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0 Abstract 
This paper focuses on the analysis of hydrothermally induced phase transformation of yttria-stabilized 

tetragonal polycrystalline zirconia (Y-TZP) and its influence on the hardness. Due to the hydrothermal 

exposure and the accompanied low temperature degradation (LTD), a micro-cracked transformation 

zone is generated at the surface and progresses into the subjacent material. Raman-spectroscopic 

analysis of hydrothermally loaded and cross-sectioned samples revealed complete phase 

transformation within this zone. Its depth as well as its temperature-dependent growth rate was 

verified. Raman-spectroscopic measurements at the surfaces were correlated with the progression of 

the transformation zone. An efficient model, which assumes one extinction coefficient for tetragonal 

and monoclinic microstructure, enables to determine the depth of the transformation zone from the 

measured Raman signals. Furthermore, an exponentially decreasing Vickers hardness with increasing 

depth was determined. Finally, a differently sintered Y-TZP ceramic revealed enhanced resistance 

against LTD for the same hydrothermal loading conditions. 

 

1 Introduction 
Yttria-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramics are promising materials for many 

technical applications as they provide a very high hardness and fracture toughness and mechanical 

strength [1] [2] [3] [4]. Furthermore, due to their corrosion and wear resistance and biocompatibility, 

they are utilized for artificial femoral heads and dental restorations [1] [5]. The reliability of some 

zirconia ceramics is still limited by undesired phase transformation in contact with aqueous solutions 

which is known as “Low Temperature Degradation” (LTD). This degradation is characterized by 

nucleation and growth of a transformed and destabilized zone from the hydrothermally loaded surface 

into the bulk material [6]. Due to the accompanied intergranular micro-cracking, LTD causes a loss of 

mechanical strength [7]. Extensive research on LTD of zirconia ceramics has been done in recent 
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years [6] [8]. In this context, research mainly focused on microstructural features, which affect the 

resistance to degradation. The addition of alumina to zirconia is for instance a suitable method to 

decelerate the aging process [9]. Further promising approaches are the decrease of both, the grain 

size and tensile residual stresses within the material [6]. An excellent review was published by Basu 

[2], which generally summarizes different microstructural features that have an impact on the phase 

transformation. In addition, Chevalier [6] investigated the characteristic features of LTD. In summary, it 

can be stated that the production of aging-resistant zirconia ceramics requires an accurate setting of 

relevant process stages like powder mixing, sintering and machining. 

 

In general, the experimental examination of LTD is carried out using hydrothermal ageing 

experiments. Subsequent investigations enable the quantification of the ratio of tetragonal and 

transformed monoclinic phases. Here, µ-Raman-spectroscopy has become a widely used method as it 

is very sensitive to monoclinic zirconia and offers a high spatial resolution [10] [11]. 

 

Based on previous research, mathematical correlations were identified between the transformed 

monoclinic phase content Vm and both the absolute hydrothermal loading temperature T and time of 

exposure to moisture t. On the basis of surface analysis it was concluded that the transformation 

kinetics follow the Mehl-Avrami-Johnson (MAJ) law as depicted in Equation 1 [10] [12]: 

 

 �� = 1 −	��	
⋅�
� Equation 1 

 

where the Avrami-exponent n depends on the nucleation-and-growth kinetics of the aging process 

with typical values between 0,3 and 3,5 [13]. The reaction rate constant b corresponds to the 

Arrhenius law in Equation 2: 

 

 � = �� ⋅ �
��
�⋅� Equation 2 

 

where R is the gas constant and b0 is a constant pre-exponential factor that refers to the reaction 

mechanism of the transformation process. Q is the activation energy of the tetragonal to monoclinic 

transformation, which depends on both temperature and microstructure [14]. 
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Nevertheless, conclusions about the actually existing phase contents from Raman-spectroscopic 

measurements have to be drawn carefully. In fact, the detected Raman-signals originate not only from 

the surface of zirconia samples but from subsurface areas as well. In that regard, Presser et al. [15] 

state that the information depth in a Raman analysis depends on material and instrumental 

parameters as well as the microscope setup and may therefore extend “to several tens of µm” [15] for 

a non-degraded Y-TZP ceramic.  

 

In order to determine phase transformation beneath the surface, Muñoz-Tabares et al. [7] 

experimentally investigated cross sections of hydrothermally loaded zirconia ceramics. While a high 

value of the monoclinic content was detected close to the surface, a steep gradient was observed at a 

certain depth where the monoclinic phase content dropped to almost zero. The gradual change from 

the saturated value of monoclinic phase to untransformed tetragonal structure occurs within a short 

distance of about 15 µm. This observation leads to the assumption that hydrothermally loaded 

ceramics may consist of a highly transformed zone with high monoclinic phase content and sharp 

transition to the untransformed bulk. Further investigations by Keuper et al. [16] using SEM/EBSD 

techniques yielded evidence that the transformation front is rather sharp.  

 

As Raman signals are obtained from certain depths in the material and the surface-near areas of 

hydrothermally loaded samples are expected to be completely transformed, Raman-spectroscopic 

measurements on the surfaces can be illustrated as depicted in Fig. 1. 

 

 

Fig. 1: Raman-signals are detected in the bulk material as well as in the transformed zone for 
hydrothermally loaded samples. It is expected that the information depths change due to the different 
absorption coefficients and thicknesses of the zones. 
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For a small transformation depth it is clear that a considerable part of the measured Raman intensity is 

detected from non-transformed subsurface areas. As the transformation front progresses into the bulk 

material as a consequence of further degradation, the ratio of transformed monoclinic zirconia within 

the Raman-probe volume increases. Taking this circumstance into account, it becomes clear that for 

an accurate characterization of the growth behavior of the transformation zone careful interpretation of 

the Raman-data is necessary. Only with this knowledge of depth-dependent signal response, Raman-

spectroscopic measurements on the surfaces can be interpreted correctly and used to reliably 

determine the depth of the transformation zone without further sample preparations. 

 

The objective of this work was to quantify and compare the phase transformation rates of two 

differently processed Y-TZP ceramics after defined hydrothermal loading conditions. Therefore, the 

size of transformation zones and their microstructures were characterized via optical microscopy and 

SEM after cross-sectioning of the degraded samples. Raman-spectroscopy was applied on the 

surfaces after hydrothermal loading as well as within the bulk material of cross-sectioned samples. 

Moreover, the materials’ macro hardness was investigated via Vickers indentation in order to examine 

the impact of hydrothermal loading on the mechanical response. The results of these three 

investigations were correlated to describe the impact of LTD on the material. 

 

2 Material and methods 
Two differently sintered high strength zirconia ceramics (3 mol.% yttria, 0,2-0,3 wt. % alumina, FCT 

Hartbearbeitungs GmbH, Sonneberg, Germany) were investigated: On the one hand Y-TZP standard 

material exhibiting a grain size of 0,4 µm and on the other HY-TZP with an average grain size of 0,28 

µm. The “H” refers to a modified sintering process, including an additional hot isostatic pressing step. 

The experiments were conducted on rectangular bending bar samples with dimensions of 3 mm x 4 

mm x 20 mm. The 4 mm x 20 mm faces of the bending bars were polished to ensure accurate Vickers 

indentations according to industrial standards [17]. Polishing was carried out as a multistage process 

with gradually different fine-grained diamond suspensions for various times in order to minimize 

preparation damages. The particular preparation steps are depicted in Table 1. 
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Table 1: Steps of the polishing process for the sample surfaces/cross-section preparation. 

 
Diamond  

suspension Time 

Surface machining /  
Cross-sectioning  

30 µm 20 min 
9 µm 10 min 
3 µm 15 min 
1 µm 5 min 

Oxide polishing  
suspension 4 min 

 

 

The ceramic samples were hydrothermally aged in a saturated water steam atmosphere by using an 

autoclave system (Autoclave DD 050 SS 33, Autoclave Engineers, Erie, USA) under consideration of 

certain loading temperatures, pressures and times as arising from Table 2. 

 

Table 2: Hydrothermal loading conditions for certain aging processes of Y-TZP and HY-TZP ceramics. 
HY-TZP was not included in series A since no change was observed in series B. 

Experimental  
series  Temperature Pressure Time 

A 175 °C 9 bar 
4 h 
8 h 

16 h 
24 h 

B 200 °C 15,5 bar 
2 h 
4 h 
8 h 

16 h 
24 h 

C 225 °C 26 bar 
2 h 
4 h 
8 h 

 

Raman microscopy (InVia, Renishaw, Gloucestershire, UK) was applied using a Nd:YAG (SHG) laser 

with a wavelength of 532 nm. As the tetragonal and monoclinic phases give rise to specific Raman 

bands respectively, the phase fractions can be derived by setting the integrated intensities of the 

characteristic Raman bands for the tetragonal (It
147, It

265) and monoclinic (Im
181, Im

190) phase in relation 

to each other as in Equation 3 which was introduced by Clarke et al. [18].  

 

 �� = 	 ����� +	�����
�	 ∙ 	����� + 	� ∙ ���� 
 + 	����� + ����� 

Equation 3 
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k and δ are empirical factors with values of k = 0,97 and δ = 1 [18]. The super-indexes of the 

integrated intensities refer to the positions of the Raman bands. Due to the uncertainties related to 

surficial Raman-spectroscopic measurements as mentioned above, the calculated results will not be 

interpreted as monoclinic contents. In fact, they just represent intensity ratios. The intensities were 

calculated on the basis of a curve fitting procedure (WIRE 3.4 software, Renishaw, Gloucestershire, 

UK) according to Dorn [19] [20]. 

 

Hydrothermally aged samples were cut using a diamond band saw. The resulting cross-sections were 

embedded in polyester resin and machined according to the preparation steps listed in Table 1. The 

subsurface transformation zone was investigated using digital (VHX 500 F, Keyence Deutschland 

GmbH, Neu-Isenburg, Germany) and scanning electron microscopy (Zeiss Supra 55VP, Carl Zeiss 

AG, Oberkochen, Germany) as well as Raman-spectroscopy. 

 

In order to measure the materials’ macro-hardness after hydrothermal loading, 5 Vickers indentations 

(Dia Testor 2 RC, Otto Wolpert-Werk GmbH, Ludwigshafen, Germany) were made on the polished 

surfaces of each sample using a loading force of 50 N. Additionally, 19 nanoindentations 

(Fischerscope H100C, Helmut Fischer GmbH, Sindelfingen, Germany) were applied at both, the 

transformation zone and subjacent tetragonal structure of the polished surfaces of a cross-section. 

One Y-TZP sample, which was hydrothermally loaded at T = 200 °C for t = 16 h was used for these 

investigations. The indentations within the transformation zone were set at least at distances of 75 µm 

from the surface respectively the transformation front. From the measured indentation depths hc and 

hmax the averaged material’s hardness H, stiffness S and effective Young’s modulus Eeff were 

determined using the method of Oliver and Pharr [21] [22] (Equations 4-8). Vickers indentations were 

carried out using a loading force of 500 mN and a loading rate of 500 mN/60 s. 

 

 ! = 	 "�#$
%	ℎ'
 

Equation 4 

 ( = 	) · "�#$
ℎ+  

Equation 5 

 ,-.. = 	 1/ · √12 · (
3%	ℎ'


 
Equation 6 

 



7 
 

 %	ℎ'
 = 24,561 · 	ℎ' + 0,008
� + 0,206 · 	ℎ' + 0,008
 Equation 7 

 ℎ+ = ℎ�#$ − ℎ' Equation 8 

 

with β = 1,05 [23] and ε = 0,75 [21] [22]. 

 

3 Results 
In order to visualize the changed microstructural features due to hydrothermal loading, Fig. 2 shows 

typical cross sections of aged samples that exhibit a clearly visible transformation zone. 

 

 

Fig. 2: Digital (a) and b)) and SE microscope images (c)) of differently aged Y-TZP ceramics after 
cross-sectioning; a): T = 175 °C, t = 24 h; b) and c): T = 225 °C, t = 4 h. The dashed line in the 
enlarged view of c) refers to the transformation front. 
 

The transformation zone and the non-degraded bulk material can be distinguished by digital 

microscopy due to different light reflections of these areas. A sharp transition line expands parallel to 

the surface and therefore enables to precisely measure the depth of the transformation zone. 

Moreover, the comparison between Fig. 2a) and b) shows the changed progression of the 

transformation front into the bulk material due to changed hydrothermal loading conditions. 

Intergranular disruption is visible via SEM as shown in the enlarged view in Fig. 2c). The detail view on 

the transformation front reveals the sharp transition between the micro-cracked and undamaged 

zones. The grain pull-out in the transformation zone is assumed to result from the surficial machining 

procedure, as the interconnections between the grains are significantly weakened. 

 

Fig. 3 illustrates the phase transformation behavior within the bulk material by exemplarily analyzing 

the cross-sectioned samples of the experimental series B nearby the transformation fronts. 
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Fig. 3: Intensity ratios measured nearby the microscopically observed transformation fronts after 
hydrothermal loading of Y-TZP ceramics for 200 °C and various times: a) 2 h, b) 4 h, c) 8 h, d) 16 h 
and e). 

 

The curves are characterized by a sharp decrease of the intensity ratios at certain depths from the 

surfaces. These depths match very well with the microscopically observed depths of the 

transformation fronts as drawn in Fig. 4. The very high intensity ratios of ca. 80 % give evidence about 

the full transformation within the transformed zones.  

 

The depth values of the transformation zones are plotted as function of hydrothermal exposure 

duration and temperatures in Fig. 4 for all experimental series.  
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Fig. 4: Depths of the transformation zones within the bulk materials of Y-TZP ceramics related to 
various hydrothermal loading times and temperatures. 
 

The diagram shows well correlating linear relationships for each temperature. It can be seen, that the 

slopes m of the linear trendlines increase considerably with increasing temperature.  
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Fig. 5 shows the time- and temperature-dependent progression of the Raman-band intensity ratios 

determined on hydrothermally loaded sample surfaces. The relations between intensity ratios and 

loading times are illustrated as solid lines and follow a modified MAJ law (Equation 9) considering a 

saturated intensity ratio of 80 % and a constant Avrami-exponent n = 1. 

 

 �� = 80	% · 	1 −	��
·�
 Equation 9 
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Fig. 5: Intensity ratios determined via Raman-Spectroscopy on the surfaces of various hydrothermally 
loaded Y-TZP samples. The solid lines correspond to a computational fitting procedure with n = 1. 

 

The correlation of these two completely different descriptions of phase transformation behavior, on the 

one hand the transformation zone depths determined via light microscopy and on the other hand the 

Raman-spectroscopic investigations on the surfaces, leads to Fig. 6. 
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Fig. 6: Intensity ratios determined via Raman-spectroscopy on the surfaces related to the depths of the 
transformation zone of various hydrothermally loaded Y-TZP samples. 

 

The measured intensity ratios of all investigated experimental series progress with increasing depth of 

the transformation zone, following one exponential law. The specific hydrothermal loading conditions, 

like exposure time and temperature, do therefore not directly influence the intensity ratio, as there is 

only a correlation to the depth of transformation zone. 

 

Another correlation, which depends only on the depth of the transformation zone, is the changed 

macro-hardness of Y-TZP due to hydrothermal loading as displayed in Fig. 7.  
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Fig. 7: Measured Vickers hardness of Y-TZP ceramics related to the depths of the transformation 
zones. 
 

It can be seen that the Vickers hardness exponentially decreases with increasing depth.  

 



11 
 

The values for hardness, stiffness and effective Young’s modulus which were determined on the basis 

of nanoindentation tests at the polished surface of a cross-section are listed in Table 3. Additionally, 

the averaged loading and unloading curves are illustrated in Fig. 8. Steady curve progressions could 

be observed for all applied nanoindentations within the tetragonal bulk material as well as the 

transformation zone. 
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Fig. 8: Averaged loading and unloading curves of the nanoindentation tests within the cross-section of 
a hydrothermally loaded Y-TZP ceramic. 

 

Table 3: Values for hardness, stiffness and effective Young’s modulus on the basis of nanoindentation 
tests at the polished surface of a cross-section. 

  Hardness HV 0,5 Hardness H Stiffness S Effective Young’s  
modulus E

eff 
 

Transformation zone  872 9,3 GPa 1286 mN/µm 148,3 GPa 
Tetragonal structure  1535 16,4 GPa 1262 mN/µm 192,6 GPa 
 

While hardness and effective Young’s modulus of the transformation zone are lower compared to the 

tetragonal structure, the material’s stiffness is almost the same in both cases. 

In contrast to the results above, the hot isostatically pressed HY-TZP shows a completely different 

phase transformation behavior. Neither any indication of a growing transformation zone at cross-

sections nor local phase transformations at the surface were detected via Raman-spectroscopy or 

within the bulk material after applying various hydrothermal loading condition. 
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The hardness values of the HY-TZP have not been affected by hydrothermal exposure, as the same 

macro hardness value of 1390 HV5 was measured for all investigated HY-TZP samples. 

 

4 Discussion 
Raman-spectroscopic analysis of cross-sectional cuts through the hydrothermally degraded 

specimens reveal a sharp boundary between the completely transformed zone and the tetragonal bulk 

material, i.e. no transition zone with mixed phases could be identified.  

 

The depth of the transformation zone and the hydrothermal exposure time show a strong correlation 

that allows a reliable prediction of the depth for specific hydrothermal conditions. As derived from the 

linear progression of the transformation zone (Fig. 4), the slope m can be interpreted as the rate of 

growth of the transformation zone. As the slopes are constant for distinct temperatures over the whole 

measuring range, it is confirmed that the rate of growth is independent of depth, but only from time and 

temperature. This behavior refers to an autocatalytic process, which is generated by water intruding 

into the material to the transformation front via micro-cracks and there continuously activates phase 

transformation [6]. The rate of growth found by Keuper et al. amounts to 0,0624 µm/h at a temperature 

of 134°C [16]. As the materials’ composition, density and grain size range of their Y-TZP ceramic is 

comparable with the material from the present work, this value is additionally shown in Fig. 9.  
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Fig. 9: Examined rates of growth of the transformation zones related to the inverse hydrothermal 
loading temperatures. 

 



13 
 

From these results, it is possible to approximate the growth rate of the transformation zone within the 

temperature range from 134 °C to 225 °C. Thus, the duration until a specific degree of transformation 

is reached, that causes a change of mechanical properties, is determinable.  

 

As in previous publications, the phase transformation behavior was determined from Raman-

spectroscopic measurements on the surfaces of hydrothermally loaded Y-TZP samples. It was shown 

there that the increase of the intensity ratio with time and temperature follows the MAJ law [24] [7]. 

Assuming a constant value of n for the investigated temperatures is feasible, as the results in Fig. 4 

indicate that the transformation mechanism does not change time-dependently. In fact, the linear 

curves reveal the continuously stable progression of phase transformation, which is expected to 

proceed unsteadily due to changed transformation kinetics.  

 

The transformation zone depth shows a well-fitting exponential correlation with the measured intensity 

ratio on the surface as drawn in Fig. 6. The high stability index of the fitted curve furthermore indicates 

a good reproducibility of the results in the above mentioned experimental setup. Given that Raman-

spectroscopic measurements do not represent the actual state of monoclinic phases on the surface, it 

was shown that the gathered intensity ratios are still useful to estimate the depths of transformation 

zones. From the results it can be summarized, that especially for low hydrothermal loading conditions, 

a slight progression of the transformation zone has a strong impact on the calculated intensity ratio. 

 

As these results base on the detected Raman-signals, which possibly penetrate the transformed zone 

as well as the tetragonal structure, further attention should be drawn to the signal depth. This is 

furthermore useful in order to correlate the description of the phase transformation behavior by MAJ 

law to the continuous progression of a completely transformed zone into the bulk material. A modified 

Lambert-Beer approach can be applied in order to determine the signal intensity In(z) for a certain 

signal depth z and wave number n. As depicted in Equation 10, the signal intensity shows an 

absorbance at transmission through a finite material thickness expressed by a specific extinction 

constant αn,mono-tetr(z). 

 

 ∆�<	=
 = −�<	=
 · 	><,�?<?��-�@	=
 · ∆= Equation 10 
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The exponential decay of the Lambert-Beer law is attained by integration from z = 0 to z = Z. But for 

the integration of the extinction of each signal, αn,mono-tetr(z) has to be used for each wavenumber in 

consideration of the different microstructures. The intensity In of the emitted, returning inelastic signal 

is assumed to be proportional to the intensity of the primary signal I0 for each wave number by 

Equation 11.  

 

 �<	=
 ∝ �� · ��B�,CD�DEFGFH	I
·I Equation 11 

 

To calculate the returning signal at certain depth z, the extinction of the elastic signal into and the 

extinction of the inelastic signal out of the material can be numerically or analytically integrated, by 

using specific extinction constants. 

 

Since a separation of the extinction for monoclinic and tetragonal microstructure seems to be sufficient 

for the recent progress, a mixing rule (Equation 12) was used to determine the extinction coefficient in 

dependence of the calculated intensity ratio Vm.  

 

 ><,�?<?��-�@ = ><,�-�@ · 	1 − ��
 +	><,�?<? · 	��
 Equation 12 

 

Since Raman signals were measured at the surface passing through the transformation zone as well 

as within cross-sectioned specimen, it was possible to compare the results and check the practicability 

of the Lambert-Beer behavior. The values for αn,mono and αn,tetr were determined by using a solver and 

minimization of the sum for all quadratic differences for the values of modeled and measured results. It 

was found, that a better adaption was achieved by using the same extinction constant, αn,mono = αn,tetr = 

αn = 1/185 µm, for the monoclinic and tetragonal material. On the one hand, it is assumed, that the 

extinction coefficients of the monoclinic and tetragonal phase shall be almost identical, as the 

materials’ composition didn’t change due to transformation. On the other hand, the data volume is not 

sufficient enough to adequately model the intensity ratio considering two different constants. As it can 

be seen from Fig. 10 the modelled intensity ratios match better to the optimal fit with the adaption of 

one extinction constant compared to the resolution with 2 constants. With αn,tetr =1/57 µm and αn,mono = 

1/708 µm, the two constants are assessed to differ too much from each other to describe physically 

realistic values.  
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Fig. 10: Comparison of the modelled intensity ratios, which were calculated with 1 and 2 extinction 
constants, and the intensity ratios from Raman-spectroscopic measurements at the surface. 

 

Thus, in the following only one extinction constant was used. With regard to the promising compliance, 

it was tested if the findings mathematically match the MAJ behavior for a growing transformation zone.  

 

A further simplification was made by setting the intensity ratio Vm(z) = 80 % within and Vm(z) = 0 % 

outside of the transformation zone. The temperature-dependent growth rate m of the transformation 

zone determines the progression of its depth d(t), as depicted in Fig. 4 and Equation 13. 

 

 J	K
 = L · K Equation 13 

 

The development of Raman intensities measured at the surface through the transformation zone with 

time can then be modelled as described in Equation 14. The prefactor 2 of this approach takes the 

return path of the laser light from the subsurface material to the detector into account. 

 

 

��	K
 = 2>
�� 	M ��	=
 · �� · ���B·IJ= + M ��	=
 · �� · ���B·IJ=


N

O	�

= 80	% · P1 − ���B·O	�
Q

O	�


�
 

Equation 14 

 

This behavior is similar to the modified MAJ behavior with an Avrami-exponent n = 1, as depicted in 

Equation 9. Consequently, it is feasible to describe the extinction coefficient as relation of the reaction 

rate constant b and the rate of growth of the transformation zone m as described in Equation 15. 
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 > = � · K
2 · J	K
 = 	 �

2 · L 
Equation 15 

 

 

Substituting the observed values for b and m for the investigated temperatures into Equation 15, leads 

to three values for the extinction coefficient: 

T = 175 °C => α = 0,005 µm, 

T = 200 °C => α = 0,0043 µm and 

T = 225 °C => α = 0,0062 µm 

 

The best agreement with the numerically calculated value αn = 1/185 µm was obtained for the samples 

that had been aged at a temperature of 175 °C. The slight differences between the extinction 

coefficients might be explained by the simple approximations which have been applied previously, as 

normally, the extinction coefficients should not be affected by temperature and rate of growth of the 

transformation process. However, from these results it can be stated, that the results from Raman-

spectroscopic measurements at the surface generally match with the results from analyzing the 

progression of the transformation front.  

 

Finally, for very small degradation depths d<<1/α, a linear correlation (Equation 16) can be used to 

estimate rates of growth. 

 

 ��	K

80	% 	= 2> · J	K
 Equation 16 

 

For lifetime-predictions of zirconia applications, the consideration of changed mechanical properties 

and the correlation with hydrothermal loading conditions is essential. As outlined above, LTD causes a 

transformation of surface and subsurface areas accompanied with mechanically weakened 

microstructure.  

 

Focusing on the determined mechanical properties of the transformation zone, it was observed that 

hardness and Young’s modulus are decreased. Previously [25] [26] [27], it was already found out, that 

these mechanical characteristics are significantly lower for monoclinic compared to tetragonal zirconia. 
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On the one hand, the weakened hardness is ascribed to the generation of twinning modes within the 

monoclinic phase [27]. On the other hand, the decrease of hardness and modulus are asserted to 

result from micro-cracks [26]. In summary, both twinning and micro-cracking influence the deformation 

behavior.  

 

For the applied nanoindentations, twinning is supposed to affect the hardness and modulus decrease 

more significantly than micro-cracking. This conclusion is drawn from the findings illustrated in Fig. 8 

which shows that the loading and unloading curves of the indentations within the monoclinic structure 

have a steady progression. In contrary, the curves are expected to scatter due to micro-cracking 

causing erratic pull-out and sliding of grains against each other. Still, it is supposed, that grain 

boundaries open respectively grains slide against each other due to tensile stresses in the far-field of 

the indentation.   

 

However, the stiffness is not affected by micro-cracks as the calculated values for the monoclinic and 

tetragonal phase are observed to be almost equal. As generally a high presence of micro-cracks 

should decrease the stiffness [2], the weakening effect is apparently suppressed. This is assumed to 

result from compressive stresses which are expected to close cracks in the near-field beneath the 

indentation. 

 

 

With regard to the structural integrity, it was however observed, that hydrothermal loading at 200 °C 

for 24 h and 225 °C for 8 h causes spontaneous fracture of the samples without any applied 

mechanical loading. These fractures due to LTD can be ascribed to internal stresses, which exceed 

the strength of the material as pointed out by Swain recently [28]. Therefore, the analysis of stresses 

which are generated by the progression of the transformation zone, considering the different Young’s 

modules of zone and bulk material, calls attention to future work.  

 

Hardness measurements that were applied subsequently to relatively intensive hydrothermal loading 

conditions may even lead to spalling at the edges of the indentation. This observation indicates 

decreased fracture toughness. In this regard, Fig. 11 shows exemplarily a Vickers indentation after 

hydrothermal loading for 8 h at 225 °C.  
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Fig. 11: Break-out of material after Vickers indentation with a loading force of 49 N and previous 
hydrothermal loading for 225 °C and 8 h. 

 

Due to the asymmetric cracking from the corners and break-out at the edges, the determination of 

fracture toughness via Vickers indentation [29] is not suitable for hydrothermally loaded Y-TZP 

ceramics. Anyway, this method has to be used carefully since surface information about degraded 

zirconia cannot be assigned to bulk properties. 

 

Fig. 7 shows an exponential decrease of macro-hardness with increasing transformation depth which 

results from changed mechanical properties in the transformation zone. However, it is supposed that 

the tetragonal subsurface areas below the indentation affect the hardness values and thus, the deeper 

the stable bulk material is located from the surface, the lower is its impact on the surface hardness. 

Therefore, the decrease of hardness reaches a saturation value at a particularly deep zone. With 

consideration of the observed spontaneous fracture, a total loss of cohesion can be expected for a 

completely LTD-transformed sample.  

 

However, approximations of hardness values are acceptable within the measuring range and thus 

enable to ascribe changes of the material’s mechanical response caused by the progression of the 

transformation front. 

 

The Raman-spectroscopic and microscopic investigations of surfaces and cross-sections of 

hydrothermally loaded HY-TZP ceramics revealed a high resistance to hydrothermal degradation of 

this material. Consequently, the macro-hardness is not affected by exposure at various conditions in 

water steam atmospheres as the microstructure is not damaged by micro-cracks. Obviously, the 
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sintering process for HY-TZP results in a different and much more stable microstructure compared to 

Y-TZP. There are two features that discriminate the microstructure of HY-TZP and Y-TZP and which 

are responsible for the different transformation behaviors: first, the grain size of HY-TZP is significantly 

smaller in comparison to the standard Y-TZP. Due to the smaller grain size, the surface energy per 

unit volume increases. This energy is beside the chemical free energy and strain energy a part of the 

differential free energy of a unit volume which has to be applied to activate phase transformation [30]. 

Second, it can be assumed that the sintering increases the oxygen vacancy content, which is indicated 

by a light grey appearance of the HY-TZP material. Chevalier [3] stated that the overcrowding of 

oxygen around zirconium cations causes phase transformation. Hence, stabilization can be realized by 

incorporating oxygen vacancies into the microstructure by alloying yttrium. It is assumed that due to 

hydrothermal loading water-derived species like O2- or OH- fill these oxygen vacancies and thereby 

destabilize the tetragonal phase. Furthermore, the energy barrier for transformation is expected to 

decrease because of the consequently generated lattice distortions and micromechanical stresses. 

Therefore, a higher oxygen vacancy content is supposed to lead to a better stability of the tetragonal 

phase.  

 

5 Conclusions 
The results from measuring phase intensity ratios with Raman-spectroscopy at surfaces as well as 

cross-sections of hydrothermally loaded Y-TZP ceramics, the characterization of the progressing, 

hydrothermally induced transformation zones, the investigation of changed macro-hardness and the 

comparison with a HY-TZP ceramic lead to the following main conclusions: 

 

• A sharp transition line separates the completely transformed zone and the tetragonal bulk 

material. The progression of phase transformation into the bulk material exhibits a time- and 

temperature-dependent, linear behavior. On the basis of these results and assuming constant 

hydrothermal loading conditions, the depth of the transformation zone as well as the rate of its 

growth can be described well for at least all conducted ageing experiments in the temperature 

range of 175 °C to 225 °C. 

• Raman-spectroscopic measurements on the specimen surface reveal the often observed 

time- and temperature-dependent, exponential increase of the monoclinic phase intensity 
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ratio. However, these results do not represent the actual phase composition of the surface but 

are based on the superposition of transformed and not transformed signals that come from 

different material depths. Though, the measured intensity ratio can be used in combination 

with mechanical and microstructural characteristics to predict the consequences of LTD on the 

material.  

• Furthermore, the results from Raman-spectroscopic measurements at the surface correlate 

with the progression of the transformation zone into the bulk material. By assuming one 

extinction coefficient for both tetragonal and monoclinic microstructure it is possible to 

calculate the depth of the transformation zone from the measured intensity ratio. The 

extinction coefficient can then be interpreted as relation of reaction rate constant and rate of 

growth. 

• The mechanical properties determined via nanoindentation tests reveal a decreased hardness 

and Young’s modulus of the transformation zone in comparison to the tetragonal structure. 

This decrease is supposed to result from twinning and micro-cracking within the 

transformation zone. However, the stiffness of both, transformation zone and tetragonal 

structure was observed to be almost equal. The macro-hardness of the zirconia ceramic 

decreases exponentially with increasing depth of the transformation zone due to the 

weakened microstructural integrity of this zone. 

• HY-TZP shows a higher resistance to hydrothermally induced phase transformation than 

standard Y-TZP. Neither was phase transformation observed inside the material nor at the 

surfaces, thus the macro-hardness is not affected by hydrothermal exposure. As the 

composition is the same as for Y-TZP, the better resistance is explained by the smaller grain 

size and increased oxygen vacancy content. 
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