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Abstract: Today, measurement methods like deflectometry allow accurate
measurements of specular surfaces. The measurement methods are often
more precise than human vision. If the aim is to inspect surfaces for de-
fects that would disturb humans, so called aesthetic defects, it is important
to understand the connection between the measurement method and human
vision. This problem is addressed in this report. In contrast to matte surfaces,
there are different influencing factors for the perception of specular surfaces.
We are proposing a model which introduces a lower bound for the visibility of
defects on specular surfaces. This means that defects smaller than this bound
cannot be identified by an average human observer.

1 Introduction

The automated visual inspection of specular surfaces is a practical problem with

many applications. Today, there are methods known to get precise measurements

of specular surfaces, ranging from small glossy mobile devices up to large lac-

quered automobile bodies. One way to acquire the surface shape is a measurement

method called deflectometry, which can be used for specular to partially specu-

lar surfaces. It has the advantage of being especially sensitive to changes in the

surface gradient. This corresponds to the human perception of specular surfaces.

When surfaces which have to “look good” are inspected, all defects visible to a

human under defined conditions should be detected. Therefore the defects are de-

fined by some aesthetical measure, which depends on the human visual system,

surface properties and a typical environment. In this paper we propose such an

approach to quantify the visibility of aesthetic defects. For this purpose we define

thresholds for the visibility of defects on specular surfaces. Defects smaller than

these quantifications are invisible for an average human observer.
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2 Related Work

Some work was done to automatically assess specular surfaces as humans would

do. First of all, Hsakou [Hsa06] uses deflectometry and makes use of the sur-

face curvature for assessment, as it correlates to human visual inspection. Addi-

tional decision criteria like location, area, amplitude and density are identified by

comparing automated with manual inspections. Finally, tolerance thresholds for

combinations of the identified criteria are chosen assisted by an inspector.

The detection, classification and evaluation of surface defects is a rather gen-

eral task with many applications and accordingly a lot of studies exist in this

field. The studied applications range from the evaluation of auto-body pan-

els [And09, Fer13], assessing scratch damages in bulk materials and coatings

[HWP03], scratch visibility on polymers [RSW+03, JBH+10, LBS+11] and

defects on machined and painted surfaces [PK06].

3 Derivation of the model

In this section we derive the model which connects the influencing factors with the

minimum defect sizes visible for a human observer.

3.1 Resolution on the surface

Given the variables angular resolution θ, incident angle on the surface α and the

viewing distance to the surface d we want to determine the resolution on the

surface a as shown in Fig. 3.1:

a

sin(θ)
=

d′

sin(α′)
, (3.1)

α′ = α− θ

2
, (3.2)

d′

sin(α)
=

d

sin(180− α− θ
2 )

.
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Figure 3.1: Lateral resolution on the surface.

Using the symmetry of the sine function sin(180− x) = sin(x) we get

d′ =
d sin(α)

sin(α+ θ
2 )

. (3.3)

Inserting (3.2) and (3.3) in (3.1) we obtain

a =
d sin(θ) sin(α)

sin(α− θ
2 ) sin(α+ θ

2 )
. (3.4)

Using the sinus law sin(x) sin(y) = 1
2 (cos(x−y)−cos(x+y)) and the asymmetry

of the cosine function cos(x) = cos(−x) (3.4) can be simplified to

a = 2d
sin(θ) sin(α)

cos(θ)− cos(2α)
. (3.5)

In the special case of α = 90 (3.5) simplifies to

a = 2d
sin(θ)

cos(θ) + 1

= 2d tan(
θ

2
).
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Figure 3.2: Angular resolution caused by resolution on the screen.

3.2 Resolution on the screen

Similar to section 3.1 in (3.5) and using the variables angular resolution θ, incident

angle on the screen β and the viewing distance from the observer over the surface

to the screen d+ h we determine the resolution on the screen b as in Fig. 3.2:

b = 2(d+ h)
sin(θ) sin(β)

cos(θ)− cos(2β)
. (3.6)

In the special case of β = 90 (3.6) simplifies to

b = 2(d+ h) tan(
θ

2
).

3.3 Deflection on the screen

Similar to the previous sections 3.1 and 3.2 as in (3.5) and (3.6) and using the vari-

ables surface normal change Δφ, incident angle on the screen β and the distance

from the surface to the screen h we determine the deflection of the viewing rays

on the screen c as in Fig. 3.3:

c = 2h
sin(Δφ) sin(β)

cos(Δφ)− cos(2β)
. (3.7)
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Figure 3.3: Deflection on the screen caused by change of the surface normal.

In the special case of β = 90 (3.7) simplifies to

c = 2h tan(Δφ).

3.4 Defect model triangle

Assuming a triangular shaped defect as in Fig. 3.4, we need the variable Δφ for

the triangle gradient and at for the lateral extend of the defect to obtain the defect

depth t

at =
t

tan(Δφ
2 )

. (3.8)

3.5 Deviation

A defect on the surface is visible if two conditions are met. At first the observer

has to be able to resolve the defect on the surface a = at using (3.5) and (3.8),

which leads to

2d
sin(θ) sin(α)

cos(θ)− cos(2α)
=

t

tan(Δφ
2 )

. (3.9)

In the special case of α = β = 90 (3.9) simplifies to
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Figure 3.4: Triangular defect model causes deflection of viewing rays.

2d tan(
θ

2
) = 2h tan(Δφ). (3.10)

The second condition is that the deflection has to be resolved on the screen b = c
using (3.6) and (3.7)

2(d+ h)
sin(θ) sin(β)

cos(θ)− cos(2β)
= 2h

sin(Δφ) sin(β)

cos(Δφ)− cos(2β)
. (3.11)

In the special case of α = β = 90 (3.11) simplifies to

2(d+ h) tan(
θ

2
) = 2h tan(Δφ),

which leads to

Δφ = arctan(
d+ h

h
tan(

θ

2
)). (3.12)

Inserting (3.12) into (3.10) we get

2(d+ h) tan(
θ

2
) =

t
d+h
h tan( θ2 )



Defect perception thresholds on specular surfaces 129

and hence

t = 2(d+ h)
d

h
tan2(

θ

2
).

As it can be observed that the angle Δφ is nearly 0, we can approximate

tan(Δφ) ≈ Δφ, so analogue to (3.12) we can write Δφ without assuming

α = β = 90 as

Δφ =
2 sin2(β)(d+ h) sin(θ)

(d+ h) sin(θ)− h cos(2β) + h cos(θ)
. (3.13)

Inserting (3.13) into (3.5) and using the triangle defect model from (3.8) we get

t = −
2d sin(α) sin(θ) tan

(
sin2(β)(d+h) sin(θ)

(d+h) sin(θ)−h cos(2β)+h cos(θ)

)
cos(2α)− cos(θ)

. (3.14)

The proposed model (3.14) gives the lower bound for the visibility of a defect on

a specular surface. For the defect we assume a triangular shape (3.8) that deflects

one viewing ray on a screen. With an appropriate pattern this deflection can be

resolved. Furthermore the defect itself has to be large enough to be resolved on

the surface, as given in (3.5).

4 Results & Discussion

Before evaluating the model derived above, it is necessary to define the viewing

capabilities of an average human observer and a typical surrounding. We describe

the viewing capability with the angular resolution of the human eye and assume

an observer with the average visual acuity of θ = 1
60

◦
[PPBS08]. The visual

acuity describes the spatial resolution of the human eye, especially the ability to

discriminate between two separate points. Furthermore as typical environment for

the observation we have chosen a car dealership with viewing distances ranging

from dmin = 30
100m to dmax = 2m and screen distances ranging from hmin = 1m

to dmax = 10m. The screen has to show patterns that allow the detection of very

small deflections of viewing rays.

As a first result, Figure 4.1 shows the minimal visible width by evaluating (3.5)

with α = 90. Figure 4.2 shows the minimal visible height by evaluating (3.14)

with α = β = 90 and Figure 4.3 shows the minimal visible height by evaluat-

ing (3.14) with minimal viewing distance dmin and maximal screen distance hmax.
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Figure 4.1: Minimal visible defect width at with respect to viewing distance d for

several incident angles on the surface α.

Looking at (3.14) it can be seen that for minimal viewing distance dmin and max-

imal screen distance hmax the smallest defects are visible. Under these optimal

viewing conditions, a defect may be as small as 87μm in lateral extend, 0.01 steep-

ness and 32nm in height. One drawback of the model is that the lateral extend and

steepness of the defect are linked. Thus defects with the same height have a larger

gradient when their lateral extend is smaller, which does not correspond to the in-

tuition that small changes in height are better visible when the defect has a large

extend. Another drawback is that we only look at the first derivative of the surface,

which is responsible for the deviation of single viewing rays. Usually humans are

used to observe distortions of known patterns, which corresponds to the second

derivative of the surface. Also it results in reducing the capabilities of the human

eye to just one value, the visual acuity. Areal pattern resolution capabilties are

ignored.

5 Conclusion

We proposed a model to estimate lower bounds for the visibility of defects on

specular surfaces. Therefore a perfect specularity, a triangle shaped defect and an

optimal pattern on the screen were assumed. The benefit of the model is that the

visibility is attributed to known quantities such as the visual acuity of the human
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Figure 4.2: Minimal visible defect height with respect to viewing distance d and

screen distance h and incident angles on the surface and the screen of α = β = 90.

Figure 4.3: Minimal visible defect height with respect to incident viewing angle

α and screen angle β and for minimal viewing distance d and maximal screen

distance h.
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eye, observation angles and distances. Assuming an average acuity under optimal

viewing conditions the model gives very small lower boundaries for the visibility

of defects. The lower bounds obtained with this model are very small, but as the

model makes some artificial worst case assumptions such as a perfect specular

surface and a perfect pattern, the results should get more practical as more realistic

assumptions are included in the model.
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