material parameters, we observe a difference in scaling with respect to velocity.
As a consequence the contact duration in the Hertzian model with material parameters
is significantly smaller at low impact velocities. This is due to the fact, that this model
represents very stiff particles. In less dynamic systems it might thus be advantageous to
replace the material model by parameters which allow for more overlap in favor of larger
time steps.

As for the damped Hertzian model of the form (4.1.36), a numerical investigation of
contact duration in this case can be found for example in the article by Antypov and Elliott
[5]. From the data they provide it is clear that, at least for en ≥ 0.2, the influence is rather
small compared to the large pre-factor which typically applied when setting an upper bound
for the time step based on the contact duration.

Naturally, from this discussion, the question arises whether there are theoretical restric-
tions accompanying these numerically determined time step choices. By employing the
harmonic oscillator analogue, one can easily prove by standard stability analysis, that the
explicit Euler scheme applied to the spring-damper system is stable as long as

∆ts ≤ 2ζntc (4.1.87)

which shows that no stability can be achieved in continued damped contacts, independent
of the time step. On the other hand, for the semi-implicit Euler scheme one can prove that
stability in the harmonic oscillator integration is ensured as long as

∆ts ≤ 2
(√

ζ2
n + 1− ζn

)
tc (4.1.88)

which reduces to ∆ts ≤ 2tc without damping. We observe that the time step choices detailed
above are often stricter than those imposed by the theoretical stability bounds in the har-
monic oscillator analogue. On the one hand, this is due to the fact, that the contact model
deviates from the oscillator analogue by its discontinuous nature, since interaction only takes
places while the particles virtually overlap. On the other hand, stability alone is not enough
to obtain physically meaningful results, instead a certain degree of approximation quality is
desired when setting up a collision model from experimentally determined parameters.
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Figure 4.5: Particle trajectories for the wall collision with linear spring-dashpot contact model. Nt,c denotes
the number of time steps within the critical time tc, i.e. tc = Nt,c∆ts.

In the following we want to provide a preliminary investigation on the performance of
these different time integration scheme in the context of a typical scenario in DEM, the
collision of a single particle with a wall. To this end, we chose to use the same setup as
in the article by Malone and Xu [99] and extend their investigations. The setup consists
of a spherical particle of radius Rs = 0.5 mm and material density ρs = 2750 kg

m3 which is
initially placed at a height of h0 = 0.35 m from the wall and moves under the influence of
gravity with g = 9.81 m

s2 . While the authors in [99] only considered the perfectly elastic liner
spring-dashpot model, we also consider a strongly damped version of this model (4.1.29) and
repeat the same for the Hertzian model (4.1.36). In the Hertzian model we set the Poisson
ratio ν to zero and chose the Young modulus Y so that the theoretically obtained maximum
overlap in the Hertzian contact is identical to the linear model. As we saw in (4.1.84) and
(4.1.85) this leads to almost the same contact duration in both models. Due to this fact we
also test the same time step sizes in both contact models. To be precise, we choose them as
fractions

∆ts = tc
Nt,c

, Nt,c ∈ N, Nt,c > 1 (4.1.89)

of the critical time tc in the linear spring-dashpot model. To evaluate the results, we compare
the maximum height that the particle reaches after a single collision hsim

1 (see Figure 4.5a)
in the simulations against the theoretical value htheo

1 obtained from the relation between
pre-collisional and post-collisional velocity v1 = env0 and integration of the equations of
motion.

When presenting the results we refer to the schemes via their short-hands introduced
above. For the central difference scheme in particular, we denote by CD1 the scheme based
on (4.1.72), (4.1.73) while CD2 denotes the one which uses the force evaluation at half-step
velocities (4.1.74).

The results for the two purely elastic models are shown in figures 4.6a, 4.6b. Both,
the explicit Euler (EE) scheme and the second order Taylor (TY2) scheme, lead to far
worse results and can not match the accuracy of the other schemes in this case. This
lack of accuracy manifests itself in an increase of kinetic energy across the collision and
a subsequently larger maximum height. This is visualized for the explicit Euler scheme
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Figure 4.6: Comparison of DEM time integration schemes for single particle wall impact. The plots show
the relative error εh =

∣∣hsim
1 − htheo

1
∣∣/htheo

1 over the number of time steps within the critical
time tc, i.e. tc = Nt,c∆ts. The lines correspond to the presented schemes with short-hands EE
(+), TY2 (triangle), SE (square), CD1 (circle), CD2 (x).

in Figure 4.5b. Among the remaining methods, the two versions of the central difference
scheme lead to identical results while the semi-implicit Euler (SE) scheme also shows an
overall similar trend. All of these three schemes manage to reproduce the analytical result
with less than 1% error for a subdivision of the critical time into at least three time steps,
i.e. Nt,c ≥ 3.

The results of the strongly damped cases are shown in figures 4.6c, 4.6d. While the
explicit Euler and Taylor scheme still show larger errors, especially in the Hertzian model,
the schemes are not separated as clearly any more and the overall errors are significantly
larger, even for small time steps sizes. These rather inconclusive results require a more
in-depth investigation which is left open for future work at this point.

Overall we feel confident in concluding that replacing the explicit Euler scheme by the
Taylor scheme does not provide any benefit in terms of accuracy and is therefore not worth-
while. Instead, either one of the remaining schemes is expected to improve the stability
within a coupled system containing large amounts of particles significantly. This is due to
the reduced artificial generation of kinetic energy. From the presented results no obvious
conclusion can be drawn on whether any of the central difference schemes or the semi-implicit
Euler should be used in future studies. However, since the scheme with force evaluations
based on half-step velocities (CD2) did not produce more accurate results within our spe-
cific tests, but also introduces the conceptual difficulty of desynchronized time stepping in
fluid and solid phase velocities, we drop it in favor of the SE and CD1 schemes until more
conclusive results are available.
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while. Instead, either one of the remaining schemes is expected to improve the stability
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4.2 Coarse graining
With all aspects of the DEM scheme being clarified, we now proceed to explain the second
component within the rough outline of our coupling algorithm, which we showed in Fig-
ure 4.1. The goal of this step is the calculation of averaged quantities, such as the volume
fraction εs and coupling force density ffs, on the spatial discretization of the fluid phase.
These values may then be used in the next step of the overall scheme, namely in solving the
VANS equations.

An important distinguishing factor of this step in the FPM is the fact that we neither have
a mesh available nor do we consider mass particles. Thus, there is no inherent definition
of volume associated to elements of our discretization. This matter necessitates a thorough
discussion in order to avoid any unsubstantiated adoption of existing averaging techniques,
which would not take our specific numerical framework into account.

While we will continue referring to this task as coarse graining, we want to point out that
this term is ambiguous in the CFD-DEM literature. In addition to denoting the averaging
scheme, it is also used for methods which subsume multiple particles into one larger particle
with adapted material and contact model parameters [20, 63, 128, 129]. The purpose of
such approaches is the reduction of computational cost in CFD-DEM simulations with high
particle count.

Before we transition to an averaging scheme on the discretized fluid phase, we first want to
discuss a few aspects which have been omitted when we introduced averages in the derivation
of volume averaged conservation laws.

4.2.1 Conservation conditions
In Section 3.2 we have already seen that there are a number of averaging formalisms which
are used to derive similar versions of the volume averaged Navier-Stokes equations. While
the coarse graining is therefore not limited to the weighted averaging introduced earlier, we
will, for the sake of consistency with our derivations, first restrict ourselves to such a kernel
based averaging procedure. We recall that the solid phase intrinsic volume averages for a
set of particles occupying volumes Vs,j ⊂ Rd for j ∈ {1, . . . , Ns} are given by

εs(x) =
Ns∑

j=1

∫

Vs,j

w(x− y) dVy (4.2.1)

εs(x)〈ψ〉s(x) =
Ns∑

j=1

∫

Vs,j

w(x− y)ψ(y) dVy (4.2.2)

while particle phase averages are defined as

np(x) =
Ns∑

i=1
w(x− xs,i) (4.2.3)

np(x)〈ψ〉p(x) =
Ns∑

i=1
w(x− xs,i)ψi (4.2.4)

As before, ψ(x) represents any of the quantities which vary within the solid phase volume
and ψi denotes quantities with a single value per particle. Note that we consider a fixed
point in time for the averaging procedure, so that any time dependencies can be omitted to
improve readability.

In Section 3.2 we assumed that x ∈ V ⊂ V∞ with all points in V being “far away” (relative
to the kernel length scale) from the domain boundary ∂V∞. While this helped to keep the
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derivation of conservation laws in terms of averaged quantities simple, we cannot generally
make this assumption for the solid phase averages in our scheme. Clearly, particles can get
close to walls in many real scenarios, in which case part of the averaging kernel, which is
centered in the particle, is outside the computational domain. Consequently, without adapt-
ing the kernel shape, the normalization condition (3.2.21) is violated. To better understand
the implications of this, we integrate the volume and particle phase averaged fields over the
full problem domain and observe that we obtain conservation conditions

∫

V∞

εs(x) dVx =
Ns∑

j=1
Vs,j (4.2.5)

∫

V∞

εs(x)〈ψ〉s(x) dVx =
Ns∑

j=1

∫

Vs,j

ψ(y) dVy (4.2.6)

∫

V∞

np(x) dVx = Ns (4.2.7)

∫

V∞

np(x)〈ψ〉p(x) dVx =
Ns∑

j=1
ψj (4.2.8)

which are fulfilled as long as
∫

V∞

w(xs,i − y) dVy = 1 ∀ i ∈ {1, . . . , Ns} (4.2.9)

The first equation (4.2.5) states that εs should represent the amount of solid volume in the
computational domain. Physically reasonable values for this field are of particular impor-
tance, since it is used in the calculation of drag forces and occurs in both the volume averaged
equations (3.2.95) and (3.2.96) of the fluid phase. A field which does not satisfy the above
criterion can certainly be considered unphysical. Clearly, (4.2.7) has a similar significance.
Notably, for monodisperse assemblies, which are the only ones considered within this work,
this condition is identical to (4.2.5). Another example which illustrates the importance of
the above conditions is obtained by recalling that ffs can be written as ffs = np〈Ffs〉p. Thus,
by replacing ψ in (4.2.8) with the components of Ffs, we observe that the normalization
ensures Newton’s third law in the form

∫

V∞

ffs(x) dVx =
Ns∑

j=1
Ffs,i (4.2.10)

The significance of this requirement in a coupled scheme is evident, since it ensures that
the total force applied by the solid particles on the fluid phase volume (via the source term
ffs on the right-hand side of (3.2.96)) equals the sum of forces due to the fluid phase on
all immersed particles in the solid phase, albeit with reversed sign. Lastly, to illustrate
the meaning of (4.2.6) we choose ψ to be the solid continuum velocity which is detailed in
Appendix D and can be written as

us(y) = vs,i + ωs,i × (y − xs,i) (4.2.11)

with ωs,i representing the angular velocity of the particle in a global coordinate system.
Since xs,i represents the particle centroid position, it is easy to verify that integrating the
second term in (4.2.11) over the particle volume leads to zero, which in turn reduces (4.2.6)
to ∫

V∞

εs(x)〈us〉s(x) dVx =
Ns∑

j=1
vs,iVs,i (4.2.12)
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Thus, as long as the kernel normalization is not violated, the solid-phase intrinsic average
velocity fulfills the momentum conservation condition (4.2.12). Similarly, if we take the
particle phase average of the translational solid velocity, (4.2.8) leads to

∫

V∞

np(x)〈vs〉p(x) dVx =
Ns∑

j=1
vs,i (4.2.13)

With respect to a coupled scheme, averaged solid velocities are only of importance if some of
the velocity-dependent terms within Ffs are evaluated directly in the fluid solver instead of
subsuming them into ffs. An example of this will be given in Section 4.3 where we consider
the implicit treatment of drag within the fluid phase.

From the above discussion it is evident that a normalization of the averaging kernel on the
computational domain ensures the conservation of physically important properties through-
out the averaging procedure and therefore needs to be maintained close to boundaries. In
order to commence with boundary treatment, we first discuss approaches to alter the weight-
ing function in such a way that normalization is recovered on the continuous level. This part
is independent of the chosen numerical scheme for the fluid phase. After that, we concern
ourselves with the values assigned to numerical points in our generalized finite difference
framework.

4.2.2 Kernel mirroring
As first step in transitioning from unbounded domains to bounded ones, let us consider
half-spaces in Rd. A theoretically elegant approach to restoring the normalization on these
domains has been proposed in [176]. For this, we represent the hyperplane which bounds
the half-space, by a point xw ∈ Rd on the hyperplane and the inward pointing unit normal
nw. Then, the computational domain is given by the open set

V∞ :=
{
x ∈ Rd|(x− xw) · nw > 0

}
(4.2.14)

and we define
Mw : V∞ → VM∞ , x 7→ x− 2[(x− xw) · nw]nw (4.2.15)

which maps onto the open set

VM∞ :=
{
x ∈ Rd|(x− xw) · nw < 0

}
(4.2.16)

This bijective mapping represents a mirroring across the wall (see Figure 4.7).

••

•

x

Mw(x)V∞

VM
∞

• xw

nw

Figure 4.7: Visualization of mirroring (4.2.15) at a single hyperplane.

As stated in [176], though without proof, one can use this mapping to modify a weighting
function which is normalized on Rd in order to achieve a normalization on V∞. Specifically,
we show the following identity:
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Theorem 4.1 Let V∞ and VM∞ be defined as above and w(x) = w̃(‖x‖) with a bounded and
integrable kernel w̃ : R+ → R+ which satisfies

∫

Rd

w(y − x) dVy = 1, ∀x ∈ V∞ (4.2.17)

Then, with the above mappingMw the identity
∫

V∞

w(y − x) + w(y −Mw(x)) dVy = 1, ∀x ∈ V∞ (4.2.18)

holds true.

Proof: Firstly, we decompose the integral over Rd to obtain

1 =
∫

V∞

w(y − x) dVy +
∫

VM∞

w(y − x) dVy +
∫

∂V∞

w(y − x) dVy (4.2.19)

We observe that in the last integral, ∂V∞ represents the hyperplane. Since we assumed w̃
to be bounded, the integral over this set of measure zero vanishes. Next, let us consider the
kernel integral over the image set VM∞ . Firstly, by applying the change of variable formula
we obtain ∫

VM∞

w(y − x) dVy =
∫

V∞

w(Mw(y)− x)
∣∣∣det

(
∇MT

w

)∣∣∣ dVy (4.2.20)

For the gradient of the mappingMw one can easily derive that

∇Mw = 1− 2nw ⊗ nw (4.2.21)

Using the general identity det(a1 + b⊗ c) = a2(a+ b · c) and the fact that ‖nw‖ = 1,
provides us with the first equality in

∫

VM∞

w(y − x) dVy =
∫

V∞

w(Mw(y)− x) dVy =
∫

V∞

w(y −Mw(x)) dVy (4.2.22)

while the second equality is a consequence of w(x) = w̃(‖x‖) and

‖Mw(y)− x‖ = ‖y −Mw(x)‖ (4.2.23)

which is easily verified by writing out both norms. Thus, by using (4.2.22) in (4.2.19), the
final identity is shown. �

From this identity we can conclude that, by replacing the weights in (4.2.1)-(4.2.4) by the
sums

w(x− y) + w(x−Mw(y)) (4.2.24)
w(x− xs,i) + w(x−Mw(xs,i)) (4.2.25)

the coarse graining conservation conditions within the solid phase, i.e. (4.2.5)-(4.2.8), can
be ensured even on a bounded domain. In the context of electrostatic potentials (cf. [71])
and heat conduction this method is also employed and often referred to as method of images
and method of image charges, respectively. Especially the connection to heat conduction,
which explained in more detail in Appendix F, can be of interest in the context of averaging
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Figure 4.8: Successive mirroring close to a 45 degree corner in a domain bounded by two hyperplanes. The
original point from V∞ is depicted as a black dot. Mirrored points are depicted as gray dots
and dotted lines clarify at which hyperplane points are mirrored.

procedures. Here we only want to state that calculating the solid phase intrinsic and particle
phase averages with a normalized Gaussian weighting function and the above mirroring at
the boundary leads to the solution of the heat equation

∂φ

∂τ
−D∇2φ = 0 (4.2.26)

with Neumann boundary conditions and evaluated at the (pseudo-)time T = b2/4D . The
initial conditions to obtain this result are further given by

φ(τ = 0,x) =
Ns∑

j=1
ψ(x)χVs,j(x) (4.2.27)

which leads to φ(T, ·) = εs〈ψ〉s and

φ(τ = 0,x) =
Ns∑

j=1
ψjδ(‖x− xs,j‖) (4.2.28)

which leads to φ(T, ·) = np〈ψ〉p. In [14, 149] this equivalence is utilized by realizing the
coarse graining procedure through a numerical solution of the heat equation. We will get
back to this approach at a later point in this section. For now we want to consider extensions
of the mirroring approach to more complex domains.

As is described in Sommerfeld’s book [140], one can generalize the procedure to construct
fundamental solutions from the half-space bounded by a single hyperplane to some domains
bounded by multiple hyperplanes. According to the author it is necessary for the method to
be applicable, that the whole space Rd can be covered completely and simply by successive
reflections of the original region at the hyperplanes. In Figure 4.8 we have visualized the
process of successive mirroring for a domain in two spatial dimensions which is bounded
by two half-lines which extend from a common corner point. It is easily verified that each
mirrored point corresponds to an image set of V∞, so that R2 is the disjoint union of the
original set, the image sets and sets of measure zero. Thus, V∞ in Figure 4.8 is an admissible
domain. In particular, every domain bounded by hyperplanes with an angle of π/n , n ∈ N>0
between the hyperplanes is admissible. A good overview of such domains is provided by
Keller [76]. In particular, it turns out that while curved or non-convex boundary can not be
treated by the method of images, cuboid geometries form an admissible domain. We make
extended use of this fact in our numerical simulations where the mirroring is our method
of choice. To provide more detail on why we use this approach, we now want to make the
transition to a discretized setting and specify which values are assigned to individual fluid
points.
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4.2.3 Discretization of averaged fields in GFDM
Due to the finite difference nature of our scheme, the consistent way of assigning values to
points is a direct evaluation of the constructed continuous fields at fluid point locations xf,i,
i.e.

εs,i = εs(x = xf,i) (4.2.29)
εs,i〈ψ〉si = (εs〈ψ〉s)(x = xf,i) (4.2.30)

np,i = np(x = xf,i) (4.2.31)
np,i〈ψ〉pi = (np〈ψ〉p)(x = xf,i) (4.2.32)

Assuming we have a computational domain which allows for an application of the mirroring
approach, we can directly write the number density and particle phase averages as

np,i =
Ns∑

j=1
wij, np,i〈ψ〉pi =

Ns∑

j=1
wijψj (4.2.33)

where

wij = w(xf,i − xs,j) +
∑

k

w(xf,i −Mk
w(xs,j)) (4.2.34)

and we have denoted byMk
w the sequence of successive mirroring functions as visualized in

Figure 4.8. In particular, the force density at fluid phase points is calculated as

ffs,i =
Ns∑

j=1
wijFfs,j (4.2.35)

Thus, by following this procedure, we first ensure that the analytical field ffs fulfills Newton’s
third law in the sense of (4.2.10) and then use a discretization of this field which is consistent
with the finite difference approach of the FPM. Clearly, we will apply the same line of thought
to the volume fraction and volume averages. In these cases, the above evaluation at fluid
point positions leads to

εs,i =
Ns∑

j=1



∫

Vs,j

w(xf,i − y) dVy +
∑

k

∫

Vs,j

w(xf,i −Mk
w(y)) dVy


 (4.2.36)

εs,i〈ψ〉si =
Ns∑

j=1



∫

Vs,j

w(xf,i − y)ψ(y) dVy +
∑

k

∫

Vs,j

w(xf,i −Mk
w(y))ψ(y) dVy


 (4.2.37)

In practice we certainly do not want to resolve the integral terms in the first two equations
via numerical integration. Instead, we assume that

∫

Vs,j

w(xf,i − y) dVy ≈ w(xf,i − xs,j)Vs,j (4.2.38)

∫

Vs,j

w(xf,i −Mk
w(y)) dVy ≈ w(xf,i −Mk

w(xs,j))Vs,j (4.2.39)

which is in line with an assumption we frequently employed in the VANS derivation, namely
that the kernel varies little within individual particle volumes. In Appendix G we further
verified numerically that the above integral approximation leads to insignificant errors as
long as the kernel bandwidth is not too close to the particle radius. Thus, assuming that
the bandwidth is chosen large enough, we can write
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εs,i ≈
Ns∑

j=1
wijVs,j (4.2.40)

For the definition of solid phase intrinsic averages we only note that, within this work, there
is no quantity of interest other than the average velocity, which we assumed to be purely
translational in our DEM simulations. Thus, from us(x) = vs,j for x ∈ Vs,j, we directly
obtain

εs,i〈us〉si ≈
Ns∑

j=1
wijvs,jVs,j (4.2.41)

and omit a discussion on the more general case for the sake of brevity. So as long as the
computational domains is of a shape that is admissible for the mirroring, a coarse graining
based on (4.2.33), (4.2.35), (4.2.40) and (4.2.41) is applicable within the FPM. In the context
of this work, we will use this approach exclusively in conjunction with the Gaussian kernel

wb(x) = 1
(πb2) d2

e−
‖x‖2

b2 (4.2.42)

which is normalized on Rd. Clearly, for the sake of computational efficiency, this kernel is cut
off at a certain distance from the origin in a numerical simulation. This distance is typically
chosen as a multiple of the kernel bandwidth. This means that, for each particle, only those
boundaries which are closer than the cut-off distance of the kernel need to be considered in
the mirroring procedure. For all computational domains considered within this work, this
further implies that the mirroring procedure reduces to the cases depicted in Figure 4.7 and
Figure 4.8 as well as the case of a corner formed by three planes.

While this is sufficient for all numerical simulations considered within the context of
this work, we still owe the reader an explanation of our choice and in turn want to put
it into context of other approaches that are prevalent in CFD-DEM literature. We will
explain which ones can not be properly transferred to our generalized finite difference setting
and which of those we discarded due to other disadvantages. The following discussion
also provides starting points for possible future extensions to those cases which can not
be appropriately treated by the mirroring approach.

4.2.4 Discussion of other approaches
We start with those methods which are typically applied when the fluid phase is numerically
solved with the finite volume method (FVM). This is motivated by the fact that a significant
portion of the CFD-DEM literature is devoted to this approach. The consistent way of
specifying the value φi attached to a numerical cell Ωi ⊂ Rd for an analytically provided
integrable function φ : Rd → R in a FVM is

φi = 1
|Ωi|

∫

Ωi

φ(x) dVx , i ∈ {1, . . . , Nf} (4.2.43)

From this it is immediately clear that, if the analytical fields fulfill the conservation conditions
(4.2.5), (4.2.7), (4.2.10) on the domain Ω ⊂ Rd, discretized by the cells Ωi ⊂ Rd, the values
attached to these cells fulfill the discrete versions

Nf∑

i=1
εs,i|Ωi| =

Ns∑

j=1
Vs,j (4.2.44)
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Nf∑

i=1
np,i|Ωi| = Ns (4.2.45)

Nf∑

i=1
ffs,i|Ωi| =

Ns∑

j=1
Ffs,j (4.2.46)

Additionally, if the volume and particle averages are defined as

〈ψ〉si = 1
εs,i|Ωi|

∫

Ωi

εs〈ψ〉s(x) dVx , i ∈ {1, . . . , Nf} (4.2.47)

〈ψ〉pi = 1
np,i|Ωi|

∫

Ωi

np〈ψ〉p(x) dVx , i ∈ {1, . . . , Nf} (4.2.48)

analogous discrete versions of (4.2.12) and (4.2.13) are fulfilled. In fact, it is customary
in the finite volume context to construct coarse graining schemes specifically so that the
averaged values on the fluid grid fulfill discrete conservation conditions (cf. [148, 149]). A
very simple approach to achieve this together with a weighted averaging is given by the
discrete rescaling

wij = w(xf,i − xs,j)
Nf∑
k=1
|Ωk|w(xf,k − xs,j)

(4.2.49)

which is very similar to a Shepard type interpolation procedure. This type of discrete kernel
rescaling is also frequently applied in the context of smoothed particle hydrodynamics (SPH)
[60, 100, 124, 151], which, as we saw earlier, is another mesh free method. In SPH the cell
volume is instead replaced by the volume of a SPH particle, which is implicitly given due to
the fact that each SPH particle has a certain mass and an attached value of fluid density. We
recall from Chapter 2 that an important property of our method is that we don’t rely on such
mass particles, which would prohibit particle addition and deletion in the presented way.
Consequently, there is no inherent definition of point volume which we can use to naturally
transfer (4.2.49) to our framework. Furthermore, the above discrete conservation conditions
lack a similar theoretical foundation in our framework such that it is not clear whether
constructing methods with the sole purpose of fulfilling them is a reasonable approach.

However, if we were to follow this approach, we can make use of the fact that a notion
of point volume is available in our framework for the purpose of point management and
post-processing. In 2D this “volume”, i.e. area, is calculated from a local Delauney trian-
gulation. The center point is assigned one third of the area of each triangle it is a part of
(see Figure 4.9). In 3D tetrahedrons are used instead and the point is assigned one fourth
of their volume. These triangulations or tetrahedralizations are local in the sense that they
are constructed only within the neighborhood of each point and do not necessarily stitch
together to form a global mesh. Thus, it is important to realize that this does not contra-
dict the meshfree nature of our numerical scheme. Using the volumes obtained from this
approach together with (4.2.49) certainly leads to different results than the mirroring ap-
proach close to boundaries. This can be observed from Figure 4.10 where the modification
of kernel shape due to mirroring is evidently different from a simple rescaling. A problem of
using this in a coarse graining algorithm is the fact that the volumes will be fluctuating over
time as the points move and new local decompositions are calculated. These fluctuations
might then transfer into the averaged fields and destabilize the coupled simulation. The
same obviously does not hold true for the volumes in a FVM and, as long as the density
is not fluctuating, also in SPH since there a particle have a fixed mass. We note that the
mirroring approach also does not suffer from this deficiency and preliminary simulations
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Figure 4.9: Local Delauney triangulation in a
FPM point neighborhood in 2D.
The red shaded areas contribute to
the center point (red point) volume.

V∞ R \ V∞

Figure 4.10: Mirroring of Gaussian weighting
function at a boundary (dotted)
in 1D. The black solid line repre-
sents the sum of the original ker-
nel (solid, gray) and mirrored ker-
nel (dashed, gray) inside the do-
main.

have shown that it provides better stability than the Shepard type correction to the kernel
due to the above-mentioned reasons.

Another approach which is fairly common in grid based CFD-DEM is to use the un-
weighted formalism (see Section 3.2) with grid cells Ωi as averaging volumes. With this
choice and in the above notation, the values attached to cells are obtained by using

wij = 1
|Ωi|
|Ωi ∩ Vs,j|

Vs,j
(4.2.50)

where |Vs,j| = Vs,j. Now the implementations of unweighted coarse graining typically differ in
the way that the geometrical volumes |Ωi ∩ Vs,j| are calculated. An exact distribution of each
particles volume and quantities to the surrounding cells leads to the so-called divided particle
volume method (DPVM), sometimes also referred to as analytical method [21, 149]. While
this might be viable for simple particle and grid cell shapes, this can become computationally
infeasible when this is not the case any more or the number of solids is large. Instead a very
rough approximation is often used in CFD-DEM simulations when the particle size is much
smaller than the grid cell size. This approach, commonly referred to as particle centroid
method (PCM) results from the approximation

|Ωi ∩ Vs,j| = χΩi(xs,j)|Vs,j| (4.2.51)

It effectively assigns the whole volume of a particle and its attached quantities to the grid
cell that the centroid is located in. This method typically leads to little smoothness in time
and space, which is detrimental to the stability of coupled simulations. Some methods which
improve on PCM, but are still not exact in the sense of DPVM, are summarized for example
in [11, 21, 108]. Obviously, the PCM is the computationally most efficient approach, while
better approximations towards the DPVM come at the expense of increased time spent on the
coarse graining step in coupled simulations. Note that all the above mentioned approaches
based on unweighted averaging fulfill the postulated conservation requirements. However,
one of the major flaws in many of the DPVM approximations is the fact that one couples
the size of averaging volumes to the numerical discretization of the fluid phase. In general,
there is no guarantee that the averages defined this way fulfill the assumptions on which the
volume averaged conservation laws are based. Usually, in the context of CFD-DEM, this
means that an averaging volume needs to be chosen so that it is several times larger than
a single particle. Especially in cases where adaptive mesh refinement is necessary, this is
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easily violated and the framework can become theoretically questionable. So even if we were
to construct similar approaches in our framework, for example based on Voronoi cells from
the above local triangulation of the fluid point cloud, we would be confined by the same
problems, not shared by the mirroring approach.

In grid-based CFD-DEM methods this problem is typically tackled by applying two-grid
methods. Therein, a second grid is constructed on a length scale which provides averages
that are in agreement with the assumptions inherent in the VANS. The averaged quantities
are then calculated on this second grid and interpolated onto the original cells used in
computing the fluid flow. Generalizing this approach to our mesh free method would either
involve the construction of a background mesh or a second point cloud. Conceptually these
two approaches are fairly similar, since they both provide a static set of volumes which
exactly or approximately discretize the volume of the computational domain. While the
volume definition for cells in a background grid is fixed, one can either use a local Voronoi
tessellation, a global one or yet another approach in order to specify volumes on the static
point cloud. Clearly, using a second point cloud would be more consistent with our GFDM
approach and would allow us to use the standard FPM interpolation procedure. Despite
this advantage, it is interesting to see that cylindrical [23, 24, 137] and Cartesian [22, 49]
background grids have been applied in fully Lagrangian CFD-DEM schemes based on SPH.
The fact that these background meshes only depend on the geometry and not the current
state of the fluid, reveals an interesting point that we didn’t discuss so far and needs to
be considered in mesh free methods, in contrast to mesh-based ones. Namely, if we were
to consider free surface flows, our point cloud only discretizes the volume that is currently
occupied by the fluid phase. If we take the discrete kernel rescaling (4.2.49) as an example,
the formula is very similar in FVM-DEM and our framework. The only difference lies in
the fact that the denominator is calculated on the fluid point cloud and with the respective
notion of point volume. But the above treatment of free surfaces in our framework reveals
a more significant difference. While a rescaling on the fluid point cloud effectively considers
the free surface as a boundary to the coarse graining, a rescaling on the grid cells, which are
not fitted to the surface, only consider the bounding geometry as coarse graining boundary.
At this point we also recall the connection between the mirroring approach and the heat
equation. In the context of grid based CFD-DEM the solution of a heat equation, as initially
proposed by Capecelatro et al. [14] as well as Sun and Xiao [148, 149], is a prominent
method to coarse graining. On simple geometries this should reproduce the result of the
mirroring approach, but we observe that this method will also behave slightly different within
a mesh free framework. Since the heat equation necessarily has to be solved on the fluid
point cloud, the free surface again acts as a coarse graining boundary. On the one hand,
this would be alleviated by a background point cloud, which would also provide a volume
definition without the previously discussed fluctuations. On the other hand, this becomes
very memory intensive when flow domains are large compared to the volume that is actually
occupied by fluid at any given time during the simulation.

All these point exemplify that adopting averaging techniques from a mesh-based frame-
work into a Lagrangian GFDM is not a straight-forward task and needs to be handled with
care. For the numerical simulations within the present work, we chose to consider problem
domains which are fully discretized by the fluid point cloud at any point in time, such that
the above pitfalls do not exist. This allows for an evaluation of simulation results with con-
fidence in the foundation of the averaging approach. The above considerations do however
form an interesting starting point for further discussion and analysis in future extensions of
the presented work.
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4.3 Implicit drag calculation
If we strictly follow the procedure presented in the preceding section, we first calculate all
coupling forces acting on the solid particles and then average these values in a coarse graining
procedure to obtain the force density ffs. This implies that any fluid phase quantity which is
used in the calculation of ffs corresponds to the previous time level in our coupled algorithm
(cf. Figure 4.1). However, in Section 3.4 we have seen that the drag force has the form

Fd = Vsβ

εs
(uf − vs) (4.3.1)

with a coefficient β which itself depends on both, the fluid volume fraction and relative
velocity, i.e.

β = β(εf , ‖uf − vs‖) (4.3.2)
Clearly, the dependency of Fd on the fluid velocity also translate into the source term

fd(x) =
Ns∑

i=1
w(x− xs,i)Fd,i (4.3.3)

such that an explicit treatment of drag in time integration schemes for both, the solid and
fluid momentum equation, imposes a time step restriction. For the solid phase we already
discussed the fact that we only consider explicit time integration schemes. A time step
restriction is therefore unavoidable and will be discussed later in this chapter. On the other
hand, for the fluid momentum equation we use an implicit time integration scheme such that
it suggests itself to investigate the possibility of treating the drag term implicitly. To see
how this can be achieved, we plug (4.3.1) into (4.3.3) to obtain

fd(x) =
Ns∑

i=1
w(x− xs,i)

βi
εs,i

(uf,i − vs,i)Vs,i (4.3.4)

Now, we recall from the derivation of the VANS equations that averaged fields can be
assumed to vary little within the kernel range, such that they can be evaluated in x instead
of xs,i. By applying this to the volume fraction and fluid velocity in (4.3.4) and moving
them out of the summation, we obtain the approximation

fd(x) ≈

Ns∑
i=1

w(x− xs,i)βiVs,i

εs(x) uf(x)−

Ns∑
i=1

w(x− xs,i)βivs,iVs,i

εs(x) (4.3.5)

which can also be written as
fd ≈ 〈β〉suf − 〈βus〉s (4.3.6)

We further introduce the notation

fd

εfρf
= B(uf − uB) (4.3.7)

with
B = 〈β〉

s

ρfεf
, uB = 〈βus〉s

〈β〉s (4.3.8)

which will prove to be useful when deriving the numerical scheme for the VANS equations.
Alternatively, we can introduce the notation

Fd = α(uf − vs) (4.3.9)

with α = Vsβ/εs in (4.3.1). With the same approximation as before it is easy to see that
the terms in (4.3.8) become
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B = np〈α〉p
ρfεf

, uB = np〈αvs〉p
np〈α〉p

(4.3.10)

which is actually closer to the way that (4.3.7) is treated in our implementation. Now, if we
were to consider the simple Stokes drag for an isolated sphere

Fd = 3πµDsεf(uf − vs) (4.3.11)

we directly see that β and α are independent of the fluid velocity. Thus, when a first order
implicit time integration is applied to the momentum equation (3.2.96), we can employ a
fully implicit treatment of drag in the sense that

un+1
f − unf

∆t = . . .−B
(
un+1

f − uB
)

(4.3.12)

where B and uB are independent of the fluid velocity and can be calculated based on the
already available values of εn+1

s and vn+1
s . However, as we have seen from the expressions for

Cd, χ and β in Section 3.4, the drag force is typically highly nonlinear in the fluid velocity,
which is why such a fully implicit treatment is not possible. Instead, we consider a semi-
implicit scheme, where β is calculated within the DEM solver based on the fluid velocity
from the previous time step unf and then averaged to obtain B and uB which are considered
constant within the time integration (4.3.12).

While (4.3.8) and (4.3.10) are the formulations we employ in the following, there are a
variety other ways to incorporate the drag term in the VANS which can be found in CFD-
DEM literature. Upon comparison with these sources we note that the above formulation,
which somewhat naturally followed from the averaging formalism, is similar to the one used
in [168]. In terms of the general classification of coupling schemes proposed by Feng and Yu
[48], using this formulation classifies as a scheme of type 3, i.e. one that calculates forces in
the solid phase first and then projects back to the fluid phase. Surely, other procedures that
either fall in the category of type 1 schemes, i.e. coupling terms are calculated in the same
way they would be in a two-fluid scheme, or fall somewhere in between, can also be found
in CFD-DEM literature. For example, the authors in [52] employ a type 1 coupling of the
form

fd = β(uf − 〈us〉s, εf)(uf − 〈us〉s) (4.3.13)

while the approach in [160] would in our notation take the form

fd = 〈β〉s(uf − 〈us〉s) (4.3.14)

In some part of CFD-DEM literature the coupling is also done by considering the forces onto
particles and source term in the fluid phase separately through drag correlations on the one
hand and porous media models on the other [22]. While this is a more phenomenologically
motivated approach, our discussions on drag forces have shown that there is a tight link
between the drag correlations and Darcy type laws and it is thus similar to (4.3.13). We
note that a coupling similar to (4.3.13) can also be found in the work by Drumm et al.
[40] where the authors considered liquid-liquid two-phase flow in the finite pointset method.
This will be further discussed in the next section.

An aspect which we left unconsidered so far is the fact that fd from (4.3.7) with either
(4.3.8) or (4.3.10) and the old fluid velocity is not able to exactly fulfill a condition of the
form (4.2.46), even if the coarse graining scheme is constructed to do so. This is due to the
approximation made in the above derivations. To address this, while still allowing for the
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(semi-)implicit treatment of drag, one can incorporate the function approximation stencils,
used in the solid phase, into the calculation of fd. To be precise, one can write

Ns∑

j=1
wijαjuf(xs,j) =

Ns∑

j=1
wijαj




Nf∑

k=1
c0
jkuf,k


 =

Nf∑

k=1
uf,k



Ns∑

j=1
wijαjc

0
jk


 (4.3.15)

with c0
jk denoting the components of the function value approximation stencil as discussed

in Chapter 2. We observe that one can define the term in parenthesis as a new stencil

cαik =
Ns∑

j=1
wijαjc

0
jk (4.3.16)

for each fluid point i = 1, . . . , Nf and write

fd,i =
Nf∑

k=1
cαikuf,k −

Ns∑

j=1
wijαjvs,j (4.3.17)

Clearly, this formulation would still enable us to employ a semi-implicit coupling, the only
difference being the fact that in the linear system, the matrix corresponding to velocity
components is now filled more densely. Since we did not use the previous approximation,
Newton’s third law in the form (4.2.46) can now be exactly fulfilled if the coarse graining
scheme is build to do so and the old fluid velocity is used.

While all of the above expression from CFD-DEM literature have shown to be applicable,
we stick to (4.3.10) which we derived directly from our averaging formalism. An exten-
sive comparison of these approaches is better suited for future work when the CFD-DEM
algorithm is firmly established in our numerical framework. In comparison to (4.3.17), ex-
pression (4.3.7) further provides us with an easier way of formulating the numerical scheme
while only introducing a degree of approximation which can be considered negligible, given
the assumptions already inherent in the VANS.

4.4 Numerical scheme for the volume averaged equations
After having introduced both, the DEM and coarse graining scheme, we now want to consider
the third, and last, component of every time iteration within the coupled algorithm we
sketched in Figure 4.1. Clearly, we refer to the numerical scheme used to solve the volume
averaged Navier-Stokes (VANS) equations within our generalized finite difference framework.
For this, we adapt the projection scheme, presented in [73] for incompressible flows, to the
multiphase setting of this work. Thus, in the following we consider

Dxf

Dt = uf (4.4.1)

D(εfρf)
Dt = −εfρf(∇ · uf) (4.4.2)

(4.4.3)

together with either

Duf

Dt = − 1
εfρf
∇p+ 1

εfρf
∇ · τf −B(uf − uB) + g̃ (4.4.4)

or
Duf

Dt = − 1
ρf
∇p+ 1

ρf
∇ · τf −B(uf − uB) + g̃ (4.4.5)
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depending on the choice of coupling discussed in Section 3.3. Note that we have rewritten
the different models of VANS equations (4.4.4) and (4.4.5) in such a way that both, an
implicit and explicit coupling, can be represented. If we were to consider a completely
explicit coupling, the drag force fd can be subsumed in the modified body force term, i.e.

g̃ = g − 1
εsρf

{
fd + fp + fτ for model I
fd for model II

(4.4.6)

and the constant B can be set to zero. If we consider the semi-implicit coupling proposed
in the previous section, the drag force is not included in the body force term and B as well
as uB are chosen according to (4.3.10). Note that we have once more omitted the averaging
notation to improve readability. As before, we consider the fluid material density to be
constant, such that the mass conservation equation reduces to

Dεf

Dt = −εf(∇ · uf) (4.4.7)

Although the volume fraction indirectly depends on fluid velocity and pressure, since they
influence the solid motion, an implicit treatment would necessitate the solution of both, the
fluid and solid motion, within a single large system of equations. For general contact models
and coupling terms this is certainly not feasible, which motivated the proposed sequential
procedure of DEM, followed by coarse graining and the integration of VANS equations. For
this reason, we assume that, from the perspective of the fluid solver, the volume fraction is a
quantity which is known at both the old and new time level. Thus, similar to incompressible
flows, the mass conservation equation provides a kinematic constraint on the velocity field,
rather than a dynamic equation determining the transport of fluid density. Also, the pressure
influences all components of velocity through its gradient, but there is no equation that can
be explicitly solved for the pressure. To tackle this problem, we apply a scheme that is
based on a projection approach. Projection methods are a subset of fractional step methods
which originiated in the scheme propsed by Chorin [17] for the incompressible Navier-stokes
equations. In a projection method one first calculates an intermediate velocity field from the
momentum equations without requiring that it satisfies the continuity equation, then one
restores this porperty through the use of a suitable pressure. The name projection method is
a result of the incompressible single-phase case, where the correction step can be described
as a projection onto the space of divergence-free fields.

To compute the intermediate velocity ûf we consider a first order implicit time discretiza-
tion of the momentum equations (4.4.4) or (4.4.5). We note that, since our Lagrangian
approach avoids the discretization of convective terms, higher order schemes are not neces-
sary. This is further supported by the analysis of such schemes in the context of the current
type of projection methods, which are found in [131]. There the authors observed a signifi-
cant increase in computational cost without a compensating gain in accuracy. To obtain a
unified numerical scheme for both models we further introduce the notation

ρ̃f
n+1 =

{
εn+1

f ρf for model I
ρf for model II

(4.4.8)

so that

ûn+1
f − unf

∆t = − 1
ρ̃f
n+1∇p̃

n+1 + 1
ρ̃f
n+1∇ · τf

(
ûn+1

f

)
−B

(
ûn+1

f − uB
)

+ g̃n+1 (4.4.9)
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ûn+1
f − unf

∆t = − 1
ρ̃f
n+1∇p̃

n+1 + 1
ρ̃f
n+1∇ · τf

(
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We note that superscripts denoting the time level are omitted for B and uB to improve
readability. It has been clarified in the previous section that they are constant within the
fluid solver time step since they are based on fluid quantities at the previous time level
and have been calculated within the coarse graining procedure preceding the VANS solution
scheme. We have further replaced the unknown pressure pn+1 by a guess p̃n+1 which is
independent of the intermediate velocity. This value can be chosen in different ways to
improve how well the intermediate velocity approximates the target velocity. The most
obvious guess is given by the pressure at the previous time level, i.e. p̃n+1 = pn. We instead
apply a splitting of the pressure into a hydrostatic and dynamic part

pn+1 = pn+1
hyd + pn+1

dyn (4.4.10)

An equation for the hydrostatic pressure is obtained from the momentum equation by keep-
ing only terms that are non-zero for vanishing velocities and then applying the divergence
operator to obtain a scalar equation. Thus, from (4.4.9) we get

∇ ·
(

1
ρ̃f
n+1∇p

n+1
hyd

)
=∇ · (BuB) +∇ · g̃n+1 (4.4.11)

Assuming we have calculated the hydrostatic pressure from one the above equation, we use
the dynamic pressure from the previous time step to set

p̃n+1 = pn+1
hyd + pndyn (4.4.12)

Based on this guess, the intermediate velocity is now calculated from (4.4.9). Since this ve-
locity field does satisfy the kinematic constraint (4.4.7), we assume that there is a correction
to the pressure guess, denoted by pn+1

corr , so that

un+1
f − unf

∆t = − 1
ρ̃f
n+1∇

(
p̃n+1 + pn+1

corr

)
+ 1
ρ̃f
n+1∇·τf

(
un+1

f

)
−B

(
un+1

f − uB
)

+ g̃n+1 (4.4.13)

and the final velocity un+1
f satisfies the time discretized form of (4.4.7), given by

∇ · un+1
f = − 1

∆t ln
(
εn+1

f
εnf

)
(4.4.14)

In a first step to derive an equation for this correction pressure, we now subtract the equations
we used to determine the intermediate velocity (4.4.9) from those we just formulated for the
corrected velocity (4.4.13) and apply the divergence operator to the result. These calculations
lead to

∇ ·
(

∆t
1 + ∆tB

1
ρ̃f
n+1∇p

n+1
corr

)
=∇ · ûn+1

f −∇ · un+1
f (4.4.15)

where we have further assumed that

∇ ·
(

∆t
1 + ∆tB

1
ρ̃f
n+1

(
∇ · τf

(
un+1

f

)
−∇ · τf

(
ûn+1

f

)))
≈ 0 (4.4.16)

This simplification is commonly used in projection schemes and represents one of their
drawbacks. It is however only problematic in the case of very low Reynolds number, where
this approximation might lead to a loss of accuracy and stability [144]. The simulations
done in this work do not fall into this category and the presented scheme remains applicable.
Using equation (4.4.14), we can easily calculate all terms on the right-hand side and solve
the Poisson equation for the correction pressure. Finally we can correct the intermediate
velocity field via
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un+1
f = ûn+1

f − ∆t
1 + ∆tB

1
ρ̃f
n+1∇p

n+1
corr (4.4.17)

We emphasize that the approximation (4.4.16) has no influence on the fact that the velocity
field calculated from (4.4.17) does now fulfill the discretized mass conservation. Instead,
it causes the combination of new velocity un+1

f and the pressure given by p̃n+1 + pn+1
corr to

not satisfy the momentum conservation exactly. To obtain a pressure with this property
we introduce another pressure solution step. The corresponding equation can be derived by
again applying the divergence operator to the momentum equations and reformulating any
occurrence of the velocity divergence with the help of the continuity equation. Following
this idea and using the unified notation for both models, we obtain the scalar equation

∇ ·
(

Duf

Dt

)
= −∇ ·

(
1
ρ̃f
∇p

)
+∇ ·

(
1
ρ̃f
∇ · τf

)
−∇ · (Buf) +∇ · (BuB) +∇ · g̃ (4.4.18)

Writing out the material derivative and using the tensor identity

∇ · (uf · ∇uf) = uf · ∇(∇ · uf) + (∇uf)T :∇uf (4.4.19)

we realize that the left-hand side of (4.4.18) becomes

∇ ·
(

Duf

Dt

)
= D(∇ · uf)

Dt + (∇uf)T :∇uf (4.4.20)

Now we include this in equation (4.4.18), discretize in time and cross out all terms that are
already included in the new hydrostatic pressure we calculated from (4.4.11). This leads to
the following equation for the new dynamic pressure

∇·
(

1
ρ̃f
∇pn+1

dyn

)
= −(∇ · uf)n+1 − (∇ · uf)n

∆t +Φ
(
un+1

f

)
+Ψ

(
un+1

f

)
+Θ

(
un+1

f

)
(4.4.21)

where we have further introduced

Ψ(uf) =∇ ·
(

1
ρ̃f
∇ · τf(uf)

)
(4.4.22)

Φ(uf) = −(∇uf)T :∇uf (4.4.23)
Θ(uf) = −∇ · (Buf) (4.4.24)

and used a first oder approximation for the material derivative in (4.4.20). Summarizing all
of the above steps, the order of computations in our scheme is the following:

1. Calculate a hydrostatic pressure from (4.4.11)

2. Calculate an intermediate velocity field based on the newly computed hydrostatic
pressure and the old dynamic pressure from (4.4.9)

3. Calculate a correction pressure to restore the correct divergence of velocity from
(4.4.15)

4. Correct the intermediate velocity using (4.4.17)

5. Calculate a dynamic pressure that is consistent with the new velocity from (4.4.21)
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We note that in certain cases, such as the above-mentioned low Reynolds number flows,
subsuming steps two and three into the solution of a single large linear system for both, the
intermediate velocity and correction pressure, can be advantageous. However, this is not
used in the context of this work and we refer the interested reader to [146].

Remark 4.1 Equation (4.4.14) reveals a challenge in devising an averaging procedure on
moving point clouds. Scaling the density change in a single-phase setting with the inverse
fluid time step provides a bounded value, since the density is calculated from quantities which
only change by an amount that is tied to the time step. While, at first glance, the same holds
true for the volume fraction, due to the particle movement being tied to the time step, it is not
a priori clear that this is still fulfilled by the corresponding averaged field. A violation of this
property can result for example from the use of local representative volume approximations
in the averaging procedure, which are calculated for each point in the point cloud. One can
typically not guarantee that the operations necessary to maintain a point cloud with sufficient
quality in the differential operators, i.e. point addition, deletion and merging, do not lead to
fluctuations in averaged quantities. On the other hand, the weighted averaging with mirroring
at the boundary does not rely on point volumes and eliminates this source of fluctuations in
the volume fraction.

4.5 Comparison to previous work in FPM
As we have already noted in Section 4.3, coupled simulations of a continuous and dispersed
fluid phase within the finite pointset method have been considered by Drumm et al. in [40].
Now that we have explained all the essential components of our coupled algorithm, we want
to clarify which aspects set apart the work of this thesis from their approach and are thus
novel within our framework.

Firstly, we note that the volume averaged equations in their case were slightly different
from those within this thesis. While we have resorted to the derivation by Anderson and
Jackson, the fluid-fluid equations, presented in the above-mentioned paper, are obtained
from the work by Ishii [67, 68], as is discussed in [161]. This has no influence on the mass
conservation equation, which is identical in their work, but the momentum equations slightly
differ in the way that the averaged viscous stress is modeled.

However, the more important distinguishing factor is due to the way that volume fraction
and coupling terms are calculated and used within the continuous phase numerical scheme.
In their procedure the porosity and in extension the velocity divergence are not determined
from the dispersed phase position and volume. Instead the volume fractions in both phases
are advanced in time on the basis of the divergence of this phases velocity from a previous
time step and rescaled to fulfill εn+1

s + εn+1
f = 1 at the end of each time step. Transferring

this into our notation leads to

εn+1
f = εnf

1 + ∆t(∇ · unf ) (4.5.1)

εn+1
s = εns

1 + ∆t(∇ · vns ) (4.5.2)

which is the result of an implicit first order time discretization of the mass conservation
equation under the assumption of constant divergence of velocity. This differs from the
time discretization in (4.4.14) since we have used the analytical solution obtained under
the same assumption. Apart from this minor difference, we observe that (4.5.2) requires
the construction of differential operators on the point cloud which represents the dispersed
phase. While this is acceptable in some cases, such as the one presented by the authors in
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[40], we do not include the solid phase in our point cloud management and can therefore not
guarantee that any of the previously discussed quality criteria are satisfied for this divergence
operator. Now, if we still would have wanted to employ (4.5.1) this would have necessitated
the subsequent choice of εn+1

s = 1− εn+1
f . Since a direct connection between dispersed phase

positions and volume fraction is only established within the initial condition (not detailed in
[40]) and is then advanced based only on fluid velocity, we expect the volume fraction to be
rather sensitive to errors in the velocity and potentially destabilize the coupled simulation.
Consequently, we have refrained from using this approach and resorted to the coarse graining
based on particle positions, which also provides a more clear connection to the theoretical
basis of the volume averaged equations. As previously discussed this also motivated the
order of calculation, being solid phase first, fluid phase second.

Another key difference between their coupling approach and the one presented here lies
in the way that drag force acts on both phases. On the one hand, while the authors in
[40] also employed an implicit treatment of drag in the fluid phase, the drag correlation is
evaluated directly at fluid points based on an interpolated solid velocity. While this appears
reasonable and is similar to the way that drag is handled in two-fluid models, no derivation
based on Newton’s third law has been provided and it is not clear how cases are treated
where dilute particle configurations lead to decreasing quality of approximation stencils. In
both of these aspects we view the presented method as more clear and well-founded. On
the other hand, the authors did not formulate the drag correlation in terms of superficial
velocity and did not include a voidage function, as is the case in the majority of CFD-DEM
literature. According to [108] this is only applicable for particles that can be considered
to behave similar to an isolated sphere. Thus, in the classification of multiphase coupling
by Crowe [27] this corresponds to a two-way coupled scheme, in contrast to the four-way
coupling we strife to model.

With all these connections and differences disclosed, we can summarize that, despite the
initial similarity one might see, the work done in [40] differs in a number of key components
from what we present here and is not applicable to the setups considered in the next chapter.

4.6 Time step restrictions
Up to this point we only provided expressions for time restrictions which also emerge in
single-phase flows. On the one hand, we stated the CFL condition (2.3.3) which bounds the
fluid phase time step. On the other hand, we discussed time step restrictions due to the
modeling of solid particle contacts with a soft-sphere DEM in Section 4.1.5. However, for a
coupled simulation we still need to investigate possible time step bounds due to the coupling
force Ffs in the solid phase and momentum source ffs in the fluid phase. In particular, we
still owe the reader more details on time step bounds due to drag force, since we already
touched upon this subject in section Section 4.3.

4.6.1 Solid phase time step restriction
Let us first investigate the influence of drag on the solid phase time step. To this end, we
consider the momentum equation of a particle moving only under the influence of drag, i.e.

ms,i
dvs,i

dt = Fd,i = αi(uf,i − vs,i) (4.6.1)
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Figure 4.11: Result of applying a first order explicit time integration to the momentum equation of a single
particle immersed in a constant velocity fluid and moving only due to the influence of drag.
The chosen drag correlation is the one by Rong et al. [125] and the parameters are as follows:
ρf = 1000 kg/m3, µ = 8.9× 10−4 Pa s, Ds = 1× 10−3 m, ρs = 2500 kg/m3, εf = 1. The time
step size has been recalculated after each time step as fraction or multiple of the particle
relaxation time (see legend).

Here we denoted by uf,i the fluid velocity approximation at the particle position, which we
assume to be constant with respect to time in this analysis. If we further assume that αi > 0
is constant, the above equation has the analytical solution

vs,i(t) = uf,i + (vs,i(t = 0)− uf,i)e
− t
tr,i (4.6.2)

where we have denoted by tr the particle relaxation time which is defined as

tr,i = ms,i

αi
(4.6.3)

Clearly, tr represents a characteristic time of the exponential decay of velocity difference
between particle and fluid, i.e. it describes the characteristic time frame within which an
initially resting particle is accelerated to the fluid velocity due to drag. We note that the
relaxation time in terms of the drag expressions presented in Section 3.4 is given by (cf. [10,
168])

tr,i = ρsεs,i

βi
(4.6.4)

or
tr,i = 4

3
ρs

ρf

Ds,i

Cd,i

1
‖uf,i − vs,i‖ε2−χi

f,i
(4.6.5)

Using an explicit time integration scheme, this clearly leads to a restriction of the form

∆ts ≤ Crtr,i, ∀i ∈ {1, . . . , Ns} (4.6.6)

with a constant Cr ∈ R>0 that is chosen in order to ensure stability. For schemes which
are of first order in the velocity, such as the explicit or semi-implicit Euler scheme and the
Taylor scheme in Section 4.1.5, stability is ensured for Cr ≤ 2. In the case of a first order
forward difference approximation and under the assumption of constant α we obtain

vn+1
s,i = vns,i + ∆ts

tnr,i

(
uf,i − vns,i

)
(4.6.7)
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Figure 4.12: Plot of relaxation time relative to the case of Stokes drag. Plotted volume fractions for
Di Felice and Rong drag from bottom to top: εf ∈ {εHCP

f , 0.4, 0.5, 0.7, 0.9, 1.0}. The value
εHCP

f ≈ 0.2595 represents the limit of densest packing (see Appendix B). Note that curves are
overlapping for εf = 1.

From this we directly see that vn+1
s,i = uf,i in the case of ∆ts = tnr,i. For other choices of

the time step size we have plotted the result of successively applying the forward difference
in Figure 4.11. We observe that the velocity overshoots uf,i for tnr,i < ∆ts while it correctly
reflects the exponential decay for ∆ts < tnr,i. Thus, while the scheme does not diverge for
Cr = 2, the velocity oscillates around the fluid velocity instead of following the one-sided
exponential decay of the exact solution as long as Cr > 1. This behavior is clearly undesirable
and we therefore ensure (4.6.6) with a conservative choice of ∆ts ≤ 0.5tr in our numerical
simulations. We note that other authors also propose fractions of tr which are far smaller,
such as the choice of ∆ts = tr/20 in [124]. However, to the best of our knowledge, the only
necessary bound is Cr < 1, which is also implied by the lack of critical discussion of specific
values of Cr in CFD-DEM literature that presents this time step restriction [10, 124, 168].

To provide some intuition on the relaxation times which have to be expected in different
coupled simulations, let us analyze how the relaxation time changes with respect to porosity
and particle Reynolds number. First, we consider the Stokes drag on an isolated sphere, i.e.
without voidage function term ε2−χi

f,i and with

Cd,i = 24
Rep,i

= 24µ
ρf‖uf,i − vs,i‖Ds,i

(4.6.8)

In this case the relaxation time clearly simplifies to (cf. [10, 121, 124])

tSt
r,i =

ρsD
2
s,i

18µ (4.6.9)

which we observe is independent of both, the volume fraction and particle Reynolds number.
We further realize that the more general relaxation time (4.6.5) is easily expressed as

tr
tSt
r

= 24
Cd Rep ε

1−χ
f

(4.6.10)

which, in contrast to the above, only depends on volume fraction and Reynolds number.
In Figure 4.12 we have plotted the correction factor to the Stokes drag relaxation time
(4.6.10) for a range of different particle Reynolds numbers and porosities. The chosen drag
correlations coincide with those that are found in Table 3.1. Clearly, this is tightly connected

92

Chapter 4 CFD-DEM in a GFDM framework

10−4 10−3 10−2 10−1 100 101 102 103 10410−4

10−3

10−2

10−1

100 εf=1

εHCP
f

Rep

t r
/t

St r

Wen-Yu
Di Felice
Rong

Figure 4.12: Plot of relaxation time relative to the case of Stokes drag. Plotted volume fractions for
Di Felice and Rong drag from bottom to top: εf ∈ {εHCP

f , 0.4, 0.5, 0.7, 0.9, 1.0}. The value
εHCP

f ≈ 0.2595 represents the limit of densest packing (see Appendix B). Note that curves are
overlapping for εf = 1.

From this we directly see that vn+1
s,i = uf,i in the case of ∆ts = tnr,i. For other choices of

the time step size we have plotted the result of successively applying the forward difference
in Figure 4.11. We observe that the velocity overshoots uf,i for tnr,i < ∆ts while it correctly
reflects the exponential decay for ∆ts < tnr,i. Thus, while the scheme does not diverge for
Cr = 2, the velocity oscillates around the fluid velocity instead of following the one-sided
exponential decay of the exact solution as long as Cr > 1. This behavior is clearly undesirable
and we therefore ensure (4.6.6) with a conservative choice of ∆ts ≤ 0.5tr in our numerical
simulations. We note that other authors also propose fractions of tr which are far smaller,
such as the choice of ∆ts = tr/20 in [124]. However, to the best of our knowledge, the only
necessary bound is Cr < 1, which is also implied by the lack of critical discussion of specific
values of Cr in CFD-DEM literature that presents this time step restriction [10, 124, 168].

To provide some intuition on the relaxation times which have to be expected in different
coupled simulations, let us analyze how the relaxation time changes with respect to porosity
and particle Reynolds number. First, we consider the Stokes drag on an isolated sphere, i.e.
without voidage function term ε2−χi

f,i and with

Cd,i = 24
Rep,i

= 24µ
ρf‖uf,i − vs,i‖Ds,i

(4.6.8)

In this case the relaxation time clearly simplifies to (cf. [10, 121, 124])

tSt
r,i =

ρsD
2
s,i

18µ (4.6.9)

which we observe is independent of both, the volume fraction and particle Reynolds number.
We further realize that the more general relaxation time (4.6.5) is easily expressed as

tr
tSt
r

= 24
Cd Rep ε

1−χ
f

(4.6.10)

which, in contrast to the above, only depends on volume fraction and Reynolds number.
In Figure 4.12 we have plotted the correction factor to the Stokes drag relaxation time
(4.6.10) for a range of different particle Reynolds numbers and porosities. The chosen drag
correlations coincide with those that are found in Table 3.1. Clearly, this is tightly connected

92



Chapter 4 CFD-DEM in a GFDM framework

to our analysis in Appendix C. The plot shows that for small particle Reynolds numbers,
Rep < 1, the relaxation time is only weakly dependent on the Reynolds number. In this
regime, the correlations can lead to a relaxation time as small as tr ≈ tSt

r

/
50 for Wen-Yu

and Di Felice drag or tr ≈ tSt
r

/
25 for Rong drag, depending on the considered volume

fraction. For larger Reynolds numbers, the ratio further decreases and thus the time step
restriction becomes more stringent. How this criterion compares to the one obtained from
contact models, will be analyzed at a later point when we discuss our numerical results and
may thus provide meaningful parameter choices. Before we move on to the influence of drag
on the fluid phase time step, we want to note that the true relaxation time of a particle is
actually larger. This is due to the fact that αi, which we assumed to be constant, decreases
together with the velocity difference between fluid and solid. Thus, while it provides a useful
metric for determining suitable time steps, it does not exactly correspond to the physically
observable time scale.

4.6.2 Fluid phase time step restriction
In Section 4.3 we motivated an implicit treatment of drag within the fluid phase due to the
time step restriction that emerges from an explicit term. Here we want to provide more
detail on this aspect. To this end we consider (4.3.10) and replace α by reordering (4.6.3).
Thus, with the same assumptions as in the section on implicit drag calculation, one can
approximate

fd

εfρf
≈
np〈ms

tr
〉p

ρfεf
(uf − uB) (4.6.11)

If we further assume that the particles have identical volume and density, so that εs = npVs,
we obtain

fd

εfρf
≈ εs

εf

ρs

ρf
〈 1
tr
〉p(uf − uB) (4.6.12)

Thus, if we consider the fluid momentum equation in Lagrangian form and with only the
drag term on the right-hand side, we obtain a fluid relaxation time

trf = εf

εs

ρf

ρs

(
〈 1
tr
〉p
)−1

(4.6.13)

By replacing the particle phase average with the reciprocal of the minimum relaxation time
within the solid phase, we can infer the rather conservative time step restriction of the form

∆tf ≤ Cr
εf

εs

ρf

ρs
tmin
r (4.6.14)

where
tmin
r = min

j∈{1,...,Ns}
tr,j (4.6.15)

We note that in the case of Stokes drag and monodisperse particles, the relaxation time is
identical for all particles and we obtain the time step restriction (cf. [121])

∆tf ≤ Cr
εf

εs

ρfD
2
s,i

18µ (4.6.16)

Clearly, the factor εf/εs only tightens the time step restriction if εf < 0.5. The smallest value
of this term, obtained for the volume fraction in a HCP, is approximately 0.35 i.e. the factor
causes a maximum reduction of time step to about one third of the particle relaxation time.
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For values εf > 0.5 the time step restriction is relaxed and eventually vanishes since the
factor is unbounded for εf → 1. The factor ρf/ρs in (4.6.14), on the other hand, typically
reduces the allowed time step in comparison to the solid phase restriction and can have
significant influence in cases of large density difference, such as in gas-solid flows. As with
the time step restriction in the solid phase, we will compare this to the previously considered
CFL condition when we present our numerical results.

At this point we want to conclude our discussion on time step restrictions and re-iterate
that the above criterion (4.6.14) is only of importance for an explicit treatment of drag in
the fluid phase. In Table 4.1 we have collected all the time step restriction that have been
discussed in earlier chapters and in this section to provide a convenient overview.

Phase Origin Restriction Notes

Solid phase Contact model
(LSD)

∆ts ≤ Ctc, C ≤ 0.2 Critical time tc from (4.1.77)
Choices of C discussed in Section 4.1.5

Contact model
(Hertz)

∆ts ≤ td
Nt,d

, Nt,d ≥ 15 Contact duration td from (4.1.83)
Lower Nt,d bound from C = 0.2 in
LSD

Drag force ∆ts ≤ Crtr Relaxation time from (4.6.4) or (4.6.5)
Choice of Cr = 0.5 in this work

Fluid phase CFL ∆tf ≤ C h
‖uf‖ , C ∈ (0, 1) Exact form in (2.3.3)

Drag force ∆tf ≤ Cr
εf
εs
ρf
ρs
tmin
r tmin

r from (4.6.15)
Only for explicit treatment of drag

Table 4.1: Time step restrictions in both phases of a coupled CFD-DEM simulation.

4.7 Substepping procedure and full algorithm
As we will see in the upcoming chapter and already hinted at in earlier discussions, the
time step size allowed within a soft-sphere DEM simulation is typically significantly smaller
than any restriction on the fluid phase time step. However, since the DEM time step is
chosen in such a way as to resolve each collision in numerous steps, the resulting variations
in particle position between two DEM time steps are small on the continuous phase scale. It
is therefore desirable to recalculate the fluid motion only after changes have occurred that
are relevant for the coupling. We achieve this by employing the common approach of DEM
substepping (cf. [21, 168, 172]). This means, that within the time interval [tn, tn+1], where
∆tf = tn+1 − tn is the time step for the continuous phase, we execute all steps of the solid
phase solver Nsub times. Clearly, each time integration within this substepping is done with
a time step

∆ts = ∆tf
Nsub

(4.7.1)

Since we do not recompute fluid phase quantities after a DEM step is done, the coupling
force F nk

fs,i at time level tnk = tn+k∆ts, k = 1, . . . , Nsub, is calculated based on fluid quantities
at time level tn. However, since the particles move, both, the result of interpolation from
the fluid phase and more importantly the solid particle velocity, still change. Consequently,
we recompute the coupling forces acting onto a particle in every DEM step. For the sake
of completeness, we note that one could update the drag in yet another time interval. This
time interval is clearly determined by the above considerations on time step restrictions
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due to relaxation times associated with drag. Thus, it is only relevant in the case where
this time step restriction is in between the DEM time step and ∆tf . Within the numerical
simulations presented in the upcoming chapter, we have not pursued this approach, we do
however acknowledge that this aspect certainly bears some potential for future extensions
of our coupled algorithm.

So let us assume that we only consider a single substepping loop with time step size
chosen according to the DEM time step restriction. Without modification and only taking
into account the coupling forces at the end of DEM substepping, this procedure would violate
Newton’s third law since the change in momentum ∆tfffs is not equal the overall momentum
change per unit volume of particles during the complete time step ∆tf . The total change of
momentum due to coupling forces for a particle i is given by

Nsub∑

k=1
F nk

fs,i∆ts =

 1
Nsub

Nsub∑

k=1
F nk

fs,i


∆tf (4.7.2)

which means that, compared to the calculation of ffs without substepping in the DEM phase,
one only has to replace the force acting on the particles during [tn, tn+1] by the average of
values obtained from substeps. This suffices to restore the conservation property in the
explicit treatment of drag. In case of an implicit treatment, we ensure the same by using

α = 1
Nsub

Nsub∑

k=1
αnki (4.7.3)

αvs = 1
Nsub

Nsub∑

k=1
αnki v

nk
s,i (4.7.4)

in (4.3.10) for the drag components and the above average for all remaining forces.
With the substepping being explained, we have now discussed every component of the

complete coupled scheme. To wrap this chapter up, we provide an algorithmic overview of
the implemented algorithm in Figure 4.13. This chart is intended to clarify the workflow
in more detail than the rough outline at the beginning of this chapter. In particular, it
also visualizes the substepping procedure discussed within the current section and shows an
aspect that we did neglect so far. Namely the fact that an additional coarse graining step
is necessary before the very first time step in order to provide initial values for the volume
fraction.
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Figure 4.13: Algorithmic overview of our CFD-DEM algorithm. On the left, all major steps within a fluid
time step are shown. The “DEM solver” step is visualized in more detail on the right, in
order to clarify the substepping procedure. The outputs of each step within the algorithm are
displayed next to the subsequent arrow. Quantities attached to fluid points are denoted by a
subscript i ∈ {1, . . . , Nf} while those attached to solid particles are denoted by the subscript
j ∈ {1, . . . , Ns}.
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Chapter 5

Numerical results
With the previous chapter we have fully clarified all components of our extension to the
FPM. Clearly, we still owe the reader numerical proof of the fact that the presented scheme
is able to produce satisfactory results in its intended field of application, i.e. the simulation
of two-way coupled fluid-solid flows with particulate solid phase. Therefore the final chapter
of this work will be devoted to this task. Due to the fact that we did not tailor our approach
towards one specific application, we are faced with an overwhelming amount of literature on
fluid-solid flow phenomena, which can provide us with experimental or numerical results that
act as benchmarks for our scheme. For validation purposes, we did however conclude that
trying to reproduce an experimental result which has not yet been numerically reproduced
by a similar coupling in a different numerical framework bears the risk of exceeding the limits
of either the unresolved coupling in general, or closures for drag and unresolved stress terms
in particular. Based on this notion we have chosen three simulation setups where it has
already been shown that satisfactory results can be obtained through numerical simulation.
In the following these choices are considered in order of increasing complexity.

5.1 Single particle sedimentation
We start with the test case of a single (spherical) particle that is sedimenting under the
effect of gravity in a container filled with fluid, which is a commonly used example in the
context of CFD-DEM (cf. [52, 100, 124]). We assume that the particle Reynolds number

Rep = εfρfDs‖uf − vs‖
µ

(5.1.1)

is small enough for the drag to be described by Stokes law

Fd = 3πµDsusf (5.1.2)

so that an analytical solution can be obtained for the motion in a quiescent fluid. We can
compare this exact result to numerical results from one-way and two-way coupled simulations
based on the numerical scheme proposed in Chapter 4. The purpose of this validation test
case is to test that drag forces are calculated and integrated in the DEM code correctly and
that the scheme does not produce distortions of the fluid flow which are unacceptable given
the small particle size.

To calculate the analytical solution, we assume that the solid volume fraction is negligible
and the fluid remains at rest, so that

usf = εf(uf − vs) = −vs (5.1.3)

If no collisions with the container walls occur within the simulated time frame, Newton’s
equation for a single particle under the effect of constant gravity reads

dvs

dt = 1
ms
Ffs + g (5.1.4)
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For the quiescent fluid the fluid-solid interaction force consist only of the pressure gradient
contribution and Stokes drag, i.e.

Ffs = Fp + Fd = −∇pVs − 3πµDsvs (5.1.5)

The pressure gradient in a non-moving fluid under the effect of gravity reduces to

∇p = ρfg (5.1.6)

which clearly contributes to buoyancy in the solid phase. If we plug these results into (5.1.4)
and consider only the velocity component along the direction of gravity, we obtain

dvs

dt = −3πµDs

ρsVs
vs + (ρs − ρf)g

ρs
(5.1.7)

The solution to this ordinary differential equation with initial condition vs(0) = 0 is of the
form

vs(t) =
(
1− e− t

tr
)
vT (5.1.8)

where tr actually represents the Stokes relaxation time

tSt
r = ρsD

2
s

18µ (5.1.9)

as in Section 4.6 and vT denotes the terminal velocity under Stokes drag

vT = (ρs − ρf)D2
s g

18µ (5.1.10)

Clearly, this means that the particle does not accelerate beyond vT, which marks the point
where drag and gravitational force balance each other out. Additionally, the velocity differ-
ence |vs − vT| follows an exponential decay with a characteristic time scale defined by the
relaxation time tSt

r , which we use to define a dimensionless time scale on which we analyze
our results in the following. Now that we have derived the reference solution which we use
for quantitative comparisons, we want to specify the setup of our numerical simulations.

Simulation setup

The flow geometry and particle diameter are identical to the ones used in the paper by
Robinson et al. [124] and are visualized in Figure 5.1. The width and height are chosen so
that walls are not expected to influence the flow around the particle. The particle is initially
centered within the column on the x-y-plane and placed at a height of z0 = 40Ds (along the
z-axis). The fluid under consideration is water, while the particle density is 2.5 times that
of water which does, for example, match the density of glass beads. The exact parameters
can be found in Table 5.1. If we use these parameters to determine the terminal velocity in
(5.1.10) and plug this together with εf ≤ 1 into (5.1.1), we obtain Rep ≤ 1, which means
that Stokes drag can be considered valid.

The velocity boundary condition for the fluid phase is set to no-slip and is independent
of the coupling, while the pressure requires a more careful consideration. Following the
derivations of Section 4.4, the Poisson equation for hydrostatic pressure in a single-phase
setting reads

∇ ·
(

1
ρf
∇phyd

)
=∇ · g (5.1.11)
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Figure 5.1: Geometry of single particle
sedimentation test case
(not to scale).

Symbol Unit Value
Cylinder width W m 4× 10−3

Cylinder height H m 6× 10−3

Initial position z0 m 4× 10−3

Particle diameter Ds m 1× 10−4

Solid density ρs kg/m3 2500
Fluid density ρf kg/m3 1000
Dynamic viscosity µ Pa s 8.9× 10−4

Gravity g m/s2 9.81

Table 5.1: Parameters of single particle sedimentation test
case.

In the FPM this equation is typically supplemented with the boundary condition

∂phyd

∂n
:= n · ∇phyd = ρf(n · g) (5.1.12)

at walls and inflow boundaries, with n denoting the inward pointing boundary normal. In
our coupled scheme, we recall from (4.4.11) that the density is replaced by the generalized
notation ρ̃f from (4.4.8) and either of two changes is introduced by the coupling:

1. An additional term ∇ · (BuB) is added on the right-hand side of (5.1.11)

2. The gravity term in (5.1.11) is replaced by g̃ = g + ffs

In analogy to (5.1.12) we can account for these additional terms by enforcing

∂phyd

∂n
= ρ̃f(n · g̃) + ρ̃fB(n · uB) (5.1.13)

In the current setup, the averaging kernel is, however, cut off at a distance smaller than that
between the particle and closest wall. Therefore, we obtain ρ̃f = ρf , ffs = 0, B = 0 close
to all walls at any time during the simulation, which ultimately restores the single-phase
boundary condition. The same can be observed for the dynamic pressure. To derive the
corresponding boundary condition, we take the dot product of

Duf

Dt = − 1
ρ̃f

(∇phyd +∇pdyn) + 1
ρ̃f
∇ · τf(uf)−B(uf − uB) + g̃ (5.1.14)

with the boundary normal and use the fact that the hydrostatic pressure term cancels out
with those terms already accounted for by (5.1.13). With the above observation of vanishing
coupling terms close to the walls, we are once more left with the single-phase boundary
condition

∂pdyn

∂n
= −ρf

(
n · Duf

Dt

)
+ n · (∇ · τf(uf)) (5.1.15)

Since we apply no-slip conditions to all walls, the first term on the right-hand side of (5.1.15)
always vanishes. As for the second term, this can be calculated as usual, i.e. based on the
finite difference stencil and velocities at points close to the boundary.

Within the considered time frames, the particle does not collide with the bottom wall, so
that the contact model is not relevant for this test case and in particular it does not impose
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Within the considered time frames, the particle does not collide with the bottom wall, so
that the contact model is not relevant for this test case and in particular it does not impose
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its strong time restriction. However, as we have seen in Section 4.6, it is necessary to choose
the solid phase time step as a fraction of the relaxation time. With the parameters from
Table 5.1 we obtain

tSt
r = ρsD

2
s

18µ ≈ 1.56× 10−3 s (5.1.16)

which forms an upper bound for our solid phase time step. The specific choice of time step
size in our simulations is discussed in the following. We note that for all of the simulations in
this chapter, the time integration in the solid phase follows the semi-implicit Euler scheme
discussed in Section 4.1.5.

Results of one-way coupling
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Figure 5.2: Sedimentation velocity of the solid particle from simulations with one-way coupling. The case
of evaluating the drag force with εf = 1 is depicted by a line while the case of using the
value εf < 1 calculated by the coarse graining algorithm is depicted by markers. The color
distinguishes whether the pressure gradient and viscous stress force have been included or not.

First, let us consider the case of one-way coupling, i.e. with no influence of the solid phase
on the fluid phase. In this case the only sources of errors compared to our analytical solution
are due to non-zero fluid velocity and the fact that the fluid volume fraction is smaller than
one. In Figure 5.2 we have plotted the relative solid particle velocity over the simulated time
frame t ∈ [0, 0.04 s]. The simulation was performed with h = 3Ds and a rather conservative
timestep ∆tf = ∆ts = 1× 10−5 s ≈ tSt

r

/
156 in both phases. We elected to consider both,

the results obtained by keeping εf = 1 and by calculating the solid volume fraction with a
Gaussian kernel of bandwidth b = 3Ds which is cut off at a distance c = 3b. The results show
that, as long as the non-drag forces are included, the expected exponential increase of velocity
towards the theoretical value of the sedimentation velocity is correctly obtained in both the
case with a fixed value of εf = 1 and in the case where the volume fraction is calculated by
the coarse graining. If the other coupling forces are neglected, the sedimentation velocity
exceeds the analytically determined value. As is to be expected in the one-way coupled
case, the simulations have shown that the viscous stress force Fτ has negligible magnitude in
comparison to both, the drag and pressure gradient force. Neglecting the pressure gradient
force corresponds to omitting the buoyancy contribution, which in turn explains the over-
predicted solid particle velocity.

To see which influence the spatial resolution had on the above results, we calculated the
error in solid particle velocity for a range of smoothing lengths. This is shown in Figure 5.3
where we have considered ∆tf = ∆ts = 1× 10−4 s together with h = 2iDs, i ∈ {0, 1, 2, 3}.
These choices of smoothing length lead to the following numbers of points in the fluid phase:
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the coarse graining. If the other coupling forces are neglected, the sedimentation velocity
exceeds the analytically determined value. As is to be expected in the one-way coupled
case, the simulations have shown that the viscous stress force Fτ has negligible magnitude in
comparison to both, the drag and pressure gradient force. Neglecting the pressure gradient
force corresponds to omitting the buoyancy contribution, which in turn explains the over-
predicted solid particle velocity.

To see which influence the spatial resolution had on the above results, we calculated the
error in solid particle velocity for a range of smoothing lengths. This is shown in Figure 5.3
where we have considered ∆tf = ∆ts = 1× 10−4 s together with h = 2iDs, i ∈ {0, 1, 2, 3}.
These choices of smoothing length lead to the following numbers of points in the fluid phase:
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Figure 5.3: Error in sedimentation velocity obtained from one-way coupled simulations and averaged over
the interval t ∈ [20tSt

r , 25tSt
r ]. The simulations were repeated with a fixed time step size (∆t =

1× 10−4 s) and varying smoothing length. The line style distinguishes the case of evaluating
the drag force with εf = 1 or with a value εf < 1 calculated by the coarse graining algorithm.
The marker style distinguishes whether the particle velocity is compared to vT from (5.1.10)
or vT/εf .

h/Ds 1 2 4 8
Nf 1 764 815 256 646 40 551 6947

Table 5.2: Number of fluid points for different smoothing lengths in the one-way coupled FPM simulations
of the single particle sedimentation test case. The point count varies during runtime due to
point addition and deletion.

We note that the time step has been chosen larger than in the simulations for Figure 5.2 since
we observed that the error was insensitive to this choice. We performed simulations with drag
force calculated exactly as specified in (5.1.5) as well as based on the superficial velocity,
i.e. using the non-zero volume fraction obtained from coarse graining. In Figure 5.3 the
corresponding results are distinguished by line style. Since strictly speaking the analytical
solution in the case of εf < 1 is given by vT/εf , we compare the corresponding results to
vT, vT/εmin

f and vT/εmean
f . Here we denote by εmin

f the value obtained by evaluating the
averaging kernel at the origin, i.e.

εmin
f = w̃(0)Vs = Vs

(πb2) 3
2

(5.1.17)

and εmean
f denotes the mean volume fraction at the particle position throughout the simula-

tion. Figure 5.2 illustrates that using a non-zero solid volume fraction during drag calculation
introduces an error when comparing to the sedimentation velocity from (5.1.10). If instead
we consider the error relative to v∗T = vT/εf with any of the above definitions of volume
fraction, we obtain significantly lower errors. It is clearly shown that on the one hand, the
error decreases together with the smoothing length and on the other hand it is dwarfed by
the error due to non-zero solid volume fraction, if it is determined with respect to vT. In
conclusion we observed that even the errors obtained from a direct comparison to vT are
within the same magnitude reported in [124]. There the authors did however not present
the additional errors when comparing to the analytical solutions that take volume fraction
into account.
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introduces an error when comparing to the sedimentation velocity from (5.1.10). If instead
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Figure 5.4: Transient results from simulations with two-way coupling and h = 3Ds, ∆tf = ∆ts = 1× 10−4 s.
The choice of VANS model, as discussed in Section 3.3, is distinguished by color while the
treatment of drag, as discussed in Section 4.3, is distinguished by line style.

Results of two-way coupling

Next, we want to discuss the results obtained from two-way coupled simulations. Similar to
the above investigation, let us first consider the transient behavior. Again, we choose both,
the smoothing length and averaging bandwidth, to be three times the particle diameter
and use an identical time step ∆t = 1× 10−4 s ≈ tSt

r

/
16 in both phases. In Figure 5.4 we

have plotted the results of these simulations for different combinations of the coupling model
discussed in Section 3.3 and both explicit and implicit drag calculation in the fluid phase (cf.
Section 4.3). From Figure 5.4a we observe that the fluid points around the particle location
are accelerated to about 8− 10% of the Stokes terminal velocity from (5.1.10). Thus, since
the fluid is no longer approximately at rest, we compared the relative velocity vs− uf to our
analytical result in Figure 5.4b. There we observe that, aside from some initial fluctuations,
the error relative to the analytical solution is well below 1% throughout the simulated time
frame. Furthermore, as should be the case, there is little difference between the results from
an explicit and implicit treatment of drag in both plots. There is however a difference in fluid
velocity between the two CFD-DEM formulations, formerly referred to as model I and II (see
Section 3.3). Due to this acceleration of fluid around the particle occurring on a significantly
larger time scale than the relaxation in the one-way coupled case, we analyze the average
error in relative velocity over the range t ∈ [100tSt

r , 150tSt
r ], instead of t ∈ [20tSt

r , 25tSt
r ], when

varying the spatial resolution.
As the careful reader may have noticed, we have compared the transient results above to

the analytical solution obtained under the assumption of negligible solid volume fraction.
While comparing the particle velocity to the analytical terminal velocity modified by the
porosity was clearly adequate in the one-way coupled case, using the modified analytical
result in comparisons for the two-way coupled case has led to inconclusive results. A careful
investigation of this is left for future work but does not detract from the quality of our
results, as is shown by comparisons to [124] in the following.

As for the dependency on spatial resolution shown in Figure 5.5, we see that for relatively
large smoothing lengths model II appears to be superior in terms of the error in relative
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Figure 5.5: Error in sedimentation velocity obtained from two-way coupled simulations and averaged over
the interval t ∈ [100tSt

r , 150tSt
r ]. The simulations were repeated with a fixed time step size

(∆t = 1× 10−4 s) and varying smoothing length. The choice of VANS model, as discussed in
Section 3.3, is distinguished by color while the treatment of drag, as discussed in Section 4.3,
is distinguished by line style.

sedimentation velocity while with increasing number of points, model I produces smaller
errors. To qualify the first observation, it is however important to note that for the very
small point numbers associated with h = 8Ds, the fluid velocity fluctuations were significant.
Nevertheless, if we take the maximum error instead of the mean over the specified time
interval, the error is still below 0.3% for all smoothing lengths. Again, comparing this to the
errors reported in [124], we observe that even the maximum errors in our simulations are
well below those. Another interesting aspect of the results in Figure 5.5 is that in model II
there is little difference between the explicit and implicit drag treatment while it does have
some influence in model I. Before wrapping up this test case, we want to shortly discuss the
runtimes for those simulations which lead to Figure 5.3 and Figure 5.5.

h/Ds = 1 h/Ds = 8
One-way, εf = 1 1269 s 8 s
One-way, εf < 1 1270 s 9 s
Two-way, Model I, explicit 1241 s 8 s
Two-way, Model I, implicit 1280 s 8 s
Two-way, Model II, explicit 1217 s 10 s
Two-way, Model II, implicit 1217 s 8 s

Table 5.3: Normalized runtimes of single particle sedimentation simulations. The absolute runtime for each
simulation is divided by T

/
tSt
r with T denoting the end time of the simulation.

The runtimes shown in Table 5.3 were obtained by running each simulation with 16 MPI
threads on an individual dual socket node equipped with two Intel Xeon E5-2670 processors
and deactivated hyper-threading. Firstly, considering the number of points for both, the
minimum and maximum smoothing length (see Table 5.2), the drastic increase in runtime
resulting from changes in spatial resolution, is to be expected. As noted above, to obtain
similar error magnitudes to the cited reference, large smoothing lengths and thus compar-
atively low run times are sufficient. Secondly, we observe that the normalized runtimes for
one-way and two-way coupled simulations are almost identical. Thus, there is no unreason-
able computational overhead associated with the modifications to the projection scheme in
the fluid phase. We further note that a difference in computational cost between the case
denoted as “One-way, εf = 1” to the case denoted as “One-way, εf < 1”, would have to
be fully attributed to the averaging scheme. The identical run times thus verify that, for a
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single particle and the considered range of spatial resolutions in the fluid phase, there is no
significant computational cost involved in the averaging scheme.

5.2 Onset of fluidization
After having concluded a test case with emphasis on the solid phase motion, we now want
to consider an example which shows that the influence of coupling on the fluid phase is cor-
rectly reproduced by our scheme. For this purpose we chose to investigate the phenomenon
of fluidization. Fluidization describes the effect that an assembly of solid particles within a
vertical flow geometry becomes suspended in the fluid phase at sufficiently large upward flow
velocities. These geometries are typically cylindrical in shape and referred to as fluidization
column, while the assembly of particles is often referred to as bed. In the fluidized state the
forces exerted by the fluid phase onto the particles will balance out gravitational forces and
the solid phase effectively behaves like a fluid, hence the name fluidization. The minimum
velocity needed to induce fluidization is called minimal or minimum fluidization velocity.
Once the minimum fluidization velocity is reached, the behavior may differ depending on
the type of fluid and solid. While a suspension in liquid typically leads to a uniformly ex-
panding bed, as stated by Di Felice [35], a gas fluidized bed may exhibit a range of different
phenomena, such as bubbling or slugging [55, 84]. For a visualization of these different con-
figurations we refer the reader to the classical textbook by Kunii and Levenspiel [84] and
in particular the sketch on page 2 therein. We note that much of the dynamic behavior is
accompanied by the ability to maintain nearly uniform temperature within a reactor even
for highly exothermic reactions and also by many other advantageous properties which lead
to a range of important industrial applications [84]. For now, we do not concern ourselves
with these highly dynamic and complex phenomena. Instead, we only consider the behavior
under constantly increasing inflow velocity up to the point where fluidization begins. This
part of the process provides us with a convenient quantitative comparison for our numerical
scheme, by way of the pressure drop across the fluidization column. An example which in-
corporates yet another type of configuration and validates the capabilities of our scheme to
represent more dynamic behavior will follow in the next section. We emphasize that both,
the current example and the one in the next section, employ a two-way coupling between the
phases. In the current benchmark we increase the inflow velocity over time and expect the
pressure difference between in- and outflow to increase up until the minimum fluidization
velocity, beyond which it remains constant. The fact that the pressure drop assumes such
a constant value results from the counteracting effects of drag increase due to increasing
relative velocity and drag reduction due to smaller solid volume fractions when the bed gets
lifted. On the one hand we may compare the pressure drop from simulations to commonly
used predictive formulas. On the other hand, in order to provide an easily reproducible and
accessible benchmark, we chose a simulation setup similar to the one in [57], which is also
distributed together with the code of the open source CFD-DEM solver CFDEM 1. We may
thus further compare our results to this algorithm which couples the two open source solvers
LIGGGHTS2 and OpenFOAM 3. At the time our investigations were conducted, the setup
could also be found within the CFDEM GitHub repository4.

1https://www.cfdem.com/cfdemrcoupling-open-source-cfd-dem-framework
2https://www.cfdem.com/liggghtsr-open-source-discrete-element-method-particle-simulation-code
3https://www.openfoam.com/
4https://github.com/CFDEMproject/CFDEMcoupling-PUBLIC/tree/master/tutorials

104

Chapter 5 Numerical results

single particle and the considered range of spatial resolutions in the fluid phase, there is no
significant computational cost involved in the averaging scheme.

5.2 Onset of fluidization
After having concluded a test case with emphasis on the solid phase motion, we now want
to consider an example which shows that the influence of coupling on the fluid phase is cor-
rectly reproduced by our scheme. For this purpose we chose to investigate the phenomenon
of fluidization. Fluidization describes the effect that an assembly of solid particles within a
vertical flow geometry becomes suspended in the fluid phase at sufficiently large upward flow
velocities. These geometries are typically cylindrical in shape and referred to as fluidization
column, while the assembly of particles is often referred to as bed. In the fluidized state the
forces exerted by the fluid phase onto the particles will balance out gravitational forces and
the solid phase effectively behaves like a fluid, hence the name fluidization. The minimum
velocity needed to induce fluidization is called minimal or minimum fluidization velocity.
Once the minimum fluidization velocity is reached, the behavior may differ depending on
the type of fluid and solid. While a suspension in liquid typically leads to a uniformly ex-
panding bed, as stated by Di Felice [35], a gas fluidized bed may exhibit a range of different
phenomena, such as bubbling or slugging [55, 84]. For a visualization of these different con-
figurations we refer the reader to the classical textbook by Kunii and Levenspiel [84] and
in particular the sketch on page 2 therein. We note that much of the dynamic behavior is
accompanied by the ability to maintain nearly uniform temperature within a reactor even
for highly exothermic reactions and also by many other advantageous properties which lead
to a range of important industrial applications [84]. For now, we do not concern ourselves
with these highly dynamic and complex phenomena. Instead, we only consider the behavior
under constantly increasing inflow velocity up to the point where fluidization begins. This
part of the process provides us with a convenient quantitative comparison for our numerical
scheme, by way of the pressure drop across the fluidization column. An example which in-
corporates yet another type of configuration and validates the capabilities of our scheme to
represent more dynamic behavior will follow in the next section. We emphasize that both,
the current example and the one in the next section, employ a two-way coupling between the
phases. In the current benchmark we increase the inflow velocity over time and expect the
pressure difference between in- and outflow to increase up until the minimum fluidization
velocity, beyond which it remains constant. The fact that the pressure drop assumes such
a constant value results from the counteracting effects of drag increase due to increasing
relative velocity and drag reduction due to smaller solid volume fractions when the bed gets
lifted. On the one hand we may compare the pressure drop from simulations to commonly
used predictive formulas. On the other hand, in order to provide an easily reproducible and
accessible benchmark, we chose a simulation setup similar to the one in [57], which is also
distributed together with the code of the open source CFD-DEM solver CFDEM 1. We may
thus further compare our results to this algorithm which couples the two open source solvers
LIGGGHTS2 and OpenFOAM 3. At the time our investigations were conducted, the setup
could also be found within the CFDEM GitHub repository4.

1https://www.cfdem.com/cfdemrcoupling-open-source-cfd-dem-framework
2https://www.cfdem.com/liggghtsr-open-source-discrete-element-method-particle-simulation-code
3https://www.openfoam.com/
4https://github.com/CFDEMproject/CFDEMcoupling-PUBLIC/tree/master/tutorials
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Symbol Unit Value
Cylinder width W m 0.024 55
Cylinder height H m 0.08
Position of plate H0 m 0.01
Gravity g m/s2 9.81
Fluid density ρf kg/m3 10
Dynamic viscosity µ Pa s 1.5× 10−3

Particle number Ns - 1× 104

Particle diameter Ds m 0.001
Solid density ρs kg/m3 2000
Young’s modulus Y Pa 5× 106

Poisson’s ratio ν - 0.45
Coeff. of Rest. en - 0.3

Table 5.4: Parameters of fluidization test case.

Simulation setup

While the fluidization column considered in [57] has a circular cross section, we have chosen a
cylinder with square base of identical cross-sectional area so that we can apply an averaging
with the kernel mirroring described in Section 4.2. We further position a plane boundary
at height H0 from the inflow which represents a perforated wall, visible only to the solid
phase and not included in the mirroring. This has been an a priori choice to prevent any
influence of flow disturbances close to the inlet and should not significantly alter the targeted
metrics. A case with direct contact of solid phase and inflow boundary is considered in the
next section. The resulting flow geometry for the current test case is depicted in Figure 5.6.

The material properties of fluid and solid phase as well as the particle size and count have
been chosen identical to the cited reference. Furthermore, the damped Hertzian contact
model of the form (4.1.36) is employed with the same value of Young modulus, Poisson
ratio and coefficient of restitution (used in (4.1.38)) as in the CFDEM tutorial code. All
parameters are summarized in Table 5.4.

To create the initial bed, a dilute distribution of particles with random positions within
the column and above the perforated plate was created. At this point, none of the particles
were in contact with each other, the walls or the plate. Then a pure DEM simulation of
settling under gravity is performed to obtain the initial dense configuration for the coupled
simulation. The resulting bed is depicted in Figure 5.7a and has a length along the vertical
axis of Lb = 0.0146 m.

For the coupling we use the drag force expression by Di Felice (see Table 3.1) which is
also available in the CFDEM coupling. We further employ an implicit treatment of drag
in the fluid phase and resort to model II discussed in Section 3.3, i.e. the pressure gradient
and viscous stresses are not averaged from the solid particles to act as a source term to
the fluid phase. In fact, the viscous stress force has again been observed to be three orders
of magnitude smaller than either of the other coupling forces and is neglected within this
benchmark. For the averaging we use the above-mentioned kernel approach with mirroring
and a bandwidth of b = 2Ds, where the Gaussian is cut off at a distance of three times the
bandwidth. In Figure 5.7b we have visualized the values of solid volume fraction which were
calculated from the initial particle configuration.

For the fluid phase we have chosen a smoothing length of h = 0.002 m = 2Ds, leading
to approximately 145000 points. At the bottom boundary we prescribe a uniform upward
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Figure 5.7: Initial particle configuration and solid volume fraction in the FPM simulation.

velocity which linearly increases from U = 0.002 m/s to U = 0.038 m/s within the considered
time interval of t ∈ [0, 0.2]s. As for the remaining boundaries, we used slip conditions at the
walls and further applied a zero Neumann condition for velocity at the outflow. While both,
the hydrostatic and dynamic pressure, are set to a constant value at the outflow boundary, we
need to revisit our earlier discussion on pressure boundary conditions with respect to the slip
walls and inflow. Due to the perforated plate and chosen value of averaging bandwidth, the
latter boundary can once more be treated without considering the coupling terms. However,
the same is clearly not valid for the side walls of the column. Since we employ model II from
Section 3.3 and treat drag implicitly, (5.1.13) becomes

∂phyd

∂n
= ρf(n · g) + ρfB(n · uB) (5.2.1)

While B can now be different from zero, uB represents the solid phase velocity at side walls.
For non-moving walls which are impenetrable to the solid phase, one may require n ·uB = 0,
once more reducing (5.2.1) to its single-phase version (5.1.12). For the dynamic pressure an
analogous extension of (5.1.15) leads to

∂pdyn

∂n
= −ρf

(
n · Duf

Dt

)
+ n · (∇ · τf(uf))− ρfB(n · uf) (5.2.2)

We observe that both, the first and last term on the right-hand side of (5.2.2), vanish at
the side walls. For the coupling term this is a direct consequence of the geometry being
stationary and impermeable to the fluid. For the first term we note that, since we no longer
resort to a no-slip condition, boundary points are allowed to move in tangential directions.
For planar walls, the normal does however remain constant along their path, such that the
first term on the right-hand side of (5.2.2) also vanishes. In case of the inflow boundary, the
term clearly does not vanish and needs to be properly adapted to the prescribed velocity.

In addition to boundary conditions it is also worth discussing our choice of time steps. As
before, to determine a suitable time step for the solid phase, it is necessary to consider the
drag relaxation time. Taking the minimum possible volume fraction εHCP

f ≈ 0.2595 and the
maximum inflow velocity, the relaxation time for drag based on the Di Felice correlation is
given by

tr ≈ 1.96× 10−3 s (5.2.3)
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In contrast to the previous test case we also need to consider the constraint imposed by the
DEM contact model. To determine this upper bound, we follow Table 4.1 and first need
to determine the contact duration. For the Hertzian model it is necessary to estimate the
maximum collision velocity within the system in order to determine the minimum contact
duration from (4.1.83). Since we only consider the startup of fluidization with little dynamic
behavior in the solid phase, taking the maximum fluid inflow velocity as the maximum
collision velocity provides us with a very safe estimate. Following this line of thought we
calculate

td = 2.94

15

16
m∗s

Y∗
√
R∗s




2
5( 1
vn,0s,ij

) 1
5

≥ 2.24× 10−4 m/s (5.2.4)

Taking the proposed number of 15 DEM steps within the contact duration (see Table 4.1)
finally leads to

∆ts ≤
td
15 ≈ 1.49× 10−5 s (5.2.5)

Clearly, even the underestimated relaxation time above leads to an irrelevant constraint in
light of the strict DEM time step restriction. Thus, it is reasonable to employ a time step of

∆ts = 1× 10−5 s (5.2.6)

which incidentally also coincides with the time step from the CFDEM tutorial, without the
derivation being given there. For both, the initial settling and coupled flow, we again use
the semi-implicit Euler scheme described in Section 4.1.5. For the fluid phase, we only need
to consider the CFL condition as a constraint for the time step. It is easily verified that due
to the choice of smoothing length and maximum inflow velocity in our current setup this
poses a rather weak restriction and we use ∆tf = 2× 10−4 s which allows for 20 substeps in
the procedure we visualized in Figure 4.13.

With all simulation parameters being specified, we now want to discuss the aforemen-
tioned pressure prediction which we compare our numerical results against. In Section 3.4,
specifically (3.4.13), we saw that under the assumption of spatially and temporally constant
fluid velocity as well as identical forces onto particles in the monodisperse bed, the fluid
momentum equation reduces to

0 = −εf∇p+ ρfεfg − Fdnp (5.2.7)

We further rewrite this by replacing Fd according to (3.4.22), using εs = npVs and dividing
by the fluid volume fraction (which we know is always nonzero) so that

0 = −∇p+ ρfg −
β

ε2
f
usf (5.2.8)

On the other hand, in the fluidized state the particle momentum equation reduces to

0 = −∇pVs + Vsβ

εsεf
usf +msg (5.2.9)

By combining (5.2.8), (5.2.9) and using the fact that gravity is opposite to the relative
velocity we obtain

εs(ρs − ρf)g = β

ε2
f
U (5.2.10)

In order to simplify notations in the above equation and the following, we denote by U
the magnitude of superficial velocity which further coincides with its z-component in the
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considered case. It is important to realize that, while we were considering velocities within
the bed in the above derivation, a simple argument of mass conservation reveals that the
superficial velocity is constant along the flow direction. We actually think of U as the inflow
velocity in most of the upcoming analysis. Getting back to the relation (5.2.10), we recall
that β correlations are functions of relative velocity and volume fraction. Keeping in mind
that (5.2.10) is only valid at minimum fluidization conditions, replacing β provides us with a
relation between superficial velocity and volume fraction at minimum fluidization. However,
as we have seen in Section 3.4, these expressions may be of rather complex form. It is
therefore customary to use the form of β representing the Ergun equation

β = 150 ε2
sµ

εfD2
s

+ 1.75 ρfεs

Dsεf
U (5.2.11)

As we have noted during the earlier discussion of this correlation, the second term in the
Ergun equation acts as a correction for large particle Reynolds numbers. However, in the
simulation setup at hand, we are faced with rather small Reynolds numbers and it is therefore
suitable and in line with common practice [55] to neglect the second term. If we use this
simplification and plug the remainder of β into (5.2.10), we obtain a prediction for the
minimum fluidization velocity Umf which reads

Umf = D2
s (ρs − ρf)g

150µ

(
εmf

f

)3

1− εmf
f

(5.2.12)

Still, we only have a relation between two a priori unknown quantities. A possible estimate
to predict Umf is described by Gidaspow [55] with reference to Wen and Yu [163] and is given
by

1− εmf
f

(εmf
f )3 ≈ 11 (5.2.13)

This eliminates the volume fraction from (5.2.12) and therefore provides an expression that
can be evaluated for the minimum fluidization velocity. Plugging both, Umf and εmf

f , back
into the Ergun equation

∆p
Lb

= 150 µ

D2
s

ε2
s
ε3

f
U + 1.75 ρf

Ds

εs

ε3
f
U2 (5.2.14)

finally provides the desired pressure drop per bed length. With the presented problem
parameters and using the combination of (5.2.12) and (5.2.13) we estimate the minimum
fluidization velocity

Umf = D2
s (ρs − ρf)g

1650µ ≈ 7.888× 10−3 m/s (5.2.15)

For the considered inflow velocities U ≤ 0.038 m/s we obtain Rep < 0.26 which is well within
the range of validity for (5.2.12) specified as Rep < 20 by Gidaspow [55]. From (5.2.13) we
further obtain an estimate of

εmf
f ≈ 0.38283 (5.2.16)

Plugging both, the predicted porosity and fluid velocity, into the Ergun equation (5.2.14)
we obtain an approximation of the pressure gradient at minimum fluidization. To predict
the pressure drop across the particle bed, we need to calculate the bed length along the fluid
flow direction. Clearly, this should be chosen consistent with the volume fraction, i.e.

Lb = NsVs

Acεmf
s
≈ 0.0141 m (5.2.17)
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and is identical for the prediction in both, the original CFDEM setup and our altered
geometry, since the channel cross-section Ac remains the same. With this length we finally
obtain a pressure drop of

4pWY ≈ 169.76 Pa (5.2.18)
We note that with the same volume fraction obtained from the approximation by Wen and
Yu and the same bed length, one obtains a very similar pressure drop from the expression

4p = Lb(1− εmf
f )(ρs − ρf)g ≈ 169.60 Pa (5.2.19)

which can also be found in fluidization literature (cf. [36]). In the following we compare both,
the results from our scheme and the CFDEM simulation, to the pressure drop at minimum
fluidization as given in (5.2.18) and the velocity-dependent pressure drop before minimum
fluidization based on (5.2.16) and the Ergun equation (5.2.14).

Simulation results

Lb

(a) Final particle configuration with initial
bed length Lb depicted for comparison.
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Figure 5.8: Final particle configuration and solid volume fraction in the FPM simulation at t = 0.2 s.

Before we turn our attention towards this comparison, the reader may consult Figure 5.8
to gain an understanding of the change in particle configuration within the considered time
frame t ∈ [0, 0.2]s. Namely, compared to Figure 5.7, the bed is only slightly lifted and a region
of reduced solid volume fraction is formed in its center. Returning to the pressure drop, the
results for ∆p = pin − pout, i.e. the pressure difference between in- and outflow boundary,
from the simulations with varying inflow velocity are shown in Figure 5.9. Due to the number
of fluid points involved in our numerical simulation, not too much emphasis should be put
on the difference in oscillating behavior, since the numerical resolutions differ significantly.
The reason for this lies in a rather conservative a priori choice of h/b in order to ensure that
enough points are within the support of the averaging kernel. In addition to the simulation
results and the predicted value we have further added a linear and constant (mean) fit to
both, the part before and after minimum fluidization, for better visual comparison to the
prediction.

From Figure 5.9a we see that the pressure drop at minimum fluidization obtained from
LIGGGHTS and OpenFOAM through the CFDEM coupling oscillates around the predicted
value and reproduces it quite well in the mean. The pressure increase before minimum
fluidization is reached does however deviate from the prediction based on the approximation
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prediction.

From Figure 5.9a we see that the pressure drop at minimum fluidization obtained from
LIGGGHTS and OpenFOAM through the CFDEM coupling oscillates around the predicted
value and reproduces it quite well in the mean. The pressure increase before minimum
fluidization is reached does however deviate from the prediction based on the approximation
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by Wen and Yu. This also holds true for the results obtained from our GFDM scheme,
although the pressure increase is closer to the prediction. Comparing the pressure drop
beyond the initial linear portion to both, the prediciton and CFDEM results, we observe
that it exhibits an overshoot right after minimum fluidization which reduces to a constant
pressure drop over time. Such overshoots are also in line with experimental observations [84].
The almost constant pressure drop of ∆p ≈ 180.27 Pa towards the end of the simulation is
however approximately 6% off in comparison to (5.2.18).
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(a) Results of CFDEM simulation with
∆tf = 5× 10−4 s = 50∆ts and 4608 cells.
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(b) Results of the FPM simulation with
∆tf = 2× 10−4 s = 20∆ts and 145000
points.

Figure 5.9: Pressure drop over inflow velocity for both, the CFDEM and the FPM simulation.

To investigate the origin of the overpredicted static pressure drop, we investigated the
pressure profile along the z-axis for both simulations. The profiles are visualized in Fig-
ure 5.10. For the CFDEM results the values of cells with identical z-coordinate have been
averaged to produce the profile. For the FPM simulation we discretized the flow domain into
slices of size ∆z = 0.0005m and took the average of values attached to points within each
slice. The remaining parameters are the same as in Figure 5.9b. On the one hand we observe
the expected pressure drop within the bed, marked by the dashed lines, on the other hand
we do however notice a further linear decay towards the outflow boundary. This behavior is
not present in the finite volume simulation which led to Figure 5.10a and may explain the
fact that the pressure drop between in- and outflow is overpredicted by our simulation.

Based on this observation we chose to further investigate whether the expected profile can
be enforced by specifying a zero gradient boundary condition for hydrostatic and dynamic
pressure at the outflow. While this is numerically problematic, it is a physically more reason-
able requirement since one typically does not observe truly uniform pressure at an outflow
boundary. The results from a simulation with this altered setting are shown in Figure 5.11.
We notice that prescribing the pressure gradient at the outflow is not sufficient to completely
remove the post-bed linearity in pressure profile shown in Figure 5.11a. Nevertheless, the
pressure drop across the fluidization column in Figure 5.11b reveals a significantly better
agreement with the predicted value from (5.2.18). We now obtain a mean static pressure of
∆p ≈ 170.56 Pa towards the end of the simulation, which is only approximately 0.5% above
the value from (5.2.18).

While the pressure drop at minimum fluidization is now predicted very well, we still observe
a fairly noticeable difference in slope for the linearly increasing pressure drop within the fixed
bed. This is due to the fact that we used the very general approximation (5.2.13) instead
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Figure 5.10: Pressure profile along the z-axis at t = 0.15 s and U ≈ 0.029 m/s. The vertical dashed lines
mark minimum and maximum z-coordinate of the bounding box which encloses all particles
at the considered time. For the CFDEM tutorial, the minimum line is not shown since it is
at z = 0.
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(a) Pressure profile at t = 0.15 s and U ≈ 0.029 m/s.
Plot setup identical to Figure 5.10b.
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(b) Pressure drop over inflow velocity. Plot setup
identical to Figure 5.9b.

Figure 5.11: Results of FPM simulation with varying velocity and Neumann boundary condition for hy-
drostatic and dynamic pressure at the outflow.

of tailoring towards our specific setup. To achieve the latter, we calculate the bounding box
volume fraction from our initial particle configuration as

εBB
f = 1− NsVs

AcLb
≈ 0.4067 (5.2.20)

where we used the previously stated bed length Lb = 0.0146 m and channel cross-sectional
area Ac = w2. Plugging this volume fraction into (5.2.12) we obtain Umf ≈ 0.0098 m/s,
which in turn leads to a prediction of constant pressure drop from the Ergun equation of

4pBB ≈ 169.82 Pa (5.2.21)

We observe that there is virtually no difference between this newly calculated value and
the one from (5.2.18), meaning that our previous analysis remains valid. In Figure 5.12 we
have again plotted the simulation results with Dirichlet and Neumann outflow boundary,
this time together with both, the prediction based on (5.2.16) and (5.2.20). We observe
that the linear part in both simulation results matches the Ergun equation very well, thus
also validating the ability of our scheme to provide meaningful results before the onset of
fluidization. We further note that using the fits from Figure 5.9b and Figure 5.11b, the
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(b) Neumann boundary condition.

Figure 5.12: Pressure drop over inflow velocity from FPM simulation compared to predictions based on
different volume fractions. Note that the fits to simulation data are not present any more and
that the horizontal lines of the two predictions overlay each other.

minimum fluidization velocity from simulations is given by the intersection point of linear
fit and mean value. Thus, we obtain values of Umf ≈ 0.0102 m/s, Umf ≈ 0.0104 m/s for
Dirichlet and Neumann boundary conditions, respectively. Also these values are fairly close
to the prediction obtained by using the bounding box volume fraction.

Summary

This concludes our investigations for this specific test case. We observed that, independent
of the outflow boundary condition, our scheme is able to capture the expected qualitative
behavior in terms of pressure drop over inflow velocity. We further saw that the choice of
a Neumann condition for hydrostatic and dynamic pressure led to results which provide a
very good agreement in the pressure drop at minimum fluidization when compared to both,
theory and the CFDEM code. In addition we were able to reproduce the expected pressure
drop within the fixed bed before the onset of fluidization. While these results are promising,
there is still room for future investigations which could not be conducted within the context
of this work. In particular, this includes the linearity in pressure profile which is not observed
in the finite volume code. Furthermore it would be interesting to investigate the influence
of different combinations of numerical resolution and averaging bandwidths.

Since the current setting was quite different from the previous test case, in particular due
to the number of particles not being insignificant any more, we again want to disclose the
runtime of our simulations with the FPM. For both boundary conditions, the simulation
took approximately 6 hours to complete. Due to the previously mentioned difference in
spatial resolution, a comparison to the finite volume algorithm would be of little informative
value and is thus omitted. To still put this into perspective, we note that a simulation with
only the fluid phase, but the same spatial resolution and time step, takes approximately 64
minutes to complete. Clearly, in contrast to the previous test case, there is a significant
increase in runtime due to the introduction of the solid phase. Much of this unsatisfactory
scaling with particle number can currently be attributed to improper load balancing and
MPI optimization and will be addressed in future work, when the numerical scheme is well-
established and validated.
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value and is thus omitted. To still put this into perspective, we note that a simulation with
only the fluid phase, but the same spatial resolution and time step, takes approximately 64
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increase in runtime due to the introduction of the solid phase. Much of this unsatisfactory
scaling with particle number can currently be attributed to improper load balancing and
MPI optimization and will be addressed in future work, when the numerical scheme is well-
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5.3 Spouted bed
After having considered a test case which showed a significant influence of the solid phase
on the fluid, but with little motion within the particle bed, we now want to consider our
last example which truly visualizes the combination of several dynamics within a coupled
solid-fluid flow. To this end we consider the spouted bed setup which has originally been
investigated, both experimentally and through simulations, by Link et al. [92]. In particular
we chose “case A” from their article, which has since been investigated by many authors [3,
14, 34, 77, 90, 127] and provides us with the possibility of quantitative comparison. The
geometry of this test case is depicted in Figure 5.13. In contrast to a fluidized bed, such as
the one from the previous test case, the fluid, which is air in this case, does not enter the
column with a uniform velocity across the inflow. Instead, the gas entering through a small
slot in the center of the inflow does have a very large velocity while the gas entering at the
sides acts as a low velocity background flow. This kind of spouted bed is also sometimes
classified as spout-fluid bed (cf. [127]), while a classical spouted bed allows gas inflow only
through the centered slot. Clearly, in such a setup the drag force experienced by particles
is largest close to the center inlet and reduce both towards the outlet and along the x-axis.
Therefore the bed exhibits a circulating behavior with particles being pushed upwards in the
center region and falling downwards due to reduced drag close to the side walls (we always
think of our viewpoint being aligned with the y-axis in Figure 5.13). One way to capture
this dynamic in a measurement is to investigate the mass flux in vertical direction at several
points along the x-axis and a fixed vertical position. This is exactly the quantity considered
by Link et al. [92] and is the one used for quantitative comparison of our numerical simula-
tions to existing CFD-DEM results.

Simulation setup

For our numerical simulations we use the geometry depicted in Figure 5.13 which is, aside
form the height, identical to the one in the original work by Link et al. [92]. We further
use the same combination of center inflow velocity uc

f = 30 m/s and velocity us
f = 1.5 m/s at

the side inlets. In accordance with the original work, the continuous medium is air, which
we represent by the parameters ρf = 1.205 kg/m3 and µ = 1.813× 10−5 Pa s corresponding
to air at an ambient temperature of 20◦C. The column is initially filled with Ns = 24500
spherical solid particles of material density ρs = 2526 kg/m3 and diameter Ds = 2.5 mm.
As in the previous test case, this is done by randomly positioning particles so that they
are neither in contact with each other nor the geometry. Then, a pure DEM simulation is
performed to obtain the initial bed.

In the original article by Link et al. [92] the authors used a hard-sphere approach to
model the particle interaction. To transfer their setup into our framework we thus need
to determine suitable constants for our soft-sphere model. Here we chose to use the linear
spring-dashpot model and determine constants based on the problem setup at hand. The
most basic condition for the spring stiffness is obtained from the fact that contact model
parameters need to be chosen so that they support static configurations of the particle
such as the initial bed. A rather conservative choice is obtained by assuming that particles
are perfectly stacked along the vertical direction and by requiring the spring stiffness in
the lowermost particle to support the weight of all the above ones. With approximately
H/Ds stacked particles each contributing a gravitational force Fg = msg which needs to be
counteracted by the spring force at maximum deformation Fel = knδ

n,max
ij , one obtains

kn ≥
H

Ds

msg

δn,max
ij

(5.3.1)
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Figure 5.13: Geometry of spouted bed
test case (not to scale).

Symbol Unit Value
Center inlet size Wc mm 10
Side inlet size Ws mm 70
Cylinder depth d mm 15
Cylinder height H mm 1000
Gravity g m/s2 9.81
Fluid density ρf kg/m3 1.205
Dynamic viscosity µ Pa s 1.813× 10−5

Center velocity uc
f m/s 30

Side velocity us
f m/s 1.5

Particle number Ns - 24 500
Particle diameter Ds mm 2.5
Solid density ρs kg/m3 2526
Spring stiffness kn N/m 1.2× 104

Coeff. of Rest. en - 0.9

Table 5.5: Parameters of spouted bed test case.

While this might be sufficient for the initial settling, this lower bound is weaker than the
one resulting from

kn ≥
ms
(
vn,0s,ij

)2

(
δn,max
ij

)2 (5.3.2)

which we discussed in Section 4.1. Clearly, in the current setup the limiting factor is not
due to velocities caused by gravitational acceleration, as is the assumption behind (4.1.16),
but rather those caused by coupling forces. Most notably the drag force accelerates particles
towards the fluid velocity. Thus, in the case of one-way coupling and constant fluid velocity
throughout the flow domain, the maximum velocity due to coupling can be chosen as this
background flow velocity. For the spouted bed setup presented above, one may choose the
spout velocity. This certainly leads to a larger than necessary spring stiffness since this high
velocity is only present in a small portion of the inflow and will quickly decrease throughout
the column in a single-phase flow. However, including the obstruction due to the particle
bed in our considerations, the fluid will maintain and possibly slightly overshoot the high
velocity along the center line of the column. Since the particle acceleration due to drag is
counteracted by gravity and collisions we do not expect the particle to exceed the spout
velocity. This has also been verified by preliminary simulations such that we choose

kn = ms(uc
f )

2

(
δn,max
ij

)2 (5.3.3)

With δn,max
ij = Rs this leads to kn = 1.2× 104 N/m which we chose together with a damping

constant derived from a coefficient of restitution en = 0.9 for our numerical simulation. As
discussed in Section 4.1.5, the time step for a linear spring-dashpot model should be based
on the critical time, which, for our parameters, evaluates to

tc =
√
ms

kn
≈ 4.15× 10−5 s (5.3.4)

We further discussed that choosing ∆ts = Ctc with C = 0.2 is often sufficient and that a
very safe choice is given by C = 0.1. Within the initial settling we resorted to the rather
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conservative choice of ∆ts = 4× 10−6 s. With these parameters the bounding box around
the settled bed has a length in z-direction of Hb ≈ 0.145 15 m.

In the previous test cases we have already discussed the pressure boundary conditions
at length. Up until now we observed a reduction to their single phase version for the
chosen setups. While this remains true for the side walls and outflow of the current setup,
the attentive reader might have noticed from Figure 5.13 that no permeable plate has been
added, so that the inflow acts as a wall to the particles and the bed settles onto this part of the
geometry. Due to the configuration of different inflow regions, adding such a plate would have
almost definitely skewed the results. Furthermore, having particles in direct contact with
the inflow boundary now introduces a non-vanishing modification of the dynamic pressure
condition and therefore gives us the opportunity to verify the correct treatment of such cases.
This is due to the fact that B 6= 0 at the inflow and

n · uf =
{
uc

f at the center inlet
us

f at the side inlet
(5.3.5)

which means that the last term in (5.2.2) can not be crossed out. In early simulations we
observed that omitting this fact led to unphysical results with a reversal in the direction of
the total pressure gradient, which in turn prevented the bed of solid particles from being
lifted. As for the remaining boundary conditions, we prescribed a uniform Dirichlet boundary
condition for hydrostatic and dynamic pressure at the outflow, a slip condition for the velocity
at side walls and Neumann zero condition for the outflow velocity.

As implied by the reference to (5.2.2), we again employ model II from Section 3.3 and
treat drag implicitly. In contrast to the original work by Link et al. [92] we chose the more
recent drag correlation by Rong et al. [125] which can be found in Table 3.1. In Section 3.4
we already stated that this correlation was derived from packed beds and for a large range
of particle Reynolds numbers and volume fractions. Thus, it should be applicable in the
current context, which includes both, dense regions which match the packed bed setting
from [125] and dilute regions, where single particle drag modifications are most frequently
applied. As we have discussed in Section 4.6, the drag force induces an additional time step
restriction in the solid phase. To estimate this value we can calculate the bounding box
volume fraction of the settled bed which is given by

εBBf = 1− NsVs

AcHb
≈ 0.386 (5.3.6)

where Ac denotes the channel cross-section along the z-axis. Using this porosity and uf =
30 m/s as the relative velocity in the drag correlation, we obtain a relaxation time of

tr ≈ 1.26× 10−1 s (5.3.7)

for the above-mentioned Rong drag. We note that even for an unreasonably small volume
fraction of εf ≈ 0.3, we would obtain tr > 8× 10−2 s. Thus, the time step is clearly dictated
by the DEM model and we chose to use ∆ts = 4× 10−6 s throughout the simulation. For
the fluid phase, on the other hand, we only need to fulfill the CFL condition, since drag is
treated implicitly. For our simulations we chose a smoothing length of h = 0.01 m = 4Ds
which lead to a discretization with Nf ≈ 76 000 points. The CFL condition in the fluid phase
is clearly determined by the center inflow velocity such that

∆tf ≤ C
h

uc
f
≈ 6.67× 10−5 s (5.3.8)

for a choice of C = 0.2. From this we inferred a suitable time step ∆tf = 6× 10−5 s, thus
leading to 15 DEM substeps within each fluid time step, according to the procedure sketched
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Figure 5.14: Time averaged solid phase mass flux across slices of the column cross-section at z = 0.13 m.
Data points have been reconstructed from Figure 14 in [92] and Figure 13 in [77]. The mass
flux was averaged over the time interval t ∈ [4, 20]s.

in Section 4.7. We note that the maximum velocity within the fluid phase has further been
monitored and we observed this choice to be sufficient to fulfill the CFL condition throughout
the whole simulation time. Before we conclude this discussion and move on to the numer-
ical results, we note that the coarse graining is again done with the mirroring discussed in
Section 4.2. The Gaussian kernel bandwidth is chosen to be b = 2Ds and the weights are
cut off at a distance of 2b, which decreases computational cost and should not introduce any
significant errors.

Quantitative evaluation

With all parameters of our simulation being clarified, we now return to the analysis of solid
mass flux across the channel width, which originally motivated our choice of this specific
test case. To measure this quantity, the channel cross-section at the same height as in
the original work by Link et al. [92], i.e. zm = 0.13 m, was discretized into 50 slices of
width ∆x = 0.003 m. Then, in each fluid time step from tn to tn+1, the set of particles
Ini ⊂ {1, . . . , Ns}, which passed through slice i during this time step, was determined. Each
of these particles contributed to the mass flux via

Φn
z,i = 1

∆tf
∑

j∈Ini
sign(zn+1

s,j − zns,j)ms,j, i = 1, . . . , 50 (5.3.9)

Finally the mass fluxes across a single slice were averaged over all time steps to obtain

Φz,i = 1
Nt

Nt−1∑

n=0
Φn
z,i (5.3.10)

which is the quantity we compare to the previously reported results from [77, 92]. The value
for each slice from our simulation was assigned to the x-coordinate xi = 1

2∆x + (i − 1)∆x
and is plotted in Figure 5.14 together with the experimental and numerical data by Link
et al. [92] and also the more recent simulation results by Kloss et al. [77]. Note that the
numerical results in [77] were obtained from the CFDEM coupling discussed in the previous
test case.

We observe that our simulation leads to a flux profile with a less pronounced peak and
appears to be smoothed out when compared to both, the experimental and other numerical
results. It does however provide a flux in the center region which is closer to the experimental
findings and still agrees very well with the other numerical results towards the side walls. In
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the following visual assessment of our results, we see that the upwards flow region towards the
channel center does oscillate left and right, likely explaining the broadened peak. Another
characteristic which is not shown to this extent by the previous numerical results, is the
small decrease of flux close to the wall. This behavior can also be observed towards the left
wall in the experimental results.

Overall, in terms of this metric, the results of our scheme look promising and are in good
agreement with those reported in literature. We note that, in order to obtain an even better
agreement with experimental results towards the side walls, a next step could be the inclu-
sion of tangential forces. In particular, as has been discussed extensively in [58], the mass
flux close to the walls can be decreased without significantly influencing the center region
by including a rolling friction.

Qualitative evaluation

In addition to the mass flux profile we further want to provide a qualitative discussion of a
series of snapshots which show the particle bed at different points in time. Since such a set
of images has not been provided in the original work by Link et al., we draw comparisons to
much more recent investigations by Saidi et al. [127] and Li et al. [90]. We note that both
works are based on the OpenFOAM framework, similar to the CFDEM coupling, which was
used in the previous test case, but with different implementations of the coupling and DEM
scheme.

We begin with the start-up behavior, which occurs before a periodic motion is obtained.
This portion of the simulation time is shown in Figure 5.15 and only present in [127]. The
first row of snapshots shows the expected build-up of a single bubble at the center inlet
and with little to no downward motion towards the side walls. It further agrees nicely with
the snapshots up until t = 100 ms in [127]. In the second row of Figure 5.15, we observe
that the bubble further grows and particles start to move downwards along the side walls,
commencing a circulating behavior with particles again being pushed upwards by the center
inflow. In this process the bed becomes increasingly thinned out above the initial bubble.
This general behavior is in accordance with the findings in [127] up until about t = 500 ms,
although this process does take place within a smaller time frame in our simulation (up
until t = 330 ms). A characteristic which is not present in [127] is the build up of several
smaller bubbles in the lifted bed above the initial bubble. A possible reason for this may
be the fact that the authors in [127] considered an initially ordered bed, while we chose a
random one. Small non-uniformities in our particle configuration may have been augmented
over time, leading to the formation of additional bubbles. Another distinguishing factor is
the formation of a bell-shaped dense region right above the center inlet while only isolated
particles are distributed within the large bubble. In [127], the large bubble is instead filled
more densely with particles and close to the inlet a V-shaped region of decreased solid volume
fraction is formed. Nevertheless, we observe a further characteristic being shared between
our results and those from [127], when we consider the collapse of the bubble in the last row
of Figure 5.15. Namely, in the snapshot at t = 500 ms of [127], the bed, which is attained
after the bubble collapsed, is already building up within the large bubble. The same can be
said for the bell-shaped region which builds up towards the final snapshot at t = 510 ms.
In total we observed a lot of similarities within the start-up behavior when comparing our
results to [127], but also noticed some differences. Possible sources for these will be discussed
shortly.

This concludes our discussion on the spouted bed behavior during initialization. For the
sake of completeness and for future comparisons we further provided a series of snapshots
for the transitional regime after the collapse of the initial bubble and before the periodic
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behavior commences. This can be found in Figure 5.16 and is not investigated in detail due
to a lack of comparable snapshots in the cited sources.

If we consider the long-term behavior visualized by the snapshots in Figure 5.17, the most
striking characteristic of our simulation is the fact that the bed periodically builds up close
to either of the side walls with an almost identical slope of the bed surface. While the results
in [127] also show deviations from a horizontal bed surface, a similar oscillating behavior
can not be observed. The same can be said for the simulation in [90], which is also based
on the Gidaspow drag law, i.e. the combination of Ergun and Wen-Yu drag (3.4.25), as
in [127]. However, the authors in [90] conclude “that the Gidaspow drag closure produces
unsatisfactory results for the spout-fluidization regime” and that both, the drag laws by
Hoef et al. [65] and Beetstra et al. [7], are more appropriate. Their results based on these
drag correlations do not show the angled bed surface which we observe in our simulation. In
particular, for the drag by Hoef et al. the bed surface is almost plane in all of the provided
snapshots.

Another noticeable characteristic is the shape of the high-velocity region within the bed.
In our simulations this can be described as an S-shape which is periodically mirrored in the
channel center. Since this S-shaped region always ends at the wall with increase bed height,
it appears to be connected to the alternating bed slope. A less pronounced but similar shape
can also be observed in [127] and, to an even lesser degree, in [90] with Gidaspow drag law.
But a similar periodicity is absent in both cases. Furthermore, the two other drag laws
tested in [90] show a rather straight upward flow in the channel center.

Lastly, we observe that, while bubble formation is present within our simulation, the
bubbles are significantly smaller and the bed is much more dense than in both the cited
sources. This clearly suggests that the upward forces, experienced by solid particles in our
simulation are too low to loosen up the dense configuration, after the initial bubble, shown in
Figure 5.15, has collapsed. Thus, the error is possibly rooted in either the pressure gradient
force, the viscous stress force or the drag force. Firstly, it is common practice to neglect the
viscous stress force in gas-solid fluidized beds, due to its negligible magnitude in comparison
to the two other forces [26, 162]. This simplification has been adopted both, in our simu-
lations and the above cited sources, so that we can exclude any influence of this term. On
the other hand, none of the two articles includes a force based on the pressure gradient at
particle locations. Instead, in [90] buoyancy is included by adjusting the density within the
gravitational force. We note that this only coincides with our pressure gradient force when
solely based on hydrostatic pressure and in case the coupling is not considered. In [127]
this buoyancy modification is neglected, which we note is not a significant simplification
compared to the model in [90] due to the ratio of solid to fluid density being very large. The
fact that the results for Gidaspow drag in these two sources still compare better to each
other than our simulation results, tells us that the pressure gradient force in our simulation
may be too large in magnitude and cause the observed differences. While this term would
thus be our prime suspect for further investigations, a lack of bed lift may also very likely be
caused by an under-prediction of drag. Reasons for this could either be the choice of drag
correlation, which deviates from the choices in both sources and has been shown to impact
the results in [90], or could be due to errors within the calculation of volume fraction or the
fluid phase velocity field.

Summary

This concludes the analysis of our final test case in the form of a spouted bed. We observed
that our numerical scheme is capable of producing a good agreement in terms of solid mass
flux profile, with both experimental and numerical results reported in literature. We also
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found that many aspects of the start-up behavior agreed well with the results of a two-way
coupled CFD-DEM simulation based on a finite volume scheme, which were presented in
[127]. However, the long-term behavior determined by our scheme shows significant deviation
from the cited sources and needs to be further investigated. For this we propose a number of
steps that may be taken in future work to provide an analysis of this problem. Firstly, it is
necessary to investigate whether using either the Gidaspow drag law or one of the two others
used in [90], would significantly alter the results. Secondly, one may analyze the impact of
including the pressure gradient forces versus considering only a buoyancy modification to
gravity or even reducing the coupling forces to only drag. Lastly, we recall that no friction or
rotation have been considered up to this point. It might very well be, that adding frictional
forces can, for example, counteract the periodic surface build-up at the side walls.

In summary, we feel confident in stating that our numerical test cases have shown, that
the unresolved coupling approach has been successfully integrated into our generalized finite
difference framework. While certain observed aspects warrant a further analysis, the overall
agreement with theoretical, experimental and previously reported numerical results, shows
that the proposed algorithm is capable of reproducing typical phenomena of two-way coupled
fluid-solid flows. Given more time and a thorough analysis of the mentioned aspects, it will
be possible to clear out the remaining inconsistencies and open up the FPM framework to
a lot of new fields of application.
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Figure 5.15: Build-up and collapse of bubble in spouted bed. Each solid particle is represented by a sphere
glyph with its color corresponding to the velocity in z-direction in m/s. The time for each
snapshot is given in ms. View direction is aligned with the y-axis. While the full width of
the column is shown, the images have been cropped at a height of approximately z = 0.57 m.
The fluid phase is not shown in these snapshots.
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Figure 5.15: Build-up and collapse of bubble in spouted bed. Each solid particle is represented by a sphere
glyph with its color corresponding to the velocity in z-direction in m/s. The time for each
snapshot is given in ms. View direction is aligned with the y-axis. While the full width of
the column is shown, the images have been cropped at a height of approximately z = 0.57 m.
The fluid phase is not shown in these snapshots.
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Figure 5.16: Build-up of a second small bubble after collapse of the initial bubble and before the periodic
behavior starts. Each solid particle is represented by a sphere glyph with its color correspond-
ing to the velocity in z-direction in m/s. The time for each snapshot is given in ms. View
direction is aligned with the y-axis. While the full width of the column is shown, the images
have been cropped at a height of approximately z = 0.57 m. The fluid phase is not shown in
these snapshots.
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Figure 5.17: Periodic long-term behavior of the bed. Each solid particle is represented by a sphere glyph
with its color corresponding to the velocity in z-direction in m s. The time for each snapshot
is given in ms. View direction is aligned with the y-axis. While the full width of the column
is shown, the images have been cropped at a height of approximately z = 0.57 m. The fluid
phase is not shown in these snapshots.
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Figure 5.17: Periodic long-term behavior of the bed. Each solid particle is represented by a sphere glyph
with its color corresponding to the velocity in z-direction in m s. The time for each snapshot
is given in ms. View direction is aligned with the y-axis. While the full width of the column
is shown, the images have been cropped at a height of approximately z = 0.57 m. The fluid
phase is not shown in these snapshots.
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Conclusion and outlook
In this work, we introduced a Lagrangian-Lagrangian two-way coupled CFD-DEM algorithm
using the generalized finite difference framework of the FPM. We first provided a comprehen-
sive introduction to the equations governing the fluid motion in a single-phase setting and
to the generalized finite difference framework. On this basis, we discussed several method-
ologies that can be used to treat two-way coupled fluid-solid flows with a particulate solid
phase and explained the choice of approach for this work. For the chosen unresolved CFD-
DEM coupling we presented the theoretical background in the form of volume averaged
Navier-Stokes (VANS) equations and discussed different formulations of the coupling found
in literature as well as drag closures.

After providing details on the discrete element method (DEM) which was used to re-
solve the solid phase motion, we considered an aspect which, to the best of our knowledge,
is novel in literature on unresolved CFD-DEM. Namely, we critically discussed how aver-
aging schemes which are typically used in different numerical frameworks, such as finite
volume methods or smoothed particle hydrodynamics, can be transferred to a Lagrangian
GFDM framework. Within this discussion we carefully established a connection between
the derivation of the VANS equations and conservation conditions which averaging schemes
are typically constructed to fulfill. This showed that the weighted averaging with mirror-
ing at boundaries of the flow domain provides fields which satisfy continuous conservation
conditions and may be discretized in a manner consistent with the finite difference method.
Many of the schemes proposed in literature are constructed to fulfill discrete versions of the
conservation conditions, which necessitates a notion of volume attached to entities of the
numerical discretization. In contrast to finite volume methods and meshfree schemes with
mass points, such a notion of volume is not inherent in our framework. While we discussed
approaches to define such volumes or circumvent the problem by introducing a second dis-
cretization, we concluded that the weighted averaging with mirroring is most consistent with
the presented derivation of the VANS equations and our numerical scheme. This choice of
scheme allows us to create well-founded tests which may later be used as a reference when
considering different schemes.

We then extended the projection scheme used in FPM for fluid phases with constant den-
sity to incorporate the calculated volume fraction and coupling source terms. We emphasized
how this sets itself apart from previous work in the context of the FPM and how it opens
up the numerical framework to a wide range of previously inaccessible applications. After
having discussed different time step restrictions and a substepping procedure in the solid
phase routines, we validated the complete numerical scheme in three test cases of increasing
complexity. In this context, we also discussed how boundary conditions need to be adapted
so that they correctly account for the additional terms that result from a two-way coupling
with the solid phase. While the test cases revealed some aspects which demand further in-
vestigation, an overall good agreement with analytical results, numerical results from other
CFD-DEM schemes and experimental results was shown. In light of these observations we
feel confident in stating that a well-founded basis for this type of coupling has been created
in the considered generalized finite difference framework. Building upon this, we may extend
the capabilities of our newly integrated coupling scheme in future work.
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Conclusion and outlook

As the first among several next steps, we propose further analysis into the topic of coarse
graining schemes in our GFDM framework. Since our coupling algorithm in conjunction
with the weighted averaging and method of images has shown good results, we may now
take this as a reference when analyzing averaging schemes which allow for more complex
geometries. In this context it will be particularly interesting to consider free surfaces or
moving boundaries, which form a typical field of application for Lagrangian fluid solvers.
There we can directly build upon the discussion and ideas already presented in the current
work. Additionally, one may analyze how different combinations of bandwidth and fluid
phase resolution influence the result of the complete coupled simulation. In these extensions,
emphasis should also be put on parallel performance which can be problematic due to the
presence of three different sizes of neighborhoods resulting from the fluid phase, the DEM
interactions and the coarse graining. With more investigations conducted on the importance
of discrete conservation conditions of coarse graining in our framework, one may further
analyze whether the proposed formulation of special stencils for the implicit drag treatment
can provide any advantage over the formulations used in the presented test cases.

Clearly, future work will also include the extension of the DEM implementation. Specifi-
cally, we have seen that even in highly dynamic processes with continuous addition of kinetic
energy, neglecting frictional forces may lead to non-negligible differences in macroscopic be-
havior. For both, these forces and the necessary rotational motion of particles, we already
laid some of the groundwork in this thesis. With the rotations included we would also return
to the discussion of integration schemes and expand upon the presented investigations also
for translational motion.

Finally, there is an innumerable amount of phenomena in multiphase flow which we may
want to represent in our scheme in the long-term. These can manifest itself in the necessity
for additional coupling forces (e.g. virtual mass or lift), the integration of mass and heat
transfer between phases or the treatment of non-constant density in the fluid phase.

As a concluding remark, we want to mention that in the process of working towards this
thesis, significant time was also devoted to research on continuum models which aimed to
capture the macroscopic behavior of a large number of interacting particles. Specifically,
we extended an existing model based on mean field theory and purely elastic contacts, so
that damping forces could be represented. Early results, part of which were published in [8],
appeared to be promising. Therein we considered the motion under a confining potential and
observed that damping from the microscopic contact model was captured reasonably well by
the macroscopic equations. However, we found that for contact model parameters which are
closer to those in a DEM simulation, the same setup lead to unsatisfactory results. Further
removing the confining potential lead to unacceptable amounts of diffusion which are not
present in the microscopic behavior. Therefore, we chose to omit a discussion of this topic
within the current work, in favor of a more focused and well-rounded thesis. The interested
reader may consult [8], where the initial investigations are described very concisely.
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Appendices

A Tensor and vector calculus notations
As is common in the context of continuum mechanics, we made use of tensor calculus in
many places within this thesis. In order to avoid any ambiguities, we devote this appendix to
a clarification of the corresponding notation. We note that this closely follows the book by
Spurk and Aksel [142], although minor modifications have been made to adapt their notation
to our setting. All considerations are restricted to Cartesian coordinates with normalized
basis vectors ei, i ∈ {1, . . . , d}. For our purposes we only need the following tensors:

• Zeroth order tensors in the form of scalar values φ ∈ R

• First order tensors a = aiei in the form of vectors a ∈ Rd

• Second order tensors T = T(i,j)eiej in the form of matrices T ∈ Rd×d

Note that we have used the Einstein summation convention in the above definitions. We
start the introduction of operations on tensors by the dyadic product of two first order tensors
a, b ∈ Rd, which is given by

a⊗ b = a(i)b(j)eiej

and results in a second rank tensor with components T(i,j) = a(i)b(j). This product is not
commutative, which is easily understood by thinking of the outer product as a product of
column and row vector in the sense of

a⊗ b = abT =




a(1)

...
a(d)



[
b(1) . . . b(d)

]
=




a(1)b(1) . . . a(1)b(d)

... . . . ...
a(d)b(1) . . . a(d)b(d)




From the matrix representation of this product we further observe that the identity

b⊗ a = (a⊗ b)T

holds. In addition to the dyadic product of two first rank tensors, we also want to consider
products of first and second rank tensors, which take the form

T · a = T(i,j)a(j)e(i)

a ·T = T(j,i)a(j)e(i)

These definitions are in line with common conventions for matrix-vector products and we
therefore often neglect the dot symbol. For two first rank tensors, the product reduces to
the inner product

a · b = a(i)b(i) ∈ R

for which we typically keep the dot symbol. By combining this with the above dyadic
product, one can easily verify that the identity

(a · b)b = (b⊗ b)a
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A Tensor and vector calculus notations

holds. As the last kind of tensor operation we want to introduce

T : S = T(i,j)S(i,j) ∈ R

which reduces two second rank tensors to a scalar and is called contraction.

Derivative notations

With this formalism being clarified, we want to take a look at how the partial derivatives,
which inevitably arise in the continuum mechanical descriptions, are embedded into it. For
x ∈ Rd we denote by

∇x =
[

∂
∂x(1) . . .

∂
∂x(d)

]T
(A.1)

the so-called del operator. When the argument of differentiation is clear, we usually omit the
index. In agreement with common notation in continuum mechanics, we use this to define
the gradient of a scalar and vector field through the dyadic product with the del operator.
For a vector field v : Rd 7→ Rd this reads

∇v :=∇⊗ v = ∂v(j)

∂x(i)eiej =




∂v(1)

∂x(1) . . . ∂v(d)

∂x(1)
... . . . ...

∂v(1)

∂x(d) . . . ∂v(d)

∂x(d)


 (A.2)

We note that, with this definition, the Jacobian of v is given by Jv = (∇v)T , where once
more the subscript might be omitted whenever this introduces no ambiguity. For a scalar
field φ : Rd 7→ R this leads to

∇φ = ∂φ

∂x(i)ei =
[
∂φ
∂x(1) . . . ∂φ

∂x(d)

]T
(A.3)

where the dyadic product becomes a scalar multiplication. Using the del operator in con-
junction with the tensor product, we obtain the generalization of the well-known first rank
divergence

∇ · a = ∂a(k)

∂x(k) (A.4)

to a second rank tensor
∇ ·T = ∂T(k,i)

∂x(k) ei (A.5)

This means, that the vector divergence is applied column-wise to the matrix representation of
the second rank tensor. This is also consistent with common representation of the laplacian
for a vector field

∇2v =




∂
∂x(k)

∂v(1)

∂x(k)
...

∂
∂x(k)

∂v(d)

∂x(k)


 =∇ · (∇v) (A.6)

which means that the laplacian is applied to each component individually. Finally, we want
to provide a list of useful identities which are based on the above notation and are applied
at several points throughout this thesis:

∇(φv) =∇φ⊗ v + φ∇v (A.7)
∇ · (u⊗ v) = u · ∇v + (∇ · u)v (A.8)
∇ · (φT) =∇φ ·T + φ(∇ ·T) (A.9)
∇ · (T · v) = (∇ ·T) · v + T :∇v (A.10)
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A Tensor and vector calculus notations

∇ · (v ·T) =
(
∇ ·TT

)
· v + TT :∇v (A.11)

∇ · (∇u)T =∇(∇ · u) (A.12)
∇ · (u · ∇u) = u · ∇(∇ · u) + (∇u)T :∇u (A.13)

∇2u =∇(∇ · u)−∇× (∇× u) (A.14)
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B Close packing of identical spheres

B Close packing of identical spheres

(a) Hexagonal close packing of identi-
cal circular particles in 2D.

(b) Hexagonal close packing of identical
spheres in 3D.

Figure B.1: Particle configurations for the hexagonal close packing.

In several places within this work, both, in the analysis of empirical force expressions and
evaluation of simulation results, we are faced with the task of assessing whether values of
porosity εf are physically reasonable. In the following we want to discuss the most simple
criterion in the form of an upper bound for εs and, for that matter, lower bound of εf . While
it is not a priori clear that there is such an upper bound for every particle shape (think
of cubes), it does exists for the specific case of a monodisperse solid phase with spherical
particles. In fact, this bound in three spatial dimensions is the content of the so-called
Kepler conjecture which has been postulated in the 17th century and only been formally
proven rather recently [59]. The configuration of particles which leads to the corresponding
volume fraction is the so-called hexagonal close packing (HCP) with

εHCP
s = π√

18
≈ 0.7405 (B.1)

To put this into context, a random configuration of particles typically does not exceed volume
fractions of εs = 0.68 [154]. There is also a two-dimensional analogue to the above Kepler
conjecture of sphere packing known as Thue’s theorem for circle packings. It states (see
[15] and references therein) that the densest configuration of equal circles leads to a volume
fraction of

εHCP
s = π√

12
≈ 0.9069 (B.2)

Again, the HCP provides a configuration with this maximum solid volume fraction. To
construct the HCP in two and three spatial dimensions, one places the sphere centroids at
positions

xs,ij =
[
(2i+ (j mod 2))√

3j

]
Rs (B.3)

in R2 and

xs,ijk =




2i+ (j + k mod 2)√
3(j + 1

3(k mod 2))
2
√

6
3 k


Rs (B.4)

in R3 where i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz and Rs denotes the sphere radius.
The corresponding configurations are visualized in Figure B.1a and Figure B.1b.
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volume fraction is the so-called hexagonal close packing (HCP) with

εHCP
s = π√

18
≈ 0.7405 (B.1)

To put this into context, a random configuration of particles typically does not exceed volume
fractions of εs = 0.68 [154]. There is also a two-dimensional analogue to the above Kepler
conjecture of sphere packing known as Thue’s theorem for circle packings. It states (see
[15] and references therein) that the densest configuration of equal circles leads to a volume
fraction of

εHCP
s = π√

12
≈ 0.9069 (B.2)

Again, the HCP provides a configuration with this maximum solid volume fraction. To
construct the HCP in two and three spatial dimensions, one places the sphere centroids at
positions

xs,ij =
[
(2i+ (j mod 2))√

3j

]
Rs (B.3)

in R2 and

xs,ijk =




2i+ (j + k mod 2)√
3(j + 1

3(k mod 2))
2
√

6
3 k


Rs (B.4)

in R3 where i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz and Rs denotes the sphere radius.
The corresponding configurations are visualized in Figure B.1a and Figure B.1b.
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C Single-particle drag force modifications
In Section 3.4 we discussed the class of drag correlations of the form

Fd = 1
8CdρfπD

2
s‖usf‖usfg(εf) (C.1)

which represent modifications of the drag force onto an isolated spherical particle. We recall
that these modifications are made to account for the presence of other particles. Within this
appendix we want to provide the reader with a quantification of this modification. This is
helpful in estimating the magnitude of forces that have to be expected in a coupled fluid-
solid flow with particle configurations of varying volume fractions and for different Reynolds
numbers. As before, we consider the voidage function

g(εf) = ε−χf (C.2)

with exponents χ as presented in Section 3.4 and summarized in Table 3.1. We further
restrict ourselves to the Dallavalle drag coefficient as proposed by Epstein (cf. (3.4.21))

Cd(Rep) =

0.54 + 4.8√

Rep




2

(C.3)

and note that the same results hold for the original coefficient of 0.63, as in (3.4.8). For
reference, the drag on an isolated spherical particle, as given in (3.4.3), can be denoted by

F 0
d = 1

8C
0
dρfπD

2
s‖uf − vs‖(uf − vs) (C.4)

where
C0

d = Cd

(
ρf‖uf − vs‖Ds

µ

)
= Cd

(
Rep

εf

)
(C.5)

and
Rep = εfρf‖uf − vs‖Ds

µ
(C.6)

Upon comparing (C.1) and (C.4) we realize that

Fd = F 0
d
Cd

C0
d
ε2−χ

f (C.7)

such that the single particle drag is modified by a combination of change in drag force
coefficient and a slightly altered voidage function. The magnitudes of both factors are
visualized in Figure C.1a and Figure C.1b. We note that all fluid volume fractions have
been chosen larger than the limit of densest sphere packing εHCP

f , which is described in
Section B and forms a lower bound for physically reasonable values. As is to be expected,
we observe from Figure C.1a that the drag coefficient Cd tends towards its single particle
version C0

d with increasing fluid volume fraction and increasing Reynolds number. In the
densest configuration, the coefficient is less than 4 times the size of C0

d. On the other hand,
from Figure C.1b we observe that the modification due to the exponential term can be as
large as a factor of 10. This magnitude is however only attained for the Wen-Yu and Di
Felice drag. Taking the more recent correlation by Rong et al., which is also proposed for
a wide range of volume fractions, as a baseline, we observe that the former two correlations
both likely overpredict the real drag force over a wide range of Reynolds numbers when a
very dense configuration is considered. An exception to this is the range of medium Reynolds
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Wen-Yu drag (solid, yellow), Di Felice (blue,
dashed), Rong et al. (red, dash-dotted).

Figure C.1: Factors in the relative drag force Fd
/
F 0

d plotted over a range of Reynolds numbers and
for various volume fractions. The different lines of identical color represent the result for
volume fractions εf ∈ {εHCP

f , 0.4, 0.5, 0.7, 0.9, 1.0} from top to bottom (as visualized by the
inset arrows).

numbers around Rep ≈ 30 where the Drag by Di Felice and Rong et al. are almost identical.
These observations coincide with our discussions in Section 3.4, where we noted that the
older drag force modifications were typically applied in dilute settings.

For the sake of completeness we also provide the complete drag modification, resulting from
the combination of both factors, in Figure C.2. As is also evident from the individual plots,
this plot shows that the drag in a dense configuration of monodisperse spherical particles
and with one of the two older drag laws can be almost 40 times as large as the drag on an
isolated particle.
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Figure C.2: Drag force modification due to non-zero solid volume fraction plotted over a range of Reynolds
numbers and for various volume fractions. The different lines of identical color represent the
result for volume fractions εf ∈ {εHCP

f , 0.4, 0.5, 0.7, 0.9, 1.0} from top to bottom (as visualized
by the inset arrow).
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D Newton-Euler equations

D Newton-Euler equations
In Section 4.1.1 we stated that the motion of a rigid spherical particle is described by the
Newton-Euler equations which can be written as

ms
dvs

dt = F (D.1)

Is
dωs

dt = T (D.2)

with translational and angular velocities given by

dxs

dt = vs (D.3)
dθs

dt = S(θs)ωs (D.4)

We did, however, not provide any derivation of these equations and left some details, such
as the meaning of different coordinate systems or the form of S(θs), unconsidered. In this
chapter we want to catch up on these things for the sake of completeness. In fact, we derive
the more general form

I · dωs

dt
+ ωs × (I · ωs) = T (D.5)

for particles which need not be spherical. Our notation is mostly based on the lecture
“Dynamics of mechanical multibody systems” held by Michael Burger at the university of
Kaiserslautern. Good literature reference on this subject-matter are the books by Roberson
and Schwertassek [123] and Wittenburg [167]. For a discussion of this topic in the context
of the DEM we also refer to the book by Matuttis and Chen [103]. We clarify that this
appendix mostly contains standard results of multibody mechanics and mainly serves to
embed them into the notation of this thesis in order to avoid ambiguity. As we have already
mentioned in Section 4.1.1, rotations have however been omitted in the simulations done for
this thesis and presented in Chapter 5. Nevertheless, work towards their integration in our
numerical scheme has already been done and this appendix both documents these efforts
and serves as an outlook for future extensions. We note that, for the sake of notational
convenience, we drop the solid phase index in the following.

D.1 Coordinate frames and velocity of material points
If we consider a rigid body which follows a translational and rotational motion, it is impor-
tant to clarify the coordinate system in which we express its position and velocities. We
distinguish between a so-called body-fixed frame K, that has its origin in the body’s cen-
ter of mass and rotates with the body, and a non-moving frame in which we express the
whole problem, the so-called world frame I, also sometimes referred to as inertial frame or
laboratory coordinate system.
At any given point in time we can express a vector xI ∈ R3 in the inertial frame I by its
coordinates in the body-fixed frame K and a rotation matrix RIK ∈ SO(3), i.e.

xI = RIKxK (D.6)

Above, we denoted by SO(3) the group of rotations in R3 which can be identified with the
group of orthogonal matrices in R3×3 that have a determinant equal to 1. If we denote the
vector from point P1 to P2 by xP1P2 and the origins of I and K by 0I , 0K, we observe (see
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I

K

Px0K

xP

x0KP

Figure D.1: Visualization of world frame, body-fixed frame and coordinates of a point P within a spherical
particle.

Figure D.1) that the coordinates of any point P on the rigid body can be described with
respect to the non-moving frame I through

xI0IP = xI0I0K + RIKxK0KP (D.7)

Typically the position of a body is represented by the position of its center of mass, such that
xI0K coincides with the variable xs in our notation. For better readability we omit the index
0I in the following whenever a vector starting from the non-moving frame is considered.
We observe that due to the rigid body assumption, any point within the body always has
the same position in terms of the body-fixed coordinate system so that the vector xK0KP is
independent of time. By taking the time derivative of (D.7) we can thus conclude that the
velocity with which point P moves in I is given by

vIp := ẋIp = ẋI0K + ṘIKxK0KP (D.8)

Here we used the dot notation for time derivatives in order to maintain readability. Clearly,
the first summand describes the translational velocity of the body’s center of mass, denoted
by vs in (D.1) and (D.3), while the second summand describes rotational velocities. Techni-
cally, we can directly store the 18 components of RIK ∈ R3×3, ṘIK ∈ R3×3 for every particle
to represent its orientation and rotational velocities, respectively. In this case we would have
θs = RIK, S = 1 and ωs = ṘIK in (D.4). While this is a perfectly valid approach, upon
investigation of the specific structure of SO(3) it is revealed that much of the information
is actually redundant and the number of variables which need to be stored can be signifi-
cantly reduced. Since it will have a big impact on memory consumption for large systems
of particles, we explore this in the following.

D.2 Angular velocity
The first reduction of variables we can make is within the components of rotational velocity.
To do so, we define the angular velocity matrix

WK := (RIK)T ṘIK (D.9)

and write
vIp = ẋI0K + RIKWKxK0KP (D.10)

From
(WK)T + WK = d

dt

(
(RIK)TRIK

)
= d

dt
1 = 0 (D.11)
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Here we used the dot notation for time derivatives in order to maintain readability. Clearly,
the first summand describes the translational velocity of the body’s center of mass, denoted
by vs in (D.1) and (D.3), while the second summand describes rotational velocities. Techni-
cally, we can directly store the 18 components of RIK ∈ R3×3, ṘIK ∈ R3×3 for every particle
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we see that the angular velocity matrix is skew-symmetric, such that we can write

WK =




0 −ωKz ωKy
ωKz 0 −ωKx
−ωKy ωKx 0


 (D.12)

By defining the angular velocity vector ωK := [ωKx ωKy ωKz ]T and using the correspondence
between cross product and skew-symmetric matrices, equation (D.10) finally becomes

vIp = ẋI0K + RIK(ωK × xK0KP ) (D.13)

To obtain a formulation which is fully expressed in terms of the global coordinate system,
we define

WI := RIKWK(RIK)T = ṘIK(RIK)T (D.14)
and rewrite (D.10) as

vIp = ẋI0K + WIxI0KP (D.15)
Since WI is again skew-symmetric, we also define ωI as before and obtain

vIp = ẋI0K + ωI × xI0KP (D.16)

We note that angular velocity vectors also have the expected relation

ωI = RIKωK (D.17)

which is easily seen from (D.13) by using the general identity R(a×b) = (Ra)×(Rb), valid
for R ∈ SO(3) and a, b ∈ R3. From this we observe that is sufficient to store either one
of the angular velocity vectors ωK,ωI ∈ R3 instead of ṘIK ∈ R3×3 to describe the velocity
of material points within a DEM particle. Thus, what we denoted by ωs in (D.2), (D.5)
and (D.4) typically refer to one of these vectors. With the reduction of rotational velocity
variables being clarified, we now want to proceed with a parametrization of the rotation
matrix itself.

D.3 Parametrization of rotations in 3D
Common choices for the parametrization of the group of special orthoginal matrices SO(3)
are based on

• Compositions of three elemental rotations (e.g. Euler angles, Cardan angles)

• Four parameters representing an angle and axis of rotation (Euler parameters)

We begin with parameterizations based on three angle variables to see why an extension to
four parameters might be useful.

Elemental rotations

As discussed in [123, 167], any matrix in SO(3) can be represented by three successive
elemental rotations, i.e. rotations about the axes of a coordinate system. Now suppose we
have two frames B and A in R3 with basis vectors eB = [eB1 eB2 eB3 ], eA = [eA1 eA2 eA3 ] so that
the former frame can be obtained by an elemental rotation around an axis of the latter one.
If we denote this axis by i ∈ {1, 2, 3}, it is easy to check that we can write

eB = RBAeA = Eie
A (D.18)
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and rewrite (D.10) as
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where Ei is one of the elemental rotation matrices

E1(ψ) =




1 0 0
0 cos(ψ) sin(ψ)
0 − sin(ψ) cos(ψ)


 , E2(ψ) =




cos(ψ) 0 − sin(ψ)
0 1 0

sin(ψ) 0 cos(ψ)




E3(ψ) =




cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1




With these matrices and the knowledge that they can be composed to produce the body-fixed
frame from the world frame, we write

eK = EkEjEie
I =: RKIeI (D.19)

with possibly different angles for every rotation. Consequently, the rotation matrix RIK,
considered above, takes the form

RIK = (Ei(α))T (Ej(β))T (Ek(γ))T (D.20)

To define a specific parametrization of SO(3) one defines the chosen sequence of rotation
axes by fixing i, j, k ∈ {1, 2, 3}. Then, for a fixed sequence, each rotation matrix RIK can be
represented by the three angles α, β and γ which forms the orientation vector θs = [α, β, γ]T
in (D.4). The choice of axes is however not completely arbitrary. It can be easily verified
that choosing i = j does not lead to independent rotations, but a single one with added
angles. The same argument applies for the second and third rotation, such that the only
allowed sequences are of the form

• i = k, i 6= j

• i 6= j, i 6= k, j 6= k

The first set of sequences is often referred to as Euler angles or proper Euler angles, while
the second set is called Tait-Bryan angles or Cardan angles. It is customary to denote a
specific sequence by i− j − k, i.e. define the rotation axis in order of appearance in (D.20).
According to [123] and [167], the most commonly used Euler angle sequence is 3 − 1 − 3.
Sometimes also the specific angles to the sequence 1−2−3 are called Cardan angles instead
of the whole set of sequences. Let us list the two most important parametrization here:

• Euler (3− 1− 3)

RIK(θs) = (E3(α))T (E1(β))T (E3(γ))T
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

cαcγ − sαcβsγ −sαcβcγ − cαsγ sαsβ
sαcγ + cαcβsγ cαcβcγ − sαsγ −cαsβ

sβsγ sβcγ cβ




(D.21)

• Cardan (1− 2− 3)

RIK(θs) = (E1(α))T (E2(β))T (E3(γ))T

=




cβcγ −cβsγ sβ
cαsγ + sαsβcγ cαcγ − sαsβsγ −sαcβ
sαsγ − cαsβcγ sαcγ + cαsβsγ cαcβ




(D.22)
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where Ei is one of the elemental rotation matrices

E1(ψ) =




1 0 0
0 cos(ψ) sin(ψ)
0 − sin(ψ) cos(ψ)


 , E2(ψ) =




cos(ψ) 0 − sin(ψ)
0 1 0

sin(ψ) 0 cos(ψ)




E3(ψ) =




cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1




With these matrices and the knowledge that they can be composed to produce the body-fixed
frame from the world frame, we write

eK = EkEjEie
I =: RKIeI (D.19)
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Note that we have abbreviated the trigonometric functions by their first letter to improve
readability. With θs and RIK(θs) being properly defined, we now want to consider the matrix
S(θs) which determines the relation between the temporal derivative of θs and the angular
velocity vector ωs in (D.20). Using WK = (RIK(θs))T d

dt

(
RIK(θs)

)
, together with the chain

rule in the temporal derivative and some lengthy but simple calculations, one obtains

ωK = TK(θs)θ̇s

with some matrix-valued function T(θs) depending on the kind of parametrization. Defining
the inverse as SK :=

(
TK

)−1
, we obtain the targeted formulation in (D.20) for the choice

ωs = ωK. If instead we were to choose ωs = ωI , we observe from (D.17) that we can simply
replace SK by SI = SK(RIK)T . For the two above parameterizations we obtain

• Euler (3− 1− 3)

SK(θs) = 1
sβ




sγ cγ 0
sβcγ −sβsγ 0
−cβsγ −cβcγ sβ


 (D.23)

• Cardan (1− 2− 3)

SK(θs) = 1
cβ




cγ −sγ 0
cβsγ cβcγ 0
−sβcγ sβsγ cβ


 (D.24)

We notice that both parameterizations lead to singularities in

dθs

dt = SK(θs)ωK

for certain angles β. Taking the Cardan angles as an example, the singularity at β = nπ
2 ,

n ∈ N results from the fact that the rotation matrix reduces to

RIK(θs)




0 0 1
sin(α + γ) cos(α + γ) 0
− cos(α + γ) sin(α + γ) 0


 (D.25)

such that all rotations of this type are described by β and a single parameter α+γ, effectively
reducing the degrees of freedom. This phenomenon is often referred to as as gimbal lock.
It may be negligible for multibody systems with constrained motion but is problematic for
discrete element simulations with freely rotating particles. This is why we want to consider
a second type of parametrization based on four parameters and embedded in the quaternion
formalism. This approach is able to efficiently circumvent the above problem by adding a
fourth parameter.

Quaternions

Since we know that a rotation in 3D only has three degrees of freedom we need to impose
an additional condition if we want to consider a parameter vector q ∈ R4. This is reflected
in the fact that we only consider normalized parameter vectors, i.e. ‖q‖ = 1. To see how we
can formulate a parametrization with these vectors, we take a closer look at the properties of
our rotation matrix. We know that it is orthogonal and has a determinant of +1. Therefore
all eigenvalues λ have a (complex) absolute value of |λ| = 1 and due to the odd dimension of
R3 we know that at least one of them is λ1 = 1. This tells us that the normalized eigenvector
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e1 of λ1 is invariant under the transformation RIK, i.e. its coordinates are the same in both
frames that the rotation maps between. In fact, every rotation matrix can be represented
by its invariant eigenvector, which serves as rotation axis, and an angle of rotation around
this axis. The angle can simply be calculated from the remaining eigenvalues. By setting

cos(φ) :=
tr
(
RIK

)
− 1

2 (D.26)

it is easy to verify that they are given by

λ2/3 = cos(φ)± i sin(φ) = e±iφ

and that φ is the clockwise angle of rotation about the axis e1. With this it is customary to
define q = (q0, q̃) ∈ R4 with

q0 := cos
(
φ

2

)
, q̃ := e1 sin

(
φ

2

)
(D.27)

which are often called Euler parameters. One can show (see [103, 123, 167], but beware that
the authors present the transposed matrix) that the rotation matrix is then given by

RIK(q) =




1− 2(q2
2 + q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) 1− 2(q2

1 + q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1− 2(q2
1 + q2

2)


 (D.28)

and by considering the trace and pairs of off-diagonal entries one can obtain the reverse
relations

q0 = 1
2
√

1 + tr(RIK) (D.29)

q1 = R32 −R23

4q0
, q2 = R13 −R31

4q0
, q3 = R21 −R12

4q0
(D.30)

Now, instead of using (D.28) to calculate the rotation matrix from the stored four component
parameter vector q = (q0, q̃), it is customary to exploit the formalism of so-called quaternions.
In the same way that classical complex numbers can be identified with two dimensional
vectors, quaternions form a type of complex numbers with three imaginary components and
can be identified with vectors q ∈ R4. For our purpose it is only of relevance to know that
the quaternion product of two vectors, or quaternions for that matter, p = (p0, p̃), q = (q0, q̃)
is defined as

p ∗ q = (p0q0 − p̃ · q̃, p0q̃ + p̃q0 + p̃× q̃) (D.31)

One can further verify that this leads to a definition of inverse quaternion of the form

q−1 = q

‖q‖2 (D.32)

with q = (q0,−q̃) denoting the conjugate quaternion. Obviously, as long as the quaternions
are normalized, the definition of inverse and conjugate quaternion coincide. With these
definitions one can show that

rI = RIK(q)rK ⇔ (0, rI) = q ∗ (0, rK) ∗ q−1 (D.33)

so that the rotation matrix need not be constructed to rotate a vector. It is also easy to
verify that the result of two successive rotations, i.e. rI = R(q2)R(q1)rK can intuitively
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be obtained by using q = q2 ∗ q1 in (D.33) and that replacing q by its conjugate in (D.33)
provides the inverse mapping from world to body fixed coordinates.

As before, with a parameterization of the rotations being established, we want to examine
the temporal derivative of the corresponding variables. Following [167, p.35] one can derive

SK(q) = 1
2



−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0




T

, SI(q) = 1
2



−q1 q0 −q3 q2
−q2 q3 q0 −q1
−q3 −q2 q1 q0




T

(D.34)

such that
dq
dt = SK(q)ωK = SI(q)ωI

which can also be written as
dq
dt = 1

2q ∗ (0,ωK) = 1
2(0,ωI) ∗ q (D.35)

This concludes our discussion on parametrizations of the rotation matrix. Next, we want
to take a look at how forces acting on a rigid body induce the rotational motion we just
described.

D.4 The result of applying forces and torques

r1

r2 r3

F1

F2

F3

Figure D.2: Example of forces acting onto different points on a spherical particle.

For a body with mass m and translational velocity vI0K the linear or translational momentum
P I is defined as

P I = m · vI0K
Analogously, a angular or rotational momentum LI can be defined through

LI = II · ωI

where the so-called inertia tensor I takes the role of the mass for the translational motion.
The inertia tensor of a rigid body is defined in K because the rigidity implies that IK is
constant. The relation between II and IK is the same as for the angular velocity matrix, i.e.

II = RIKIK(RIK)T (D.36)

With these definitions the Newton-Euler equations now state that

• the change of linear momentum equals the sum of all forces acting on the body

• the change of angular momentum equals the sum of all torques acting on the body
around the center of mass.
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which translates into the equations

Ṗ I =
nF∑

j=1
F Ij =: F I (D.37)

L̇I =
nT∑

j=1
T Ij =: T I (D.38)

Note that to each force Fj on the body, having its point of attack not in the center of mass,
we have a corresponding torque

T Ij = RIKrKj × F Ij (D.39)

with rj being the vector from the origin of K to the point of attack of Fj (see Figure D.2).
From (D.37) we directly obtain (D.1) by plugging in the definition of P I . For the angular
momentum we have to be a bit careful because II , in contrast to the mass m, depends on
the bodies movement and is therefore a function of time. By applying the chain rule we
obtain

L̇I = İIωI + IIω̇I

and observe that the second summand already has the form that appears in the second
equation of (D.5). For the first summand one can use (D.36) and the fact that IK is constant
to obtain

İIωI = WIIIωI − IIWIωI = ωI × (IIωI) (D.40)

which completes (D.5). To obtain the simplified equation (D.2), we note that spherical
particles have a scalar moment of inertia, i.e. IK = II = Is1, such that the above cross
product vanishes.

140

D Newton-Euler equations

which translates into the equations
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L̇I = İIωI + IIω̇I

and observe that the second summand already has the form that appears in the second
equation of (D.5). For the first summand one can use (D.36) and the fact that IK is constant
to obtain
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E Derivations for the linear spring-dashpot model
In Section 4.1.2 we discussed the combination of a linear spring and damper force to model
the contact between to DEM particles. During our discussion we stated several properties
of this contact model without providing a derivation. This appendix is devoted to filling in
some of these blanks.

E.1 Linear spring-dashpot model with attractive forces
Firstly, we consider the simple case where the damper is allowed to produce attractive forces
within the separation phase. In this case we can easily derive the analytical solution for a
binary collision. To do so, let us consider the equations of motion for two spherical particles
moving only under the influence of the spring and damper force, i.e

dxs,i

dt = vs,i, ms,i
dvs,i

dt = Fc,ij (E.1)
dxs,j

dt = vs,j, ms,j
dvs,j

dt = Fc,ji = −Fc,ij (E.2)

with
F n

c,ij =
[
k∗nδ

n
ij − dnv

n
s,ij

]
nij (E.3)

The definitions of overlap δnij, normal velocity vns,ij and contact normal nij are identical
to those in Section 4.1.2. As initial conditions we assume that the particles start with zero
overlap and the relative velocity of the centroids upon collision aligns with the normal vector,
i.e.

δnij(t = 0) = 0 (E.4)
vs,i(t = 0)− vs,j(t = 0) = vn,0s,ijnij(t = 0) (E.5)

We note that the latter assumption is also reasonable for different non-aligned relative ve-
locities as long as the contact time is sufficiently short (cf. [134]). Taking the time derivative
of the overlap we can easily see that

dδnij
dt = −vns,ij (E.6)

such that
d(vs,i − vs,j)

dt =
(

1
ms,i

+ 1
ms,j

)[
k∗nδ

n
ij + dn

dδnij
dt

]
nij (E.7)

It is evident that as long as the initial relative velocity is aligned with the normal vector,
the contact normal does not change its direction during contact and we can take the scalar
product of both sides with the normal to obtain the scalar equation

dvns,ij
dt = 1

m∗s

[
k∗nδ

n
ij + dn

dδnij
dt

]
(E.8)

Using (E.6) we can rewrite this as

m∗s
d2δnij
dt2 − dn

dδnij
dt − k

∗
nδ
n
ij = 0 (E.9)

which is the classical second order ordinary differential equation describing a harmonic os-
cillator. By defining the critical time

tc =
√
m∗s
k∗n

(E.10)
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product of both sides with the normal to obtain the scalar equation

dvns,ij
dt = 1

m∗s

[
k∗nδ

n
ij + dn

dδnij
dt

]
(E.8)

Using (E.6) we can rewrite this as

m∗s
d2δnij
dt2 − dn

dδnij
dt − k

∗
nδ
n
ij = 0 (E.9)

which is the classical second order ordinary differential equation describing a harmonic os-
cillator. By defining the critical time

tc =
√
m∗s
k∗n

(E.10)
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we rewrite this ordinary differential equation (ODE) with respect to the dimensionless time
τ = t/tc , which leads to

d2δnij
dτ 2 − 2ζn

dδnij
dτ − δ

n
ij = 0 (E.11)

with the so-called damping ratio
ζn = dn

2
√
m∗sk

∗
n

(E.12)

This ODE has the transient analytical solution

δnij(τ) =





e−ζnτ
(
c1e

τ
√
ζ2

n−1 + c2e
−τ
√
ζ2

n−1
)

if ζn > 1

e−τ (c1 + c2τ) if ζn = 1

e−ζnτ
(
c1 cos

(√
1− ζ2

nτ
)

+ c2 sin
(√

1− ζ2
nτ
))

if ζn < 1

(E.13)

where the cases describe overdamping, critical damping and underdamping from top to
bottom respectively. Using the initial conditions to determine the coefficients c1, c2 we can
derive

δnij(τ) = ṽn,0s,ije
−ζnτ





1√
ζ2

n − 1
sinh

(√
ζ2

n − 1τ
)

if ζn > 1

τ if ζn = 1
1√

1− ζ2
n

sin
(√

1− ζ2
nτ
)

if ζn < 1

(E.14)

where
ṽn,0s,ij = tcv

n,0
s,ij (E.15)

As can be seen in Figure E.1, for values of ζn ≥ 1 there is no rebound of the particles. Instead,
the overlap increases until a maximum is reached, after which it follows an exponential decay
towards zero. This means that the complete kinetic energy is dissipated and the particles
stick together indefinitely. Therefore the region of interest for granular flow with collisions
of finite duration is ζn ∈ (0, 1). Given a spring constant and desired damping behavior in
terms of ζn, we can reformulate (E.12) to obtain the corresponding damper constant

dn = 2ζn
√
m∗sk

∗
n (E.16)
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Contact duration

Obviously, the collision in a DEM solver does not follow the oscillating behavior which occurs
for ζn < 1. Instead, the particles separate when the overlap reaches zero again. From (E.14)
it is easy to see that the period of oscillations is given by

τd = π√
1− ζ2

n
(E.17)

Thus, the contact duration in terms of the original physical time scale is given by

td = π√
1− ζ2

n
tc (E.18)

We observe that in the purely elastic case, i.e. ζn = 0, the contact duration simplifies to

td = πtc (E.19)

Coefficient of restitution

As discussed in Section 4.1.2, it is more common in the context of DEM to use the so-called
coefficient of restitution as a measure of the damping within a linear spring-dashpot model.
This coefficient is defined as the ratio of velocity before and after the collision, i.e.

en =
dδnij
dτ (τ = τd)

ṽn,0s,ij
(E.20)

which provides a more direct means for calibration using experimental results. To calculate
the numerator in this relation we note that the time derivative of the overlap is given by

dδnij
dτ (τ) = ṽn,0s,ij


cos

(√
1− ζ2

nτ
)
− ζn√

1− ζ2
n

sin
(√

1− ζ2
nτ
)
 e−ζnτ (E.21)

By plugging this into (E.20) we obtain

en = e
−π ζn√

1−ζ2n (E.22)

which shows the expected reduction of post-collisional velocity with increasing damping
ratio. We now reformulate this result to obtain

ζn = − ln(en)√
π2 + ln(en)2

(E.23)

which is the relation commonly used in DEM with a linear spring-dashpot model to prescribe
a specific damping behavior (cf. [109, 117]).

Maximum overlap and choice of spring stiffness

In Section 4.1.2 we provided the expression

k∗n ≥
m∗s
(
vn,0s,ij

)2

(
δn,max
ij

)2 (E.24)
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for the spring stiffness which is necessary to prevent an overlap larger than δn,max
ij for an

initial collision velocity of vn,0s,ij. On the one hand, as noted in this section, one can derive
this relation from a conservation of energy argument by noticing that

E = Ekin = 1
2ms

(
vn,0s,ij

)2
(E.25)

at the beginning of the collision and

E = Epot = 1
2k
∗
n

(
δn,max
ij

)2
(E.26)

when the maximum overlap is obtained. On the other hand, one can verify this from the
analytical solution by calculating the time at which the maximum overlap is obtained from

dδnij
dτ (τ ∗) = 0 (E.27)

and (E.21). As is easily verified, the dimensionless time τ ∗ is given by

τ ∗ = 1√
1− ζ2

n
cos−1(ζn) (E.28)

and by using this result in (E.14) we get

δn,max
ij = tcv

n,0
s,ij exp


− ζn√

1− ζ2
n

cos−1(ζn)

 (E.29)

As is to be expected, we see that the maximum overlap takes the highest value for ζn → 0,
where

δn,max
ij = tcv

n,0
s,ij =

√
m∗s
k∗n
vn,0s,ij (E.30)

This can now be reformulated to obtain the same relation (E.24) as from the conservation
of energy argument.

Another conclusion which can be drawn from (E.29) is the maximum collision velocity
that can be handled by the contact model without having the particles pass through each
other. By setting the overlap to the sum of particle radii, we see that this velocity satisfies

vn,0s,ij = Rs,i +Rs,j

tc
exp


 ζn√

1− ζ2
n

cos−1(ζn)

 (E.31)

E.2 Linear spring-dashpot model without attractive forces
As we have noted when introducing the linear spring-dashpot model, during the unloading
stage the damper might lead to attractive forces. It is common in DEM to set the contact
force to zero once this point is reached. This does however mean that the analytical results
derived in the previous subsection are no longer strictly valid. Neglecting the attractive forces
means that we can expect the contact duration derived above to be overpredicted while the
coefficient of restitution will be underpredicted. As a consequence the time step restriction
based on the erroneous contact duration might not be strong enough and the desired damping
behavior not represented accurately. The correct solution to the case without attractive
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forces has been presented by Schwager and Pöschel [134] by adapting the conditions from
which τd is derived. While in the above derivation one uses

δnij(τ ∗d) = 0 (E.32)

the correct end of contact is determined by

d2δnij
dτ 2

∣∣∣∣∣
τ∗d

= 0,
dδnij
dτ

∣∣∣∣∣
τ∗d

< 0 (E.33)

and τ ∗d > 0. Taking the time derivative of (E.21) and setting it to zero we obtain the
equation

tan
(√

1− ζ2
nτ
∗
d

)
= −

2ζn
√

1− ζ2
n

1− 2ζ2
n

(E.34)

which is identical to the equation (20) in [134] but is reproduced here to avoid the cumber-
some conversion between notations. As before, we only want to consider the solution of this
equation for ζn < 1. We observe that the right-hand side is smaller than zero for ζn <

1√
2

while it is larger for ζn >
1√
2 . Since τ

∗
d needs to be positive this leads to the results

τ ∗d = 1√
1− ζ2

n





π − atan

2ζn

√
1− ζ2

n

2ζ2
n − 1


 ζn <

1√
2

atan

2ζn

√
1− ζ2

n

2ζ2
n − 1


 ζn >

1√
2

(E.35)

Plugging this dimensionless contact duration into (E.21) we obtain, in both cases,

ln(en) = −ζnτ
∗
d (E.36)

From (E.35) and (E.36) it is evident that the opposite expression of ζn in terms of the
coefficient of restitution en can not be easily obtained. While the authors in [134] do not
discuss this problem, Thornton et al. [152] propose a numerically fitted curve which they
claim accurately reproduces the relation described above.
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F Kernel mirroring and heat equation

F Kernel mirroring and heat equation
In this appendix we want to provide more detail on the connection between a weighted
averaging with Gaussian kernel function and the heat equation. To this end, we recall from
standard PDE theory that solutions to the initial value problem

∂φ

∂t
−D∇2φ = 0, φ(x, t = 0) = g(x), x ∈ Rd

of the heat equation on the full domain Rd can be obtained as a convolution

φ(x, t) =
∫

Rd

ΦD(x− y, t)g(y) dVy (F.1)

of the heat kernel

ΦD(x, t) =





1
(4πDt) d2

e−
‖x‖2
4Dt if t > 0

0 if t < 0
(F.2)

and the initial conditions g ∈ C
(
Rd
)
∩ L∞

(
Rd
)
(cf. [45]). Note that the heat kernel is

normalized on Rd for any t ∈ (0,∞), meaning that the above solution to the heat equation
represents a volume averaging of the initial condition in the sense of Section 3.2. So in an
unbounded domain, instead of averaging a field g with the normalized Gaussian weighting
function

wb(x) = 1
(πb2) d2

e−
‖x‖2

b2 (F.3)

we can supply the field as initial condition to a heat equation and solve the equation until
the time level

T = b2

4D (F.4)

is reached. Furthermore one can show that the method of images discussed in Section 4.2
can be applied to the heat kernel in order to provide a solution to the heat equation on the
half-space bounded by a hyperplane (cf. [140]). The boundary condition fulfilled by

φ(x, t) =
∫

Rd

[ΦD(x− y, t) + ΦD(Mw(x)− y, t)]g(y) dVy (F.5)

is the Neumann boundary condition

∂φ

∂n

∣∣∣∣∣
x

= 0, ∀x ∈ ∂V∞ (F.6)

This already suggests that quantities obtained by solving a heat equation on the bounded
domain fulfill the conservation conditions which were restored by the mirroring. In fact, the
heat equation with Neumann boundary condition is known to conserve the volume integral
over the initial data. Thus, with properly chosen initial data, the conservation conditions
are fulfilled by the analytical solution at any point in time. Upon comparing (F.1) and the
definition of solid phase intrinsic volume averages

εs(x)〈ψ〉s(x) =
Ns∑

j=1

∫

Vs,j

w(x− y)ψ(y) dVy (F.7)
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F Kernel mirroring and heat equation

we observe that the initial condition needs to be chosen as

g(x) =
Ns∑

j=1
ψ(x)χVs,j(x) (F.8)

to obtain
ΦD(·, T ) ∗ g = εs〈ψ〉s (F.9)

In the initial condition we denoted by χVs,j the indicator function within individual solid
particle volumes. On the other hand, we can conclude from (F.1) and the particle phase
average definition

np(x)〈ψ〉p(x) =
Ns∑

i=1
w(x− xs,i)ψi (F.10)

that
g(x) =

Ns∑

j=1
ψjδ(‖x− xs,j‖) (F.11)

leads to
ΦD(·, T ) ∗ g = np〈ψ〉p (F.12)

Here we denoted by δ the Dirac delta function. Clearly, for an application of these results in
the context of our coupled CFD-DEM scheme we still need to specify how they translate into
a discretized setting and how the heat equation is solved numerically. The first application
of a heat equation solver for the task of volume averaging and in the context of CFD-DEM
can be traced back to Capecelatro et al. [14] as well as Sun and Xiao [148, 149]. In their
work, the authors used a finite volume scheme which can typically guarantee that the fields
resulting from a heat equation solver exactly fulfill the discrete conservation conditions.
Unfortunately, in our framework we can only approximately satisfy the conditions and we
need to take additional precautions to prevent unphysical undershoots in volume fractions.
This is due to the fact that we can not guarantee positivity preserving stencils for the
laplacian on circular neighborhoods in our generalized finite difference scheme [135, 144,
146]. Additionally, as discussed in Section 4.2.4, a special treatment of free surfaces would
have to be devised. A thorough analysis of all these aspects and their influence on a CFD-
DEM simulation would certainly be very interesting. In the context of the current work we
did however not use this method of averaging and therefore leave these points open for future
work. Before we conclude this appendix, we want to note that another problem in need of
discussion in future work is how to represent the initial conditions. Clearly, the analytical
description via indicator and delta functions is not be directly transferable to a discretized
setting. While this has also been addressed in the original articles (cf. [14, 148, 149]), one
should again be careful to what extent their treatment carries over to our framework.
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did however not use this method of averaging and therefore leave these points open for future
work. Before we conclude this appendix, we want to note that another problem in need of
discussion in future work is how to represent the initial conditions. Clearly, the analytical
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G Approximation to weighting kernel integral
In this appendix we want to check the validity of the approximation

∫

Vs,j

w(x− y) dVy ≈ w(x− xs,j)Vs,j (G.1)

which we made in Section 4.2 to transition from volume averages, as defined in the derivation
of the VANS equations, to discrete representations in the FPM framework. Specifically, we
check this assumption for a Gaussian kernel

wb(x) = w̃b(‖x‖) = 1
(πb2) d2

e−
‖x‖2

b2 (G.2)

and spherical particles of equal radii, i.e Vs,j = BRs(xs,j), which represents the choice in all
numerical simulations within the context of this work. To investigate the error introduced
by the above approximation we use a numerical quadrature to calculate the integral on
the left-hand side of (G.1). This is done by a simple discretization of the polar coordinate
representation

ykl =


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2 cos

(
φl
2

)

rk
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(
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2

)

 (G.3)

and spherical coordinate representation
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where

rk = ∆r
2 + (k − 1)∆r, k ∈ {1, . . . , Nr}, ∆r = Rs

Nr

(G.5)

φl = ∆φ
2 + (l − 1)∆φ, l ∈ {1, . . . , Nφ}, ∆φ = 2π
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(G.6)

θm = ∆θ
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Nθ

(G.7)

The area or volume for each of these quadrature points is then given by
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such that the integrals can be approximated using

∫

BRs (0)
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(G.10)
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(a) Discretization of a circular
particle in two spatial di-
mension as used in the nu-
merical integration. The
points ykl are marked by
crosses.
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in R2 while dashed lines correspond to those in
R3.

Figure G.1: Numerical setup for the kernel integration and resulting error for a single particle.

The discretization in R2 is visualized in Figure G.1a. At this point we start our investigation
by denoting the error

δ(x,xs) =

∣∣∣∣∣∣∣

∫

BRs (xs)

wb(x− y) dVy − wb(x− xs)Vs

∣∣∣∣∣∣∣
(G.11)

which we calculate for a range of distances between the particle position xs and kernel center
position x. We note that due to

wb(x− xs)|BRs| = w b
Rs

(
x− xs

Rs

)
|B1| (G.12)

∫

BRs (xs)

wb(x− y) dVy =
∫

B1( x−xs)
Rs

wb(Rsy)Rd
s dVy =

∫

B1( x−xs)
Rs

w b
Rs

(y) dVy (G.13)

the same errors are obtained at constant relative distance ‖x− xs‖/Rs and relative band-
width b̃ = b/Rs , independent of the particle radius. Thus, for our numerical investigation we
can choose unit spheres without loss of generality. The results from a numerical integration
with Nr = 100, Nφ = 360, Nθ = 180 and three different kernel bandwidths are shown in
Figure G.1b and clearly reveal that the maximum error is obtained for xs = x. We further
note that the local minimums correspond to the points where the distance equals the band-
width. However, by itself, this result is of little use since it is not immediately clear which
absolute error is acceptable within our context. Thus, to provide a better quantification of
this error in a coupled simulation based on the volume averaged Navier-Stokes equations,
we recall that solid volume fraction is defined as

εs(x) =
Ns∑

j=1

∫

Vs,j

wb(x− y) dy (G.14)

We then denote the approximate volume fraction by

ε̃s(x) =
Ns∑

j=1
wb(x− xs,j)Vs,j (G.15)
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Figure G.2: Cumulative error plotted over a range of relative bandwidths of the Gaussian kernel. For
comparison the result of centering the kernel in a particle instead of taking the maximum of
several offset positions is added as red dashed line.

so that we obtain the cumulative error

|εs(x)− ε̃s(x)| ≤
Ns∑

j=1
δ(x,xs,j) ≤ δc (G.16)

made in the volume fraction due to the integral approximation. To estimate this cumulative
error from errors made over a single particle volume in a robust way, we need to consider
a dense configuration of particles. In fact, we choose the so-called hexagonal close packing
(HCP) which has the highest volume fraction among all possible configurations, as described
in Appendix B. To numerically calculate the cumulative error δc for a given relative kernel
bandwidth b̃, we initially center the weighting function at a particle centroid location within
the hexagonal close packing. Then we discard all particles of the HCP which have a distance
larger than c+ 3Rs to that centroid, where

c = b





√
− ln

(
b̃2ε
)

d = 2
√√√√− ln

(
3
√
π

4 b̃3ε

)
d = 3

(G.17)

is chose so that
w̃b(c)Vs ≤ ε (G.18)

for a value ε which is considered negligible and chosen to be ε = 1× 10−18 here. The increase
of this cutoff distance by 2Rs is due to the fact that we offset the kernel within a radius of
2Rs and take the maximum of all cumulative errors among the offset positions. A further
increase by Rs ensures that every particle which intersects the circle or sphere of radius c is
fully considered in the calculation, thus leading to the above-stated c+ 3Rs.

The results of our calculations are shown in Figure G.2a, Figure G.2b for two and three
dimensions, respectively. We observe that choosing a bandwidth as small as the particle
radius leads to a cumulative error which is clearly unacceptable. This is not surprising, since
in this case the Gaussian kernel is far from constant within the extent of a single particle.
On the other hand, for the range b ∈ [4Rs, 8Rs] of typical values in CFD-DEM literature, we
observe that the error is below 2% in both, 2D and 3D. We further have to take into account
that we chose the densest possible particle configuration, meaning that the error has to be
understood as an upper bound. In summary we conclude that (G.1) can be considered a
valid approximation.
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We consider the modeling and simulation of flows composed of a fluid with an 
immersed particulate solid phase within a two-way coupled scheme. We embed it 
into the generalized finite difference framework of the finite pointset method (FPM). 
Both phases are described in a Lagrangian formalism and are represented by point 
clouds. This allows us to treat all phases in a common framework and to take 
advantage of synergies in terms of data structures and algorithms. A key challenge 
which is introduced by the generalized finite difference setting is the calculation of 
averaged quantities. Due to the properties of our mesh-free approach which is 
missing an inherent definition of cell volume, conventional averaging strategies from 
mesh-based schemes are not directly applicable. We employ an approach which 
circumvents these problems and takes the finite difference nature of the FPM into 
account. Additionally, we bring to light the required changes to a projection method 
for the fluid phase to incorporate the multi-phase setting. The solid phase solver, 
averaging scheme, and fluid solver are embedded into a coupled algorithm with a 
substepping procedure to improve efficiency.
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