
Modeling and Solu-
tion of Continuous 
Set 
Covering Problems 

Markus Rein

Order Reduction for Nonlinear Dynamic Models 
of District Heating Networks

ITWM
Fraunhofer



Order Reduction for Nonlinear Dynamic Models  
of District Heating Networks

Markus Rein

FRAUNHOFER VERLAG

Fraunhofer-Institut für 
Techno- und Wirtschaftsmathematik ITWM



Kontakt:
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern
Telefon  +49 631/31600-0
Fax   +49 631/31600-1099
E-Mail   info@itwm.fraunhofer.de
URL   www.itwm.fraunhofer.de

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im
Internet über http://dnb.d-nb.de abrufbar.
ISBN (Print): 978-3-8396-1581-2

D 386

Zugl.: Kaiserslautern, TU, Diss., 2019

Titelbild: © Markus Rein  

Druck: Mediendienstleistungen des 
Fraunhofer-Informationszentrum Raum und Bau IRB, Stuttgart

Für den Druck des Buches wurde chlor- und säurefreies Papier verwendet.

© by FRAUNHOFER VERLAG, 2020
Fraunhofer-Informationszentrum Raum und Bau IRB
Postfach 80 04 69, 70504 Stuttgart
Nobelstraße 12, 70569 Stuttgart
Telefon  0711 9 70-25 00
Telefax  0711 9 70-25 08
E-Mail verlag@fraunhofer.de
URL http://verlag.fraunhofer.de 

Alle Rechte vorbehalten

Dieses Werk ist einschließlich aller seiner Teile urheberrechtlich geschützt. Jede Ver wertung, die 
über die engen Grenzen des Urheberrechtsgesetzes hinausgeht, ist ohne schriftliche Zustimmung 
des Verlages unzulässig und strafbar. Dies gilt insbesondere für Vervielfältigungen, Übersetzungen, 
Mikro ver filmungen sowie die Speiche rung in elektronischen Systemen.
Die Wiedergabe von Warenbezeichnungen und Handelsnamen in diesem Buch berechtigt nicht 
zu der An nahme, dass solche Bezeichnungen im Sinne der Warenzeichen- und Markenschutz-
Gesetzgebung als frei zu betrachten wären und deshalb von jedermann benutzt werden dürften.
Soweit in diesem Werk direkt oder indirekt auf Gesetze, Vorschriften oder Richtlinien (z.B. DIN, VDI) 
Bezug genommen oder aus ihnen zitiert worden ist, kann der Verlag keine Gewähr für Richtigkeit, 
Vollständigkeit oder Aktualität übernehmen.



Order reduction for nonlinear dynamic
models of district heating networks

Markus Rein

Vom Fachbereich Mathematik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften
(Doctor rerum naturalium, Dr. rer. nat.)

genehmigte Dissertation

1. Gutachter: Prof. Dr. Axel Klar, Technische Universität Kaiserslautern
2. Gutachter: Prof. Dr. Nicole Marheineke, Universität Trier

Datum der Disputation: 11.12.2019

D 386





Acknowledgments

During this thesis, I strongly benefited from the support of numerous people making
this work possible.

First of all, I would like thank my academic supervisors Axel Klar and Tobias Damm
for being open towards the research project. Their comments and suggestions improved
the thesis in many respects. Further thanks go to Raul Borsche, Stephan Trenn, René
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Abstract

English version

District heating networks are expected to play a major role towards a carbon neutral
supply with energy by their flexibility to operate different sustainable energy sources.
Using a network of pipelines, heated water is transported from a centralized power
plant to buildings for heating purposes. An efficient operation of these networks re-
quires an optimal control of the supplied energy input while considering technical
constraints and power demands. The mathematical task is challenging due to the
complex dynamics on large scale district heating networks. When included in an
online-planning, algorithms deriving an optimal control strategy face runtime restric-
tions, explaining the need for an efficient computation of the transport dynamics. To
this end, this thesis focuses on surrogate models for a numerically efficient simulation
of district heating networks. Their dynamics are advection dominated, leading to a
system of quasi-linear hyperbolic partial differential equations equipped with algebraic
coupling conditions introduced by the network structure. Using an appropriate spa-
tial discretization, a control system is derived allowing to preserve essential properties
such as Lyapunov stability to the reduced order model. By splitting the problem into
a differential part describing the transport of thermal energy and an algebraic part
defining the flow field, tools from parametric model order reduction can be applied.
An algorithm is suggested which produces a global Galerkin projection based on a
moment-matching of local transfer functions in the frequency domain. It is applicable
for various input scenarios of a given network topology. The benefits of the resulting
surrogate model are demonstrated at different, existing large scale networks. In addi-
tion, the performance of the suggested model is studied in the numerical computation
of an optimal control of the feed-in power employing a discretize-first strategy.
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Deutsche Version

Fernwärmenetze zeichnen sich durch ihre Flexibilität aus, durch verschiedene nach-
haltige Energiequellen gespeist werden zu können, und spielen somit eine zentrale
Rolle für eine klimaneutrale Energieversorgung. Über ein Rohrleitungsnetz wird er-
hitztes Wasser aus einem Kraftwerk zu Heizzwecken zu Gebäuden transportiert. Ein
effizienter Betrieb dieser Netze erfordert eine optimale Steuerung der eingespeisten En-
ergie unter Berücksichtigung technischer Randbedingungen und des Leistungsbedarfs.
Das entsprechende mathematische Problem ist aufgrund der komplexen Topologie
großer Fernwärmenetze herausfordernd. Durch Zeitrestriktionen in einer Echtzeit-
Planung müssen Simulationsmodelle der Transportdynamik hinreichend effizient sein.
Zu diesem Zweck konzentriert sich diese Arbeit auf die Erzeugung von Ersatzmodellen
für eine numerisch effiziente Simulation von Fernwärmenetzen. Ihre Dynamik ist durch
Advektion dominiert, was zu einem System quasilinearer hyperbolischer partieller
Differenzialgleichungen führt. Erhaltungsgleichungen an den Netzwerkknoten erzeu-
gen zusätzliche algebraische Kopplungsbedingungen. Mit einer geeigneten räumlichen
Diskretisierung wird eine Systemformulierung erzeugt, mit der wesentliche Eigen-
schaften wie Lyapunov Stabilität in das Ersatzmodell übertragen werden. Durch
Aufteilung des Modells in einen differenziellen Teil, der den Transport von Wärmeen-
ergie beschreibt, und einen algebraischen Teil, der das Strömungsfeld definiert, re-
sultiert ein linear zeitvariendes Transportproblem. Zur Erzeugung des Ersatzmodells
werden Konzepte der parametrischen Modellordnung angewendet. Der in der Arbeit
erarbeite Algorithmus generiert eine globale Galerkin-Projektion, die auf einer Mo-
mentenanpassung von lokalen Übertragungsfunktionen im Frequenzbereich basiert.
Das vorgeschlagene Ersatzmodell weist eine stark reduzierte Zustandsraumdimension
auf und ist für verschiedene Einspeiseszenarien anwendbar. Die Vorteile des Modells
werden in verschiedenen numerischen Analysen für Topologien existierender Netzw-
erke demonstriert. Diese beinhalten neben der Abbildung der Transportdynamik auch
die Berechnung einer optimalen Steuerung der Einspeiseleistung.
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Chapter 1

Introduction

A central challenge of today’s world is the efficient supply and use of energy. With
the increasing share of renewable energies, sources of energy and its transportation to
consumers became more volatile and diverse. This development involves significant
challenges in planning the use of energy transportation networks such as electrical
grids, gas, water, and heating networks. The available energy has to be used as efficient
as possible while meeting technical operation conditions as well as consumer demands.
The mathematical task is highly complex and involves modeling of the components,
simulation of the transport dynamics and optimization of the control parameters at
supplying units. When used in realtime planning, the corresponding optimization
algorithm is restricted to a maximum runtime of typically 15 min. This stays in
contrast to the complexity of real-world networks including 103 to 104 edges. To this
end, this thesis focuses on the derivation of reduced order models allowing for a fast
simulation of the energy transport in real-world district heating networks. The latter
denote a network of thermally insulated pipelines transporting heat to residential and
commercial buildings to cover heating demands [1]. District heating networks became
more and more popular by their flexibility in utilizing different sources of energy such
as geothermal power, solar power or heat stemming from waste incineration [2, 3, 1]. In
addition, the large transport time from a centralized power plant to consumers induces
storage effects in the network, allowing to efficiently distribute available heating power
over time.

Structure of district heating networks

Fig. 1.1 sketches an exemplary heating network visualizing the basic components. A
power plant injects heated water in the flow network where it is guided to buildings
using pipelines. Inside the buildings, a heat exchanger is responsible for depositing
the heating power required by the consumer. To this end, the heated fluid running in
the primary grid network is cooled to a reference temperature, while the fluid inside
a secondary network running within the building is heated. This indirect exchange of
energy avoids material flow between heating networks and the buildings. By altering
the volume flow passing the heat exchanger, each consumer can meet the desired
heating power for a range of different water temperatures supplied by the power plant.

1
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GridHouse
House

Power 
Plant House HouseHouse

Figure 1.1: Visualization of an exemplary heating network with a flow part (red lines)
and a return part (blue lines). The highlighted circle indicates a heat
exchanger depositing heating power at building attached to the network.

This allows a flexibility in the fluid temperature injected at the power plant. After
exiting the heat exchanger, the cooled fluid is transported back to the power plant
within the return network and reheated again. It shall be noted that different forms
of district heating networks exist. Within this thesis, a setup including a single power
plant and thus a single injection point of thermal energy is studied. Furthermore,
water is kept under sufficiently high pressure to ensure a liquid phase, which is the
most common type of heating networks. By modeling indirect heat exchangers, flow
and return network form a closed system for the water circulation. While fig. 1.1 is a
simple example of district heating network, realistic networks include more complex
features such as network cycles. These structures allow the fluid to take different paths
to an identical consumer station, and possibly lead to a reversal of flux directions within
certain pipelines, which is a key difficulty of heating networks Fig. 1.2 depicts a typical
power plant setup also referred to as depot or source. A waste to heat incineration
plant delivers an unregulated flow of enthalpy which can be used in different ways.
First, the enthalpy level can be lowered using a valve. Second, it can be guided to a
turbine, lowering the enthalpy while generating electricity. Third, heat can be stored
in a heat storage to save it for later usages and finally it can by directly fed to the
heating network. The demands of consumers attached to the district heating network
have to be met at any time. A gas vessel located at the depot is able to compensate
an insufficient supply of power by the waste to heat plant. A central aim of scheduling
the depot lies in avoiding the use of the gas turbine since it involves high operation
costs and fossil fuels.

Mathematical challenges and related works

The control and optimization of energy networks attains increasing attention not only
in the academic sector. These include especially power grids [4, 5], water [6], gas [7,
8, 9, 10], and heating networks [11, 12, 13, 12, 14, 15]. Although exhibiting different
physical dynamics, a large class of energy networks share a common description of

2
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Figure 1.2: Sketch of an exemplary depot. A waste to heat (WTH) incineration plant
supplies an energy flow which can be used in different ways. Using tur-
bines(T), generators(G), a heating storage, and valves(V), energy can be
converted to electricity, stored for later usages or injected to the heating
network (DHN) at different enthalpy levels. A Gas vessel is able to support
the WTH plant on demand.

hyperbolic partial differential equations. The latter describe the conservation of phys-
ical variables along an edge of the network subject to potential external sink or source
terms. While for electric networks the conservative variables are the electrical current
and voltage, water, gas and heating networks are determined by a fluid flow through
pipelines. A model often applied for these networks are cross-sectional averaged, one
dimensional Euler-like equations [16],

∂t(ρ) + ∂x(vρ) = 0, (1.1a)

∂t(ρv) + ∂x(ρv
2) = −∂xp− ρk(v, e), (1.1b)

∂te+ ∂x(ve) = −p∂xv − c(e), . (1.1c)

Eq. (1.1) forms a set of quasi-linear hyperbolic equations in the state variables mass
density ρ, momentum density ρv, and internal energy density e and describes the
fluid transport at velocity v in a single pipeline within the network. The expressions
k, c collect external interactions of the fluid with its environment including friction,
gravity and thermal losses. A significant amount of research was conducted for water
[6] and gas networks [17, 7, 8, 9, 6, 18], which are often modeled isothermal. For
these networks the transport of energy density according to (1.1c) is not considered.
In contrast, the transport of the internal energy density is the essential feature of
heating networks. Since water in the liquid phase is modeled within this thesis, the
incompressible limit of (1.1c) results, yielding an advection equation of the internal
energy density. As a central difficulty of heating networks, the associated advection

3
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velocity changes dynamically along time t due to the regulation of the volume flow by
heat exchangers located at consumption points,

∂te+ v(t)∂x(e) = −c(e).

Additionally, the direction of the flow within distinct pipelines of a sufficiently com-
plex network can change dynamically. These properties hinder the derivation of a
reduced order model for disctrict heating networks for the following reasons. First,
advection dominated problems are known to exhibit a small singular value decay, re-
sulting in computationally expensive, large reduced order models [19, 20, 21]. Second,
the dynamic advection velocity introduces nonlinearities. Traditional model reduction
techniques such as balanced truncation [22] can thus not directly be applied being
designed for linear time invariant systems. Third, changes of flux direction adjust the
path of the fluid from the power plant to a given consumption point qualitatively in-
troducing a further nonlinearity in the dynamics. Another challenge in the simulation
and reduction of heating networks as well as for other energy networks arises from
their network structure. Pipelines entering and exiting network junctions introduce
algebraic constraints to the dynamics on the pipelines such as the conservation of en-
ergy and mass [23, 24, 25]. When deriving reduced order models, special attention has
to be paid to algebraic equations and the corresponding variables, since the reduction
of algebraic equations can lead to numerical instabilities [26].

The contribution of this work is threefold and addresses the central difficulties of
heating networks formulated above. First, by spatial discretization of the transport
of energy density on each pipeline, a control system is derived, allowing to analyze
the stability and other essential properties of the dynamical system. In contrast to
prior works [27, 28, 13, 29, 11], the formulated model remains close to the underly-
ing Euler-like equations (1.1). Second, a reduced order model is suggested based on
moment matching of local linearizations, allowing to reduce the state space dimension
of advection dominated transport on pipelines while preserving stability. Finally, the
numerical efficiency of the suggested reduced order model is evaluated in simulating
the dynamics of heating networks as well as in determining an optimal control.

Structure of the thesis

The thesis is structured as follows. Chapter 2 presents a model for the dynamics of
district heating networks. It consists of a set of effectively one dimensional Euler-
like partial differential equations (PDE) describing incompressible flow in pipelines
equipped with algebraic coupling conditions resulting from a network description. In
chapter 3, a finite volume discretization for the transport of thermal energy is discussed
leading to a differential algebraic system of equations (DAE). The latter allows to de-
duce a control system describing the dynamics of heating networks. After discussing
an affine decomposition of the corresponding system operators, a detailed stability
analysis of the control system is presented. The control system is finally embedded
into the concept of finite-dimensional port-Hamiltonian systems. Chapter 4 compares

4



different model reduction techniques and systematically derives an algorithm reducing
the state space dimension of the thermal transport. The suggested algorithm addresses
the advection dominated transport on a network and is based on moment matching
of the transfer functions at local linearizations. The benefits of the suggested reduced
order model towards an efficient simulation of heating networks are numerically ana-
lyzed in chapter 5. To further improve the projection based reduction, a decomposition
strategy of heating network into smaller subnetworks is proposed and tested. Error
and runtime of the reduced order model are compared to full order models and higher
order hyperbolic schemes. The considered network topologies represent real-world net-
works supplied by the industrial partner Technische Werke Ludwigshafen AG (TWL).
Chapter 6 investigates the reduced order model for applications in the determination of
an optimal control. The precise control problem consists of minimizing absolute value
and temporal variation of the input energy density while limiting the feed-in power as
the central optimization constraint. Chapter 7 summarizes the achieved results and
indicates further research directions.

5





Chapter 2

PDE modeling of heating networks

In this chapter a model describing the dynamics of district heating networks is devel-
oped, based on the Euler-like equations describing the fluid dynamics within a pipeline.
In addition, models for consumers and the power plant are presented, defining the ex-
change of energy of the heating network with its environment. Thereafter, an analysis
of the hydrodynamic equations is performed, forming the velocity at which thermal
energy is transported through heating networks.

2.1 Model components

A model describing the transport of energy within district heating networks consists
of three contributions. First an expression for the heat transport within a pipeline.
Second the algebraic coupling conditions combining all pipelines attached to the same
network node k. Third, boundary conditions defining the exchange of energy of the
heating network with its environment given by the power plant and consumption
points.

2.1.1 Incompressible flow in a pipeline

Subsequently the dynamics of water in a cylindrical pipeline with constant diameter
d and length L shall be modeled, cf. fig. 2.1. The central variables describing the
flow are the internal energy density (internal energy per unit volume) e, the mass
density ρ and the fluid velocity v. Due to the cylindrical shape, radial symmetry is
assumed, allowing to average all fluid quantities over the cross-section. The resulting
one-dimensional quantities only change in direction of the cylinder axis x ∈ (0, L) over
time t ∈ (t0, tend], with positive start- and ending times t0, tend. This allows to define
ρ, v, e : (0, L)× (t0, tend] 7→ R.

7
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Figure 2.1: Illustration of a cylindrical pipeline with radius r and length L.

Compressible fluids

Within a pipeline, the effective one dimensional dynamics of a viscous, compressible
fluid are described by the following three balance laws [16]

∂tρ+ ∂x(vρ) = 0 (2.1a)

∂t(ρv) + ∂x(ρv
2) = −∂xp− ρk(v, e) (2.1b)

∂te+ ∂x(ve) = −p∂xv − c(e). (2.1c)

Eq. (2.1a) denotes the conservation of mass, also known as the continuity equation.
Similarly, (2.1b) corresponds to the balance of momentum density ρv with velocity
v. It results from the three-dimensional Navier-stokes equations, by replacing viscous
effects with the results of boundary layer theory [16] for the cylindrical pipeline setup.
Specifically, the viscosity of water induces friction at the pipeline border. The corre-
sponding effect on the fluid momentum is approximated by the Darcy-Weisbach law,
cf. (2.4) and included in k(v, e). Finally, (2.1c) describes the balance of internal en-
ergy subject to a source term c(e) describing thermal losses of the fluid to the pipeline
environment. Different representations exist for the energy balance, depending on the
notion of energy. Eq. (2.1c) can equivalently be written as a balance law for the to-
tal energy including a kinetic part Ekin = e + 1/2ρv2 or the total enthalpy density
Eh = Ekin + p. The right side of (2.1c) changes accordingly. When using the en-
thalpy density as modeling variable, the contribution of k to the momentum balance
also enters the enthalpy balance. Within this thesis, the internal energy density is
chosen since it allows a convenient transition to the incompressible case. Eq. (2.1)
introduces the pressure p : (0, L) × (t0, tend] 7→ R as additional modeling variable.
To close the system (2.1), an equation of state relates the quantities pressure, density
and temperate(expressed by the energy density). It is discussed in further detail in
section 2.1.2. Eqs. (2.1) represent hyperbolic Euler-like equations. While the original
Euler equations describe inviscid fluids, (2.1) include an additional expression resulting
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2.1 Model components

from the viscosity of water. The viscosity of water apart from the boundary layer is
neglected, removing the diffusive transport of heat within the fluid. According to the
database [30], the corresponding thermal diffusivity DT of water at 5 bar pressure in
the temperature range 50− 120 ◦C takes values within DT ∈ [1.56, 1.71]× 10−7 m2s−1.
Assuming typical velocities of 10−1 ms−1, and pipeline lengths of L = 1 m, the resulting
Péclet number measuring the ratio of advective and diffusive energy heat transport
Pe = vL/DT is in the order 106. Finally, heat transfer by radiation is not modeled
either.

Incompressible limit

The technical operation conditions ensure by a sufficiently high absolute pressure level
that water as the transport medium remains in the liquid phase. Hence, the incom-
pressible case is additionally assumed. Thus, the transport of information through
water within the network is modeled to happen instantaneously. Eqs. (2.1) then
simplify to

∂xv = 0, (2.2a)

ρ∂tv = −∂xp− ρk(v, e), (2.2b)

∂te+ v∂xe = −c(e). (2.2c)

The conservation of mass reduces to the incompressibility constraint with the pressure
acting as a Lagrange multiplier. The balance law for the energy density represents an
advection equation subject to the source term c. To estimate the relevant flow regime,
the Reynolds number is an estimate for the typical operation conditions of heating
networks. It is defined by

Re =
|v|dρ
µ

,

where µ refers to the dynamic viscosity. We assume a typical velocity of v = 0.1 m s−1,
a pipeline diameter d = 0.06 m, and a pressure of p = 5 bar. At the temperature T =
70 ◦C, a density of ρ ≈ 978 kg m3 results and a dynamic viscosity of µ ≈ 4×10−4 Pa s.
This leads to a Reynolds number of Re = 1.45 × 104. For the conditions relevant in
district heating networks, the kinematic viscosity ν = µρ−1 decreases with increasing
temperature. Thus, the Reynolds number further increases and the flow in pipelines
with typical velocities is turbulent.

2.1.2 Material laws and state equations

In this part, material laws and state equations are presented, which are suitable for
the description of heating networks.

9



Chapter 2 PDE modeling of heating networks

The sink term in (2.1c) describing the conduction of thermal energy with temperature
T towards the ground with temperature T∞ by imperfect isolation of the pipeline walls
is modeled by [31, 32],

c(e) =
4

d
kW (T (e)− T∞). (2.3)

Here, kW is the heat transfer coefficient, [kW ] =W K m−2, and d the pipeline diameter.
Both coefficients are supplied by the operator of the heating networks and thus are
known. For the temperature range relevant for heating networks it holds that the
temperature is a strictly monotone function of the internal energy density,

∂eT > 0, T ∈ [50, 150] ◦C, p = 5 bar,

allowing to transform between both quantities.

The external forces shaping the change of pressure along a pipeline exhibit gravita-
tional and frictional contributions,

k(q, e) = g∂xz +
λ(v, e)

2d
|v|v. (2.4)

In the first part, g denotes the gravitational constant, and zx the slope of the pipeline
with respect to the ground level. The second part describes friction of the fluid with
the pipeline wall resulting from viscosity and is referred to as the empirical Darcy-
Weisbach law. The friction factor λ is a function of the Reynolds number and the
ratio of roughness σ and diameter d of the pipeline. For turbulent flows in pipelines,
a common model for λ is given by the Colebrook-White equation [6, 33],

1√
λ

= −2 log10

(
σ

3.71d
+

2.51√
λRe

)
= −2 log10

(
1

d

[
σ

3.71
+

2.51µ(T )√
λ|v|ρ(T )

])
, (2.5)

where the Reynolds number was inserted explicitly in the second part of the equation.
Eq. (2.5) approximates the influence of frictional losses in pipelines, interpolating the
transition between the smooth (σ = 0) and rough (σ →∞) case. This allows to derive
λ ≥ 0, and form the partial derivatives ∂dλ < 0, and ∂vλ < 0. For the Darcy-Weisbach
law it holds that

ar =
λ

2d
v|v|,

where ar is the external influence to acceleration by friction. Thus, frictional forces
decrease monotonically with increasing pipe diameter d.

State equations

For the Euler-like equations (2.2) combined with the mentioned constitutive equations,
expressions for the viscosity, mass density and temperature of water have to be defined.
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2.1 Model components

At the relevant pressure levels of heating networks applied to water as the transport
medium, these quantities are assumed to be independent of pressure. Thus they can
be modeled by a polynomial relation to the energy density

ρ = ρ(e), µ = µ(e), T = T (e),

where the polynomial coefficients are fitted to measurements [30]. Alternatively, a
formal derivation of the corresponding state equations can be performed by model-
ing the entropy s of the system using an additional balance law. Temperature and
pressure are then defined by the corresponding Gibbs relation. In contrast, this intro-
duces a significant additional computational complexity compared to the evaluation
of polynomials defined a-priori.

2.1.3 Coupling conditions on the network

In a network setting consisting of nodes and edges, coupling conditions have to be
posed, defining how flows of edges entering a node constitute to flows exiting the
node. A node or junction is a network element at which multiple edges interact. The
required coupling conditions are of algebraic type and are derived from claiming the
conservation of mass and energy at the node. For a formal description of the well-
posedness of hyperbolic systems on networks see [23, 24, 25]. Subsequently, a network
description for heating networks is discussed using the standard notation used for gas
networks [34].

The network of pipelines is described as an oriented graph G = (N , E) with nodes
N and edges E . Its orientation serves as a reference to define the direction of flow
quantities such as volume flow, mass flow, and velocity. A non-negative flow is oriented
with the reference orientation, a negative flow is oriented opposite to the reference
orientation. The set of edges E = PF ∪ C ∪PR ∪ S contains |E| edges which represent
the union of pipelines in the flow network PF, pipelines in the return network PR,
edges representing consumers C, and the source S also referred to as power plant or
depot. With P = PF ∪ PR the set of all pipelines is denoted. The considered time
domain is abbreviated by T = [t0, tend].

In the incompressible case, the volume flow q : (t0, tend] 7→ R is a suitable description
variable, since it is constant in space for a given edge within the network, a ∈ E .
For the set of pipelines P , it is formed by q = Φv, involving cross section Φ and
velocity v. For heat exchangers C and the source it is measured directly. To connect
incoming and outgoing pipelines within the network, additional algebraic constraints
at the junctions have to be posed. First, the conservation of the flow η over node k is
defined, ∑

α∈δout(k)

η(ρ, qα) =
∑

α∈δin(k)

η(ρ, qα), (2.6)

where η is a placeholder for either the mass flow q̂(t, x) = ρ(t, x)q(t) or the volume
flow q. While for both possibilities the energy transport along the network is well-

11



Chapter 2 PDE modeling of heating networks

defined, different physical interpretations result. When the density ρ is allowed to
change with the internal energy, conservation of mass and volume flow over node k
are not identical, and the conservation of mass is the physically correct description.
In contrast, the volume flow q proves to fit the numerical scheme derived in chapter 3
and thus replaces the mass flow η = q. Conservation of volume over node k is identical
to conservation of mass in the limit that the temperatures of all flows coupling to node
k are identical. To distinguish the consequences for the network model, conservation
of mass and volume are equally discussed until spatial discretizations of the Euler
equations are introduced. The sets δin(k)(δout(k)) denote edges entering(exiting) node
k according to the reference orientation, and are formally defined as

δin(k) := { a ∈ E : ∃m ∈ N with a = (m, k) } ,
δout(k) := { a ∈ E : ∃m ∈ N with a = (k,m) } . (2.7)

In addition, the subsets Ik, and Ok are defined, containing edges with a volume flow
effectively entering and exiting node k. These are formally defined as

Ik := { a ∈ δin(k) : qa > 0 } ∪ { a ∈ δout(k) : qa < 0 } ,
Ok := { a ∈ δin(k) : qa ≤ 0 } ∪ { a ∈ δout(k) : qa ≥ 0 } .

(2.8)

Depending on the sign of the volume flow, these sets can change dynamically. The
conservation of energy over node k within the time t ∈ T is described by∑

α∈δout(k)

qα(t)eα(t, 0) =
∑

α∈δin(k)

qα(t)eα(t, Lα), (2.9a)

ea(t, 0) = ek(t), a ∈ Ok, (2.9b)

where (2.9a) claims that the sum of incoming and outgoing energy flows are equal. In
addition, (2.9b) defines the energy density exiting node k by claiming that incoming
energy densities mix instantaneously, cf. fig. 2.2. This forms a virtual energy density
ek(t) at node k. To ensure a well-defined pressure pk at node k, continuity of the

N

Th

Tl

To

To

To

Figure 2.2: Illustration of the mixing assumption. Two pipelines with high Th and
low Tl temperature levels mix their energy densities within node k to e(To)
identical for all outgoing pipelines.

pressure at the border of every edge attached to k is claimed for t ∈ T ,

pk(t) = pa(0, t), k ∈ N , a ∈ δout(k), (2.10a)

pk(t) = pa(La, t), k ∈ N , a ∈ δin(k). (2.10b)
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2.1 Model components

To close the network description, boundary conditions are required, describing the
energy density and the pressure levels at the power plant, as well as at the consumption
points. The latter are described in the following section in addition to the technical
operation conditions.

2.1.4 Network boundary conditions: source and consumers

The technical operation conditions [35] presented hereafter are partially formulated in
temperatures T instead of energy densities for consistency with the data supplied by
the plant operator. Using the corresponding state equations, temperature restrictions
can be transformed to energy densities and vice versa.

The depot, also referred to as power plant or source is modeled by an edge s = (k,m) ∈
S directed from return to the flow part of the network, and equipped with the following
equations for times t ∈ T ,

es:m(t) = uF (t), (2.11a)

ps:k(t) = pR(t), (2.11b)

ps:m(t) = ps:k(t) + ∆ps(t), (2.11c)

Ts:m(t) ≤ T net
max, (2.11d)

vs(t) ≥ 0. (2.11e)

Eq. (2.11a) sets the energy density injected at the source uF to the flow network,
whereas (2.11b, 2.11c) define the pressure levels at the flow- and return site of the
power plant. We specifically assume that the pressure in the return part is defined
as control variable, as well as the pressure difference of flow- and return part of the
source. Eqs. (2.11d - 2.11e) are technical operation conditions requiring that the
temperature injected to the network is limited, and that the source flow is directed
into the flow network. In a real depot, the exchange of energy with the heating network
is performed by a cascade of heat exchangers. Furthermore, the regulation of pressure
levels is achieved by pumps. All of these components are condensed into the a source
edge s ∈ S. A more detailed model of the components on the depot is not within the
scope of this work. While multiple injection points are possible and occur in distinct
heating networks, within this thesis the interaction with a single source is considered.
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Chapter 2 PDE modeling of heating networks

Consumers in heating networks are modeled as an edge a = (k,m) ∈ C. The exchange
of energy with the heating network is realized by a heat exchanger, cf. fig. 2.3, described
for times t ∈ T by the following set of equations,

Ga(t) = qa:k(t)ea:k(t)− qa:m(t)ea:m(t), (2.12a)

q̂a:k(t) = q̂a:m(t), (2.12b)

Ta:m(t) = TRa , (2.12c)

va(t) ≥ 0, (2.12d)

Ta:k(t) ∈ [T Fmin, T
F
max], (2.12e)

Ta:k(t) ≤ Ta:m(t) + ∆T ca , (2.12f)

pa:k(t) ∈ [pFmin, p
F
min], (2.12g)

pa:m(t) ∈ [pRmin, p
R
max], (2.12h)

pa:k(t)− pa:m(t) ∈ [∆pcmin,∆p
c
max]. (2.12i)

The demanded power consumption G is provided by the power balance between flow-

GridConsumer: a

eRa

e$:&

q

Figure 2.3: Illustration of the heat exchanger for consumer arc a= (k, m).

and return side of the heat exchanger, formed by the product of energy densities e,
and volume flows evaluated at flow- and return side (2.12a). The corresponding vol-
ume flows are defined by assuming conservation of mass along the heat exchanger
(2.12b). Consequently, both velocity and volume flow change dynamically with the
energy density ea:k arriving in the flow part of consumer stations and their time de-
pendent consumption G. Heat exchangers are constructed to cool the hot fluid to
a contractually defined constant return temperature set in (2.12c), resulting in the
return energy density eaR. Injected at the return part of consumer stations, the cooled
fluid propagates in the return network to the power plant, and is reheated again. The
model for the power exchange at heat exchangers is in line with [36, 29], where the
heating power is approximated by q̂cpT , with cp denoting the specific heat capacity
at constant pressure, q̂ the mass flow and T the temperature. Model (2.12) could be
extended to incorporate heat losses, i.e. to model a primary and secondary network
formed by the heating network and the consumer [11].

In contrast, in this thesis an emphasis is set to the transport of energy within pipelines.
For this purpose, (2.12a) already reveals the fundamental mathematical complexity:
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2.2 Elimination of algebraic equations

the volume flow entering and exiting each heat exchanger is altered by the energy
density at the end of the flow network. Without heat losses, the power demanded by
a consumption point is identically extracted from the network at every point of time.
To fit the conservation of volume at nodes, which is mainly used within this thesis,
a lower model hierarchy for the power balance results from claiming conservation of
volume along the heat exchanger

Ga(t) = qa(t)(ea:k(t)− ea:m(t)). (2.13)

For the case of a constant density conservation of mass and volume agree, and hence
(2.12a) and (2.13) agree, as well. Eq. (2.12d - 2.12i) are technical operation conditions
formally not relevant to define the dynamics. In (2.12d), the energy transport is
required to lead from the heating network to the consumption. For a negative velocity,
heat exchangers would contribute power to the heating network rather than obtaining
it. So called prosumers are planned to be investigated in future projects and are not
part of this thesis. The temperature arriving at the flow part of consumer stations is
restricted to lower and upper values (2.12e) and the temperature difference is bounded
by (2.12f). Eq. (2.12d - 2.12f) can be fulfilled simultaneously by defining an appropriate
domain for the energy density at the flow part of consumer stations. For practical
applications it holds that T Fmin > TRa leading to ea:k > eaR. This ensures that the
resulting volume flow is finite for finite consumption powers G.

In addition to the technical operation conditions discussed for heat exchangers and the
source, the minimum and maximum pressure level at each network node is restricted
as well,

pnet
min ≤ pk(t) ≤ pnet

max, k ∈ N , t ∈ T .

The minimum pressure bound ensures that the fluid indeed remains in the fluid phase.
The presented restrictions to temperatures and energy densities on the network can
be condensed to a single set of admissible values for the PDE variable,

X e := {emin
α (x) ≤ eα(t, x) ≤ emax

α (x), t ∈ T , x ∈ [0, Lα], α ∈ P}, (2.14)

where x ∈ [0, Lα] refers to the spatial domain of pipeline α in local coordinates. For
typical networks, the resulting borders emin, emax are constant on every location x
within the network. The space of admissible node pressures is not relevant for a well-
defined simulation but poses technical restrictions. These are discussed in chapter 6.

2.2 Elimination of algebraic equations

While the set of algebraic equations presented in section 2.1.3 is complete and allows to
solve for the incompressible dynamics of heating networks, its solution can be simplified
by eliminating algebraic constraints. Eqs. (2.6, 2.9a) recover a constraint similar to
Kirchhoff’s current law for electrical circuits. The underlying time invariant network
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Chapter 2 PDE modeling of heating networks

structure is what shall be eliminated in the following. Starting with the conservation
of energy, combining (2.9) yields an expression for the energy leaving node k,

ek(t) =

∑
a∈Ik qa(t)ej(t, La)∑

a∈Ok qa(t)
, t ∈ T . (2.15)

Thus the solution of energy conservation reduces to the determination of in- and
outgoing edges and the evaluation of (2.15).

Eq. (2.6) claims the conservation of volume or mass. In both cases, it forms a linear
system of equations for the volume flows on each node in the network. For conservation
of volume it reads

Kq = 0, (2.16)

where K ∈ RN×|E| is the weighted incidence matrix of the graph G. For volume conser-
vation, the absolute value of the weights of K are constantly 1. For mass conservation,
(2.16) can be replaced by an incidence matrix K ′(ρ) with weights given by the value
of the densities at pipelines ends. In a connected graph, one of the equations posed by
all nodes is redundant, leading to an undetermined system with |LG| = |E| − (N − 1)
independent volume flows qI . Here, |LG| denotes the number of linear independent
cycles of the graph G. A cycle is defined as a nonempty, closed path of edges, in
which the only repeated node is the starting node [37]. A visualization is presented
in fig. 2.4. By construction of the flow and return network, each consumer edge leads

1

0 2

a b

c

Figure 2.4: Illustration of a network cycle. The path 0 − 1 − 2 − 0 including the red
edges {a, b, c} is closed with node 0 as the only repeated node.

to one cycle. The set of consumer cycles shall be denoted by Lc. Additional cycles
are introduced by the topology of the flow- and return network and are denoted by
LG. The determination of the independent flow variables qI can now be achieved by
solving a nonlinear system of equations for each cycle. For volume flows representing
consumer cycles, this is performed by solving (2.13). To obtain a constraint for net-
work cycles, the structure of (2.10) is analyzed subsequently. Summing the pressure
differences at pipelines along a cycle in a network yields∑

a∈ξ

∆pa = 0, ξ ∈ LG, (2.17)
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2.3 Hydrodynamic equations

in analogy to Kirchhoff’s second law for electrical circuits. Integrating the conservation
of momentum in space along a pipeline leads to

∆p = −ρ̄v̇ − ρk(q, e). (2.18)

Here, ȳ :=
∫
y(x) dx marks the integral along the pipeline for the quantity y. In

addition, in (2.18) the ”dot” notation was used to express the total temporal derivative
of a quantity in compact form. Applying Kirchhoff’s second law (2.17) to the pressure
differences defined in (2.18) yields the constraint (2.19), which allows to solve for the
volume flows representing network cycles,∑

a∈ξ

ρav̇a + ρk(q, e)a = 0, ξ ∈ LG. (2.19)

Flow-defining equations

The set of flow-defining equations for times t ∈ T is thus given by

Kq(t) = 0, (2.20a)

Φα(t)vα(t) = qα(t), α ∈ P , (2.20b)

Ga(t)− qa(t)(ea:k(t)− ea:m(t)) = 0, a = (k,m) ∈ C, (2.20c)∑
a∈ξ

ρa(t)v̇a(t) + ρk(q, e)a = 0, ξ ∈ LG. (2.20d)

As a consequence, the determination of |E| volume flows is essentially reduced to a
system of |LG| nonlinear equations. Furthermore, after application of (2.19), the pres-
sure variable does not enter the set of equations defining the flow field. After solving
(2.20), the pressure can be recovered by evaluating (2.18). Still, the absolute pressure
levels define technical operating restrictions and have to be considered for an opti-
mization discussed in chapter 6. An import simplification arises from neglecting the
acceleration contribution in the momentum balance (2.2b) of the Euler-like equations.
This leads to

0 = ∂xp+ ρk(v, e).

This transforms the flow-defining equations (2.20) to a purely algebraic system. While
this assumption affects the solution of cycle representing flows, the volume flows at
consumers stations remain identical without incorporating the acceleration. Due to
the direct influence of consumer stations (2.20c) on the flow field, the flow-defining
equations without the acceleration contribution remain non-stationary.

2.3 Hydrodynamic equations

Hereafter, the flow defining equations (2.20) and their solutions are studied. Depending
on the considered network topology, the complexity of (2.20) varies, cf. fig. 2.5. For the
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Chapter 2 PDE modeling of heating networks

visualized network (a), the volume flow field is defined by the volume flow extracted
by consumers (with fixed orientation) and the conservation of volume. If a cycle with
one inflowing and one outflowing pipeline exists (b), pressure continuity introduces a
nonlinear equation defining a flow on the cycle, which remains in the same solution
branch independent of the size of the external flows, assuming that the external flows
retain their orientation. Finally, if a cycle contains multiple effectively inflowing or
multiple effectively outflowing pipelines (c), the solution branch changes depending on
the relative size of the external flows.

(a) (b) (c)

Figure 2.5: Three stages of complexity for the flow defining equations. The three
networks contain either no cycle (a), a cycle with one inflowing and one
outflowing pipeline (b), and finally a cycle with one inflowing and multiple
outflowing pipelines. The last example allows for a change of flux direction
on the red edge depending on the volume flow of both houses.

Cycle flow including changes of flow directions

In this part the solution of Kirchhoff’s voltage law (2.19) is studied, focusing on the
quasi-stationary case. To consider a general setup, the effect of changes of flux direc-
tions is included. To illustrate the setting, fig. 2.6 shows a minimum working example
of a network exhibiting a change in the flux direction between nodes 2-3. For a single
cycle ξ from the set of network cycles LG, the nonlinear equations defining the flow
q3 = qL which is chosen to represent the cycle is given by∑

a∈ξ

oa

(
ρav̇a + gρa∂xza +

λρa
2da

va|va|
)

= 0, (2.21)

where oa equals 1 if the pressure difference is taken with the topological orientation and
-1 else. Note that the velocity va is positive, if its vector is in line with the topological
orientation. Considering the case without acceleration (v̇ = 0), and assuming that the
integral of the density along each pipeline is identical yields

λρ1

2d1

v1|v1|+
λρ3

2dL
vL|vL| =

λρ2

2d2

v2|v2|, (2.22)
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Figure 2.6: Example for a network which can undergo a change of flux direction on
pipeline 2-3.

since the height differences along a closed path sum to zero. Eliminating the velocities
by their corresponding volume flows and inserting conservation of volume results in

α1(ha + qL)|ha + qL|+ αLqL|qL| = α2(hb − qL)|hb − qL|,
where ha, hb are volume flows of the two houses and qi, i ∈ {1, L, 2} denote the volume
flow in the corresponding pipelines. We additionally assume that friction coefficient
and density are constant values on each pipeline, irrespective of velocity and energy
density. For the case of identical constants αi, i ∈ [1, L, 2] the result can be written
as

qL(ha, hb) =

{
−ha − hb +

√
2
√
hb(ha + hb) : hb ≥ ha

ha + hb −
√

2
√
ha(ha + hb) : hb < ha

. (2.23)

In the first case, qL is positive, in the second case negative. Notably, the volume flow
undergoing a change of the flux direction is a continuous function of the external flows
ha, hb for this example. The full solution of the hydraulic problem for the case hb ≥ ha
reads

q0 = ha + hb

q1 = ha + qL = −hb +
√

2
√
hb(ha + hb)

qL = −ha − hb +
√

2
√
hb(ha + hb)

q2 = hb − qL = ha + 2hb −
√

2
√
hb(ha + hb)

This can also be written split in a linear relation to the house flows and an additional
nonlinear function to each equation,

q0

q1

qL
q2

 =


1 1
0 −1
−1 −1
1 2

(hahb
)

+
√

2
√
hb(ha + hb)


0
1
1
−1

 .

In case one of the houses exhibits a zero flux or both demands are identical, all relations
become linear. This trivially explains that cycles exist, in which a change of flux
direction is not possible. Removing one of the houses in fig. 2.6, the flow directions of
all paths in the presented cycle are invariant in time due to the pressure continuity.
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Existence of circular velocity fields

Hereafter, we analyze the existence of a circular velocity field within a cycle. Starting
at an arbitrary node within a cycle and following the flow direction of the velocity
fields within the cycle, a circular velocity field is characterized by the fact that the
starting node is reached again. It shall be noted that such velocity fields can only exist
by differences in the density distribution on each pipeline. If all densities are equal,
as assumed in water- and gas networks, the sum over height differences along a cycle
cancels to 0. The remaining frictional forces exclude a circular velocity field.

We consider (2.22) and aim at finding a solution in which pipeline 2 flows from node
3 to 1, for the presented orientations of pipelines 1 and 3, which would generate a
circular velocity field. We introduce height levels of nodes 1,2,3 and assume equal
pipeline diameters on each pipeline. For these assumptions, (2.21) reads

1

2(π
4
)4d5

(λ1ρ1q1|q1|+ λLρLqL|qL|+ λ2ρ2q2|q2|) + g(ρ1∂xz1 + ρL∂xzL + ρ2∂xz2) = 0,

where velocities are expressed by volume flows. Pipeline 1 is modeled by a positive
slope ∂xz1, while pipelines 2 and 3 share an identical, negative slope ∂xz1 = −2∂xzL =
−2∂xz2. In addition, we assume that the friction factors are constant along each
pipeline and that the integrated densities on pipelines 2, 3 are identical by appropriate
temperature levels, ρL = ρ2. Using these assumptions as well as conservation of volume
at each node yields

1

2(π
4
)4d5

(λ1ρ1(ha − qL)|ha − qL|+ 2λLρLqL|qL|) + g∂xz1(ρ1 − ρL) = 0. (2.24)

At a pressure of p = 5 bar, and temperatures T1 = 120 ◦C, TL = 60 ◦C, the corre-
sponding densities read ρ1 = 943 kg m3, ρL = 983 kg m3. When modeling the friction
factors by the Colebrook-White equation (2.5) for the given roughness σ = 0.047 mm,
(2.24) yields no solution in which pipeline 2 is oriented from 3 to 1. In addition, fixing
the house flow ha to a volume flow leading to a velocity of 0.1 m s−1, (2.24) could
be solved for a globally constant friction factor. It turns out that the corresponding
global friction factor leading to a positive flow on pipeline 2 is λ = 2.6. This value is
at least on order of magnitude above realistic friction factors for turbulent flows.

Remark 1. Due to the results presented in this section, we assume that all velocity
fields solving the flow-defining equations (2.20) including pressure continuity, exclude
circular velocity fields. This assumption is used in the analysis of asymptotic stability
in section 3.6.3 and in the spectrum of the system operator presented in section 3.7.

Convexity of independent volume flows

To close the discussion of the flow defining equations, a statement on the convexity of
the independent volume flows is made. Since the power consumption is bounded by
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2.4 Basic PDE model

Ga(t) ∈ [Ga
−, G

a
+], a ∈ C, t ∈ T , and the energy densities at consumer stations are

bounded as well, ea(t) ∈ [eFmin, e
F
max], t ∈ T , the volume flows at consumer stations are

bounded by

qa(t) ∈
[

Ga
−

ea(t)− eFmax

,
Ga

+

ea(t)− eFmin

]
, a ∈ C, t ∈ T .

As a consequence, for fixed points in time t∗, the set of admissible volume flows at
consumers stations is convex. In contrast, due to the nonlinear contribution of friction
to the pressure difference in the momentum equations, the cycle flows are in general
not a convex function of the volume flows at consumers. This means that a convex
combination of all independent flows will not form a solution of the hydrodynamic
equations. A counter example confirming the claim is presented above, in which
q3(ha, hb) defined in (2.23) is not a convex function in ha, hb. This can be seen by
evaluating the Hessian of q3(ha, hb). For the branch hb ≥ ha > 0, it has the eigenvalues

λ1 = 0,

λ2 =
−(h2

a + h2
b)

4(hb(hb + ha))3/2
.

2.4 Basic PDE model

The PDE model presented in this chapter is summarized below. The technical restric-
tions valid for consumer stations and the power plant lead to the restriction of the
energy density X e defined in (2.14). Within this thesis, a lower model hierarchy for
the transport of thermal energy is studied. Specifically, the influence of thermal losses
at every pipeline is neglected, kW → 0. Consequently, for times t ∈ T the transport
dynamics are described by

∂teα(t, x) = −vα(t)∂xeα(t, x), α ∈ P , x ∈ [0, Lα], (2.25a)

ek(t) =

∑
a∈Ik qa(t)ea(t, La)∑

a∈Ok qa(t)
, k ∈ N , (2.25b)

es:k(t) = uF (t), s = (k,m) ∈ S, (2.25c)

ec:m(t) = ecR, c = (k,m) ∈ C. (2.25d)

While the effect of thermal losses is central for low environmental temperatures, the
remaining model hierarchy still contains the fundamental difficulties in deriving a re-
duced order model. System (2.25) consists of purely advection dominated, hyperbolic
partial differential equations (PDE) formulated on a network. In addition, the ad-
vection speed changes as a function of time depending on the solution of the energy
density evaluated at the network end. Thus, the remaining transport dynamics are
still effectively nonlinear in the energy density when eliminating the velocity as a state
variable. The vector of return energy densities eR will also be abbreviated as the
vector uR ∈ R|C|

(uR)c := ecR, c ∈ C,
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Chapter 2 PDE modeling of heating networks

expressing that the return energy densities are inputs to the return network, yet not
controllable. The second component of the PDE model defines the advection velocity
on every pipeline. For times t ∈ T , these velocities are given by

Kq = 0, (2.26a)

Φαvα = qα, α ∈ P , (2.26b)

Ga = qa(ea:k − ea:m), a = (k,m) ∈ C, (2.26c)

1

ρα
∂xpα = −v̇α −

λ(vα, eα)

2dα
vα|vα| − g∂xzα, α ∈ P , x ∈ [0, Lα] (2.26d)

ps:m = ps:k + ∆ps, s = (k,m) ∈ S, (2.26e)

ps:k = pR s = (k,m) ∈ S. (2.26f)

Eq. (2.26a) denotes the conservation of volume at network nodes which will prove
to suit the finite volume discretization used to form the ODE representation of the
advection equations. As already mentioned, conservation of volume over network
nodes is a good approximation to conservation of mass in case the temperature range
of the flows coupling to the node is small. Specifically, for simple junctions in which
one pipeline enters and one pipeline exits, mass- and volume conservation are identical.
Still, parts within this thesis also comment the consequences of replacing (2.26a) by
conservation of mass.
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Chapter 3

DAE model

For the system of partial differential algebraic equations presented in chapter 2, a spa-
tial discretization is performed, to allow for a numerical solution of the corresponding
dynamics. As shown in section 2.2, the flow defining equations can be simplified sig-
nificantly. Specifically, the pressure can be eliminated as an explicit variable. By
incompressibility of the fluid, the velocity is spatially constant on each edge, motivat-
ing to discuss a spatial discretization of the advection of thermal energy. As will be
discussed below, discretizing the thermal energy leads to the formulation of a control
system, whose stability properties can be analyzed by means of the Lyapunov theory.
Furthermore, existence and uniqueness of solutions for the control system are dis-
cussed. Finally, the relation of the model to the concept of port-Hamiltonian systems
is analyzed. The following presentation discusses different numerical methods to solve
hyperbolic PDEs and indicates their relation to the upwind scheme. It proves to be
sufficiently simple in structure to derive a reduced order model, while possessing many
desired properties of a numerical scheme for a hyperbolic PDE. As an alternative to
reduced order models, higher order hyperbolic schemes also require a smaller number
of discretization cells in space to obtain the same approximation of the underlying
PDE compared to lower order schemes. ADER schemes have been successfully used
to simulate blood flows and will thus be used as a benchmark in chapter 5.

3.1 Spatial discretization of advection dominated
transport

Hereafter, we consider the model hierarchy introduced in section 2.4. Focusing on
the advection based transport of energy, the PDE (2.25a) results on each pipeline,
where the velocity changes as a function of time defined by the algebraic equations
(2.26). Combing the local energy densities eα, α ∈ P to a global variable e, the PDE
describing the entire set of pipelines reads

∂te = −∂xF (t, e), t ∈ T , (3.1a)

= −V (t)∂xe, t ∈ T , (3.1b)
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Chapter 3 DAE model

where V ∈ R|P|×|P| denotes the Jacobian matrix of the flux function F . It defines a
diagonal matrix carrying the pipeline velocities on each diagonal element. As a conse-
quence, (3.1) forms a system of hyperbolic equations, since V is diagonal and carries
real eigenvalues represented by the advection velocities. As the velocities need not
to be distinct, (3.1) is symmetric hyperbolic, yet not strictly hyperbolic. In addition,
due to the time dependent flux function F (t, e), (3.1) also constitutes a quasi-linear
systems of hyperbolic PDEs. The conservation of energy (2.25b) relating pipelines at
junctions in combination with (2.25c, 2.25d) define time-dependent boundary condi-
tions for each pipeline.

Subsequently numerical schemes are discussed for solving the transport on a repre-
sentative pipeline described by (3.2) on the domain Ω = [0, L] ⊂ R1 in one spatial
dimension. Numerical methods aim at solving (3.2) by discretizing the PDE in space
and time, forming a two-dimensional grid for a spatial problem of one dimension [38].
The considered time interval T = [t0, tend] is discretized to M ∈ N discrete times
tj, j ∈ [0, ..,M − 1], t0 = t0, tend = tM−1. The spatial domain is discretized by a par-
tition of n ∈ N disjoint cells Ii = [xi−1/2, xi+1/2], i ∈ [0, .., n−1], with Ω = ∪n−1

i=0 Ii. For
the ease of discussion, equidistant meshes in space and time are considered, with the
corresponding grid size h = xi+1/2−xi−1/2, ∀i, and δt = tj+1− tj. The cell boundaries
are thus located at xi±1/2 = 0 + (i+ 1/2± 1/2)h, setting the left boundary of the first
cell to the start of the domain x = 0.

Quasi-stationary description of the velocity field

The PDE (3.1) carries an explicit time dependence by the time dependent consumer
function G. In addition, it depends on the energy densities evaluated at the “right”
boundary of the spatial domain coupling to the consumer stations. Due to this fact,
the time evolution of the velocity for a future time step is a function of the solution
of the energy density to be determined. To solve this bidirectional relation between
velocity and energy density, the velocity field at time tj is assumed to be constant
throughout the subsequent time step for an explicit time integration. This is in line
with the approach used by explicit time integration schemes of ordinary differential
equations (ODEs). Hence, in the subsequent discussion of the numerical methods, a
piece-wise constant advection velocity is assumed. The following discussion considers
the solenoidal transport of the energy density e on one pipeline within space Ω = [0, L]
and time T ,

∂te+ ∂xf(t, e) = 0, e(t0, x) = e0(x), e(t, 0) = u0(t). (3.2)

The advection equation with time varying velocity is recovered by the flux f(t, e) =
v(t)e,

∂te+ v(t)e = 0, e(t0, x) = e0(x), e(t, 0) = u0(t). (3.3)
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3.1 Spatial discretization of advection dominated transport

3.1.1 Finite difference methods

Finite difference schemes approximate the true solution e of (3.2) at time tj and space
xi by the quantity ẽ(tj, xi) = eji at grid point (i,j) of the space-time grid. Assuming
an equidistant mesh, the points at which the approximations are located are defined
according to xi = 0 + (i + 1/2)h, i ∈ [0, .., n− 1]. A popular finite difference method
is given by the upwind scheme. For the time-varying advection equation it reads,

ej+1
i = eji −

δt
2h

(|vj|+ vj)(eji − eji−1)− δt
2h

(|vj| − vj)(eji − eji+1). (3.4)

Eq. (3.4) can be interpreted as a first order finite difference approximation to the
time- and space derivatives occurring in (3.2). It approximates the solution at point
xi and the future time layer tj+1 by a one-sided spatial approximation in the direction
from which the information originated. An alternative approach are central schemes,
in which the numerical domain influencing the future time step is symmetric. Two
symmetric schemes often applied read

ej+1
i =

1

2
(eji+1 + eji−1)− δt

2h
vj(eji+1 − eji−1), (3.5a)

ej+1
i = eji −

δt
2h
vj(eji+1 − eji−1) +

δ2
t

2h2
(vj)2(uji+1 − 2uji + eji−1). (3.5b)

Eq. (3.5a) refers to the Lax-Friedrichs scheme, and (3.5b) to the Lax-Wendroff scheme
[38]. Both the upwind and the Lax-Friedrichs scheme are of first order in time and
space and thus the approximation error compared to the true solution of the PDE
increases with h+1. Since the Lax-Friedrichs scheme is a central scheme, applying it to
advection dominated problems introduces additional numerical diffusion compared to
the upwind scheme. The Lax-Wendroff scheme incorporates a second order approxi-
mation of the spatial derivative and is of second order in space and time. In exchange
it introduces oscillations at sharp spatial gradients since it is not monotone. Sharp gra-
dients can occur in heating networks allowing for changes of flux direction as discussed
in chapter 5. Using a von Neumann stability analysis, the presented schemes are found
to be stable on the domain of a single pipeline, if the Courant-Friedrichs-Levy (CFL)
condition [38] is satisfied,

δt
h
|vj| ≤ 1. (3.6)

Simulating all pipelines within a network simultaneously, every pipeline is updated in
one time step and the most restrictive CFL condition has to be met,

max
p∈P

δt
hp
|vjp| ≤ 1. (3.7)

In addition, the presented schemes are conservative and exhibit a consistent flux func-
tion.

25



Chapter 3 DAE model

3.1.2 Finite volume methods

The discussion of finite volume schemes follows [38]. Finite volume schemes approxi-
mate the solution to (3.2) by means of finite volumes incorporated in Ii. Integrating
(3.2) in space along cell Ii and along a time step yields

0 =

∫ xi+1/2

xi−1/2

∫ tj+1

tj
∂te dt dx+

∫ xi+1/2

xi−1/2

∫ tj+1

tj
∂xf(t, e) dt dx, (3.8a)

0 =

∫ xi+1/2

xi−1/2

e(tj+1, x)− e(tj, x) dx+

∫ tj+1

tn
f(t, e(t, xi+1/2))− f(t, e(t, xi−1/2)) dt,

(3.8b)

U j+1
i = U j

i −
δt
h

[
1

δt

∫ tj+1

tj
f(t, e(t, xi+1/2))− f(t, e(t, xi−1/2)) dt

]
, (3.8c)

where U j
i = 1

h

∫ xi+1/2

xi−1/2
e(tj, x) dx is the normalized integral of e at time tj along the

finite volume Ii.

To solve (3.8c) numerically, the Godunov scheme uses a piece-wise constant approxi-
mation ẽj(t, x), which, at time tj, is defined by ẽj(tj, x) = Ũ j

i , x ∈ Ii, where Ũ j
i is now

interpreted as an approximation to the cell volume to be updated. Its initial value is
defined by the initial condition Ũ0

i = 1
h

∫ xi+1/2

xi−1/2
e0(x) dx. Its value for the subsequent

time step has the form Ũ j+1
i = 1

h

∫ xi+1/2

xi−1/2
ẽj(tj+1, x) dx. According to (3.8c), its eval-

uation requires to solve the Riemann problems defined by the flux functions at the
cell boundaries f(t, ẽj(t, xi±1/2)), t ∈ [tj, tj+1]. Limiting the time step by the ratio of
the cell length and the maximum wave propagation speed of all cells ensures that the
Riemann problems can be solved independently,

δt ≤ max
l

h

λl(∂Ujf(tj, U j))
, (3.9)

where λl denotes the eigenvalues of the Jacobian of the flux function, ∂Ujf(tj, U j).
Evaluating it at time tj results from the assumption that the velocity is constant
within the time step [tj, tj + δt] and is not related to the Godunov scheme itself. As in
the finite difference case, the CFL condition (3.9) has to be satisfied for all pipelines
updated within the time step. The updated cell values at the new time step read

Ũ j+1
i = Ũ j

i −
δt
h

[
1

δt

∫ tj+1

tj
f(tj, êj(Ũ j

i , Ũ
j
i+1))− f(tj, êj(Ũ j

i−1, Ũ
j
i )) dt

]
, (3.10)

where ê(Ũ j
i , Ũ

j
i+1) denotes the solution of the Riemann problem at the cell interface

xi+1/2. Focusing on the advection equation (3.3), and assuming that a positive flow is
oriented towards increasing cell indices, the solution of (3.10) reads

Ũ j+1
i = Ũ j

i −
δt
h

(|vj|+ vj)(Ũ j
i − Ũ j

i−1)− δt
h

(|vj| − vj)(Ũ j
i − Ũ j

i+1), (3.11)

which is the upwind scheme known from the finite difference method applied to the
finite volume setting.
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3.1 Spatial discretization of advection dominated transport

ADER schemes

Based on the finite volume Godunov method, higher order hyperbolic schemes are
formed, by defining higher order piecewise Ansatz functions ẽj, with ẽj(tj, x) = ψi(x), x ∈
Ii. The need of higher order Ansatz function arises from Godunov’s theorem claim-
ing that every linear, monotone scheme is at maximum order 1 accurate. Specifi-
cally, ADER schemes [39] solve the following generalized Riemann problem of order k
(GRPk)

∂tẽ
j + ∂xf(tj, ẽj) = 0, t ∈ [tj, tj+1], (3.12a)

ẽj(x, tj) =

{
ψi(x) : x < xi+1/2,

ψi+1(x) : x > xi+1/2.
(3.12b)

The polynomials ψ of degree k ∈ N are obtained by a reconstruction procedure based
on the current finite volumes Ũ j

i . Weighted Essentially non oscillatory (WENO)
schemes reconstruct the polynomials by the restriction of being conservative. The
reconstruction polynomial pi of cell i is required to recover the volume of k + 1 cells,∫ xl+1/2

xl−1/2

pi(x) dx = Ũ j
l , l ∈ Si, (3.13)

where Si is an set and refers to the stencil of k + 1 connected finite volume cells,
including cell i. Since cell i is covered by k+1 different stencil configurations of length
k + 1, each of the k + 1 reconstruction solutions is weighted to minimize oscillations
in the approximated solution. The solution ê(pi, pi+1) to the GRPk (3.12) allows to
solve the integrals over the boundary fluxes in (3.10) to determine the finite volume
approximations Ũ j+1

i for the future time step.

Remark 2. Assuming that the velocity is constant within a time step is a first order
approximation to the solution of the integrals occurring in (3.10). As a consequence,
even higher order schemes such as ADER will exhibit a global order of 1 with respect
to the PDE solution. Still, a high order scheme yields more accurate approximations
than a low order scheme, since the local accuracy within each time step is improved.

3.1.3 Discontinuous Galerkin methods

The following presentation bases on [40, 41]. Discontinuous Galerkin methods (DG)
combine concepts of finite element and finite volume methods by basing on a weak
formulation while explicitly treating discontinuous boundary fluxes at cell interfaces.
As in the case of finite elements, the PDE is multiplied with test functions ψ from the
function space

W := {ψ ∈ L1(Ω) : ψ|1 is a polynomial of degree ≤ k}.
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Chapter 3 DAE model

After multiplication with the test function ψ, integration in space Ω yields a weak
representation of the PDE. Additional integration by parts results in

d

dt

∫ xi+1/2

xi−1/2

eψ dx−
∫ xi+1/2

xi−1/2

f(T, e)∂xψ dx+ [f(t, e)ψ]
xi+1/2
xi−1/2 = 0, ∀ψ ∈ W. (3.14)

Subsequently, the solution e is expressed by the basis that spans the space of test
functions,

ẽ(t, x) =
k∑
l=0

eli(t)ϕl(x), ψ(t, x) =
k∑
l=0

ψli(t)ϕl(x), xi−1/2 < x < xi+1/2.

Inserting the polynomials to (3.14) results in

ci,l
deli
dt

=
1

h

∫ xi+1/2

xi−1/2

f(t, ẽ)∂xψ dx− 1

h
[f(t, ẽ)ψ]

xi+1/2
xi−1/2 , l ∈ [0, .., k], i ∈ [1, .., n], (3.15)

which forms an ODE for the temporal evolution of the coefficients of the polynomial
ẽ. The coefficients ci,l =

∫
Ii
ϕiϕl dx result from evaluation of the integral involving the

product of test- and numerical functions in (3.14). The last expression on the right
side of (3.15) requires the evaluation of the boundary fluxes and forms a generalized
Riemann problem, similar to the approach of Godunov. To solve it, the true flux
function f is approximated by a numerical flux function f̃ , allowing for a solution
of the Riemann problem. Assuming piece-wise constant test functions of order 0,
and assuming the Godunov flux for f̃ , (3.15) reproduces the upwind scheme resulting
from the Godunov method. Advantages of DG methods are their simple extension to
higher orders, and the high potential to parallelize the update of the local domains to
a new time step. A possible drawback results form the formally more restrictive CFL
condition when using an explicit Runge-Kutta method for the time integration of the
ODE (3.15) [42]. For test polynomials of order k, a Runge-Kutta scheme of order k+1
has to be applied. For the advection equation (3.3), the following CFL condition on
one pipeline results

δt
h
|v| ≤ 1

2k + 1
.

DG methods as well as the upwind method can also be equipped with an implicit
time integration. Examples are the implicit Euler method, the (implicit) midpoint
rule or implicit Runge-Kutta schemes. Implicit time integration allows for larger time
steps by avoiding the restrictive CFL condition. As a drawback hyperbolic features
such as shock propagation are resolved improperly. To examine the advantages for the
dynamics of heating networks, chapter 5 discusses implicit and explicit time integration
methods.

3.1.4 Upwind scheme on heating networks

As described above, a spatial discretization of (2.25a) is performed employing the
upwind scheme which yields a total number of n finite volume cells. Each pipeline is

28



3.1 Spatial discretization of advection dominated transport

equipped with an equidistant mesh of finite volume cells, cf. fig. 3.1 for an illustration
of the index notation used for discretization cells. The number and length of cells

eα,1 eα,2 eα,3 eα,nα

k m e c,
1
. .
. e
c,
nc

e
d,1 . . . e

d,n
d

e
b,1 . . . e

b,n
b

e a,
1
. .
. e
a,
na

Figure 3.1: Illustration of the upwind discretization in the network case. Cell indices
are defined according to the reference orientation defined by the network
topology.

varies for different pipelines. The exact strategy to distribute a given number of cells
to the set of pipelines is described in chapter 5. Subsequently, eα,β refers to finite
volume cell β on pipeline α ∈ P . More specifically, pipeline α ∈ P contains the local
set of cells Zα := {1, .., nα} with cardinal number nα. Cell indices β ∈ Zα increase in
the direction of positive velocity vα ≥ 0, which is parallel to the reference orientation of
pipeline α defined by the network topology. The upwind discretization on the network
results in two possible types of cell coupling on a network of pipelines and junctions.
These are coupling with neighboring cells in the pipeline or with border cells coupling
to incoming pipelines at junctions. For pipeline α = (k,m)

ėα,j = −vα + |vα|
2hα

(eα,j − eα,j−1)− −vα + |vα|
2hα

(eα,j − eα,j+1), j ∈ Zα \ {1, nα}

ėα,1 = −vα + |vα|
2hα

(eα,1 − ek)−
−vα + |vα|

2hα
(eα,1 − eα,2),

ėα,nα = −vα + |vα|
2hα

(eα,nα − eα,nα−1)− −vα + |vα|
2hα

(eα,nα − em).

(3.16)
Due to changes of flux directions, both signs of the velocity have to be considered in
(3.16). The border cells on pipeline α are related to its nodes as follows. Since the
upwind scheme is of first order in space, the energy densities at pipeline borders are
approximated by the first and last discretization cell on each pipeline,

eα(t, 0) ≈ eα,1(t), eα(t, Lα) ≈ eα,nα(t), α ∈ P t ∈ T . (3.17)

Here, eα(t, 0), eα(t, Lα) denote the exact solution of the energy densities at the ends
of pipeline α for the PDE (3.3). Hence, the energy density ek of node k ∈ N is defined
by

ek =

∑
α∈Ik

qα+|qα|
2

eα,nα + −qα+|qα|
2

eα,1∑
α∈Ok qα

. (3.18)
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Chapter 3 DAE model

In particular, (3.18) defines the energy densities at the flow nodes entering consumer
stations. While Ik already considers the effective orientation of pipelines, also the
border of the edge has to be defined, which currently couples to node k.

Remark 3. Eqs. (3.16), (3.18) incorporate both possible velocity orientations occur-
ring in the dynamical simulation. This is necessary since the mesh definition is static,
while changes of flow direction can occur dynamically in the simulation. For better
readability, throughout the rest of this thesis, we will nevertheless assume a positive
orientation of all pipelines, and the simplified version of (3.16), (3.18) will be applied.

3.1.5 Basic DAE model resulting from upwind discretization

The system of differential algebraic equations (DAE) analyzed in the remaining part
of this chapter is presented subsequently. It results from discretizing the thermal
transport in the PDE model discussed in section 2.4 and is defined within the time
domain t ∈ T . The vector of energy densities is restricted to e ∈ X̃ e,

X̃ e := {e ∈ Rn : eαmin ≤ eα,β ≤ eαmax, β ∈ Zα, α ∈ P}. (3.19)

The two main assumptions leading to the DAE model are neglecting thermal losses
to the environment and neglecting the acceleration contribution in the momentum
balance. The first model component is the thermal part describing the transport of
energy using the upwind scheme for times t ∈ T ,

ėα,β = − vα
hα

(eα,β − eα,β−1), β ∈ Zα \ {1}, α ∈ P (3.20a)

ėα,1 = − vα
hα

(eα,1 − ek), α = (k,m) ∈ P , (3.20b)

ek =

∑
a∈Ik qaea(t, La)∑

a∈Ok qa
, k ∈ N (3.20c)

es:k(t) = uF (t), s = (k,m) ∈ S, (3.20d)

ec:m(t) = ecR, c = (k,m) ∈ C. (3.20e)

The second component are the remaining equations defining the advection velocity on
every pipeline. As discussed in section 2.2, when neglecting the acceleration in the
momentum balance, these read for times t ∈ T ,

Kq = 0, (3.21a)

Φαvα = qα, α ∈ P , (3.21b)

Ga − qa(ea:k − ea:m) = 0, a = (k,m) ∈ C, (3.21c)

−λ(vα, eα)

2dα
vα|vα| − g∂xzα =

1

ρα
∂xpα, α ∈ P , x ∈ [0, Lα], (3.21d)

ps:m = ps:k + ∆ps, s = (k,m) ∈ S, (3.21e)

ps:k = pR, s = (k,m) ∈ S. (3.21f)
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3.2 Formulation of a control system

It is worth noting that the flow defining equations are still non-stationary by the
time dependent boundary conditions at consumer stations. Furthermore, all volume
flows resulting at consumer stations remain identical comparing (3.21d) with and
without the acceleration contribution. Solely the flows representing cycles change
when neglecting the acceleration. In typical networks, the number of cycles is small
compared to the number of consumer stations. In turn, this assumption allows to
focus the subsequent analysis on the dynamics of the thermal transport. Eqs. (3.21)
are abbreviated by

g(e, q, p,Γ) = 0, Γ := (G, uR, pR,∆ps)
T (3.22)

In (3.22), Γ gathers the boundary conditions relevant to define the algebraic equations
including the consumption power G, the return energy density uR, and the pressure
levels at the power plant pR, ∆ps.

3.2 Formulation of a control system

In control theory, a state space representation of a linear dynamical system [22] with
a generic state space X ∈ Rn is expressed as

Eẋ = Ax+Bu, (3.23a)

y = Cx+Du, (3.23b)

where x is the state vector, u ∈ R|u| the input driving the system externally, and
y ∈ R|y| is a subset of the state space which should be observed, the system output.
The essential properties of system (3.23) can be deduced from the structure of the
operators A,E ∈ Rn×n, B ∈ Rn×|u|, C ∈ R|y|×n, D ∈ R|y|×|u|. In addition, many results
and tools from model order reduction are available for this class of systems. In this
spirit, a system description close to (3.23) is derived subsequently for the dynamics of
district heating networks.

3.2.1 Linear time varying system

For a fixed volume flow field q̄, the system matrix A(q̄) ∈ Rn×n is defined as the
Jacobian of the ODE system (3.20),

AfZ(i,j),fZ(k,l)(q̄) :=
∂ėi,j
∂ek,l

(q̄), (3.24)

where e is the vector of finite volume cells on the entire network. Rows and columns
of the matrix A are mapped to the edge- and cell indices i, j by the ordering function

fZ(e, c) := c+
e−1∑
k=1

nk, e ∈ P , c ∈ Ze. (3.25)
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Chapter 3 DAE model

Both the upwind scheme and the conservation of energy are encoded in the volume
flow dependent matrix A(q̄). Its entries are functions depending on the volume flow,
relating the time derivative of each finite volume cell to the vector e. The population
structure of A(q̄) even changes qualitatively if a pipeline undergoes a change of flux
direction. The input matrices BF , BR address the finite volume cells which are related
to the input energy densities uF , uR of flow and return network and are defined by

BF (q̄) :=
∂ė

∂uF
(q̄), (3.26a)

BR(q̄) :=
∂ė

∂uR
(q̄). (3.26b)

For the flow network, uF is the energy density supplied by the power plant. For the
return network, uR represents the contractually defined energy densities returning from
heat exchangers at consumer stations. The set of observables depends on the specific
application. Within this thesis, the energy densities in the flow network entering the
consumer stations are measured by CF and the energy density entering the power
plant in the return network by CR, cf. fig. 3.2. For existing heating networks, only
one pipeline enters a given heat exchanger, requiring to only observe a single energy
density for each consumer. To describe both flow and return network, the operators

BF

CF BR

CR

uF

uR

uR

Figure 3.2: Illustration of input energy densities and input- and output operators for
flow(red) and return(blue) network. Dashed rectangles indicate finite vol-
ume cells.

A,B,C can be decomposed into block structure, where the blocks represent the flow
”F” and the return ”R” network,

A =

(
AF

AR

)
, B =

(
BF

BR

)
, C =

(
CF

CR

)
.

Specifically, since both subnetworks are thermally decoupled, the operators are block
diagonal. While both are identical in terms of the temperature transport, the main
difference results from the fact that the boundary condition at the consumers defining
the volume flow field solely couples to the state space of the flow network. If not
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3.3 Affine decomposition of system and input operator

stated explicitly, the properties of A,B,C discussed subsequently apply to both the
spatially discretized flow and return network. This allows to formulate the entire
system of differential algebraic equations as the following parameterized linear time
varying control system

ė = A(q)e+B(q)uT , (3.27a)

y = Ce, (3.27b)

0 = g(e, q, p,Γ). (3.27c)

In this notion, (3.27) mirrors the advection of the energy density subject to the thermal
input uT = (uF , uR)T , with B(v) ∈ Rn×|u|. Outputs y are a linear combination
of energy densities and are observed by C ∈ R|y|×n. The flow defining equations
(3.27c) act as generators for the volume flow field q. Eq. (3.27) is expressed in the
basic state variables e, q, p. The resulting operator A(q) is equivalent to (3.24) by
qα = Φαvα, α ∈ P . Although volume conservation is assumed by default, A(q) could
equivalently be defined for conservation of mass. Note that C does not depend on the
flow field and thus is a constant in time linear operator. Eq. (3.27) does also have an
interpretation as a descriptor system [43]

Eẋ = F (x, uT )

y = Cex,

where E ∈ Rn×n is a singular matrix, and x = (e, q, p) collects the state variables
energy density, volume flow and pressure. For district heating networks, E constitutes
a diagonal matrix with entries 1 for rows referring to energy densities and zero for rows
referring to algebraic equations. Since the reduction of algebraic equations and vari-
ables might introduce instabilities, we focus on the reduction of the purely differential
part given by the transport of the energy density.

3.3 Affine decomposition of system and input operator

Within this section, an affine decomposition of the system operators A,B of the DAE
(3.27) is discussed. An affine decomposition to time-constant matrices and a volume
flow dependent part is useful, since it allows for a determination of projection based
reduced system operators in the offline-phase. The determination of reduced opera-
tors is discussed in chapter 4. A general form of an affine decomposition of a finite
dimensional operator Θ : RP 7→ Rn×n in terms of a parameter vector p ∈ RP , P ∈ N
and time constant matrices Θi is given by [44]

Θ(p) =
P∑
i=1

γi(p)Θi, (3.28)

where γ : RP 7→ RP is a function of the parameter vector p and Θi ∈ Rn×n are constant
matrices. The possibility to express the operators A(v), B(v) in the structure of (3.28)
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Chapter 3 DAE model

has two origins. First, the Euler-like equations result in a quasi-linear hyperbolic
system in the energy density. Second, the conservation of energy at every network node
defines the outgoing energy density to be a linear combination of the entering energy
densities with the volume flow vector as coefficients. To illustrate this observation, the
ODEs describing the energy densities on pipeline α are considered. The inner energy
densities eα,β, β ∈ [2, .., nα] are trivial and can be expressed as products of qα and
eα,β, β ∈ [1, .., nα − 1]. The ODE for the first energy density is more involved and
reads

ėα,1 = − vα
hα

(eα,1 − ek) = − qα
Φαhα

eα,1 +
qα

Φαhα

∑
b∈Ik qbeb,nb∑
b∈Ok qb

, α = (k,m) ∈ P . (3.29)

Since this applies for every pipeline α ∈ P , A(q) can be decomposed in the form
(3.28), The corresponding weighting coefficients are linear, γ(q) ∝ qα, for ODEs relat-
ing inner energy densities on pipeline α and are nonlinear for the first cell on pipeline
α. Precisely, A(q) can be expressed as (3.29) with volume flow dependent weighting
functions. Hereafter, useful choices for parameter and weighting function γ are dis-
cussed, exploiting the specific topology of heating networks by assuming conservation
of volume over network nodes.

Parameterization of networks without changes of flux direction

The splitting of flow-defining and thermal equations suggests to perform an affine
decomposition of the system operators. Focusing on a single pipeline α ∈ P , the
ODE resulting from an upwind discretization is defined in (3.16). Due to the available
pipeline junctions, nodes in existing district heating networks couple to at maximum
three pipelines. For this structure of the nodes, combining conservation of energy and
volume simplifies the ODE for the first cell on pipeline α to two cases,

ėα,1 =

{
− vα
hα
eα,1 + 1

hαΦα
(qkek,nk + qlel,nl), : k, l ∈ Ik

− vα
hα
eα,1 + vα

hα
ek,nk : only k ∈ Ik.

(3.30)

In the first case, two pipes flow into node k. The node contributes the flux

− vα
hα
ek = − vα

hα

(qkek,nk + qlel,nl)

qα
= − 1

hαΦα

(qkek,nk + qlel,nl). (3.31)

In the second case only one pipeline flows into node k. In both cases, the ODE for the
first cell in pipeline α is a bilinear expression in velocities and energy densities. Thus,
if the orientation of all pipelines remains static, a possible affine decomposition of the
system and input operators is given by

Â(v) =

|P|∑
ν=1

vνA
v
ν , B̂(v) =

|P|∑
ν=1

vνB
v
ν ,
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3.3 Affine decomposition of system and input operator

where |P| denotes the number of pipelines. The matrices Avν ∈ Rn×n, Bv
ν ∈ Rn×|u|

are time-independent operators multiplied with the time-varying components of the
velocity vector. The notation Avν indicates that the time-independent matrices are
created using the velocity as a parameter, but do not dependent on the dynamically
changing velocity vector. The system operators Â(v), B̂(v) equal the desired system
operators A(q), B(q) introduced in the previous sections. The central difference is the
parameter basis use in their construction. In turns out that using independent volume
flows as parameters is more efficient for the construction of reduced order operators
discussed in chapter 4. Thus, throughout the rest of this thesis A(q), B(q) refer to
constructing the system operators by independent volume flows. By conservation of
volume and incompressibility, these are related to the velocities as

v = Sq̃,

where S is the solution operator of the linear volume conservation law. The system
operators can then be written as

A(q) =

|LG |+|C|∑
ν=1

q̃νA
q̃
ν , B(q) =

|LG |+|C|∑
ν=1

q̃νB
q̃
ν ,

where the notation A(q), B(q) is chosen to express that independent volume flows
q̃ are used as parameters. Using independent volume flows to describe the system
operators, the number of parameters reduces. By conservation of volume for arbitrary
networks it holds that

|LG|+ |C| ≤ |P|.
At the same time, the time-independent system operators Aq̃ν couple to more finite
volume cells in the network compared to using velocities as parameters, since by con-
servation of volume, an independent flow couples to potentially multiple pipelines,
cf. fig. 3.3. Reducing the number of parameters is important for a later use in projec-
tion based model order reduction, cf. chapter 4. Instead of using the conservation of
volume at network nodes, the conservation of mass could be claimed. As a drawback,
the inflowing energy density on pipeline α would not represent a convex combination
of incoming energy densities anymore, cf. (3.29) and the representation (3.31) would
not be possible anymore. In addition, the concept of independent volume flows q̃ does
not exist and volume flows potentially differ on each pipeline. Hence, the number of
parameters required by an affine decomposition increases.

If the flow direction of all considered pipelines is not static, but potentially changes
for the boundary conditions of interest, additional nonlinear parameters have to be
introduced for an affine decomposition.

Parameterization of changes of flux directions

By conservation of volume, a pipeline changes its flux direction as part of a segment
of pipelines. Such a group of pipelines changing flow directions simultaneously will
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v1|qa + qb

v2|qa

b
v3|qb

a

Figure 3.3: Illustration of independent volume flows qa, qb and the velocities vi, i ∈
[1, 2, 3] for an example network.

be called ”segment”, cf. fig. 3.4. The border nodes at the start and the end of the
segment have to couple to at least three edges. As mentioned above, existing heating
networks couple to at maximum three edges at a every node. Under this assumption,
a setup in which a pipeline changes its flux direction is visualized in fig. 3.4. For the

Figure 3.4: Illustration of a segment containing a pipeline undergoing a change of flux
direction (red). It is constrained by border nodes at the left and right side
which couple to three edges each, all of which might undergo a change of
flux direction itself.

presented segment, it is possible to describe the change of flux direction by a single
representative pipeline marked in red. The ODE of finite volume cells on a pipeline α
within this segment can consequently be parameterized by its volume flow qr at the
reference edge r,

ėα,1 = −qr + |qr|
2hαΦi

(eα,1 − eL) +
qr − |qr|
2hαΦi

(eα,1 − eα,2), (3.32a)

ėα,nα = −qr + |qr|
2hαΦα

(eα,nα − eα,nα−1) +
qr − |qr|
2hαΦα

(eα,nα − eR), (3.32b)

ėα,β = −qr + |qr|
2hαΦi

(eα,β − eα,β−1) +
qr − |qr|
2hαΦα

(eα,β − eα,β+1), j ∈ [2, .., nα − 1]. (3.32c)

Here, eL(eR) denotes the energy density at the left(right) border nodes of pipeline α.
For all pipelines within the domain coupling to simple nodes, eL(eR) are proportional
to the first or last finite volume cell of the neighboring pipeline in the segment. In
contrast, the influence of the edges at left and right border nodes to the first and
last cell in the flux changing domain is more involved and depends on the current
flux orientation of the reference edge r towards the edges at the border nodes. The
three possible configurations at a border node are presented in fig. 3.5. The aim is
to construct a single nonlinear parameter describing how energy is transported to a
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3.3 Affine decomposition of system and input operator

a) b) c)
p1

p2

r p1

p2

r p1

p2

r
N N N

Figure 3.5: Illustration of the possible flux configurations at the left border node cou-
pling to three edges. The changing reference edge r either couples to two
pipelines which either remain at a constant orientation (a), or one of them
changes orientation (b) or finally all of them change their orientation (c).

pipeline leaving the junction displayed in fig. 3.5, based on the flow configuration of
the other two pipelines. A function fulfilling this task is given by

fp(i, j, k) := s−k s
+
i |qi|

|qi|+ ljqj
|qi|+ s+

j ljqj
. (3.33)

In (3.33) lj stores the sign of qj when entering node k. Similarly, s+
i (s−i ) equals one

if the current volume flow qi enters(exits) node k, and is zero else. For three edges
coupling to node k, (3.33) defines the energy flow of a reference pipeline i to pipeline
k, based on the current orientation of the third pipeline j. It represents a generic
solution of the conservation of energy and volume for all possible orientations of the
coupling edges. For an upwind discretization this allows to write

ėk,1 = − vk
hk
ek,1 +

1

hkΦk

(fp(i, j, k)ei,ni + fp(j, i, k)ej,nj). (3.34)

More precisely, (3.33) contributes a volume flow only if pipeline k indeed exits node k
and pipeline i enters k. If pipeline j enters k (s+

j = 1), i transports ei,ni with volume
flow |qi| to pipeline k. If j exits node k, i transports ei,ni with a volume flow |qi|+ ljqj
to pipeline k.

The representation (3.33) allows to systematically define how energy is transported
by edges possibly changing their flux direction. The parameterization is performed in
steps. First, segments which contain a change of flux directions have to be defined a
priori. This can be done using training simulations for given boundary conditions. Sec-
ond, the parameterization is done for all pipelines which are not affected by pipelines
changing the flux direction. Third, all segments undergoing a change of flux direction
are considered. For both velocity profiles of the segment, the transport of energy from
the segment to pipelines leaving the outflow boundary of the segment is written. The
scheme to describe the transport of pipelines reverting their orientation is summarized
in alg. 1. The resulting parameterization including changes of flux directions based on
independent volume flows reads

A(q) =

nq∑
ν=1

γ q̃ν(q)A
q̃
ν , B(q) =

nq∑
ν=1

γ q̃ν(q)B
q
ν , (3.35)
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Algorithm 1 Parameterization of energy transport for edges exhibiting changes of
flux directions
1: Determine the parameterization for all pipelines, which are not affected by a

pipeline changing its flux direction.
2: for all segments containing a change of flux direction do
3: Define a representative edge r in the segment s.
4: Write the temporal derivative of the energy density for all pipelines i in the

segment s according to (3.32) as defined in the following steps.
5: for positive and negative configurations of the reference flow qr do
6: Determine the outflow boundary node no of segment s.
7: Determine the finite volume cells within the segment at the inflow and outflow

boundary: (bin, cin), and (bout, cout).
8: Write the influence of the reference pipeline r to all edges exiting node no. To

this end, distinguish the following cases.
9: 1. Pipelines p1, p2 have fixed flow direction within the simulation, p1 runs

in the node, p2 runs out.

ėp2,1 ∝ −qp1ep2,1 + fp(r, p1, p2)er,1 + fp(p1, r, p2)ep1,np1
ėp2,j ∝ −qp2(ep2,j − ep2,j−1), j ∈ [2, .., nj]

ėbout,cout ∝ −qrebout,cout + fp(p1, p2, r)ep1,1

2. Pipeline p1 changes direction within the simulation, p2 is fixed, and runs
in.

ėp1,1 ∝ −qp1ep1,1 + fp(r, p2, p1)ebout,cout+ ∝ fp(p2, r, p1)ep2,np2

3. Pipeline p1 changes its direction, the fixed edge p2 runs out.

ėp2,1 ∝ −qp2ep2,1 + fp(r, p1, p2)ebout,cout + fp(p1, r, p2)ep1,np1
ėp2,j ∝ −qp2(ep2,j − ep2,j−1), j ∈ [2, .., nj]

ėp1,1 ∝ −qp1ep1,1 + fp(r, p1, p2)ebout,cout

4. All three edges change their sign within the simulation.

ėp1,1 ∝ −qp1ep1,1 + fp(r, p2, p1)ebout,cout
ėp2,1 ∝ −qp2ep2,1 + fp(r, p1, p2)ebout,cout

10: end for
11: end for
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where B q̃
ν , A

q̃
ν are time-independent matrices multiplied with volume flow dependent

weighting functions γ : Rnq 7→ Rnq . Thus, γ changes over time with the boundary
condition defining the volume flows at houses. Here, nq denotes the number of param-
eters required to describe the energy transport. The latter amounts to the number
of independent volume flows |LG|+ |C| plus four to six nonlinear parameters for each
segment changing the flux direction. The number of parameters depends on the cases
illustrated in fig. 3.5. The presented scheme can be extended to cases with more than
three pipelines coupling at a given node. This would form a more complex nonlinear
function (3.33) incorporating the increased number of edges coupling to the considered
node. Using a nonlinear parameter to model the influence of a pipeline changing its
flow direction reduces the number of parameters needed in the affine composition com-
pared to the usage of linear representations. This is crucial when applying Galerkin
projections, in which even sparse unreduced matrices become densely populated. Fur-
thermore, expressing the DAE based on matrices allows to easily compute gradients
with respect to state variables.

3.4 Existence and uniqueness of solutions

Subsequently existence and uniqueness of the solution of the spatially discretized sys-
tem (3.27) shall be analyzed resulting from spatial discretization with the upwind
scheme. The essential assumptions considered in (3.27) are volume conservation, a
loss-less energy transport, and the assumption that acceleration is neglected in the
momentum balance. Within this section, system (3.27) is abbreviated by

ė = f(t, e), e ∈ X̃ e, e0 = e(t0). (3.36)

The considered spatial domain X̃ e is defined in (3.19). Finite volume cells entering
consumer stations in the flow network are strictly larger than the corresponding re-
turn energy densities of heat exchangers. In addition, the boundary functions uT , G
are assumed to be continuous in time. In the following the Picard-Lindelöf theorem
[45] is applied to (3.36) consisting of the discretized advection term subject to the
hydrodynamic equations serving as algebraic constraints. The resulting DAE exhibits
differentiation index 1, cf. section 3.5.

Theorem 4. We assume that the input energy densities uT and the power consump-
tion G are continuous functions of time and are bounded. In addition the considered
network topology does not contain cycles in the flow- or the return network. Then,
for the solenoidal descriptor system (3.27) resulting from upwind discretization with
quasi-stationary hydrodynamic equations, there exists a unique solution of (3.27).

Proof of Theorem 4. Using the Picard–Lindelöf theorem [45], it suffices to show that
f(t, e) is continuous with respect to time t and Lipschitz continuous with respect to
the energy density e. If the network is free of cycles, a representation of the ODE
(3.27) is given by

39



Chapter 3 DAE model

ė =
∑
i∈C

qi(Gi(t), e)[Aie+BiuT (t)], (3.37)

where Ai, Bi, i ∈ C are time-independent matrices. Inserting the solution of the volume
flows at consumer stations resulting from (2.13) yields

ė =
∑
i∈C

Gi(t)

ei − eiR
[Aie+BiuT (t)]. (3.38)

Eq. (3.38) contains products and sums of the functions uT , G which are continuous
in time, yielding continuity in time for the entire DAE. Showing Lipschitz continuity
with respect to the energy density results in

‖f(t, x)− f(t, y)‖ ≤ c‖x− y‖,∀x, y ∈ X̃ e, c ∈ R+, c 6= 0.

Due to equivalence of norms on finite dimensional spaces, the used norm is not specified
further. Inserting (3.38) gives

‖f(t, x)− f(t, y)‖ = ‖
∑
i∈C

qxi [Aix+BiuT (t)]− qyi [Aiy +BiuT ]‖, (3.39)

= ‖
∑
i∈C

Ai[q
x
i x− qyi y] +BiuT (t)[qxi − qyi ]‖, (3.40)

where qxi := qi(Gi(t), x) denotes the volume flow resulting from the energy density x.
If the functions

x ∈ X̃ e 7→ qxi , i ∈ C, (3.41a)

x ∈ X̃ e 7→ qxi x, i ∈ C, (3.41b)

are Lipschitz continuous with respect to energy densities, inserting their Lipschitz
constants cq,xi , cqi yields

‖f(t, x)− f(t, y)‖ ≤ ‖
∑
i∈C

Aic
q,x
i ‖x− y‖+BiuT (t)cqi‖x− y‖‖

≤
(∑

i∈C

‖Ai‖|cq,xi |+ |uT (t)|
∑
i∈C

‖Bi‖|cqi |
)
‖x− y‖.

Note that the norm of finite dimensional matrices is finite. Hence it suffices to show
that the functions (3.41) are Lipschitz continuous. Since e ∈ X̃ e, the following deriva-
tive exists and is bounded∣∣∣∣ d

dx

Gi

x− eiR

∣∣∣∣ =

∣∣∣∣ Gi

(x− eiR)2

∣∣∣∣ ≤ maxj∈C, t∈T Gj(t)

minj∈C(eFmin − ejR)
, i ∈ C, x ∈ X̃ e,

where the fact is used that the admissible energy densities are larger than each energy
density in the return part of consumer stations, eFmin > maxa∈C e

a
R. This allows to

conclude that

|qxi − qyi | ≤ cqi |xi − yi| ≤ cqi‖x− y‖, ∀x, y ∈ X̃ e, i ∈ C.
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Lipschitz continuity of the product of energy density and volume flow follows by

‖qxi x− qyi y‖ = ‖qxi x− qyi y + qxi y − qxi y‖
= ‖qxi (x− y) + y(qxi − qyi )‖
≤ ‖qxi ‖‖x− y‖+ ‖y‖‖qxi − qyi ‖
≤ ‖qxi ‖‖x− y‖+ cqi‖y‖‖x− y‖
≤ cq,xi ‖x− y‖,

and the fact that x, y ∈ X̃ e, and thus both qxi , y are bounded. The energy densities x, y
are bounded since the maximal admissible energy densities in X̃ e are bounded. As
a last step to showing existence and uniqueness, one has to prove that a solution with
admissible initial conditions e0 ∈ X̃ e is ensured to remain within X̃ e, given that each
component of the thermal control (uT )i, i = 1, .., |u| takes values within [enet

min, e
net
max].

To this end, we consider the simulation interval T = [t0, tend]. Both the components
of the initial state e0 and the components of the control uT are assumed to take
values within (enet

min, e
net
max) and thus, are strictly larger than enet

min. We choose a proof
by contradiction and assume that there exists a time τ ∈ T at which at least one cell
βr, for the first time within T , equals the critical value eβr(τ) = enet

min. Then, we know
that for times t < τ the solution of the energy density is continuously differentiable
by the results obtained so far. Different cases are considered subsequently for the
cells eβr← influencing βr. In case 1, the energy density of the reference cell is smaller
than the energy density of one of its preceding cells, eβr(τ) < eβr←(τ). By definition
of the upwind scheme cf. (3.16), it follows that ėβr(τ) > 0. This in turn requires
that eβr(t) ≤ enet

min for a small time interval τ − ε < t < τ with ε > 0, which is a
contradiction to the assumption that τ is the first time at which eβr(τ) = enet

min. In case
2, all cells influencing the reference cell take energy densities identical to the reference
cell, eβr←(τ) = eβr(τ). In this case, preceding cells are searched until a cell c is found
which has a preceding cell with larger value, ec← > enet

min. Subsequently, the argument
of case 1 again applies to ec. If all cells exhibit an identical value enet

min, at least the
cells ζ closest to the injection points of thermal energy in flow- and return network
will posses a positive temporal derivative

ėi(τ) = −|v|(ei(τ)− uiT (τ)) > 0, i ∈ ζ. (3.42)

In (3.42) uiT is the input which directly affects cell i, and cell i is an element of the set
of cells ζ which are exclusively influenced by the thermal controls. Hence, a positive
slope results and by the argument of case 1 a contradiction to the existence of the time
τ ∈ T is given. Consequently, if the components of the initial state and the control
are ensured to be larger than enet

min, the resulting energy densities will be larger than
enet

min, as well. The same chain of arguments applies for the upper bound enet
max closing

the proof.
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Existence of solutions for topologies including cycles

In [46, 47] existence and uniqueness of solutions is shown for equations governing water
networks including cycle structures. These are described by a set of equations closely
related to the flow defining equations (2.26) within time t ∈ T

Kq = 0, (3.43a)

qa = qa(t), a = (k,m) ∈ C, (3.43b)

−ρLαλα
2dα

vα|vα| − ρg∆zα − ρLαv̇α = ∆pα, α ∈ P , (3.43c)

ps:m = ps:k + ∆ps, s = (k,m), (3.43d)

ps:k = pR, s = (k,m). (3.43e)

Specifically, the density is globally constant, and the friction factor is a temporally
constant pipeline-specific parameter. The volume flow at the network ends is defined
by demand functions qa, a ∈ C. In [46], global unique solvability is shown for (3.43)
without the acceleration contribution v̇α. Thus, it remains to show that the unique
solution of (3.43) is Lipschitz continuous in the volume flows defined at consumer
stations. This proof would allow to conclude for the existence of solutions of (3.36) for
networks including cycles which do not exhibit a change of flow direction. However,
this proof is an open task for future research and not further analyzed within this
thesis.

Contact discontinuities by changes of flux direction

In theorem 4, networks exhibiting changes of flux direction are excluded. This is due to
the fact that changes in flux direction can induce contact discontinuities in the PDE
description of the energy transport. A minimum example for a network containing
a pipeline which changes its flux direction is presented in fig. 3.6. Assuming that
pipelines (1,2) and (1,3) share identical length and diameter, the sign of the volume
flow along edge 2, 3 changes with the difference of the volume flows at houses a, b,
q3 ∝ qa−qb. To illustrate the creation of a contact discontinuity the following scenario
is considered. The velocity v3 of pipeline 3 is directed towards node 3 and positive.
After a finite time, its flux direction reverts to a negative sign. With τ ∈ R+, the time
is denoted at which v3(τ) = 0, such that v3(τ + ε) < 0, ∀ε, 0 < ε ≤ δ for a small time
interval δ > 0. Hence, the time evolution of the energy density e3,n3 in the cell close
to node 3 is defined by

e3,n3
:=

{
e2(t− s(t)) : t ≤ τ ,

e3(t) : t > τ .
(3.44)

In (3.44), e2 denotes the energy density of node 2, and s(t) is the temporally changing
transport time between node 2 and cell e3,n3 for positive velocities v3. Similarly,
e3 denotes the energy density of node 3. Eq. (3.44) defines a Riemann problem, if
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3.5 Differentation index of the DAE

e3(τ) 6= e2(τ −s(τ)), inducing a contact discontinuity which propagates along pipeline
3 subsequently. Since the volume flow q3 changes continuously while attaining the value
0, the transported power qe does also change continuously. In contrast, the energy
density exhibits a contact discontinuity. Focusing on the PDE level, this contact
discontinuity would propagate to at least one heat exchanger, inducing a discontinuity
in the volume flow at consumer stations. This discontinuity leads to oscillations in the
network dynamics. This is in contrast to the ODE level studied here, in which due
to the numerical diffusion introduced by the upwind discretization, the initial contact
discontinuity will be smoothed to a continuous signal in the energy density. While
this is not a formal proof, even in the case of flux changes, a classical, unique solution
to (3.36) is expected. By increasing the number of finite volume cells, the resulting
solution will be a continuous approximation to the contact discontinuity propagation
occurring in the PDE case.

v0 1

House

House

0

2

3

4

5

House a

House b

v1

v3= vL

v2

uT

Figure 3.6: Minimum example for a flow network in which a change of flux direction
is possible (edge 2-3) for appropriate volume flows at consumer stations.

3.5 Differentation index of the DAE

The differentiation index of the DAE (3.27), cf. section 3.1.5, shall be evaluated sub-
sequently. It is defined as the number of differentiations needed to transform the DAE
to a pure ODE in all state variables [48], [43]. For heating networks, these refer to
the vector of velocities, energy densities and pressures. To apply this definition, net-
works are considered, for which a unique solution of (3.27) is ensured as discussed in
section 3.4. We consider the DAE (3.27) defined in section 3.1.5 with and without the
acceleration contribution in what follows. It turns out that by including the accelera-
tion in (3.21d), the differentiation index of the DAE equals 2. In addition, neglecting
the contribution of acceleration in (3.21d) as done to derive (3.27) in section 3.1.5
reduces the index to 1. Alternatively, removing the pressure from the considered state
variables and removing the momentum balance (3.21d) from the set of equations, as
described in section 2.2, reduces the index to 1, as well.

43



Chapter 3 DAE model

When attempting to write the basic DAE model defined in section 3.1.5 as a purely
differential system, one notes that the advection equation already is in the form of a
differential equation for the energy densities,

ėα,1 = − vα
hα

(eα,1 − ek), α = (k,m) ∈ P (3.45a)

ėα,β = − vα
hα

(eα,β − eα,β−1), α ∈ P , β ∈ Zα \ {1}, (3.45b)∑
α∈Ok

q̇αek + ėkqα =
∑
α∈Ik

qαėα,nα + q̇αeα,nα , k ∈ N . (3.45c)

Eqs. (3.45a, 3.45b) define ODEs for the energy densities on each pipeline, and (3.45c)
for the virtual energy density on the node k resulting from conservation of energy.
The temporal derivative of the momentum balance integrated in space yields an ODE
for the pressure at every network node

ρ̇(eα) =
∂ρ

∂eα
ėα, λ̇(eα, vα) =

∂λ

∂eα
ėα +

∂λ

∂qα
q̇α, α ∈ P , (3.46a)

d(pk − pm)

dt
= −|vα|

2d
[2v̇αρ(eα)λ(eα, vα) + vα

d

dt
(ρ(eα)λ(eα, vα))] (3.46b)

− ρ(eα)
dv̇α
dt
− (vα − gzαx )

d

dt
ρ(eα), α = (k,m) ∈ P .

The temporal derivative of the momentum balance (3.46b) contains both the accel-
eration v̇α itself and its temporal derivative( d

dt
v̇α). First, an ODE for the velocity (a

description of the acceleration) is given by applying the temporal derivative to the
remaining flow defining equations. This leads to

q̇α = Φαv̇α, α ∈ P , (3.47a)

q̇c =
Ġc(ek − ecR)−Gcėk

(ek − ecR)2
, c = (k,m) ∈ C, (3.47b)∑

a∈δout(k)

q̇a =
∑

a∈δin(k)

q̇a, k ∈ N . (3.47c)

Second, to obtain an ODE for the acceleration in (3.46b), (3.47) have to be differ-
entiated a second time, forming a purely differential system. As a consequence, the
resulting DAE is of differentiation index two.

When alternatively neglecting the acceleration contribution in (3.46b), the index of the
resulting DAE reduces to one, since (3.47) does not need to be differentiated twice. The
same observation results when eliminating the pressure variables by summing (3.46b)
over cycles. The resulting |LG| equations form a nonlinear system of equations for
the determination of cycle flows. When removing the remaining |P| − |LG| equations
of type (3.46b), the pressure is not part of the state variables and the DAE is of
differentiation index 1.
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3.6 Stability

The stability of the system description (3.27) of an arbitrary heating network is an-
alyzed, resulting from spatial discretization of the energy density using the upwind
scheme. The discussion is split in the two concepts of Lyapunov and asymptotic
stability. The subsequent presentation applies for network topologies and boundary
conditions, which allow for the existence of a unique solution, as discussed in sec-
tion 3.4.

3.6.1 Lyapunov stability

Since the fininte-dimensional time-varying system (3.27) is considered, analyzing eigen-
values of the time-varying system operator A is not sufficient [49] to conclude for
stability of (3.27). Precisely, the following dynamical system is studied, cf. [50],

ẋ = f(t, x(t)), x(t0) = x0, (3.48)

where f : T × X 7→ Rn is additionally assumed to be continuous in both arguments
to ensure the existence of a classical solution, i.e.

f(·, x) continuous x ∈ X (3.49)

f(t, ·) continuous t ∈ T . (3.50)

With these definitions, stability of the dynamical system can be defined as follows [50]:

Definition 5 ([50]). A function f defined in (3.48) with equilibrium point x̄ is Lya-
punov stable, if there exists a positive definite operator V : T × D 7→ R+, V (x) =
0 iff x = x̄, where D is a neighborhood of x̄, such that

d

dt
V (t, x) ≤ 0, t ∈ T , x ∈ int(D), (3.51)

where int(D) is the interior of D. Asymptotic stability results from strict definiteness
of (3.51).

Steady states

For a thermal control uT , which is constant in time, the existence of steady states
as required for a stability analysis shall be evaluated subsequently. For the following
considerations, flow and return network are considered independently by a generic
network with |u| injection points of thermal energy.

Theorem 6. For the description of the energy transport as defined in (3.27), there
exist constant in time thermal controls ū, forming steady states ē(ū). By conservation
of energy, the components of ē(ū) are within the convex hull of the thermal inputs in
ū.
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Proof of Theorem 6. The ODE of the discretized energy densities resulting from the
upwind scheme on pipeline α = (k,m) ∈ P reads

ėα,j = − vα
hα

(eα,β − eα,β−1), β ∈ Nα \ {1}

ėα,1 = − vα
hα

(eα,1 − ek).

An equilibrium results by ēα,β = ek, β ∈ Zα. Due to the conservation of energy
(3.20c), in combination with volume conservation on each node (3.21a), ek is given by
a convex combination of incoming energy densities

ek ∈
[
min
i∈Ik
{ei,ni},max

i∈Ik
{ei,ni}

]
, k ∈ N . (3.52)

This allows to conclude that the components of the resulting equilibrium state vector
are within the minimum and maximum injected thermal controls,

min
k∈[1,..,|u|]

ūk ≤ ēα,β ≤ max
k∈[1,..,|u|]

ūk, β ∈ Zα, α ∈ P ,

where |u| is the dimension of the equilibrium control vector ū.

For flow and return network, the corresponding controls allowing for steady states in
line with technical constraints read

ūF : T 7→ [eFmin,∞),

ūR : T 7→ (e1
R, .., e

|C|
R )T , ⊂ R|C|,

where eFmin is the minimum allowed energy density at consumer stations in the flow
network. The velocity vector v used above is now defined by the flow defining equations
for the equilibrium energy densities ē(ū).

Lyapunov inequality

For a quadratic Lyapunov function V (t, x) = xTQx with a positive semi-definite,
symmetric, constant in time Kernel Q ∈ Rn×n, (3.51) is equivalent to

xTQf(t, x) + fT (t, x)Qx ≤ 0 x ∈ X , t ∈ T . (3.53)

Focusing on the network setup, Lyapunov stability does not follow trivially (Q = 1),
since A needs not to be negative semi-definite (nsd). To illustrate this, the example
of two aligned pipelines with velocities v1, v2 and a cell length h is considered, where
each pipeline receives one finite-volume cell. In this setup the operator A reads

A =
1

h

(
−v1

v2 −v2

)
.
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Here, the definiteness of A depends on the ratio r = v1/v2, which changes with the
pipeline diameters. For r < 0.25 the matrix is indefinite. In contrast, the matrix
QA is negative semi-definite (nsd), when choosing Q as a diagonal matrix carrying
the volume of the finite volume cells of each pipeline, Φ · h. The ordering function
fZ considered subsequently was introduced in (3.25). This motivates the following
theorem.

Theorem 7. For the system operator A(q) of the control system (3.27) defined in
(3.24), the following holds. There exists a global, diagonal, positive definite energy
matrix Q ∈ Rn×n, such that for every fixed volume flow field q̄ satisfying volume
conservation (3.21a),

M = (QA(q̄))T + (QA(q̄)) ≤ 0. (3.54)

Remark 8.

1. Q can be constructed with positive diagonal elements

Qi ≡ diag(Q) = QfZ(i,j),fZ(i,j) = Φihi, i ∈ P , j ∈ Zi.
The latter carry the volume Φihi of each of the discretization cells on edge i.

2. Since (3.54) holds for all volume flows q satisfying volume conservation (3.21a),
V (e) = (e− ē)TQ(e− ē) forms a Lyapunov function for the system (3.27) with
the constant in time control ū.

3. Note that also a change in the flux direction which yields a structural modification
in the system matrix A(q) leads to a stable system by transformation with Q.

Proof of Theorem 7. For the following considerations, we choose the orientation of
each edge velocity such that vi ≥ 0 ∀i ∈ E . Hence, velocities and the corresponding
volume flows are non-negative. Proving that the symmetric matrix M is negative semi-
definite amounts to show that M has non-positive diagonal elements, and is weakly
(row- and column) diagonally dominant,

n∑
j=1, i 6=j

|Mij| ≤ |Mjj|. (3.55)

With these properties, [51] theorem 6.1.1 allows to conclude that all eigenvalues of
M are non-positive and by [51] theorem 4.1.8 a hermitian matrix with non-positive
eigenvalues is negative semi-definite. For the following proof, a reference pipeline
i = (a, b) ∈ P is considered, cf. fig. 3.7. Based on the coupling types (3.16), one
obtains for A′ ≡ QA(q̄)

A′fZ(i,j),fZ(i,j) = −Qi
vi
hi

= −qi, j ∈ {1, ..., ni}, (3.56a)

A′fZ(i,j),fZ(i,j−1) = Qi
vi
hi

= qi, j ∈ {2, ..., ni}, (3.56b)

A′fZ(i,1),fZ(j,nj)
= a′ij = Qi

vi
hi

Φjvj∑
k∈Oa Φkvk

= qi
qj∑

k∈Oa qk
, j ∈ Ia. (3.56c)
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Figure 3.7: Illustration of pipelines sets coupling to edge i = (a, b) at its nodes a, b and
the resulting cell notation for the upwind discretization.

<latexit sha1_base64="3LxjQxiuywlCggKCTcROa6UqREs="></latexit>

Figure 3.8: Structure of the modified system matrix A′ resulting from discretization
with the upwind scheme. Off-diagonal elements a′ result from incoming
and outgoing flows coupling at nodes of the network. Note that only one
of the transposed counterparts a′ij, a

′
ji is nonzero at a time.

Note that the expressions in (3.56) are 0 if j is not in the mentioned sets. The
energy density ek leaving node k is replaced by energy conservation (3.18) to derive
the coupling type in (3.56c). The structure of A′ is visualized in Figure 3.8. From
(3.56a) one easily concludes that the diagonal elements of M = A′ + A′T are non-
positive, MfZ(i,j),fZ(i,j) = −2qi ≤ 0, i ∈ E , j ∈ Zj. To show that M is weak diagonally
row dominant, we start by considering rows which describe inner energy densities in a
pipeline, i.e. j ∈ {2, .., ni}. This trivially leads to weak diagonal dominance for these
rows,

∑
k 6=f(i,j)

|Mf(i,j),k| =
∑

k 6=f(i,j)

|A′f(i,j),k + A′k,f(i,j)|

= 2qi.
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Focusing on rows describing cells at the inflow boundary of an arbitrary edge i ∈ E
yields the following off-diagonal elements∑

k 6=fZ(i,1)

|MfZ(i,1),k| =
∑

k 6=fZ(i,1)

|A′k,fZ(i,1) + A′fZ(i,1),k|

≤ |A′fZ(i,2),fZ(i,1)|+
∑
j∈E+

i

|A′fZ(i,1),fZ(j,nj)
|

= qi +
∑
j∈Ia

a′ij.

Finally, we calculate the sum of off-diagonal cells at the outflow boundary,∑
k 6=fZ(i,ni)

|MfZ(i,ni),k| =
∑

k 6=fZ(i,ni)

|A′fZ(i,ni),k
+ A′k,fZ(i,ni)

|

≤ |A′fZ(i,ni),f(i,ni−1)|+
∑
j∈Ob

|A′fZ(j,1),f(i,ni)
|

= qi +
∑
j∈Ob

a′ji.

Hence, it remains to verify the two inequalities

qi ≥
∑
j∈Ia

a′ij = qi

∑
j∈Ia qj∑
k∈Oa qk

and qi ≥
∑
j∈Ob

a′ji = qi

∑
j∈Ob qj∑
k∈Ob qk

= qi .

The second is clear, while the first follows from the volume conservation property at
node a.

It shall be noted that the solution in theorem 7 is in general not unique. If Q solves
the Lyapunov inequality, Q̃ = cQ, c ∈ R+, is a solution, as well. Furthermore, the
example of one pipeline with n discretization cells is considered, expressed by the
system operator A(q̄) ∈ Rn×n for a fixed volume flow field q̄. Defining the energy
matrix as Q = Φkhck, k ∈ [1, ..n], ck ∈ R+ also leads to a Lyapunov stable system if
additionally ck ≤ 2ck−1, k ∈ [2, .., n − 1]. Thus, even the diagonal elements of Q can
be chosen differently.

3.6.2 Comparison of volume- and mass conservation

To obtain Lyapunov stability in theorem 7, we focused on the energy density coupling
to volume flows and additionally claimed the conservation of volume over node k. To
show that this is a natural description due to the finite volume discretization of the
energy density, conservation of mass is considered subsequently. As we will see, the
proof of theorem 7 does not work for conservation of mass in the identical manner.
However, based on this finding conservation of mass does not necessarily lead to an
unstable system.
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We start by assuming conservation of mass over each network node∑
α∈δout(k)

ρ(t, 0)qα(t) =
∑

α∈δin(k)

ρ(t, Lα)qα(t), (3.57)

in combination with energy conservation∑
α∈δout(k)

βα(t, 0)Eα(t, 0) =
∑

α∈δin(k)

βα(t, Lα)Eα(t, Lα),

Ea(t, 0) = Ek(t), a ∈ Ok.

Here, E acts as a placeholder for energy density (energy per unit volume), when β
refers to volume flows, and for the specific energy (energy per unit mass), when β
refers to mass flows. Applying the upwind discretization to E and forming A(v) as
described above yields,

A′fZ(i,j),fZ(i,j) = −Qi
vi
hi

= −qi, j ∈ {1, ..., ni}

A′fZ(i,j),fZ(i,j−1) = Qi
vi
hi

= qi, j ∈ {2, ..., ni}

A′fZ(i,1),fZ(j,nj)
= a′ij = Qi

vi
hi

βj∑
k∈Ob βk

= qi
βj∑

k∈Ob βk
, j ∈ Ia.

Following the steps discussed in theorem 7, showing weak diagonal dominance reduces
to the two inequalities,

qi ≥
∑
j∈Ia

a′ij =
∑
j∈Ia

qi
βj∑

k∈Ob βk
= qi

∑
j∈Ia βj∑
k∈Ob βk

, (3.59)

qi ≥
∑
j∈Ob

a′ji =
∑
j∈Ob

qj
βi∑

k∈Ob βk
. (3.60)

Eq. (3.59) is fulfilled by defining β to be a mass flow, which is conserved by (3.57).
Inserting the mass flow for β in (3.60) leads to

qi ≥ qi

∑
j∈Ob qjρi∑
k∈Ob qkρk

= qi
ρi
ρo
,

since the outgoing densities are equal and form ρo(E). Thus, for weak diagonal dom-
inance, all mass densities entering node k have to be less or equal the mass density
exiting node k which is not feasible generally. As a counter example we consider case of
two specific energies E1, E2 entering node k, carried by identical mass flows m1 = m2.
In the range in which heating networks operate, the mass density is a monotone func-
tion of the specific energy. Thus, the outgoing energy density will be the average of
the incoming energy densities. This leads to the fact that ρo ∈ (ρ1, ρ2).
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3.6.3 Asymptotic stability

Based on Lyapunov stability discussed in section 3.6.1, asymptotic stability is analyzed
subsequently. This task splits in two parts. In the first part, asymptotic stability is
proven in the absence of flux changing edges. In the second part stability is analyzed
for networks which possibly contain volume flow fields with zero components.

For the first part, networks are considered which topologically exclude changes of flux
direction as well as networks, in which changes of flux direction do not occur by the
chosen consumption signal. To state the main theorem, several definitions have to be
made. An external node ke in a heating network is a node where all coupling pipelines
contribute volume flows which only effectively enter or only effectively exit node ke. By
pressure continuity (2.10), a heating network has at least one external inflow and one
external outflow node. External nodes are the nodes in the flow and return network,
corresponding to the power plant as well as the consumers, cf. fig. 3.9. A matrix is

uT uT

(a) (b)

Figure 3.9: Network (a) visualizes a flow field containing a circular flow which violates
the assumption of remark 1 resulting from the pressure continuity in every
node. Network (b) exhibits external nodes marked in red, at which all
pipelines (black lines) only enter or exit the node. These coincide with the
points at which the power plant contributes and the consumers extract
thermal energy.

weakly chained diagonally dominant (wcdd) if it is weakly diagonally dominant, and
for every row which is weakly diagonally dominant, there exists a path to a row which
is strictly diagonally dominant [52]. The notion path is related to the graph formed
by the entries of the matrix M . Matrix M defined in (3.54) defines an adjacency
matrix of an unweighted graph. Its nodes are formed by the finite volume cells and
its edges are the connection of the cells defined by the upwind scheme. Thus, if cells
i, j couple, the entry Mij = Mji 6= 0 by symmetry. The graph described by the finite
volume cells and defined by M is not identical to the graph of the heating network but
both are related by conservation of energy coupling finite volume cells of the border
of pipelines. For the following consideration, flow and return part of the network can
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be modeled jointly in A, as well as only one of the two parts, since the considered
graph of the heating network needs not to be connected to show the wcdd property.
The exclusion of circular velocity fields used in the following theorem is ensured by
pressure continuity in combination with remark 1.

Theorem 9. We consider a velocity flow field q̄ satisfying volume conservation, which
does not contain any circular flows and only consists of nonzero components, q̄i 6=
0, i ∈ P. For these assumptions, the matrix M = QA(q̄) + (QA(q̄))T resulting from
upwind discretization of advection on a graph is weakly chained diagonally dominant
(wcdd).

Proof of Theorem 9. One first notes that every finite volume cell is connected to an
external node via a path formed by adjacent cells. To see this, cell i ∈ Zα is considered
on an arbitrary pipeline α. By discretization utilizing the upwind scheme, cell i is
connected to the row of its neighboring cells j ∈ {i−1, i+ 1}. Note that the entries in
M connecting cells i, j are indeed nonzero by assumption. Hence, all cells on pipeline
α form a path Zα ∈ C. If pipeline α is not attached to other pipelines, it exhibits
two external nodes proving the claim. If it is attached to neighboring pipelines Pn,
there exist nonzero entries in M coupling the border cells of α to the border cells of
neighboring pipelines. The path of connected cells is thus augmented by all cells on
neighboring pipelines, C = C ∪ Zk k ∈ Pn. This argument is continued recursively,
until each iteration ends in an external node. Due to the assumption that circular
velocity fields are excluded, proceeding along a velocity field, the resulting path can
not be cyclic and thus must start and end in at least two different external nodes,
cf. remark 1.

The second observation is that all cells next to an external node ke form strictly
diagonally dominant rows in M . To see this, consider border cell b on one of the
pipelines Pe adjacent to Ne. For the diagonal element one obtains M(b, b) = −2qPe .
Since all flows either enter or exitNe, cell b can only either couple to one adjacent cell on
the same pipeline Pe or to cells on other pipelines combined at an inner node Ni, i 6= e.
In the first case, the off diagonal element reads qPe < |M(b, b)|. In the second case,
the off-diagonal elements of outrunning pipelines sum to

∑
j 6=bMb,j = qPe < |M(b, b)|.

Hence, M(b, :) is strictly diagonally dominant.

Theorem 9 implies that M < 0. In particular, the system is asymptotically stable to
the equilibrium points defined above, which can be seen as follows. One notes that by
volume conservation, theorem 7 allows to conclude that M ≤ 0. The property wcdd
yields M 6= 0 , since wcdd matrices are non singular [52] which allows to conclude
that M < 0. Since this observation is independent of the velocity flow field within the
mentioned assumptions, asymptotic stability follows. Since flow- and return network
are thermally decoupled, the graph of the matrix M defined by its finite volume cells
is not connected, but consists of a flow- and a return part. Still, by theorem 9, both
operators describing the flow AF (q̄) and the return AR(q̄) network equipped with an
upwind discretization are wcdd. Combining both to a global system matrix A yields
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a wcdd matrix A(q̄) since every row of M(q̄) is part of a path leading to a strictly
diagonally dominant row.

Counterexample for asymptotic stability in case of flux changes

In the second part, the stability of a dynamical system is analyzed, in which at least one
pipeline changes its flux direction. To this end, the network in fig. 3.10 is considered,
allowing for a change of flux direction on edge 2-3. It is sufficient for this example to
only consider the flow network. The aim is to construct a situation, in which a zero
velocity on edge 2 − 3 is persistent for infinite times. To this end, equal diameters,

e0, v0 1

House

House

0

2

3

4

5

House a

House b

e1, v1

e3, v3

e2, v2

e4, v4

e5, v5

uT

Figure 3.10: Minimum example for a flow network in which a change of flux direction
is possible (edge 2-3). For the corresponding velocity v3 = 0, the system
matrix resulting from upwind discretization A looses full rank.

di = d, i ∈ P and lengths Li = L, i ∈ P of the pipelines are assumed. The length of
finite volume cells is fixed to a constant value hi = h, i ∈ P . Each pipeline velocity
is thus related to its volume flow by a constant factor Φ. In this special situation the
energy matrix Q = 1 yielding Lyapunov stability is trivial. After discretization of the
PDE in space using one finite volume cell on each pipeline, the following operators
result

A =
1

h


−v0

v1 −v1

v2 −v2

vb3 va3 −v3

vb4 + va1 va3 −v4

va5 + vb2 vb3 −v5

 , B =
qa + qb
hΦ


1
0
...
0

 .

The boundary condition defining the volume flow at consumer stations is solved to

qa(t) =
Ga(t)

e4(t)− eR
, qb(t) =

Gb(t)

e5(t)− eR
, (3.61)

where the return energy density is assumed to be identical for both consumers. The
effect of flux changes is mapped to the velocities using the following notation,
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vai,j =

{
vi,j : qa ≥ qb

0 : qa < qb
,

and vice versa for vbi,j if qb ≥ qa. Furthermore the pressure continuity applied to the
cycle 1− 2− 3− 1 is solved by

q23 =

{
−(qa + qb −

√
2
√
qa(qa + qb)) : qa ≥ qb

qa + qb −
√

2
√
qb(qa + qb) : qb > qa.

.

If both houses induce the same volume flow qa = qb, it follows that v23 = q23/Φ = 0.
Hence, A is singular in this case. To violate asymptotic stability, it must be shown
that boundary conditions exist, for which the singularity induced by the algebraic
equations is persistent. To this end, identical consumptions Ga(t) = Gb(t), t ∈ T are
assumed in addition to the thermal control u(t) = u0, t ∈ T . For the initial state

e0 =

{
θ0 : i ∈ P , i 6= 3

θ3 : i = 3
,

the chosen controls force energy densities at houses a, b to develop synchronously,
e4(t) = e5(t), t ∈ T , for all initial states emin ≤ θ0, θ3 ≤ emax, since the paths to
both consumers a, b are symmetric by construction. Here, θ0 and θ3 denote the initial
energy density on pipelines 1, 2, 4, 5, 6 and pipeline 3 respectively. In this case, the
system state converges to

lim
t→∞

e(t) = ē =

{
u0 : i ∈ P , i 6= 3

θ3 : i = 3
.

For δ > 0 a class of initial vectors is defined

eε0 =

{
θ0 : i ∈ P , i 6= 3

θ3 + ε : i = 3
, s.t. 0 < ε < δ.

For the initial state eε0 it results that

‖eε0 − ē‖ = ε < δ ⇒ lim
t→∞
‖e(t)− ē‖ = ε > 0, (3.62)

which means that the system does not converge to an equilibrium point. Since this
is true for all admissible time-constant controls u0, the equilibrium points of networks
without flux changes discussed previously are not necessarily asymptotically stable for
networks including changes of flux direction.

It shall be noted that the constructed scenario can be realized by an appropriate control
of the input energy density for the presented network topology. Still, the configuration
allowing for a persistent zero velocity on a flux changing edge is rather unstable and
unlikely to occur for practical controls on existing heating networks. Furthermore,
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the presented example suggests that the subnetwork Σr and its energy densities er
formed by removing the flux changing edges from the full network topology is still
asymptotically stable. This conjecture is motivated by the fact that a graph in which
flux changing edges are removed is still connected by pressure continuity. Hence, Σr is
wcdd and theorem 9 applies to conclude for asymptotic stability. This claim however
remains without a rigorous proof.

3.7 Controllability and observability

Within this section, the controllability and the observability of the control system
(3.27) are analyzed. For linear time-invariant systems, the initial state x0 ∈ X is called
controllable to the zero state, if there exists an unconstrained control û, steering the
system to the zero state within a finite time t̂ <∞ [22]. A state x̂ ∈ X is unobservable,
if the output resulting from a zero control û(t) = 0 and the initial condition x0 = x̂ is
zero for all times y(t) = 0, t ≥ 0 [22]. For time-varying systems, both concepts require
the evaluation of the fundamental solution matrix. However, deriving an analytical
solution is not always possible even for simple network topologies of disctrict heating
networks. Still, a characterization of the time-varying system can be performed by
considering local linear time invariant models for fixed velocity fields q̄. To this end,
the operator pair (A(q̄), B(q̄)) is considered with A(q̄) ∈ Rn×n, B(q̄) ∈ Rn×|u|, resulting
from the velocity field q̄. The corresponding linear time-invariant system is completely
controllable, iff [22]

rank([s1− A(q̄), B(q̄)]) = n, ∀s ∈ C.

Similarly, the linear time-invariant system of the operator pair (A(q̄), C) with A(q̄) ∈
Rn×n, C ∈ Rn×|y| is observable, iff [22]

rank

(
s1− A(q̄)

C

)
= n, ∀s ∈ C.

Spectrum of the system operators

Before focusing on observability and controllability, the closely related spectrum of
A(q̄) shall be analyzed for fixed velocity fields q̄. The eigenvalues of the full system
are given by the negative transport velocities divided by the length of the discretiza-
tion cells hα, α ∈ P . For networks without flux-changes, q̄α 6= 0, α ∈ P , thus all
eigenvalues of A(q̄) are strictly negative.

A proof of this claim based on the structure of the system matrix A(q̄) is given as
follows. Due to pressure continuity (2.10) and the exclusion of circular velocity fields,
cf. remark 1, every discretization cell can be classified by its distance to the source.
By the structure of the upwind discretization, the temporal derivative of each finite
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Figure 3.11: Example network to study observability and controllability.

volume cell only depends on cells upward the flow direction. Hence, by assigning rows
and columns of A(q̄) to cells according to their distance to the source yields a lower
triangular matrix A(q̄). For the upwind scheme, the diagonal elements of A(q̄) carry
the negative advection velocities divided by the length of the discretization cells. The
fact that eigenvalues of triangular matrices are given by their diagonal elements proves
the claim.

This allows to characterize observability and controllability of the locally linear system
descriptions of heating networks. The systems operators AF , BF correspond to the
flow- and AR, BR to the return part of a heating network, cf. fig. 3.11.

Theorem 10. There exist nontrivial flow networks with volume flow configurations q̄F ,
in which the pair (AF (q̄F ), BF (q̄F )) is not controllable. Vice versa, there exist nontriv-
ial return networks with velocity configurations q̄R, in which the pair (AR(q̄R), CR(q̄R))
is not observable. Consequently, there exist velocity configurations for which the com-
posed operators for flow- and return network are neither controllable, nor observable.
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3.7 Controllability and observability

Proof of Theorem 10. As a counter example confirming the claim, the network visual-
ized in fig. 3.11 splitting from one source pipeline with velocity v1 to two pipelines with
velocities v2, v3 is considered, with a symmetric return network. The input and output
operators for flow and return network exhibit the ranks rank(BF ) = rank(CR) = 1,
and rank(CF ) = rank(BR) = 2. To illustrate the structure of the system operators
AF , AR, the Kernel s1−AF (q̄F ) in the flow network for one discretization cell on each
pipeline is presented

s+ v1
h1

v1
h1

s+ v1
h1

− v1
h1

s+ v1
h1

− v2
h2

s+ v2
h2

− v2
h2

s+ v2
h2

− v2
h2

s+ v2
h2

− v3
h3

s+ v3
h3

− v3
h3

s+ v3
h3

− v3
h3

s+ v3
h3


.

The extension to the case of multiple finite volume cells is straight forward. For the
volume flow vector q̄F = (Φ1v1,Φ2v2,Φ3v3), in which the following holds, v2/h2 =
v3/h3, the choice s = s∗ = −v2/h2 leads to s∗ + v2

h2
= s∗ + v3

h3
= 0. Thus, the columns

corresponding to the state variables entering the two consumers are identically 0, and
the rank of AF (q̄F ) reduces to

rank(s∗1− AF (q̄F )) = nF − 2 < nF − rank(BF ),

where nF refers to the number of discretization cells in the flow network. By conser-
vation of volume, this velocity field can be realized, if the volume flows at houses a, b
satisfy

qa
h2Φ2

=
qb

h3Φ3

.

Similarly, if the volume flow vector q̄R = (Φ4v4,Φ5v5,Φ6v6) satisfies v4/h4 = v5/h5,
this allows to conclude

rank(s∗1− AR(q̄R)) = nR − 2 < nR − rank(CR).

where nR refers to the number of discretization cells in the return network. The choice
for q̄R can be realized by the following volume flows at the consumers stations

qa
h4Φ4

=
qb

h5Φ5

.

Consequently, the pair (AR, BR) is not observable for the distinct volume flow vector.
Since the volume flows discussed for flow- and return network can be realized simulta-
neously by a corresponding ratio of cross sections Φ and discretization lengths h, the
pair (A,B) is not controllable and (A,C) not observable.
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3.8 Port-Hamiltonian systems

3.8.1 Nonlinear port-Hamiltonian systems

Port-Hamiltonian (pH) systems [53, 54] have become a popular concept since they
relate desired properties of a system such as stability and passivity to its underlying
state space description [55, 56, 57]. To properly define passivity, the following generic
nonlinear system is considered,

ẋ = f(x, u), x(t0) = x0, (3.63a)

y = h(x, u), (3.63b)

where X denotes the state space, x0 ∈ X the initial state, u the input vector resulting
from the input space U , and y the output vector within the output space Y . The
functions f : X × U 7→ Rn, h : X × U 7→ Y should be continuous in the input u
and Lipschitz-continuous in space x to ensure for a unique solution of (3.63) for time-
continuous input signals. Here, T is the considered time domain. System (3.63) is
passive, if and only if there exists a storage function H : X 7→ R such that

H(x(t1))−H(x(t0)) ≤
∫ t1

t0

uT (t)y(t) dt, ∀t0 ≤ t1 ∈ T , (3.64)

for all (u, x, y) satisfying (3.63). The increase in internal energy of the system is
majorized by the external (port-based) inflow of energy at any time. For pH systems,
the function H is referred to as the Hamiltonian representing the internal energy of
the described system. To allow for an energy interpretation, H is ususally restricted
to be a non-negative function. Furthermore, it serves as a basis for the construction
of a Lyapunov function, showing that unforced (u = 0), minimal port-Hamiltonian
systems are implicitly Lyapunov stable [58]. A state space representation of nonlinear
pH systems is given by

ẋ = (J −R)∇xH(x) + (B − P )u (3.65a)

y = (B + P )T∇xH(x) + (S +N)u. (3.65b)

The matrices S = ST , N = −NT , describe the feed-through from input to output,
B ± P are the port matrices relating the state variable x and its temporal derivative
to inputs and outputs. Most importantly, R = RT describes the dissipation of energy
from the system to its environment, while J = −JT represents the conversion of
energy within the system by e.g. rotational degrees of freedom. The essential property
allowing to conclude for passivity as defined in (3.64) is that

W =

(
R P
P T S

)
≥ 0. (3.66)

The block matrix W equipped with the above operators has to be positive semi-definite
to obtain passivity. For a differentiable Hamiltonian, taking its temporal derivative
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and inserting the system description (3.65) confirms the inequality (3.64) if (3.66)
holds. A special case of (3.65) are linear time invariant port-Hamiltonian systems, in
which the Hamiltonian is a quadratic function of the state space variables, H = xTQx.
The matrix Q ∈ Rn×n is the positive definite and symmetric energy matrix acting as
the kernel of the Hamiltonian. For a general linear time invariant system

ẋ = Ax+Bu, x(0) = x0, (3.67a)

y = Cx+Du, (3.67b)

where A ∈ Rn×n, B ∈ Rn×i, C ∈ Ri×n, D ∈ Ri×o, the positive real lemma [22] allows
to derive a similar result to (3.66). In particular, system (3.67) is passive if and only
if there exists a positive definite, symmetric solution Q to the LMI [22](

ATQ+QA QB − CT

BTQ− C −D −DT

)
≤ 0.

Port-Hamiltonian systems are well suited for modeling energy networks. Using energies
as a common description variable allows to couple models for different types of energy
networks such as electrical, gas- or heating networks. Furthermore, a composition of
pH systems remains pH. Thus, if different subnetworks described as port-Hamiltonian
system are connected, the resulting system will automatically incorporate passivity
and stability. This fact is in particular important for electrical circuits, which served
as the main applications of pH systems initially. Since pH systems are formulated
closely to the underlying physical conservation laws, they allow to choose natural
state variables. Finally a reduced order model obtained by a certain class of Petrov-
Galerkin projections remains pH, if the full order model was pH, which is used and
described in chapter 4.

3.8.2 Semi-discrete port-Hamiltonian description for heating
networks

The control system obtained from upwind discretization of the energy transport on
pipelines is shown to be Lyapunov stable in section 3.6. To allow for a pH description,
the input- and output operators must fulfill additional properties defined in (3.66).
Specifically, the input- and output spaces have to be of identical size to form the dissi-
pation function uTy. It shall be noted that passivity is a special case of dissipativity,
in which a generalized dissipation function

s(u, y) =

(
u(t)
y(t)

)T
S

(
u(t)
y(t)

)
is considered in the inequality (3.64). This allows to describe the energy balance of
systems for which the input- and output spaces are not of equal dimension. Subse-
quently, an embedding of the control system (3.27) to the port-Hamiltonian description
is discussed.
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Linear time varying parameter systems

An important generalization of linear time-invariant pH systems is given by linear time
varying pH systems [58], which naturally occur by linearization of nonlinear dynamical
systems. A state space representation appears as [58]

Eẋ = [(J −R)Q− EK]x+ (B − P )u (3.68a)

y = (B + P )TQx+ (S +N)u, (3.68b)

where E,Q ∈ C1(τ,Rn×n), J,R,K ∈ C0(τ,Rn×n), B,P ∈ C0(τ,Rn×|u|). System (3.68)
is of pH type, if ∀t ∈ τ

QT (t)ET (t) = ET (t)Q(t),

d

dt
(QT (t)ET (t)) = Q(t)T [E(t)K(t)− J(t)Q(t)]

+ [E(t)K(t)− J(t)Q(t)]TQ(t),

QT (t)E(t)−H0 ≥ 0,(
QT (t)R(t)Q(t) QT (t)P (t)
P T (t)Q(t) S(t)

)
≤ 0, W (t) = W T (t),

where H0 is a constant, symmetric matrix. The existence of a unique solution is
obtained by the continuity of the described operators. For a splitting of hydrodynamic
and thermal equations as performed in (3.27), it holds that E = 1, and P,K, S,N
are zero in their corresponding dimensions. If additionally a time-independent energy
matrix Q is assumed, the remaining properties for a pH formulation are, t ∈ τ ,

J(t), R(t) ∈ C0(τ,Rn×n), (3.69a)

Q = QT , R(t) = RT (t), J(t) = −JT (t), (3.69b)

QTR(t)Q ≥ 0. (3.69c)

The following theorem discusses one option to embed control system (3.27) into the
port-Hamiltonian framework [59] and addresses the properties (3.69).

Theorem 11. Let q̄ be a (spatially discretized) solenoidal volume-preserving time-
continuous vector of volume flows. Then, the semi-discrete network model (3.27) can
be embedded into a family of parameter-dependent port-Hamiltonian systems

d

dt
e = (J(q̄)−R(q̄))Qe+ B̃(q̄)ũ, ỹ = B̃T (q̄)Qe,

with ũ = (u, 0, . . . , 0)T ∈ R1+2|C| which contains the original outputs as subset. Here,
Q is the energy matrix suggested in theorem 7.

Remark 12. For the solenoidal transport of thermal energy and the quasi-stationary
case of the momentum balance defined in section 3.1.5, theorem 7 states that there
exists an energy matrix Q such that

QA(q̄) + AT (q̄)Q ≤ 0 (3.70)

for all volume-preserving volume flow fields q̄. Thus, the Hamiltonian H(e) = eTQe is
a Lyapunov function for the parameter-dependent system [22].
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Proof of Theorem 11. Let the positive definite diagonal matrix Q ∈ Rn×n with

QfZ(α,β),fZ(α,β) = Φαhα > 0

be given. Then, the matrices J and R are defined by

J(q̄) =
1

2
(A(q̄)Q−1 − (Aq̄)Q−1)T ), R(q̄) = −1

2
(A(q̄)Q−1 + (A(q̄)Q−1)T ). (3.71)

Note that the decomposition of a matrix M into a symmetric and a skew-symmetric
part has a unique solution. Obviously, A(q̄) = (J(q̄)− R(q̄))Q holds. The properties
J = −JT and R = RT of port-Hamiltonian system matrices are satisfied by con-
struction. The time-continuity of the system operators J(q̄(t)), R(q̄(t)) is given since
a time-continuous volume flow field is assumed. The positive semi-definiteness of R
follows from the Lyapunov inequality (3.70). Consider now

M(q̄) = QA(q̄) + AT (q̄)Q, MfZ(α,β),fZ(α,β)(q̄) = −2QfZ(α,β),fZ(α,β)
q̄α
hα

= −2qα ≤ 0.

The volume-preservation of q̄ ensures that the symmetric matrix M(q̄) is weakly di-
agonal dominant. Hence, M(q̄) is negative semi-definite, yielding

xTR(q̄)x = −1

2
(Q−1x)T M(q̄) (Q−1x) ≥ 0 for all x ∈ Rκ.

Here, R(w) acts as a passivity matrix. The port matrix B̃(q̄) ∈ Rκ×1+2|C| defined by

B̃(q̄) = [B(q̄), (CQ−1)T ]

ensures that the outputs of the network model are contained in the output set of
the port-Hamiltonian system, i.e., B̃T (q̄)Q = [BT (q̄)Q, C]T . Finally note that the
parameter-dependent port-Hamiltonian system matrices J(q̄), R(q̄), and B̃(q̄) are con-
tinuous in time due to the given time-regularity of the parameter q̄.

The presented framework holds for the mentioned assumptions neglecting thermal
losses to the pipeline environment and assuming the quasi-stationary limit for the
hydrodynamic equations. A consistent description as a port-Hamiltonian system in-
cluding any of the two neglected terms is a non-trivial task. To incorporate the cooling
term, the port-Hamiltonian description has to be generalized, which is an active field
of research [60, 61]. Including the temporal derivative of the velocity augments the
set of differential variables entering the DAE. The resulting additional contribution
in the Hamiltonian H has to fulfill passivity again. This task is non-trivial since the
differential equation for the velocity contains a non-linear part by frictional losses in
the turbulent regime. In addition, if absolute pressure levels are part of the state space
variables, the index of DAE increases to two, which requires to perform a regulariza-
tion, before applying the port-Hamiltonian description [58].
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To illustrate the structure of J,R for the upwind discretization on district heating
networks, an example for one pipeline in the flow network is provided. In this setup,

R = −A+ AT

2
=
−v
2h


−2 1
1 −2

. . .

1
1 −2

 ,

J =
A− AT

2
=

v

2h


−1

1
. . .

. . . −1
1

 .

The numerical diffusion introduced by the upwind scheme expresses in the port-
Hamiltonian setting in the non-vanishing R matrix.

3.9 Conclusions

In this chapter, an upwind scheme was used to discretize the solenoidal advection
dominated transport of energy density. In the friction dominated regime, the mo-
mentum balance reduces to an algebraic constraint. Together with the power balance
at consumer stations and the conservation of volume, it forms an algebraic system
defining the velocity field for a given vector of energy densities. The resulting DAE is
Lyapunov stable for arbitrary network topologies. By suggesting an energy matrix Q
serving as the Kernel of the corresponding Lyapunov function, the DAE was embed-
ded into the port-Hamiltonian framework. In addition, networks with nonzero velocity
fields excluding circular flow configurations were proven to be asymptotically stable.
Similarly, for networks without cycles in the flow- and the return part, existence and
uniqueness of solutions was proved, given that the input energy density and the con-
sumption signals are continuous in time. In the friction dominated limit neglecting
the contribution of acceleration in the momentum balance, the differentiation index of
the DAE reduces to 1. A system formulation was established in the form of a linear
time varying system in the energy densities, in which the velocity field acts as a time
varying parameter generated by algebraic constraints. This description provides the
basis for model order reduction techniques discussed in the following chapter.

62



Chapter 4

Model order reduction for district
heating networks

Model order reduction aims at approximating the input output relation of a dynami-
cal system using a surrogate model which is computationally less complex to evaluate
[22]. To this end, the original state space X ⊂ Rn is reduced to a subspace Xr ⊂ Rr

of smaller dimension, r � n. In this chapter, a reduced order model is developed,
describing the dynamical transport of the energy density in district heating networks
based on the DAE (3.27) analyzed in chapter 3. Using the upwind discretization, a
solenoidal model for the incompressible Euler-like equations with a stationary momen-
tum equation leads to system (3.27), which is rewritten below for readability,

ė = A(q)e+B(q)uT , e(t0) = e0 (4.1a)

y = Ce, (4.1b)

0 = g(e, q, p,Γ). (4.1c)

Eq. (4.1) is an index-1 DAE with state variables volume flow q, energy density e,
and pressure p. From the perspective of system theory, different classifications of
(4.1) are valid. Considering the entire state space to be x = (e, q, p)T , and assuming
that the velocity field has fixed directions, it can be written as a quadratic, bilinear
system, referring to a product of state space variables due to the advective transport
and a bilinear contribution by the product of volume flow and thermal input uT . A
detailed discussion of quadratic bilinear systems is performed below. An alternative
interpretation is a linear-time varying system in the vector of energy densities e, where
the algebraic equations g act as generators for the trajectory of the volume flow field.
This interpretation will form the basis for the developed reduced order model, in which
the transport of energy (4.1a) is reduced with the volume flow acting as a time-varying
parameter.

The computational cost of solving a task using reduced order models splits in two
phases. First, an offline-phase, in which the reduced order model is generated based
on training data. Second, an online-phase in which the generated reduced order model
is used to simulate or solve the problem in question. In the case of heating networks,
the reduced order model depends on the topology and the boundary conditions which
can be expected. After its determination, it can be reused for an identical topology
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with different boundary conditions. Thus, the time to determine the surrogate model
is not considered within this thesis, and we alternatively aim at minimizing the online
time.

Reduction of energy networks

Concerning the reduction of energy networks, in [26] a linear model of the dynamics
in gas networks is discussed, formulated in the state variables pressure and mass flow.
After proving that the presented transport dynamics are port-Hamiltonian, a projec-
tion to a reduced order model is derived, originating from Krylov subspace methods.
In the reduction of electrical circuits, [62, 63] mostly linear dynamics are considered.
A central difficulty arises from the large number of input- and output channels with
is solved using clustering techniques. Concerning the reduction of heating networks,
selected works are discussed briefly. In [13], a linear model for the hydrodynamic
equations in the state variables pressure and mass flow is derived. Subsequently it is
reduced using radial basis functions. The thermal transport of energy is not consid-
ered. In [28], pipeline classes are identified. For each class, specific forms of transfer
functions are matched to simulation results. The resulting reduced pipeline models
are concatenated. The output of the preceding pipeline acts as input to the follow-
ing pipeline. This strategy yields two disadvantages. First, by approximating each
pipeline with an own reduced model, the approximation error in the output of a given
pipeline will amplify with each pipeline. Second, the computational saving of reducing
a single pipeline element is potentially small compared to its full order description.
Other publications do not persue a system theoretic reuduction approach but truncate
analytical solutions of the transport equation [11] or assume constant transport time
delays from source to consumption [12] to obtain a simplified model of the energy
transport in the network. In this thesis, an approach close to concepts from system
theory is proposed, based on the underlying Euler equations. Subsequently different
approaches for model order reduction of dynamical systems are discussed and evalu-
ated for the applicability to the dynamics of heating networks (4.1).

4.1 Reduction by projection

Many tools from model reduction can be formulated as a projection from a high-
dimensional space X to a subspace Xr. The properties of the resulting reduced order
models mainly differ by the method used to compute the projection. As a start, a
generic nonlinear system is considered

ẋ(t) = f(x(t), u(t)), x(t0) = x0, (4.2a)

y(t) = J(x(t), u(t)), (4.2b)

where u : T → R|u| is the input to the dynamical system, f : Rn × R|u| → Rn defines
the ODE shaping the dynamics and J : Rn × R|u| → R|y| is the function measuring
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the relevant output y ∈ R|y|. Using the projection Π = VW ∗, where V,W ∈ Rn×r

denote orthogonal matrices with W ∗V = 1, the reduced order system resulting from
(4.2) reads

ẋr(t) = W ∗f(V xr(t), u(t)), (4.3a)

yr(t) = J(V xr(t), u(t)). (4.3b)

The projection Π is of Petrov-Galerkin type, if W 6= V and of Galerkin type, if
W = V [22]. In addition, M∗ denotes the complex conjugate transpose of a matrix
M . A common problem for nonlinear reduced order models lies in the evaluation of the
nonlinear function f . In its general form, it requires to project the reduced order state
to the full vector of dimension n, evaluate the n dimensional function f and project
it back to the subspace Xr. The transition between full and reduced order spaces has
to be performed in each evaluation of (4.3), prohibiting a decrease in computational
complexity. To overcome this difficulty, the discrete empirical interpolation method
was introduced [64]. Based on empirical data, the function f is approximated by
interpolation of discrete points. If f in contrast exhibits a structure or is close to
linearity, different techniques can be used for reduction as discussed below.

Structure preserving reduction

Structure preserving reduction denotes methods in which the reduced order model
preserves certain properties of the full order model. These properties can refer to
stability of the dynamical system, the interpretation as e.g. a network structure [65,
66] or passivity. For linear port-Hamiltonian systems

ẋ = (J −R)Qx+Bu (4.4a)

y = Cx+Du, (4.4b)

it can be shown that including Q in the projection preserves the port-Hamiltonian
property [67, 68, 69, 70, 71, 57]. Specifically, based on a projection matrix Ṽ ∈ Rn×n,
the preserving Petrov-Galerkin projection is defined by

Ṽ TQṼ = ζT ζ, (4.5a)

V = Ṽ ζ−1, (4.5b)

W = QV, (4.5c)

where ζ is the Cholesky decomposition of Ṽ TQṼ . It is well-defined since Q is positive
definite for the suggestion in theorem 7. For a fixed energy matrix Q, (4.5) is a one-
sided (Galerkin) projection by construction. Since Q is not unique, additional options
occur for V,W based on a given projection Ṽ . As discussed in section 3.6, the solution
to the Lyapunov inequality is, considering general topologies of heating networks, not
unique. As an alternative to the projection (4.5), a state space transformation of (4.4)
can be performed, in which Q = 1. The transformed port-Hamiltonian system can
then be reduced by arbitrary Galerkin projections.
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A similar result can be obtained for system (4.1). In particular, applying the projection
(4.5) to (4.1) results in

ėr = W ∗A(q)V er +W ∗B(q)uT , (4.6a)

yr = CV er, (4.6b)

0 = g(er, q, p,Γ). (4.6c)

Inserting the reduced order system operator in the Lyapunov inequality leads to (4.5)

(W ∗A(ω)V )∗ +W ∗A(ω)V = V ∗(Q∗A(ω) + A∗(ω)Q)V. (4.7)

Consequently, (4.7) is negative semi-definite, if the full order Lyapunov inequality is
fulfilled. Stability is still coupled to the claim that A(ω) is formed by a velocity vector
ω satisfying volume conservation.

An additional preservation property for system (4.1) following from projection based
reduction addresses the affine decomposition of the system operators discussed in
section 3.3. The projection matrices V,W are solely applied to the time-independent
matrices, leading to

Ar(q) := W ∗A(q)V =

nq∑
ν=1

γ q̃νW
∗Aq̃νV, Br(q̃) =

nq∑
ν=1

γ q̃νW
∗B q̃

ν , (4.8a)

Cr = CV. (4.8b)

In (4.6) the time-independent matrices can be reduced in the offline-phase. Thus,
the time-dependent reduced order operators are recalculated entirely in the reduced
subspace. For a fixed volume flow field, (4.1) defines a linear system in the energy den-
sities. Consequently, (4.6) preserves both the affine decomposition and the Lyapunov
stability of the full order system for arbitrary Galerkin projections Ṽ transformed by
(4.5). In (4.8) any affine decomposition is preserved by projection by definition and
can be reduced in the offline phase. Independent volume flows were chosen as an
example representation, since this representation yields a small number of parameters
and thus necessary summations, and is used in the numerical analysis presented in
chapter 5.

4.2 Reduction of linear time varying systems

Hereafter two different strategies for the generation of Galerkin projections for the
linear time varying system (4.1) are discussed.
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4.2.1 Proper orthogonal decomposition

Proper orthogonal decomposition (POD) [72, 73, 74] aims at approximating a snapshot
matrix Z ∈ Rn×m

Z = [z(t1), ..., z(tm)] =


z1(t1)

...
zn(t1)

 , ...,

z1(tm)
...

zn(tm)


 ∈ Rn×m, (4.9)

by a set of r < m basis functions Ẑ = {ẑi}, ẑi ∈ Rn, i ∈ [1, .., r]. Here, n denotes the
state space dimension and m the number of time samples taken from the dynamical
process to be reduced. It shall be noted that POD approximates generic matrices
Z. However, in this subsection the specific application is studied in which Z has the
interpretation of a snapshot matrix. According to the Schmidt-Mirsky-Eckard result,
[22], the best rank r approximation of Z in the induced 2 norm is given by

min
rank(Ẑ)≤r

‖Z − Ẑ‖2 = ‖Z − UrU∗rZ‖2. (4.10)

The solution U(:, 1 : r) = Ur ∈ Rn×r of the minimization problem (4.10) is provided
by the leading r left singular vectors of the snapshot matrix Z. These are a result of
the singular value decomposition(SVD) defined by

Z = UΣL∗, (4.11)

for two orthogonal matrices U,L ∈ Rn×r. Hence, POD allows to extract a r-dimensional
subspace in which a dynamical system evolves. The corresponding reduced order sys-
tem is obtained by Galerkin projection using the projection matrix Ur.

Reduced basis methods [75, 76] aim at deriving a reduced base for the state space
which optimally approximates the outputs of a dynamical systems for the relevant
input signals. These methods often approximate the input-to-state map making use
of the proper orthogonal decomposition (POD) technique. The latter bases on snap-
shots of the system state for time-domain simulations to generate a low dimensional
subspace in which the relevant dynamics evolve. For advection dominated phenom-
ena, it is known that the singular value decay of the corresponding snapshots is slow,
resulting in large surrogate models [19]. In fig. 4.1 an example is visualized in which
a Gaussian is transported in space. For a given location in space, it can be described
by a single reduced order mode. However, due to its constant relocation by advection,
a new reduced order mode is required for every time, explaining the high number of
reduced order modes. Different approaches were proposed to overcome this problem
by shifting the transport dynamics to a time-invariant reference frame using the ve-
locity information of the flow field [19, 77, 21, 78]. While these methods achieve good
approximations for the presented examples, the case of a large network poses severe
difficulties. For a network setup, a wave front entering a node with three coupling
edges splits up into two wave fronts with a modified distribution. Thus, the rele-
vant information can not be described by a mode valid for the original mode and the
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space

t1 t2

Figure 4.1: Transport of a Gaussian impulse along space.

reduced basis has to be enriched. Conversely, this also holds for two wave fronts inter-
fering at a junction. Since in a large scale network there usually exist many nontrivial
nodes, tracking the wave fronts is prohibitively complex. Other techniques calculate a
dictionary of solutions for the relevant dynamics in the offline phase and weight them
to obtain a minimal L1 error [79].

4.2.2 Model reduction by interpolation

For the context of energy networks, it suffices to capture the relevant outputs at
distinct points in the network. In particular, the energy densities at the consumer
stations are a necessary input for the power balance defining the local volume flow.
As a consequence, we aim at reproducing the input to output behavior of the system
based on the properties of its transfer function. To illustrate the concept of moment
matching, the following linear system is considered,

Eẋ = Ax+Bu, x(t0) = x0, (4.12a)

y = Cx+Du. (4.12b)

Subsequently, the linear descriptor system (4.12) shall be characterized in the fre-
quency domain. To this end, a Laplace transform is applied to (4.12) resulting in

Ly(t)(s) = C(sE − A)−1Ex0 + [C(sE − A)−1B +D]Lu(t)(s), (4.13)

where Lf(t)(s) denotes the Laplace transform of a function f . Eq. (4.13) exhibits two
contributions. One stemming from the initial state x0 and one dynamical contribution
from the input u driving the system. The relation between the Laplace transforms of
input u and output signal y of a linear dynamical system is provided by the transfer
function H(s),

H(s) = C(sE − A)−1B +D. (4.14)

With common abuse of notation, the Hamiltonian and the transfer function of a lin-
ear system are both abbreviated by the symbol H. Concerning the reduction of a
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4.2 Reduction of linear time varying systems

linear dynamical system by projection, important relations exist between the transfer
function of the full and the reduced order system. First, for multiple input, multiple
output (MIMO) linear systems it is straight forward to show [22, 44] that

‖y‖L∞ ≤ ‖H‖H2‖u‖L2 . (4.15)

According to (4.15), the infinity norm of the output is bounded by the product of
the H2-norm of the transfer function and the L2−norm of the input signal. This
allows to relate the approximation error in the output to the approximation error in
the transfer function of full and reduced order systems. Furthermore, altering the
projection matrices V,W allows to define the connection of the full and the reduced
order transfer functions [80] as follows. Assume interpolation points σ, µ ∈ C s.t. the
Kernels for the full and reduced order system sE − A, sEr − Ar are invertible for
the frequencies s = σ, µ, and let b ∈ Cm, c ∈ Cl be fixed nontrivial direction vectors.
Then the following holds,

a) if ((σE − A)−1E)j−1(σE − A)−1Bb ∈ Im(V ), j = 1, .., N (4.16a)

then H l(σ)b = H l
r(σ)b, l = 0, ..., N − 1 (4.16b)

b) if ((µE − A)−TE)j−1CT c(µE − A)−1 ∈ Im(W ), j = 1, ..,M (4.16c)

then cTH l(µ) = cTH l
r(µ), l = 0, ..., N − 1 (4.16d)

c) if a) and b) hold, and σ = µ (4.16e)

then cTH l(µ)b = cTH l
r(µ)b, l = 0, ...,M +N − 1, (4.16f)

where H l, l ∈ N is the l-th moment of the transfer function. Hence, if the presented
vectors are within the range of the projection matrices V,W , the reduced transfer
function Hr interpolates the full order transfer function H at distinct frequencies. To
determine the points in frequency space at which the transfer full transfer function
should be evaluated, the iterative rational Krylov approximation (IRKA) algorithm
was suggested [81]. It relies on the assumption that H(s) shall be interpolated at
the mirror images of the eigenvalues of the reduced order model. To determine those,
a fixed-point iteration is initialized. Although IRKA has no convergence guarantees
for non-symmetric linear systems, it proved to be useful in different applications. It
can be shown that a first order interpolation using (4.16) yields necessary optimality
conditions for the deviation of full and reduced order model in the H2-norm. The
H2-norm is defined by [22]

‖H‖2
H2

=
1

2π
sup
x>0

∫ ∞
−∞
‖H(x+ iy)‖2

F dy,

where ‖·‖F is the Frobenius norm of a matrix, ‖M‖F =
√

trace(M∗M).

In contrast to approximating the state space, the transfer function of the dynamical
system is approximated. In the latter case, the input-output behavior of the system
is considered, which depending on the problem in question, can be of much lower
dimension than the relevant state space. Reconsidering the transport of a local peak
information, the advection velocity is constant in time as long as the boundary condi-
tion at the end of the pipeline remains unchanged. The corresponding linear system
remains constant in time, as well.
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4.2.3 Parametric model order reduction

Different works address the problem of parameterized model order reduction [82, 83,
44]. Typically, linear parameterized systems are considered, in which the system
operators carry an affine relation to the parameter vector p ∈ Ω ⊂ Rd,

E(p)ẋ = A(p)x+B(p)u, x(t0, p) = 0, (4.17)

y = C(p)x. (4.18)

The aim is to construct a reduced order model, based on which the transfer function
of full and reduced order model show a small deviation with respect to the norm

‖H −Hr‖2
H2⊗L2(Ω) =

1

2π

∫ ∞
−∞

∫
Ω

‖H(iω, p)−Hr(iω, p)‖F dp1...dpd dω. (4.19)

Eq. (4.19) is a joint norm in both the frequency space and the domain Ω of the
parameter vector p. The parameterized transfer function is defined in agreement to
the purely linear case

H(s, p) = C(p)(sE(p)− A(p))−1B(p). (4.20)

Eq. (4.20) does indeed correspond to the transfer function of the dynamical system,
since the parameter vector p ∈ Ω is constant in time. While (4.17) is structurally sim-
ilar to (4.1), where q takes the role of the parameter vector, the volume flow changes
dynamically within the simulation. Still, approximating the linear function formed by
a fixed volume flow q, leads to a reduced order model which approximates the local lin-
earization of the full, dynamical model. Consequently, including suitable linearizations
at selected volume flows in a global projection will form a reduced order model which
approximates the dynamical, full order model. On this account, ideas from parame-
terized model order reduction concerning the combination of local approximations are
still promising for the case of time varying parameters.

4.3 Transfer function on a single pipeline

To characterize the transfer function for the transport dynamics, the advection of the
internal energy density on one pipeline is considered for times t ∈ T

∂te = −v∂xe, e(t, 0) = uT (t), e(t0, x) = e0, x ∈ [0, L]. (4.21)

For the following considerations, the velocity v is assumed to be time-independent.
Under this assumption, the energy density at the pipeline end x = L and time t is
given by

y(t) = e(t, L) = e

(
t− L

v
, 0

)
= uT (t− τ), (4.22)

70



4.3 Transfer function on a single pipeline

where uT is the boundary function supplied at the inflow boundary and τ = L/v is
the ratio of pipeline length and velocity. Finally, y denotes the observable of interest.
Applying the Laplace transformation to (4.22)

Ly(s) = LuT (t−τ)(s) =

∫ ∞
0

exp(−st)uT (t− τ) dt = exp(−τs)LuT (s),

results in the transfer function H(s) = exp(−τs) with the absolute value |H(s)| = 1.
It is easy to verify that ‖H(s)‖H2 =∞ and thus H(s) is not member of the H2 Hardy
space.

Transfer function resulting from the upwind scheme

The analytical result of the transfer function is compared to the transfer function
resulting from the upwind scheme. For one pipeline with n ∈ N finite volume cells,
the transport process is written as

ė1 = −τ−1n(e1 − uT ) (4.23)

ėi = −τ−1n(ei − ei−1), i ∈ [2, .., n], (4.24)

where τ−1 = v
L

with constant velocity v. Still, the energy density e(t, L) at x = L
is the relevant output. For the upwind scheme, it is approximated by y = en. The
corresponding system formulation for one pipeline reads

ė = −(τ−1 · n)Ge+BuT (4.25a)

y = Ce. (4.25b)

Here B =
(
τ−1 · nT , . . . , 0

)T
, C =

(
0, . . . , 1

)
are the input and output opera-

tors, and G is the velocity independent stencil resulting from the upwind scheme of
first order. The transfer function referring to (4.25) is given by

H(s) = C


−τ−1 · n+ s 0 0
τ−1 · n −τ−1 · n+ s 0

0 τ−1 · n −τ−1 · n+ s
. . .


−1

B (4.26a)

=
(τ−1 · n)n−1

(s+ τ−1 · n)n
τ−1 · n (4.26b)

=

(
τ−1 · n

s+ τ−1 · n

)n
. (4.26c)

In the limit of infinitely many finite volume cells, (4.26) converges to the analytical
result, limn→∞H(s) = exp(−τs). The discretized transfer function has a pole of order
n at s = −τ−1 · n. The modulus of (4.26) reads

|H(s)| = (τ−1 · n)n

(s2 + τ−2n2)n/2
, (4.27)
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Figure 4.2: Bode plot of the transfer function H for one pipeline with fixed velocity
comparing the PDE solution (red, solid) to the numerical approximation
using the upwind scheme (blue, dashed).

which approaches 1 for n → ∞. The transfer function shows the numerical diffusion
introduced by the upwind scheme. It holds that |H(s)| < 1, ∀s ∈ R \ {0}. Hence, any
output signal will exhibit a loss in modulus compared to the original input signal. For
a given frequency s of an input signal with a sinusoidal component, the loss in modulus
amplifies with an increasing time delay τ between start and end of the pipeline. Next,
the H2 norm of the ODE system shall be evaluated. This leads to

‖H‖2
H2

= sup
x>0

[∫ ∞
−∞
|H(x+ iy)|2 dy

]
= sup

x>0

[
(τ−1n)2n

∫ ∞
−∞

1

((x+ τ−1n)2 + y2)n
dy

]
≤ sup

x>0

[
(τ−1n)2n

∫ ∞
−∞

1

((x+ τ−1n)2 + y2)1
dy

]
= sup

x>0

[
(τ−1n)2n π

|x+ τ−1n|

]
= π(τ−1n)2n−1.

As a result, the transfer function (4.26) for one pipeline resulting from the upwind
scheme is element of theH2 space, in contrast to its PDE equivalent. A Bode plot of the
transfer function resulting from the PDE description and the numerical approximation
using the upwind scheme is visualized in fig. 4.2. It shows the absolute value |H(iω)|
and the phase arg(H(iω)) for real frequencies ω evaluated at the imaginary axis. The
chosen time delay is given by τ = L/v = 10 s. The numerical scheme is approximated
using n = 10 cells. As derived above, the transfer function resulting from the dynamics
at the PDE level carries a constant absolute value of 1, while the phase is proportional
to the frequency, arg(exp(−isτ)) = −sτ . The oscillations in the phase result from
the logarithmic scaling of the abscissa in combination with reshifting the angle to the
standard domain ±π. The numerical approximation agrees with the PDE results up
to a frequency of at least 10−2, until the absolute value of the numerical approximation
converges to 0. The phase is approximated to even higher frequencies.
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4.4 Further reduction approaches

In addition to the reduction approaches mentioned so far, a variety of other methods
exist [84]. Data driven methods [85, 86] produce a minimal system description of a
dynamical process, solely based on measurements of the transfer functions. Further-
more, connections of model order reduction and deep learning are adressed intensively
recently [87, 88, 20]. Dynamic mode decomposition (DMD)[89], and its extension to
control systems (DMDc) [90], aim at approximating a (non-)linear dynamical system
by a linear, time invariant system of reduced dimension. In contrast to projection
based reductions, the resulting linear operator Ar is constructed by the identified
modes and thus is constant in time for the later simulation. For the dynamics of
district heating networks, the time-independent volume flows at consumer stations in-
duce qualitatively different linearizations, which is why DMD is not promising for this
particular application. Subsequently, two reduction techniques for nonlinear systems
are discussed in more detail due to their strong connection to the dynamics of heating
networks.

Quadratic-bilinear differential algebraic equations

Quadratic-bilinear differential algebraic equations (QBDAEs) [91, 92, 93, 94] denote
the following class of systems

Eẋ(t) = Ax(t) +M(x(t)⊗ x(t)) +

|u|∑
k=1

Nkx(t)uk(t) +Bu(t) (4.28)

y = Cx(t), x0 = 0, (4.29)

where M ∈ RN×N2
, A ∈ RN×N , Nk ∈ R1×N k ∈ [1, .., |u|], B ∈ RN×|u|, C ∈ R|y|×N ,

and ⊗ denotes the Kronecker product. By defining the state space variables as
x = (e, v, p)T and posing additional assumptions, (4.1a) can be written in the form
(4.28). First, density and friction factor are constants. Second, the direction of each
component of the velocity vector has to be constant, which can be either ensured by
the correct input signal or by the network topology. Third, the network topology only
includes junctions with l ∈ N inflowing pipelines and one outflowing pipeline or vice
versa. The first assumption ensures that the Euler momentum balance carries v|v|
as the highest nonlinearity. The second assumption removes the absolute value from
the velocity vector, since its direction is static component wise. The last assumption
ensures that each energy density can be written as a linear combination of products of
velocities and energy densities. It shall be noted that these assumptions are sufficient
for a description as a QBDAEs but potentially not necessary. For specific types of
nonlinearities, introducing additional virtual state variables allows to formulate a QB-
DAE. As a drawback, this increases the state space dimension in contrast to the aim
of model order reduction. This is in line with the findings in [91] where a simplified
version of the Navier-Stokes equation is considered on a simple domain.
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Concerning the reduction of (4.28), the authors suggest to use a projection based
interpolation of generalized transfer functions. The central drawback in the reduction
of district heating networks formulated as QBDAEs arises from the possible elimination
of algebraic equations corresponding to the conservation of volume and energy over
network nodes. Thus, there are no guarantees for obtaining a Lyapunov stable reduced
order model.

Trajectory piecewise linear

Trajectory piecewise linear (TPWL) approaches [95, 96] linearize a nonlinear DAE at
selected points in state space and interpolate the linearizations to approximate the
nonlinear model. Specifically, the nonlinear state space description

Eẋ = f(x) + B̃(x)u, (4.30a)

y = Cx, (4.30b)

is described by s ∈ N linearizations

Eẋ =
s∑
i=1

wi(xi)[f(xi) + Ãi(x− xi) + B̃iu]. (4.31a)

y = Cx. (4.31b)

The nonlinear function f is approximated to first order using a Taylor expansion with
Ãi = df/dx(xi). The state dependent input matrix is approximated by a constant,
B̃i = B̃(xi). The quantities ωi, i ∈ [1, .., s] represent weighting functions for the
chosen linearizations. To derive a reduced order model for (4.30), the authors [95, 96]
suggest to calculate local Krylov subspaces for each linearization and combine them
using a SVD. Applying approximation (4.31) to the description of heating networks,
a linearization with respect to different state variables is possible. First, considering
x = (e, q)T as the vector of state variables, the linearization of (4.1) also requires to
linearize algebraic equations g defining the flow field. This might introduce undesired
instabilities even for the full order model. Second, considering only energy densities
as state variables, x = e, preservation of stability for the linearized model is still only
ensured for a specific choice of weights and additional assumptions to the nonlinearity
[95]. For x = e, the energy transport (4.1a) is the ODE to be linearized with the
nonlinearity A(q), where the volume flow is a function of e by power conservation at
consumers. Preservation of stability for reduced order TPWL models requires that
the Jacobian of the nonlinearity evaluated at the possible equilibrium point x̄ has to
be negative definite,

xT
dA(q)e

dx
(x̄)x < 0, x ∈ X .

Applying this to (4.1a) where x = e, and ē denotes the vector of energy densities
leading to an equilibrium state,

dA(q)e

de
(ē) = A(q̄) +

dA(q)ē

de
. (4.32)
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The second contribution stemming from the derivative of the volume flow field with
respect to the energy densities adds additional off diagonal terms to A(q̄) destabilizing
the system dynamics. To illustrate this, the example of a single pipeline in the flow
network attached to a single consumer is considered. The additional contribution then
reads

dA(q)ē

de
=

1

Φh

0 . . . −q′ē1
... . . . −q′(ē2 − ē1)
0 . . . −q′(ēn − ēn−1)

 . (4.33)

Here, q′ refers to the derivative of the volume flow at consumer stations with respect
to the contributing energy density en,

q′(en) =
d

ds

G

s− eR
(en) =

−q
en − eR

.

For a single pipeline, the equilibrium state is given by ēi = ū, i ∈ [1, .., n]. Inserting
this to (4.32) yields

dA(q)e

de
(ē) =

1

Φh

−q −q′e1

q
. . .

q −q

 =
q

Φh

−1 ū
ū−eR

1
. . .

1 −1

 . (4.34)

For a sufficiently large ratio of ū/(ū− eR), the matrix (4.34) is indefinite.

Remark 13. It shall be noted, that the system operator A(q) for general network
topologies is not even negative semi-definite. To overcome this, the system description
can be transformed to scaled energy coordinates E, resulting in a scaled system operator
AE which is guaranteed to be negative semi-definite. However, for a single pipeline, al-
ready A(q) is negative semi-definite and the above chain of arguments applies, showing
that linearization introduces instabilities for the dynamics of heating networks.

4.5 Generation of suitable Galerkin projections

We seek to construct a global, stable, surrogate model of the quadratic in state index-
1 DAE (4.1), which, after offline generation, can be reused for all admissible inputs
u ∈ UT . Consequently, the time to generate the surrogate model is not considered.
Note that the surrogate model is generated for the ODE system (4.1a) with a given
number of finite volume cells, and not for the PDE system itself. The reduction
presented subsequently bases on local linearizations of (4.1) at fixed volume flow fields.
Consequently, the momentum balance defining the flow field can also include the
acceleration contribution for the suggested strategy. In contrast, thermal losses due
to an imperfect isolation of pipelines are a nonlinear contribution to the transport
of energy density and are thus not in the scope of the presented algorithm. The
information necessary to construct the surrogate model is the set of admissible controls

75



Chapter 4 Model order reduction for district heating networks

UT , the expected consumption G, and the topology of the network represented by the
graph G. The admissible input signals are defined by technical restrictions and are
summarized in the following space

UT = {u(t) = c0 +
m∑
i=1

ci cos(iωt+ βi),mω ≤ ω̂, |u̇(t)| ≤ ud, u(t) ∈ [ul, uh] ∀t ∈ T }.

(4.35)

The control u ∈ UT is periodic with maximal contributing frequency ω̂, its absolute
temporal derivative is bounded by ud, and its image varies within the interval [ul, uh].

In this section we focus on the generation of a Galerkin projection V ∈ Rn×r, which
forms the desired surrogate model for the DAE system (4.1). As shown in [69, 67,
68], a Lyapunov stable system can be transformed to scaled co-energy coordinates,
E = ζ−1e, where ζTQζ = 1, to obtain a representation in which QE = 1,

Ė = AE(q)E +BE(q)uT (t)

y = CEE.
(4.36)

One easily checks that AE + (AE)T = ζT (QA+ATQ)ζ ≤ 0 itself fulfills the Lyapunov
inequality. Hence, every Galerkin projection V applied to (4.36) produces a globally
stable ROM (V T (AE + (AE)T )V ≤ 0), without the need to imply Q in the reduction

process. As shown in theorem 7, Q is diagonal and thus ζ = diag(Q
−1/2
11 , ..., Q

−1/2
nn ).

The reduced order model resulting from an arbitrary Galerkin projection is given by

Ėr = V TAE(q)V er + V TBE(q)uT (t),

yr = CEV Er

0 = g(yr, q, p,Γ).

(4.37)

Thus we seek a global subspace in which the relevant dynamics of the nonlinear system
(3.27) evolve, ensuring yr ≈ y, uT ∈ UT . Similar to the ideas discussed for parameter-
ized systems in [83, 44], we focus on the reduction of the linear time varying problem
(LTV) (4.36), which splits in two sub-tasks. The first is the choice of a scheme for the
reduction of a locally linear system. The second task includes picking a robust set of
linearizations, which enter the dynamical surrogate model. To discuss the first task
of reducing linear systems, a measure for the approximation quality of the ROM to
a linear model has to be defined. To this end, we use a weighted H2-norm over the
relevant frequency range W ⊂ R+ [97],

‖H‖2
H2(W ) =

1

2π

∫
W

‖H(iω, q)‖2
F dω, (4.38)

where we define the transfer function as a parametric function, cf. (4.20). The parame-
ter vector is given by the vector of volume flows. The interval of admissible frequencies
W = [Wl,Wh] is chosen close to the maximal frequency Wh ≈ ω̂, and a minimal fre-
quency Wl at which the transfer function converges. Consequently, we use a modified
version of the iterative rational Krylov approximation (IRKA) [81] for the generation
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Algorithm 2 Weighted IRKA

Require: error bound δ̄, system matrices AE, BE, CE, initial interpolation frequencies
σ = {σ1, ..., σr}, iteration limit N

Ensure: local Galerkin projection V
1: while ε ≥ δ̄ do
2: initialize bj by most dominant singular vector of H(σj), j ∈ [1..r]
3: for i=1 to N do
4: R(σ, b) = [(σ11− AE)−1BEb1, ..., (σr1− AE)−1BEbr]
5: V = orth{Im(R(σ, b)),Real(R(σ, b))}
6: Ã← V TAEV , B̃ ← V TBE, C̃ ← CEV
7: determine error εi = δq(H, H̃) cf. (4.39) of current ROM H̃ = H̃(Ã, B̃, C̃)
8: determine eigenvalues and left eigenvectors, y∗i Ã = λiy

∗
i

9: update σi ← −λi, and bTi ← y∗i B̃
10: perform additional residue correction according to [99]
11: end for
12: ε = mini∈[1..N ] εi
13: increase number of interpolation points σ
14: end while
15: return V

of the local reduction. In its original form, IRKA fulfills necessary conditions for a
H2 optimal interpolation of the full transfer function of the system. Based on initial
interpolation points σ and directions b, c in the frequency space, it uses a fixed point
iteration to ensure that the reduced model interpolates the transfer function H at the
mirror images of the reduced poles. Since we address a weighted error norm, conver-
gence of the interpolation points does not fulfill necessary optimality conditions with
respect to the modified norm ‖H‖2

H2(W ) [97, 98]. For this reason, we only perform
n ∈ N iterations of IRKA and store the best iteration with respect to the relative
error

δq(H,Hr) =
‖H(·, q)−Hr(·, q)‖H2(W )

‖H(·, q)‖H2(W )

. (4.39)

The number of initial interpolation points σ is increased and IRKA is restarted until
the currently best ROM fulfills the bound δq < δ̄. After updating the interpolation
directions in line 9 of alg. 2, an additional residue correction [99] proved to be beneficial.
The local reduction strategy is summarized in alg. 2. Fig. 4.3 presents the Bode plot for
the linear model resulting for a fixed volume flow field of the reference network district,
cf. fig. 5.2. The approximation of r = 17 states resulting from alg. 2 is compared to
the full ODE model including n = 3008 states. The input-output channel with the
highest approximation error is displayed. We now focus on the second task of picking
linearizations entering the global reduced model. Combining local projections to a
global one includes the risk of creating a prohibitively large reduced system. Here,
Krylov based reduction methods as presented in alg. 2 proved to be efficient with
regard to the resulting reduced order [44]. To ensure that the global reduced order
model captures the entire relevant system information, snapshots from a worst case
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Figure 4.3: Bode plot of the transfer function H for a fixed velocity field comparing the
full order model (red, solid line) resulting form the upwind scheme to the
reduced order model (blue circles) resulting from alg. 2. Dashed vertical
lines indicate the maximum frequency to be approximated by alg. 2.

training signal utr are generated, where the corresponding signal changes with maximal
frequency and explores the entire allowed domain,

utr ∈ UT : min
t

(utr(t)) = ul, max
t

(utr(t)) = uh, m · ω = ω̂.

Specifically, the set of snapshots is denoted by D and collects volume flows,

D = {q1, ..., qnδ}.
Subsequently, a greedy strategy is applied in frequency space to determine the lin-
earizations within D, which enter the global projection. It is started with an initial
reduction V i, generated by the Krylov subspace Ri, which is the initial value for the
current interpolation space Rin. The notation Ri addresses the Krylov subspace which
results for applying alg. 2 to the linear system defined by the volume flow qi,

Ri := Ri(σi, bi, qi) = [(σi11− AE(qi))−1BE(qi)bi1, ..., (σ
i
ni
1− AE(qi))−1BE(qi)bini ].

(4.40)

Furthermore,

Rin = {Ri}i=1,..,r, (4.41)

describes the union of the local interpolation spaces currently entering the global
reduced order model. Iteratively, the parameter vector qM ∈ D exhibiting the largest
deviation to the full transfer function is determined,

M = argmax
j∈[1..nδ]

δqj(H,Hr). (4.42)

Hereafter, the space RM forming the Galerkin projection V M is added to the current
interpolation space Rin, and the global projection V is updated using a singular value
decomposition

V = V (Rin; s) = SVD(R1, ..., Rr; s). (4.43)
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4.5 Generation of suitable Galerkin projections

Here s represents the truncation order of the singular value decomposition. It denotes
the order of the logarithmic singular value decay between the largest and smallest
singular value entering V . Since each of the local Galerkin projections V i = orth(Ri)
supplied by alg. 2 is orthonormal by construction, the generating spaces Ri themselves
are used in the generation of a global projection V . This avoids the problem that each
space receives the same weight before entering the singular value decomposition. The
procedure is repeated until the maximum local error in the transfer function with
respect to all parameter values in the test set D,

∆δ(D, V ) = max
q∈D

δq(H,H
V
r ), (4.44)

is smaller than the global threshold ∆̄. Note that the projection matrix V in (4.44)
yields the reduced order transfer function which is expressed in the notation HV

r . Using
the singular value decomposition (4.43) to combine local spaces removes undesired
redundancies and decreases the resulting order of the surrogate model. Still, the
global projection might include modes which are not redundant but unnecessary for
the approximation of the relevant time domain simulations. Therefore, it is useful
to vary also the initial reduction starting the greedy selection. It was not added by
the largest error criterion and thus might introduce unwanted properties of the final
projection. The procedure of calculating a global Galerkin projection is summarized
in alg. 3. The effect of varying the initial linearization entering alg. 3 and the order of

Algorithm 3 Determination of global projection matrix V : frequency greedy

Require: Evaluation points of volume flow vectors D = {q1, ..., qnδ} , error bounds δ̄,
∆̄, order s of SVD

Require: Local interpolation space Ri = Ri(σi, bi, qi) s.t. δqi < δ̄ ∀qi ∈ D
Ensure: Global Galerkin projection V
1: for i=1 : nδ do
2: Initialize Rin = Ri, with qi ∈ D
3: set initial, global projection V = SVD(Rin; s)
4: determine initial, global error ∆δ(D, V )
5: while ∆δ ≥ ∆̄ do
6: determine evaluation with largest deviation M = argmaxj∈[1..nδ]

δq(H,H
V
r )

7: augment interpolation space Rin = Rin
⋃
Rm

8: determine global Galerkin projection V = SVD(Rin; s)
9: update global error ∆δ(D, V )

10: end while
11: end for
12: return V

the singular value decay of the global projection V is visualized exemplarily in fig. 4.4.
It shows a Pareto frontier, containing points which are unique in the sense that each
other point either represents a larger reduced dimension or a larger approximation
error in frequency space. When sampling from this frontier two extreme cases occur.
First, the smallest projection matrix fulfilling the approximation error ∆̄. Second,
the smallest approximation matrix, exhibiting the smallest measured approximation
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Figure 4.4: Scatter plot of Galerkin projections resulting from alg. 3 for the reference
network street, cf. fig. 5.1. Visualized is the variation of the initial volume
flow field qi entering the global interpolation space first, as well as the
variation of the truncation order s of the singular value decomposition.

error. In addition, a heuristic quality indicator κ is defined which aims at finding a
compromise between both extreme points

κ = ∆δr2. (4.45)

When associating a higher quality to a lower value of κ, (4.45) penalizes a large error
linearly and a large size r of a global reduced order model quadratically. A precise
description of the parameters for alg. 2, 3 yielding specific Galerkin projections is
provided with the numerical examples in section 5.2, 6.2.

Remark 14. The local interpolation spaces required in alg. 3 are computed very fast
by using parallelization, since each instance of alg. 2 can be independently run on an
own core. Similarly, the for loop in alg. 3 is parallelized as well, by assigning an own
initialization to each core. Thus, the offline-time required to generate the reduced order
model can be reduced significantly.

4.6 Conclusions

In this chapter an algorithm to construct a global Galerkin projection for the reduction
of the DAE (4.1) describing the dynamics of district heating networks was presented.
The reduction aimed at the advective transport of energy densities, while preserving
the algebraic equations and variables defining the temporal evolution of the velocity
field. The global Galerkin projection is given by a SVD of local reduced order models
resulting from the reduction of linearizations of the quasi-linear dynamical DAE. The

80



4.6 Conclusions

corresponding linearizations are defined by volume flow fields fixed in time. The local
reductions result from a moment-matching technique in frequency space, focusing on
the transfer function of the linearizations. A greedy strategy is employed to itera-
tively pick linearizations, at which the current Galerkin projection shows the largest
approximation error in the local transfer function of full- and reduced order models.
The benefits of the presented reduced order model are investigated numerically in the
following chapters.

81





Chapter 5

Numerical analysis of the reduced
order model

In this chapter, the reduced order model presented in section 4.5 is analyzed numer-
ically for two real-world heating networks shown in fig. 5.1, 5.2. The first network
mimics a typical combination of streets supplied by district heating networks and
is referred to as reference network street (RNS). The second network represents the
topology of a larger district and is referred to as reference network district (RND).
The outline data of the considered networks are given in tab. 5.1. After discussing
assumptions to the dynamical model investigated in this chapter, a decomposition
algorithm is suggested, splitting the network model into several subnetworks. The
decomposition empowers the suggested Galerkin projection by preserving a certain
sparsity structure in the reduced order operators. A major complexity in the reduc-
tion of RND arises from dynamical changes of flow direction. The latter are included
in an own subnetwork (SNF). Finally, the numerical analysis is performed comparing
full- and reduced order models for varying number of finite volume cells and different
time integration schemes. The results obtained in this chapter are conducted using
MATLAB®(R2016b) on an Intel®Xeon®CPU E5-2670 @ 2.60GHz. The simulations
are performed on a cluster environment, in which no additional processes interfere.
The resulting run times are averages based on three repetitions.

Network Edges Nodes Cycles Pipelines Consumers Pipeline length
District 1108 770 6 775 333 8676 m
Street 114 81 1 81 32 837 m

Table 5.1: Outline data for the flow part of the heating networks RND and RNS pre-
sented in fig. 5.1, 5.2.
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Chapter 5 Numerical analysis of the reduced order model

5.1 Model assumptions

The algorithm to generate Galerkin projections applies to the full DAE (3.27), dis-
cussed in section 3.1.5. In this chapter, the numerical analysis presented subsequently
is conducted for a submodel as discussed in the following. For times t ∈ T ⊂ R we
consider

Ė = A(q)E +B(q)uT , (5.1a)

y = CE, (5.1b)

Kq = 0, (5.1c)

Ga(t)− qa(t)(ea:k(t)− eR) = 0, a = (k,m) ∈ C, (5.1d)

λ
∑
a∈ξ

La
2da

va|va| = 0, ξ ∈ LG, (5.1e)

Ga(t) = Ḡa. (5.1f)

Eq. (5.1a) describes the transport of the scaled energy density within the flow network
subject to the energy density injected at the power plant uT . The scaled energy density
used in the numerical simulations in this chapter is defined by

E =
√
Q
e− eR
eR

. (5.2)

Eq. (5.2) incorporates two transformation steps. First, a transformation of the vector
of energy densities e ∈ Rn with respect to the return energy density eR ∈ R which
is performed component-wise. Using this description, numerical simulations are in-
dependent of the return energy density. Second, applying

√
Q transforms (5.1a) to

co-energy coordinates, in which any Galerkin projection can be applied directly while
ensuring Lyapunov stability, cf. section 4.5. The operators A(q), B(q) already include
the conservation of energy and are formed based on the affine decomposition defined
by the independent volume flows as described in section 3.3. Full- and reduced order
system operators considered in this chapter are defined by

A(q) = Q
1
2

(
nq∑
ν=1

γ q̃ν(q)A
q̃
ν

)
Q−

1
2 , B(q) = Q

1
2

(
nq∑
ν=1

γ q̃ν(q)B
q̃
ν

)
, (5.3a)

Ar(q) = V TA(q)V, Br(q) = V TB(q), Cr = CV, (5.3b)

where q̃ ∈ R|LG |+|C| denotes the vector of independent volume flows, and nq ≥ |LG|+|C|
is the number of parameters necessary to parameterize the flux configurations including
changes of flux direction, cf. section 3.3. Concerning the flow defining equations (5.1c
- 5.1e), the mass density ρ = 103 kg m−3 and the friction factor λ = 0.03 are set
to constant values, and thus the variation with energy density and velocity is not
modeled. As a consequence, in the derivation of the cycle defining flows according
to (5.1e) both quantities do not contribute to the model. The summation in (5.1e)
is performed along a (closed) cycle in which the density is assumed to be a global
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5.2 Simulation setup

constant. Hence, the summation over the height differences along each pipeline in a
cycle cancels to zero, since the same level of height is realized at the start and the
end of the summation. By using (5.1e) to define the volume flow field, the pressure
does not enter the state variables and does not affect the simulation results. Since the
pressure only poses technical constraints and does not constraint the simulation of the
energy transport itself, it is not considered within this chapter. In addition, thermal
losses are not considered. Consequently, the return part of the presented networks is
not included in the simulation. For the discussed network topologies, identical energy
densities eR are injected in the return part of the heating network (5.1d). This leads to
the fact that no dynamics can be expected, and eR is simply transported back to the
power plant. The consumption profiles Ga are modeled constant in time (5.1f), where
the constant Ḡa results from the normalized yearly consumption of the corresponding
consumer.

5.2 Simulation setup

Subsequently, the simulation setup used in this chapter is described. It applies to the
numerical studies performed to analyze the decomposition strategy section 5.3 and
the numerical tests of the reduced order model presented in section 5.4. According
to the transformation (5.2), energy densities e′ and outputs y presented below are
dimensionless,

e′ =
e− eR
eR

. (5.4)

The given, total number n of finite volume cells is distributed to pipelines according
to

ni = max{nmin, round

(
cr
Li
Lr

vr
vi

)
} ∀i ∈ P , (5.5)

where Lr, vr, cr denote length, velocity and the expected number of cells of the ref-
erence pipeline. Eq. (5.5) aims at minimizing the variance of the CFL numbers
Λi = nivi/Li, i ∈ P among the set of pipelines. A large variance of CFL num-
bers forces high diffusion of the resulting numerical solution, which is why we aim at
limiting this quantity. The reference pipeline is thus the one with the largest CFL
condition, where its velocity is obtained from a simulation employing typical inputs.
On network systems, distributing finite volume cells on pipelines according to (5.5)
leads to an adaptation of the discretization length hα on each pipeline α ∈ P . In ad-
dition, the numerical results are significantly less diffusive compared to other meshing
strategies such as aiming at a constant discretization h on each pipeline. A solution
to decrease the high diffusion resulting from restricting the time step to the maximal
CFL condition Λ̂, is applying local time stepping [100]. In this approach, each pipeline
is updated on a local time scale according to its individual CFL condition. The used
discretization scheme is the upwind method. When coupling pipelines at junctions,

85



Chapter 5 Numerical analysis of the reduced order model

each of the coupling pipelines has to stay within a consistent time frame. In contrast,
within this section global time stepping methods are discussed, allowing for an ap-
plication to the suggested reduced order model. The considered error ∆t in the time
domain is defined as follows

∆t = max
i∈[1,..,|C|]

‖ŷi − ŷri ‖2

‖ŷi‖2

. (5.6)

Here, ŷi = (yi(t1), ..., yi(t|T̂ |))
T ∈ R|T̂ |, i = [1..|C|] collects an approximation to the

PDE solution of output i = [1..|C|] at discrete points in time denoted by the set T̂ .

Similarly, ŷri ∈ R|T̂ | collects the evaluation of output i of the reduced order model at
discrete points of time T̂ . Using the maximum relative 2-norm as an error indicator
ensures that each output is approximated precisely, regardless of its absolute value
and other outputs. The reference solution ŷ is obtained by extrapolation of simulation
results with increasingly fine spatial resolution. The reference model used to this end
is the upwind scheme in the default combination with an explicit Euler method for
the time integration. For the training phase the input signal uin ∈ UT is used,

u′in(t) = 0.4 + 0.2 cos(wt),
2π

ω
= 14× 103 s, t ∈ T , (5.7)

spanning the allowed range for the energy density. This input signal is referred to
as the in-sample signal. The Galerkin reduction resulting from algorithm 3 is further
tested for the (out-of-sample) signal u′out ∈ UT

u′out(t) = c0 +
2∑
i=1

[ci cos(iωt) + si sin(iωt)],
2π

ω
= 28× 103 s, t ∈ T , (5.8)

with the coefficients (c0, c1, c2) = (0.37,−0.078, 0.089), (s1, s2) = (c1,−c1). The input
signals defined in (5.7-5.8) are highly volatile compared to practical controls. Note
that u′in, u

′
out are defined in the transformed coordinate system given in (5.4). For

signal (5.7), the energy density in the flow network achieves its extrema e′ ∈ [0.2, 0.6]
within half the time period, 14 × 103s ≈ 3.9 h. The initial state for all simulations
equals the equilibrium state defined by the initial control

e′α,β(t0) = u′(t0), α ∈ P , β ∈ Zα.

As a consequence, both input signals u′in, u
′
out are continuous in time, while u′in is in

addition differentiable, since u̇′in = 0.

Parameter choice for the generation of Galerkin projections

The simulations presented subsequently are run along the time interval T = [0, 8 ×
104] s. To generate data for the training phase of alg. 2, 3 the input signal u′in was
simulated with snapshots equidistant in time with a step size of 5 min. Subsequently,
typical parameter choices for the generation of projections matrices according to alg. 2,
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5.3 Domain decomposition of heating networks

Network Strategy #(subnetworks) Figures Pareto frontier
RNS Reduce entire network 1 fig. 5.1 quality (4.45)
RND No reduction of SNF 29 fig. 5.2 smallest error
RND No reduction of SNF 16 fig. 5.6 smallest error
RND Reduction of SNF 16 fig. 5.6 smallest size

Table 5.2: Summary of topologies and reduction strategies considered within this chap-
ter. Subnetworks correspond to the domain decomposition discussed in the
following section. The numerical results presented in section 5.4.1 are ob-
tained by reducing RNS as one network, not as the decomposed network
shown in fig. 5.1. The column Pareto frontier indicates how global Galerkin
projections are chosen for the major part of subnetworks.

3 are presented. The set of admissible frequencies is set to W = [10−5, 10−3] s−1, cf.
(4.39). The weighted transfer function (4.38) is approximated using a Gauß-Legendre
quadrature with 30 base points. Concerning the determination of a local Galerkin
projection using alg. 2, an error indicator δ̄ = 10−2 is used. Initial interpolation
points are distributed logarithmically between 10−7 and 100 along the real axis. For
the determination of a local reduction, IRKA is initialized with two interpolation
points. If the local error of the determined ROM (4.39) is larger than δ̄, the number
of interpolation points is increased by 2. The number of iterations in a single instance
of IRKA is limited by N = 15.

The determination of a global projection according to alg. 3 is performed with a
global threshold ∆̄ = 5 × 10−3. The order of the singular value decomposition is
chosen within the range s ∈ [10..14]. For the different topologies discussed hereafter,
different strategies are used to pick Galerkin projections matrices from the Pareto
frontier introduced by alg. 3. For the RNS, the quality criterion (4.45) is used. For
selected subnetworks of RND, the choice of reduction matrices from the Pareto frontier
and the global error indicator ∆̄ have to be adjusted to meet the desired accuracy in
the time domain simulations. In addition, initializing the interpolation frequencies σ
along the positive imaginary axis proved to be advantageous in some situations. An
overview mapping network topologies and reduction strategies studied in this chapter
is provided in tab. 5.2.

5.3 Domain decomposition of heating networks

When applying dense Galerkin projections V ∈ Rn×r, the sparsity of the operator
A(q) introduced by the network structure transforms to a highly dense reduced matrix.
While A(q) ∈ Rn×n for typical heating networks has c · n, c ∈ [2, 3] nonzero entries,
V TAV carries r2 nonzeros entries. To reduce large scale networks more efficiently, a
decomposition into several subnetworks is performed [101]. This allows to apply the
dense Galerkin projection to each subsystem separately and preserves sparsity in the
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Chapter 5 Numerical analysis of the reduced order model

resulting reduced order operators. Furthermore, a decomposition into subnetworks
allows for an efficient parallelization of simulations tasks. Due these facts, clustering
techniques and related domain decompositions are an active field of research [102, 101,
66, 103].

5.3.1 Decomposition into main- and subnetworks

A description of heating networks decomposed in a main- and several subnetworks is
proposed in the following form(

Ė0

˙̃E

)
=

(
A0(q)

Ã(q)

)(
E0

Ẽ

)
+

(
B0(q)

B̃(q)

)(
uT
ỹ

)
, (5.9a)(

ỹ
y

)
=

(
C0
ỹ

C0
h C̃

)(
E0

Ẽ

)
, (5.9b)

0 = g(E, q,Γ). (5.9c)

Eq. (5.9) is equivalent to (3.27). As in (3.27), the algebraic constraints (5.9c) result
from the coupling of pipelines at nodes of the network and gather three contributions
(5.1c - 5.1e): the conservation of volume, Kirchhoff’s second law claiming that pressure
differences along network cycles sum up to zero, and the power balance at consumers.
It forces the product of volume flow q at consumer stations and observed energy density
y to equal the power consumption G. Hence, (5.9c) collects quadratic constraints in
the state variables E, q. Absolute pressure values p are not considered within this
chapter as they only enter optimization constraints which are discussed in chapter 6.

The system description is decomposed to a main network with state vector E0 to
which the thermal control uT is applied, and c ∈ N subnetworks forming Ẽ which
receive observables ỹ as artificial inputs. Observables y are measured by both main-
and subnetworks, while ỹ is the system state of the main network at attachment points
to subnetworks. Ã, B̃, C̃ represent continued block diagonal matrices,

Ã(q) =

A
1(q)

. . .

Ac(q)

 , B̃(q) =

B
1(q)

. . .

Bc(q)

 , C̃ =

C
1

. . .

Cc

 .

Their blocks As, Bs, Cs, s ∈ {1, .., c} describe the dynamics of the subnetworks. Both
As(q), and Bs(q) depend on the vector of volume flows q, and are represented by the
parameterization (5.3)

As(q) =

nq∑
i=1

γi(q̃)A
s
i , Bs(q) =

nq∑
i=1

γi(q̃)B
s
i , s ∈ {0, .., c}.
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5.3 Domain decomposition of heating networks

We approximate the input-output characteristics of each system s ∈ {0, .., c} using the
greedy strategy described in chapter 4. Thus, for each system, an individual projection
V s, s ∈ {0, .., c} results, forming the global projection

V =

(
V 0

Ṽ

)
. (5.10)

Application of V to (5.9) defines the reduced order model for the decomposed network
description.

5.3.2 Preservation of Lyapunov stability

Subsequently it is shown that the application of the Galerkin projection V (5.10) to
the system (5.9) allows to conclude for Lyapunov stability of the reduced, decomposed
system. To this end ỹ is eliminated in (5.9a), using (5.9b). Hence, one obtains a
system description as a single network (5.11) equivalent to (5.9) where the links of
main- and subnetworks are rewritten to the system matrix A(q)(

Ė0

˙̃E

)
=

(
A0

B̃C0
ỹ Ã

)(
E0

Ẽ

)
+

(
B0

0

)
uT , (5.11a)

y =
(
C0
h C̃

)(E0

Ẽ

)
. (5.11b)

For simplicity of presentation, the algebraic equation (5.9c) is dropped in this section.
As shown in theorem 7, system (5.11) and its reduced model obtained by a Galerkin
projection are Lyapunov stable for an upwind discretization. To show that the reduced
order system obtained by (5.9) is stable as well, (5.9) is reduced by the Galerkin
projection (5.10), leading to(

Ė0

˙̃E

)
=

(
(V 0)TA0V 0

Ṽ T ÃṼ

)(
E0

Ẽ

)
+

(
(V 0)TB0

Ṽ T B̃

)(
uT
ỹ

)
(5.12a)(

ỹ
y

)
=

(
C0
ỹV

0

C0
hV

0 C̃Ṽ

)(
E0

Ẽ

)
. (5.12b)

In (5.12), ỹ is again eliminated resulting in(
Ė0

˙̃E

)
=

(
(V 0)TA0V 0

Ṽ T B̃C0
ỹV

0 Ṽ T ÃṼ

)(
E0

Ẽ

)
+

(
(V 0)TB0

0

)
uT (5.13a)

y =
(
C0
hV

0 C̃Ṽ
)(E0

Ẽ

)
. (5.13b)

It is straight forward to see that (5.13) is the Galerkin projection of (5.11), concluding
for Lyapunov stability of (5.12).
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Figure 5.1: Illustration of the proposed decomposition algorithm for an existing net-
work RNS with 32 observables at 32 consumers (colored circles). Numbers
and colors visualize subnetworks.

5.3.3 Decomposition strategy and numerical validation

Towards a beneficial network decomposition, we aim at equalizing the number of
observables n(ys) to be approximated in each subnetwork. To this end, the following
strategy is proposed. In a directed graph G, a recursive tree search is performed. The
number of allowed outputs in potential subnetworks is restricted to {2, .., Ñ}, where
Ñ ∈ N is an external parameter. Based on the current root node r, the dimension n(ys)
of the output vector ys in the underlying subnet Ss is counted. If n(ys) ∈ {2, .., Ñ},
and Ss contains no outputs which are already clustered, Ss is defined to be a new
subnet. Since the optimal choice of Ñ is not defined a-priori, the cost function

J (ỹ) = n(ỹ)2 +
c∑
s=0

n(ys)2 (5.14)

is evaluated to indicate beneficial cluster decompositions. J (ỹ) penalizes both the
number of connection points n(ỹ) of main- and subnetworks, and the number of ob-
servables in each subnetwork n(ys) quadratically. The suggested algorithm is summa-
rized in alg. 4. For the reference network street (RNS), the cost-minimal choice Ñ = 8
resulting from the variation of Ñ is visualized in fig. 5.1.

Numerical validation

The influence of the proposed decomposition on the simulation runtime is demon-
strated for a computationally more demanding reference network district (RND) in-
cluding n(y) = 333 outputs. Since it includes changes of flux directions which are
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5.3 Domain decomposition of heating networks

Algorithm 4 Network decomposition strategy: node(k,G, Ñ)

Require: Graph structure G, root node k, max. number of observables Ñ
Ensure: Subnetworks C
1: for child nodes k′ of root (breadth first) do
2: S ← subgraph defined by node k′

3: y ← observables of S
4: if #(y) ∈ [2, .., Ñ ] and yi 6∈ Cj, i = [1, .., |y|], j = [1, .., c] then
5: add S as own cluster: c← c+ 1
6: Cc ← S
7: else
8: call algorithm recursively: node(k′,G, Ñ)
9: end if

10: end for
11: return C

runtime/s rel. error ∆t DOF
FOM 1 subnet 2297 8.52× 10−3 47508
FOM 29 subnets 592 8.52× 10−3 47508
ROM 29 subnets 336 8.39× 10−3 10928

Table 5.3: Maximum relative error ∆t, runtime and estimated complexity for the ref-
erence network RND. The error ∆t, cf. (5.6) compares the PDE solution
vector y to the approximation yr. DOF denotes the number of finite volume
cells for both full and reduced models. The time integration for all models
is performed by the MATLAB®implicit Runge-Kutta scheme ode15s.

complex to reduce, we encapsulate them in a single subnet (highlighted in green in
fig. 5.2) which is not reduced. We then compare three simulation models. The full
order model discretized by the upwind scheme with 1 subnet (FOM 1), the FOM with
29 subnets proposed by our algorithm (FOM 29), displayed in fig. 5.2 and the ROM
obtained from reducing all 29 subnetworks except for the one including flux changes
(ROM 29), cf. tab. 5.3. Comparing FOM 1 to FOM 29 shows that a large speed up
already results for the unreduced system by network decomposition. Although the
number of nonzero entries in the full order operator is nearly identical, the block di-
agonal structure allows for a more efficient solution of the nonlinear root problems
occurring in an implicit time integration. Furthermore, the operator assembly of A(q)
is more efficient in the decomposed description (5.9). Expressing A(q) by volume
flows q as time dependent weights introduces redundant multiplications when forming
qi(t)Ai. The part of the system operator A of a single pipeline k ∈ P coupling to
e.g. two volume flows qa, qb could also be formed by a single multiplication of the
relevant cells with the velocity on the pipeline. Defining block diagonal parts which
are only multiplied with the volume flows relevant for the corresponding subnetworks,
relaxes these redundancies to some extent. Concerning the reduced order operator
the same observations hold. Using a network decomposition significantly accelerates
the assignment of the reduced order operator Ar(q) based on the affine decomposition
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Chapter 5 Numerical analysis of the reduced order model

including volume flows. The reduced order modes resulting from Galerkin projections
are now confined to the subnetworks they refer to. An additional saving of computa-
tional complexity is accounted to the reduced dimension itself. For both the training
phase and the numerical evaluation presented in tab. 5.3, the input energy density u′in
defined in (5.7) was used.

100 m

100 m

Figure 5.2: Illustration of the proposed decomposition algorithm for an existing net-
work RND with 333 observables at consumers (colored circles). The net-
work is decomposed to a main network (dark-blue circles) and 28 additional
subnetworks including the flux changing network (green).

5.4 Numerical analysis of the reduced order model

In this section, we study the approximation quality and the runtime of the reduced
model presented in section 4.5 for different input scenarios and different real world
networks. In the benchmark, different time integration schemes are considered, as well
as higher order hyperbolic schemes. Furthermore, different approximation qualities
defined by the number of finite volume cells are studied. For network RNS the network
decomposition discussed in section 5.3 is not considered due to the smaller size of
the network. For the second test case, RND, the simulation results of the reduced
order model are obtained by applying a network decomposition and applying Galerkin
projections to each subnetwork afterwards. For the full order models, no decomposition
strategy is performed.
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5.4 Numerical analysis of the reduced order model

5.4.1 Test case street network

The first example represents a street with 32 consumers and one cycle forming 33
independent volume flows (parameters), cf. fig. 5.1. Due to its small size, no network
decomposition is performed for the simulations presented in this section for both full-
and reduced order models. The reduced order models are calculated for the entire flow
network. Figure 5.3 a), b) show the PDE solution for the two input signals (5.7, 5.8)
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Figure 5.3: Comparison of the PDE solution and the reduced model with r = 70
states for the street network RNS for the in-sample signal(a), and the
out-of-sample signal(b) showing the output with largest error in the time
domain. The black line presents the corresponding input signal. The lower
part of both plots shows the normalized temporal variation of volume flows
at selected consumers, cf. (5.1d).

and the output y of the ROM exhibiting r = 70 states. The original cosine wave is
inclined asymmetrically due the time dependent transport velocity. The ROM is able
to precisely reflect the nonlinear dynamics of the street network for both in-sample
and out-of-sample signals. The presented dimension reduction from full n = 22652 to
r = 70 states is remarkable given the high number of 32 outputs to be approximated,
cf. tab. 5.4. The time integration scheme used in fig. 5.3 is the ode15s integrator of
MATLAB®, an implicit Runge-Kutta with variable step size. An analytical estimate
for the Jacobian is passed to the function. The lower part of fig. 5.3 presents the
normalized volume flow at selected consumer stations. The phase shift of the flow
signals visualizes the transport delay from source to consumption and is a measure for
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Dimension n FOM 2269 4529 11330 22652 37760 9538 47508 94991
Dimension r ROM 47 47 55 70 94 2579 10848 21106

Table 5.4: State space dimensions of full and reduced order model leading to compara-
ble errors in the time integration for network RNS(left part) and RND(right
part). For RND the presented dimensions are sums of the dimensions of
each subnetwork.
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Figure 5.4: Absolute error of output 21 in network RNS which is the most distant to
source, comparing in-sample input signal(a) to the out-of-sample signal(b).
The size of the ROM is changes by reducing finer resolutions of the full
order model, cf. tab. 5.4.

the nonlinearity of the dynamics. Employing an upwind discretization of the PDE,
the number of finite volume cells is increased to compare the development of runtime,
approximation error and size of full and reduced models. Figure 5.4 visualizes the
time domain error of ROMs resulting from the reduction of increasingly fine full order
models. By reducing a finer full order model, the corresponding ROM shows a smaller
time domain error at the expense of an increasing reduced dimension.

Comparison of runtime and error

To further investigate the effects on the runtime of the ROM for different resolutions
of the spatial discretization, the number of finite volume cells is varied and different
time integration schemes are applied to both full and reduced models, cf. fig. 5.5.
More precisely, FOM Euler (FOM ode15s) denotes an upwind discretization of the full
order model, where the time integration is performed using the explicit Euler scheme

94



5.4 Numerical analysis of the reduced order model

(the implicit, adaptive Runge-Kutta-method ode15s supplied by MATLAB®). Addi-
tionally, FOM ADER 1(2) denote ADER schemes [104] of order 1(2) for hyperbolic
conservation laws, which are integrated by an explicit Euler scheme. The latter rep-
resent higher order numerical schemes for hyperbolic PDEs discussed in section 3.1.
Finally, ROM ode15s is the reduced order model of the upwind discretization in space,
integrated in time using ode15s. Since ode15s chooses the size of the time step adap-
tively based on tolerances, simulations for a given number of finite volume cells are
repeated for different absolute and relative tolerances. Fig. 5.5 only presents advanta-
geous tolerance choices, which are either more accurate or faster than other tolerance
choices. It turns out that the reduced order model can be simulated with default tol-
erance goals, while the tolerance for the full order model has to be refined when using
a higher number of finite volume cells. It shall be noted that the explicit Euler method
does not ensure a stable time integration of the reduced order model. First, due to
the nonlocality of the reduced order modes, there exists no CFL condition ensuring a
stable time integration. Second, the ODE describing the transport of energy density
is a nonlinear function of the energy density, due to the power balance at consumers
stations, relating advection velocity and energy density. As a consequence, the sta-
bility radius of the time step of the explicit Euler method is only valid locally, and
does not guarantee stability for larger time steps of the reduced order model. For this
reason, the explicit Euler integration is not presented for the ROM.
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Figure 5.5: Runtime versus time domain error ∆t for the reference network RNS vary-
ing both time- and space discretizations for the in-sample signal (a) and
the out-of-sample signal (b).

Going from higher to smaller approximation errors, two regimes are visible. In the first
one denoted by synchronization regime, the numerical transport velocities reflected by
the CFL number Λi ∈ P , synchronize over all pipelines. Here, explicit time integra-
tion schemes, in which the time step is restricted by Λ̂ := maxi∈P Λi, show a high
computational effort compared to implicit time integration schemes for higher errors.
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Chapter 5 Numerical analysis of the reduced order model

This effect aggravates for ADER schemes of order p since they require a minimum
number of p cells, further diminishing the maximum step size. Increasing the number
of finite volume cells, Λ̂ remains constant in the synchronization phase and explicit
time stepping models improve in accuracy without larger additional costs. Towards
the end of the synchronization, Λ̂ increases in the number of cells n and the compu-
tational costs increase superlinear in n. The implicit time integration of the upwind
scheme is in particular fast in the synchronizing regime in which the problem is stiff.
With increasing number of cells, the stiffness of the problem reduces, and the benefits
of the full order implicit time integration vanish as well. An advantage of implicit
time integration schemes results from the time-varying advection velocity. For an ex-
plicit time integration, the velocity at time t is assumed to be constant throughout the
following time step. Implicit integration schemes in contrast solve for a future time
step at which the new velocity field is automatically implied. Comparing the implicit
time integration for full and reduced order models, the speed-up increases towards
finer resolutions. As a consequence, the reduced model shows the smallest runtime
within the considered error range. This range is suitable for optimal control purposes,
in which an exact solution is not the central objective, but a fast estimate of it.

5.4.2 Test case district network

In the second example we consider a larger network with |C| = 333 consumers,
|P| = 775 pipelines and |LG| = 6 cycle flows, which represents the network topol-
ogy of an existing district, cf. fig. 5.6. Due to multiple cycles in the left part of the

100 m

100 m

Figure 5.6: Reference network ”RND” with 333 consumers, 775 pipelines and 6 cycles
modeling an existing network for a city district. Colors show the man-
ual decomposition of the network including a main network (blue), the
subnetwork ”SNF” exhibiting changes of the flux direction (green) and 14
additional subnetworks.
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b

a

Figure 5.7: Zoom to the subnetwork exhibiting changes of flux direction, cf. fig. 5.6.
Highlighted consumers correspond to signals displayed in fig. 5.9, 5.10 for
consumer (a), and fig. 5.11 for consumer (b).

network, changes in the flow direction occur for the chosen control. The latter modifies
the coupling structure of the finite volume cells in the reverting pipelines, since the
boundary cells supplying incoming information change with the inflow boundary. The
corresponding system matrix A(q) changes its sparsity structure, in contrast to the
case of constant flux direction, where a change of volume flow modifies the relative
weights of the entries. When generating projections for this network incorporating
these nonlinearities, a prohibitively large reduced dimension results. This is a very
challenging aspect of simulating heating networks, which only occurs in distinct parts
of large networks, where multiple cycle structures are directly connected. To isolate
flux changes, the network is decomposed into a main- and 14 subnetworks, cf. fig. 5.6.
Specifically, the subnetwork highlighted in green gathers all pipelines undergoing a
change of flux direction and is referred to as ”SNF”. An augmented representation of
SNF is visualized in fig. 5.7. It shall be noted that the decomposition studied subse-
quently differs from the output of alg. 4 presented in fig. 5.2. The aim of section 5.3
is to demonstrate that a network decomposition similar to the one considered in this
section can be derived systematically.

We compare two strategies. First, a reduced order model is derived by alg. 3 for every
subnetwork, and second, we perform a hybrid approach in which only the subnetwork
including flux changes remains in full order. In case of the full order model, no
decomposition algorithm is performed. We start with strategy 2 and discuss the
runtime of the resulting ROMs. Concerning the dynamics, changes in the flux direction
introduce a highly nonlinear response of the system, compare fig. 5.9, 5.10. A simple
sine-wave will lead to oscillatory outputs at consumer stations. By preserving the
full order in these regions, flux changes can be resolved adequately. Although the
subnetwork containing the flux changes receives outputs from other reduced order
models due to the network decomposition, the resulting errors are still within the
resolution of the original FOM. Without reduction of SNF carrying the essential part
of discretization cells, the dimension of the problem decreases from n = 47508 to
r = 10848. Focusing on the runtime comparison for different accuracies, the hybrid
ROM with an implicit time integration outperforms both implicit and explicit time
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Chapter 5 Numerical analysis of the reduced order model

integrations of the FOM for the considered error range, cf. fig. 5.8. Furthermore the
speed-up of the reduced order model is shifted towards smaller relative errors. This
reduction in computational complexity has two origins. Firstly, due to the network
decomposition, diagonal blocks in the system matrix A(q) are formed, which allow for
an efficient assembly of A(q) defined in (5.3), as well as an efficient LU decomposition,
when solving for the new time step in an implicit integration scheme. Secondly, due
to the reduced state, each block is smaller in absolute size.
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Figure 5.8: Runtime versus time domain error ∆t for the reference network RND vary-
ing both time- and space discretizations for the in-sample signal (a) and
the out-of-sample signal (b).

5.4.3 Reduction of subnetworks including changes of flow direction

While being accurate in regions of flux changes, the hybrid approach has two central
drawbacks. By not reducing all parts of the network, the number of time steps for the
implicit time integration is still defined by the unreduced subnetwork. In addition, it
dominates the resulting reduced state space dimension, cf. tab. 5.4. To this end, we
discuss the reduction of SNF. Deriving a Galerkin projection for SNF is significantly
more complex than for other networks. To encapsulate all flux changes, SNF requires
six attachments points at which inflowing states are measured cf. fig. 5.6. These
transfer to input channels when performing the model reduction, resulting in a six-
fold number of input-output channels to be approximated. Despite this fact, and the
structural changes of the system matrix A(q), alg. 3 produces a highly accurate ROM,
cf. fig. 5.11. Furthermore, by constructing a global ROM both the the number of
time steps and the state space dimension decrease significantly from n = 47508 to
r = 1377. In contrast, the increasing cost for the evaluation of the dense reduced
model SNF detracts the decrease in runtime, while exhibiting a larger relative error
in the time domain, cf. fig. 5.5. Still, the runtime of the model also reducing SNF is
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Figure 5.9: Comparison of the PDE solution and the reduced scheme for the district
network RND for the in-sample input at consumer (a) in fig. 5.7. The
black line presents the corresponding input signal. The high number of
reduced states results from the unreduced subnetwork SNF. The lower part
of both plots shows the normalized temporal variation of volume flows at
consumers, cf. (5.1d).

FOM(n = 47508) ROM hybrid(r = 10848) ROM(r = 1377)
runtime/s 2274 363 322
rel. error ∆t 8.34×10−3 8.46 ×10−3 11.83 ×10−3

Table 5.5: Runtime and relative error for RND comparing the full order model (FOM),
its reduction excluding flux changes (ROM hybrid) and its reduction includ-
ing flux changes (ROM) for the in-sample input signal.

smaller than the runtime of the hybrid approach. As a consequence, both approaches
lead to comparable results concerning accuracy and runtime. As already mentioned,
the analytical Jacobian is passed to the implicit time integration scheme ode15s. Still,
calculating the Jacobian is more complex than evaluating the differential part of the
DAE (5.1). However, the adaptive implicit time integration scheme ode15s does not
evaluate the Jacobian in every time step, but in only a fraction of those. This is in
contrast to the implicit midpoint rule presented in chapter 6, in which the Jacobian
has to be determined in every time step. As a consequence, the benefits of including
the flux changing network in the reduction depend on the choice of the time integration
scheme and the application of interest.
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Figure 5.10: Comparison of the PDE solution and the reduced scheme for the district
network RND for the out-of-sample signal at consumer (a) in fig. 5.7. For
further details we refer to fig. 5.11.
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Figure 5.11: Comparison of the PDE solution to the ROM including a reduction of all
subnetworks for RND at consumer (b) in fig. 5.7. The black solid line
presents the corresponding in-sample input signal.

5.5 Conclusions

In this chapter the reduced order model resulting from the Galerkin projection pro-
posed in chapter 4 was analyzed numerically. The full order DAE results from the
solenoidal transport of energy density in which mass density and friction coefficient
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5.5 Conclusions

are modeled as global constants. The contribution of acceleration in the momentum
balance of the Euler-like equations was neglected. The surrogate model allows for a
speed up of up to one order of magnitude compared to full order hyperbolic schemes
in the error range of interest. An adaptive, implicit Runge-Kutta scheme achieves the
best results among the studied time integration schemes. Runtime and error of the
reduced order model are evaluated for both the training data used to generate the
ROM and an out-of-sample signal, differing from the training signal. Computational
benefits are shown for two existing heating networks, including a large scale network.
The latter exhibits highly demanding changes of flow directions in its dynamics, which
are a central difficulty in modeling and simulating heating networks. Employing a net-
work decomposition prior to the application of the Galerkin projection is responsible
for a significant decrease in simulation time, due to a more efficient assembly of the
reduced operators Ar(q), Br(q). In addition, the dimension of the reduced order model
decreases the computational complexity even further. Concerning the decomposition
strategy, two approaches were compared. In the first, the subnetwork allowing for
changes of flux direction SNF is reduced as a separate subnetwork. In the second, a
hybrid approach was used, in which SNF remains as a full order subnetwork. For the
purpose of a forward simulation, both approaches yield comparable results concerning
runtime and approximation error.
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Chapter 6

Optimal control of heating networks
using reduced order models

In this chapter an optimal control problem for district heating networks is solved
using the reduced order model suggested in chapter 4. The objective is to minimize the
temporal variation and absolute value of the energy density supplied by the power plant
while fulfilling a constraint to the maximum injected feed-in power. The corresponding
optimization problem is solved using the MATLAB® function fmincon. Instead of
imposing the transport dynamics as optimization constraints, the dynamics are solved
explicitly using the reduced order model and the results are passed to the optimizer.
Employing this strategy, full- and reduced order model are compared for three different
test scenarios.

6.1 Optimization objectives of heating networks

Heating networks are of particular interest for low-carbon energy supply due to their
flexibility in using different sources of energy [2, 3]. The energy density uT injected
at a power plant is guided to consumers of different sizes using a network of pipelines
referred to as flow network. At the consumers, the local volume flow is regulated
using heat exchangers to match the time dependent power consumption G given the
currently available energy density e. Fig. 6.1 illustrates an existing large scale network
considered in this contribution. Its outline data is supplied in tab. 5.1. A central aim
of operating these networks lies in efficiently planning the input energy density uT .
It defines the power feed-in P = (uT − eR)qΣ in combination with the aggregated
volume flow qΣ, and the energy density of the cooled fluid eR entering the plant in
the return network. Due to the high transport times from source to consumption in
large scale networks, the power feed-in P (t) at each point of time t needs not to match
the current power consumption G at the heat exchangers. While both quantities
are coupled by conservation of energy within the heating network, there exists an
essential optimization potential in distributing uT over time. Injecting a high energy
density in times of large volume flows qΣ requires firing additional vessels which might
be unfavorable for economic and ecological reasons. Vice versa, planning might also
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Figure 6.1: Topology of an existing heating RND network supplying a district. The
network is decomposed to a main network (dark-blue circles) and 14 sub-
networks. Pipelines changing flux direction are part of the main network.

enable to use external overcapacities of energy resulting from renewable energies. In
the specific application, a waste to heat incineration plant is able to deliver power
up to a maximum level at no cost. When exceeding this level for only a short time
interval, significant costs result from using gas boilers to cover peaks in the injected
power.

In the optimization task, the dynamical energy transport on these complex networks is
an essential constraint to ensure a physically relevant control and requires a significant
amount of computation time. Since controls of power plants are updated every 15 min
in application, the corresponding optimization needs to be sufficiently fast. To this
end, the usage of reduced order models is central [105, 76, 106]. For network systems,
both tasks of defining an optimal control [107], as well as formulating reduced order
models are complex. Due to their mathematical complexity and the large benfits, the
optimization of energy networks such as electric [4], water [6], gas and heating networks
is an active field of research. Concerning the model order reduction of energy systems,
different works already exist for gas networks [26, 108], electric networks [62] and
other applications [109]. Similarly, many publications focus on the optimization of
gas networks [7, 10, 6, 18, 8, 9]. While gas networks are modeled by compressible
Euler equations, the transport fluid for heating networks is water in the fluid phase
inducing incompressible dynamics. On the one hand this simplifies the equations
for the conservation of mass and momentum significantly. On the other hand, for
heating networks the conservation of inner energy describing the dynamical transport
of thermal energy is the dominant effect and mathematically the most challenging one.
It leads to a time-dependent advection of the injected thermal energy yielding a large,
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dynamically changing delay in the energy transport between source and consumption.
Towards the formulation of a reduced order model, advection on network systems is a
demanding problem.

Selected works discussing the optimal control of heating networks are mentioned sub-
sequently. In [13], pumping costs resulting from the variation of pressure and massflow
are optimized using a reduced order model without reflecting the dynamically chang-
ing thermal transport. In [11], a predictive controller is formulated. The advection of
thermal energy is reflected by the method of characteristics on each pipeline assuming
a constant time delay between source and households. In [12] the transport of thermal
energy from source to each consumer is described by virtual single pipelines including
a constant time delay from source to consumption points. The design of the district
heating network is itself an interesting optimization task. In [14], the authors optimize
the investment and operation costs over 30 years, formulating a mixed integer non-
linear programming model based on steady states. In this contribution, the topology
is fixed and visualized in fig. 6.1. Similar to the approach used for gas networks, a
model very close to the underlying Euler equations is formulated, allowing to precisely
model the thermal transport dynamics and addressing the central difficulties of heat-
ing networks. These are dynamically changing delay times from source to consumers,
as well as changes of flux direction. Using a system theoretic approach to model the
dynamics allows to use effective tools from model order reduction.
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6.2 Model assumptions

The model used to derive optimal control strategies bases on the full DAE (3.27)
discussed in section 3.1.5 and is summarized subsequently. It differs from the model
analyzed in chapter 5 in three ways. First, pipeline dependent friction factors are
considered and second, the power consumption at consumer stations is modeled by
time-dependent standardized profiles. Third, the pressure levels at every heat ex-
changer are evaluated after the each simulation of the dynamics. For the continuous
time interval t ∈ Tc = [t0, te] ⊂ R+ the corresponding model reads

ė = A(q)e+B(q)uT , e(t0) = e0, (6.1a)

y = Ce, (6.1b)

Kq = 0, (6.1c)

Φαvα = qα α ∈ P (6.1d)

Ga − qa(ea:k − eR)) = 0, a = (k,m) ∈ C, (6.1e)∑
α∈ξ

λαLα
2dα

va|vα| = 0, ξ ∈ LG, (6.1f)

ρλαLα
2dα

va|vα|+ ρgLα(zm − zk) = −(pm − pk), α = (k,m) ∈ P (6.1g)

ps:m(t) = ps:k(t) + ∆ps(t), s = (k,m) ∈ S, (6.1h)

ps:k(t) = pR(t), s = (k,m) ∈ S. (6.1i)

Eqs. (6.1) base on the control system (3.27) discussed in section 3.1.5, with certain
assumptions to the equations of state and the determination of the friction factor
explained subsequently. Eq. (6.1a) describes the solenoidal transport of energy, in-
cluding the conservation of energy at network nodes. Additional, the conservation of
volume is claimed (6.1c). In the flow defining equations (6.1e, 6.1f) the mass density
ρ = 103 kg m−3 is assumed to be globally constant, and the contribution of acceleration
is neglected. The friction factor λα, α ∈ P is constant in time but in contrast to chap-
ter 5 depends on the diameter of each pipelines. It is defined by the Colebrook-White
equation (2.5) for a fixed Reynolds number Re = 106 and a roughness of σ = 0.047 mm.
The high Reynolds number ensures to determine a friction coefficient in the turbu-
lent regime. Since a constant density is assumed, both the density and the sum over
height differences cancel from the flow-defining equations of Kirchhoff type, result-
ing in (6.1f). The consumption profile of each consumer exhibits an identical energy
density in the return part (6.1e). The pressure change along pipeline α (6.1g) is deter-
mined according to the momentum balance of the Euler-like equations, as explained
for (6.1f). Eqs. (6.1f) are used to solve for the flow field and thus are presented in
the above model, although they formally are a consequence of (6.1g). Since the return
energy densities at consumer stations are identical, and thermal losses by conduction
to the pipeline wall are neglected, the return network is not included the simulation
model. The controllable pressure levels at flow- and return part of the power plant
defined in (6.1h, 6.1i) will be collected in up.
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6.3 Control problem

Eqs. (6.1) refer to the full order model. The reduced order model is obtained by
replacing (6.1a - 6.1b) with its Galerkin projection

ėr = V TA(q)V er + V TB(q)uT , e(t0) = e0 (6.2a)

yr = CV er, (6.2b)

as described in section 4.5. Full- and reduced system operators are formed as in
chapter 5,

A(q) = Q
1
2

(
nq∑
ν=1

γ q̃ν(q)A
q̃
ν

)
Q−

1
2 , B(q) = Q

1
2

(
nq∑
ν=1

γ q̃ν(q)B
q̃
ν

)
, (6.3a)

Ar(q) = V TA(q)V, Br(q) = V TB(q), Cr = CV. (6.3b)

The corresponding projection matrix V is obtained by alg. 2, 3, using the reference
parameters described in section 5.2. A modification of the reference parameters is
done for the values δ̄ = 2 × 10−2, ∆̄ = 5 × 10−2. The number of initial interpolation
points is set to r = 4. The latter are set along the positive part of the imaginary axis.
Precisely, the interpolation points are distributed logarithmically between 10−7i, and
100i. An increment of 2 is applied for initializations of IRKA which do not meet the
desired error δ̄. The order of allowed singular value decays is set to s ∈ [8..14]. To
sample from the Pareto frontier resulting from alg. 3, the projection matrix leading to
the smallest reduced order model was used, which satisfies the error indicator ∆̄.

6.3 Control problem

For the set of discrete points of time Td = {t0, ..., te}, and the corresponding continuous
interval Tc = [t0, te] we seek at determining a parameterized control uκT : Tc 7→ R of
the input energy density, minimizing the following objective within t ∈ Td

J (uκT ) = η1‖u̇κT (·)‖2
l2(Td) + ‖uκT (·)− η2‖2

l2(Td), (6.4)

subject to, t ∈ Td,

uκT (t) ≤ ū, (6.5)

ea:k(t) ≥ ē, a = (k,m) ∈ C (6.6)

pa:k(t) ≤ pmax
h , a = (k,m) ∈ C (6.7)

pa:k(t) ≥ pmin
h , a = (k,m) ∈ C (6.8)

(uκT (t)− eR)
∑
a∈C

qa(t) ≤ P̄ , (6.9)

D(ė, e, e0, q, p, u
κ
T ,Γ) = 0. (6.10)

The objective function (6.4) penalizes the temporal variation and the distance to the
regularization parameter η2 of the parameterized control uκT . The regularization pa-
rameters η1, η2 are used to equalize both contributions in the objective which are
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Chapter 6 Optimal control of heating networks using reduced order models

motivated as follows. Minimizing the temporal variation leads to realistic controls,
which can be realized properly by the power plant. In addition, high temperature
gradients harm the pipeline material mechanically. By choosing η2 sufficiently small,
the mean value of the control decreases which systematically reduces thermal losses
by cooling effects. Decreasing the injected energy density will lead to higher pres-
sures in the network, which are restricted as explained below. Constraints (6.5 - 6.8)
are technical restrictions in line with standard operation instructions formulated as
optimization constraints. The upper energy limit ū = min(e(T Fmax), e(T

net
max)) in (6.5)

reflects both the maximal temperature allowed in the network and at consumer sta-
tions, forcing the fluid to remain in the liquid phase. By conservation of energy, energy
densities realized in the network can never exceed uT . Since thermal losses are not
considered, the input energy density will eventually by realized at the consumer sta-
tions. Consequently, it is sufficient to pose the upper temperature limit at the power
plant. In (6.6) a minimal energy density is required for proper operating conditions
of the heat exchangers, reflecting both the minimal energy density at the flow part
of consumer stations (2.12e) and the minimal temperature difference from flow to re-
turn temperatures (2.12f). In addition, the pressure levels of consumption nodes in
the flow network are restricted to upper and lower bounds (6.7, 6.8). As presented
in section 2.1.4, there exist additional pressure constraints for the absolute pressure
levels at the return part of consumer stations, as well as for every node in flow- and
return network. These constraints are considered indirectly by choosing appropriate
pressure bounds (pmin

h , pmax
h ) as discussed below. Eq. (6.9) sets an upper bound to the

maximal injected power, which avoids the use of additional energy sources. Below this
limit, the power plant can supply demands by energy stemming from a waste to heat
incineration plant at no costs. Due to the transport time of the injected energy from
source to consumers, the control has a delayed effect on the consumer, allowing to
influence the temporal distribution of the injected power. Finally, (6.10) reflects the
energy transport (6.1a) along the network restricted by the algebraic coupling condi-
tions (6.1c - 6.1g) and the initial state e0(uκT ). The boundary conditions stored in Γ
are given by

Γ := (up, G, eR)T .

For the full order model (6.10) is given by (6.1). In the reduced order case, (6.1a -
6.1b) are replaced by (6.2) respectively.

The consumption G is assumed to be known a-priori, which is a typical assumption in
the simulation of heating networks. Since cooling effects are neglected and the energy
densities in the return network are modeled equal and constant, an open loop control
problem results. The return network exhibits a constant energy density eR entering
the feed-in power (6.9) as a parameter.
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6.3 Control problem

The required pumping power Phyd necessary to retain a fluid flow in the network is
stemmed by the pumps in the depot. It is bounded above as follows,

Phyd(t) = ∆ps(t)
∑
i∈C

Gi(t)

ei:k(t)− eR
, i = (k,m) ∈ C, (6.11a)

≤ maxt∈Tc(∆ps(t))

mint∈Tc e(t)
max
t∈Tc

∑
i∈C

Gi(t), (6.11b)

where ∆ps describes the pressure difference achieved at the source edge representing
the depot. For typical networks, the maximum pressure difference at the depot is
smaller than 10 bar. Approximating the energy density by e ≈ ρcpT , with material
constants described in section 6.5.2, a maximum aggregated power consumption of
1 MW leads to a corresponding pumping power of 16 kW. Thus, the pumping power
is suppressed by almost two orders of magnitude compared to the thermal power.

Treatment of pressure constraints

Subsequently, we explain how to fulfill the pressure constraints (6.7, 6.8) in a simplified
manner. Incorporating different additional pressure constraints by defining effective
values for pmin

h , pmax
h is a addressed afterwards. Simplifying constraints (6.7, 6.8) relies

on limiting the difference of the maximum and minimum pressure levels measured at
all consumption points. This allows to adjust the pressure control up : Tc 7→ R after
finding the optimal control of the energy density.

By (6.1g), the pressure difference from source s = (ks,ms) to consumption point
h = (kh,mh) ∈ C is defined by

∆ph ≡ ph:kh − ps:ms = ρg(zs:ms − zh:kh)− ρ
∑
i∈Kh

λi
Li
2di

vi|vi|, (6.12)

where Kh denotes an arbitrary path from the source to consumer h ∈ C. Although
the pipeline velocities change dynamically, diameters, lengths and the height profile
on the path from source to each consumer station determine the resulting pressure
difference to a large extent. This stabilizes the constraint limiting the maximum
pressure difference. For simplicity of notation, we abbreviate the pressure levels at the
flow node of the source edge and the flow nodes of consumer stations by

ps := ps:m, s = (k,m) ∈ S, ph := ph:k, h = (k,m) ∈ C.

This allows to formulate the following proposition.

Proposition 15. The pressure constraints (6.7,6.8) are satisfied by defining an alter-
native constraint on the difference of the maximum and minimum pressure realized at
all consumption points,

max
h∈C

(p̃h(t))−min
h∈C

(p̃h(t)) ≤ ∆p, t ∈ Td, (6.13)
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where p̃h denotes the pressure level at consumption point h valid in a simulation with
an arbitrary source pressure ũp. Here, ∆p ≤ pmax

h − pmin
h is the true limit for the

pressure difference entering the alternative optimization constraint (6.13). The control
of the pressure level leading to admissible pressures at consumption points is obtained
a-posteriori by a time dependent shift,

up(t) = pmin
h −min

h∈C
(∆ph(t)) t ∈ Td. (6.14)

Proof. By limiting the difference between maximal and minimal absolute pressure
levels in (6.13), their value relative to the pressure control is limited as well,

max
h∈H

(p̃h − ũp)−min
h∈C

(p̃h − ũp) = max
h∈C

(∆ph)−min
h∈C

(∆ph) ≤ pmax
h − pmin

h , (6.15)

where ∆ph denotes the pressure difference from house to source, which is independent
of the pressure control at the source by (6.12). Thus, the pressure level at each
consumption point for an arbitrary source pressure ps reads,

ph = ps + ∆ph.

Inserting the suggested control (6.14) allows to determine the minimum pressure at
each consumption point by

min
h∈H

(ph) = ps + min
h∈H

(∆ph) = pmin
h −min

h∈H
(∆ph) + min

h∈H
(∆ph) = pmin

h .

Similarly, the maximum pressure level is limited by

max
h∈H

(ph) = ps + max
h∈H

(∆ph)

= pmin
h −min

h∈H
(∆ph) + max

h∈H
(∆ph)

≤ pmin
h + pmax

h − pmin
h

= pmax
h ,

(6.16)

where the inequality in (6.16) is obtained by using (6.15).

Additional pressure constraints

Proposition 15 describes how to exactly fulfill the constraints (6.7, 6.8). Instead of
checking 2|C| constraints at each time t ∈ Td, only a single constraint has to be
checked. In addition, there exist global pressure constraints on all network nodes as
well as for the pressure difference at each consumer stations, cf. tab. 6.1, and the
technical restrictions [35]. Checking these explicitly would lead to additional N + |C|
constraints at each time t ∈ Td, increasing the complexity of the optimization task
significantly. As an alternative, we adjust (pmin

h , pmax
h ) to achieve an approximation

to the remaining pressure constraints. By assuming a symmetric topology of flow-
and return network, a constraint limiting the pressure difference at consumer stations
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6.4 Determination of an optimal control

in the flow part of the network will also limit the pressure range at the return part
of consumer stations by ∆p. Furthermore, it is assumed that consumer stations are
distributed sufficiently dense along the network to avoid evaluating pressure levels
of the nodes not covered by consumer stations. Using these assumptions, the choice
pmin

h = 6.6 bar, pmax
h = 9.1 bar, ∆p = 2.5 bar approximates a realistic pressure scenario.

pFmin pFmin pRmin pRmax ∆pcmin ∆pcmax
4.3 bar 9.1 bar 3.5 bar 8.3 bar 0.8 bar 5 bar

Table 6.1: Pressure restrictions at consumer stations for the network RND.

Feed-in power and control of energy density

The feed-in power is the central constraint to limit additional costs, since it avoids the
usage of additional energy resources. It is defined by

P = (uκT (t)− eR)
∑
i∈C

qi(t) (6.17)

= (uκT (t)− eR)
∑
i∈C

Gi(t)

ei:k(t)− eR
, i = (k,m) ∈ C. (6.18)

The control uκT affects the feed-in P (6.17) in two ways. First, by setting the current
input energy density uκT and second, by defining the volume flow which results from
the current energy densities at heat exchangers. These in turn equal the control
uκT (τ) at a past time τ . Depending on the current state eh,nh at consumer stations,
the input control can both amplify and weaken the feed-in power with regard to the
current consumption G. In the stationary case e = u0, where u0 denotes the constant
input, the feed-in power is the temporally shifted consumption profile. Hence, it also
matches the high characteristic power peaks in the morning and the evening hours.
In contrast, by anticipating the expected consumption and the transport time of the
injected power, peaks in the injected power can be reduced. Since the determination
of an optimal control is initialized with a constant temperature, the red, solid lines in
parts (b) of fig. 6.2, 6.4, 6.5 visualize the consumption profile equaling the displayed
feed-in.

6.4 Determination of an optimal control

Subsequently, we discuss the computation of an optimal control for the problem (6.4-
6.10). The main idea is to eliminate the transport dynamics from the optimization
constraints by solving them explicitly and passing the remaining constraints to the
MATLAB nonlinear optimization tool fmincon.
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Chapter 6 Optimal control of heating networks using reduced order models

Supplying an initial control which satisfies all constraints is an open problem. Hence,
the initial parameter set κ0 generally at least violates the feed-in constraint (6.9) and
the determination of a feasible solution is performed initially. For the current param-
eter vector κi, the transport dynamics described by the DAE (6.10) are solved along
Td. In the solution process, both the trajectory of state variables and their parameter
gradients are calculated. This allows to evaluate the true optimization constraints (6.5
- 6.6, 6.9, 6.13), and their gradients with respect to the current parameter κi. In this
step, the limits for the pressure levels (6.7, 6.8) are replaced by (6.13) as described
in proposition 15. This allows to focus on the determination of the thermal control
uκiT in solving the optimal control problem. The required pumping power resulting
from the pressure control up can be neglected as described in section 6.3. Solving the
dynamics explicitly avoids the large computational cost of passing them as optimiza-
tion constraints. Values and gradients of the optimization constraints for the current
parameter are passed to fmincon using the active set method together with the value
and parameter of the objective function (6.4). A summary of the algorithm used to
determine the optimal control is provided in alg. 5.

Algorithm 5 Numerical computation of an optimal control

Require: Initial parameter set κ0, convergence tolerance of nonlinear optimization.
1: while convergence tolerance not satisfied do
2: Solve DAE (6.10) using the implicit midpoint rule (6.21) for the current param-

eter vector κi.

D(ė, e, e0, q, p, u
κi
T ,Γ) = 0, t ∈ Td.

3: Determine constraints K defined in (6.5-6.6, 6.9, 6.13), and their parameter
gradients ∂κiK based on the solution of (6.10).

4: Evaluate objective function J (uκiT ) defined in (6.4) and its gradient ∂κiJ (uκiT ).
5: Update parameter κi+1 ← fmincon(J (uκiT ), ∂κiJ (uκiT ), K, ∂κiK).
6: end while
7: Adjust pressure control up according to proposition 15.

Extraction of parameter gradients

To estimate the effect of a change in the parameterized control on the relevant outputs
of the heating networks, the sensitivities of both the objective function and the con-
straints with respect to the parameters have to be determined ∀t ∈ Td. To this end,
gradients of both the control and state variables regarding the control parameters have
to be extracted from the forward solution of the DAE (6.10). For the input signals
typically applied to heating networks, an implicit time integration of the DAE proved
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6.5 Numerical validation

to be beneficial. A general implicit time integration scheme, in which xµ and xµ+1

denote the state variables at former and future time levels can be written as

f̃(xµ, xµ+1, u) = 0. (6.19)

The derivative of the future state variable ∂κxµ+1 is obtained by the derivative of the
old state variable ∂κxµ using the implicit function theorem,

∂κxµ+1 = −
(

∂f̃

∂xµ+1

)−1 (
(∂xµ f̃)∂κxµ + ∂uf̃∂κu

)
. (6.20)

Hence, based on the sensitivity of the initial state ∂κeα,β(t0), the gradient information
can be propagated along the solution of the DAE. Using (6.20) allows to determine the
gradient after solving for the new time step. This is in contrast to many automatic
differentiation approaches in which the gradient information has to be tracked during
the determination of the future time layer causing additional computational cost.

For the time integration of the DAE in this contribution, the implicit midpoint rule
as a second order symplectic integrator is used,

f̃(xµ, xµ+1, u) = xµ+1 − xµ − dtf

(
tµ +

dt

2
,
1

2
(xµ + xµ+1), u

)
, (6.21)

where dt denotes the time step, and f the dynamical part of the DAE (6.10).

6.5 Numerical validation

6.5.1 Time integration of the DAE

The solution of the forward problem (6.10) within the determination of an optimal
control is performed by the system descriptions (6.1, 6.2). To solve these DAEs within
the time horizon required for the optimal control, the implicit midpoint-rule (6.21) is
used. Full order models are unreduced (W = V = 1), while for the reduced order
model a Galerkin projection is applied. Sparse matrix operations are considered in
the full order case. To solve systems (6.1,6.2) efficiently, a domain decomposition is
performed [110]. Different parts of the network are treated as independent systems,
with their linkages moderated by artificial inputs. This accelerates the formation of
the system operators and the solution of the nonlinear equations introduced by the
implicit time integration scheme. Full and reduced order models are simulated using
the decomposition presented in fig. 6.1 including a main- and 14 subnetworks. In
this chapter, pipelines undergoing changes of flux directions are included in the main
network. Consequently, the Galerkin projection calculated for the main network also
includes configurations in which certain pipelines change their flow direction. Com-
pared to the hybrid approach, in which the resulting reduced order dimension remains
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Chapter 6 Optimal control of heating networks using reduced order models

high by containing an unreduced subnetwork, reducing the entire network minimizes
the reduced order dimension which is favorable when determining and using the Ja-
cobian. Due to the affine system representation, the determination of the Jacobian
can be determined analytically for both full- and reduced order models. The sim-
ulations presented in the following sections are performed using MATLAB®R2016b
on an Intel®XEON®CPU E5-2670 processor @ 2.60GHz. The nonlinear system of
equations resulting from both the algebraic equations and the time integration scheme
are solved using the MATLAB®function fsolve.

6.5.2 Definition of test scenarios

To demonstrate the effectiveness of the reduced order model, the large-scale heating
network presented in fig. 6.1 is studied. The cycles visible in the left part of the
network pose a central difficulty since the thermal transport can take different paths
at the same time to reach a certain destination in the network. Moreover, changes of
flux direction occur, which change the set of possible paths the transported quantity
takes dynamically.

The robustness of the reduced model towards its application in the optimization is eval-
uated for different environmental temperatures defining the consumption behavior for
the large scale network. These scenarios cover the relevant mean daily temperatures
{−3, 3, 7.5} ◦C. The interval spanned by [−3, 7.5] ◦C exhibits a large optimization
potential in terms of distributing the feed-in power. For colder or warmer environ-
mental temperatures, either all or none of the energy capacities within the power plant
will be used. The lower and upper temperature constraints are in line with standard
operation conditions of heating networks. Tab. 6.2 presents a detailed description of
the optimization scenarios under investigation. The observation interval, in which the

T cons
min , T

net
max/

◦C pmin
h , pmax

h , ∆p/bar P̄ Td/
◦C t0, te/h dt/s

75, 110 6.5, 9.1, 2.5 0.5(Ĝ+G0) −3, 3, 7.5 0,72 300

Table 6.2: Description of the considered optimization scenarios. Test cases TC1-TC3
differ by the considered daily mean temperature changing from −3 ◦C to
7.5 ◦C. T cons

min , T
net
max denote the temperature equivalents of the optimization

constraints (6.5, 6.6).

constraints and the objective function are evaluated, is set to dt = 300 s, which is
smaller than the typical plant operation interval of 900 s. This allows to approximate
the underlying dynamics more precisely, while matching the relevant decision interval.
The power constraint P̄ ∈ [G0, Ĝ] is chosen within the mean (G0) and maximum (Ĝ)
daily consumption. While the mean consumption G0 naturally poses a lower limit
for the maximum injected power, the maximum consumption Ĝ is an upper limit,
since it can always be achieved by a stationary control. Due to the initialization with
a stationary solution, during the first period the power restriction is relaxed to the
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6.5 Numerical validation

maximum consumption. During this time, the output energy density and the cor-
responding constraints are shaped by the initial solution and not the control. The
difference of maximal and minimal pressure levels at all consumption points in the
flow network is given by ∆p =2.5 bar and replaces the optimization constraints (6.8,
6.7).

For the gravitational constant we use a value of g = 9.81 m s−2. Specific heat capacity
and density are set to cp = 4.16 kJ K−1 kg−1, and ρ = 1000 kg m−3. To transform
energy densities to temperatures presented in the section, we use the approximation

e ≈ ρcpT. (6.22)

This allows to transform the constraints for the minimum energy density at consumer
stations (6.6), as well as the maximum energy density in the network (6.5) to their
corresponding temperature values T cons

min , and T net
max displayed in tab. 6.2.

The power extraction G is modeled using demand profiles typically employed in the
simulation of heating networks [111]. Specifically, each heat exchanger exhibits the
power demand

Gi(t) = cism(i)(t, Td), i ∈ C, t ∈ Tc. (6.23)

The customer specific scaling factor ci represents an estimate for the total daily energy
demand. The profile sm(t, Td) models the time dependent demand for a given con-
sumption class m and the daily mean environmental temperature Td. Every member
of the class thus shares the same normalized profile while exhibiting an own specific
consumption. The available demand profiles adjust the daily consumption by hourly
scaling factors. The latter also depend on Td, adjusting the relative weights of each
hour in the daily consumption. Based on these hourly values, a spline interpolating the
consumption is generated. In the considered network, the largest part of consumers
belongs to the same consumption class s0. To this end, all consumers are modeled by
this class.

Since the typical consumption follows a periodic profile if the daily mean environmental
temperature does not change, the control uκT is parameterized by a Fourier series,

uκT (t) = c0 +
K∑
k=1

ck cos(kωt) +
K∑
k=1

sk sin(kωt), (6.24)

which approximates any control u ∈ L2. Here, the frequency ω = 2π/θ is fixed to
the period length θ of the consumption signal corresponding to 24 h. The remaining
Fourier coefficients act as parameters to be optimized.

6.5.3 Numerical controls obtained by full and reduced order model

Subsequently, different spatial discretizations are used to determine an optimal control.
To check for feasibility of the solution, the suggested optimal controls resulting from
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Figure 6.2: Optimal control problem for TC1 at −3 ◦C comparing the initial control
(red) to the optimized control (green), obtained by the reduced model
ROM1. Part (a) shows controls(solid lines) and the total volume flow
injected at the power plant(dashed lines). Part (b) presents the feed-in
power for both controls together with the mean consumption (lower dashed
line) and the feed-in constraint P̄ (upper dashed line).

both full- and reduced order models are compared and validated using a reference
discretization FOMR. The latter is given by an upwind discretization in space with a
high number of finite volume cells. This will answer the question, whether a coarse,
unreduced model is appropriate for an optimization task as well. FOM0 denotes the
minimal upwind discretization, in which each pipeline receives one finite volume cell.
FOM1 is a finer discretization, with small approximation errors compared to FOMR.
Finally, ROM1 is the reduced order model obtained by reducing the discretized model
FOM1 cf. tab. . 6.3. Before comparing runtime and optimal controls obtained by
different spatial discretizations, we analyze the optimal control suggested by ROM1.

The discussion of the numerical optimization results starts with TC1 simulating a mean
daily temperature of −3 ◦C with a mean and maximum consumption of 1.64 MW, and
2.29 MW. Based on a constant initial control of 90 ◦C, avoiding high feed-in peaks
forces the control to increase its temporal variation, cf. fig. 6.2(a). The resulting
feed-in power fulfills the power constraint, while the limit is attained at several points
of time cf. fig. 6.2(b). Since the mean temperature changes only slightly, the resulting
total volume flow injected at the power plant also remains on the same level compared
to the initial control, cf. fig. 6.2(a). The suggested temporal variation of the ther-
mal control which is necessary to limit the feed-in power induces pre-heating effects,
visualized in fig. 6.3. Thus, reflecting the transport delay from source to the sink, in
certain time intervals marked in red, the injected feed-in power exceeds the current
consumption. More specifically, the maximum temperature level is injected at the
power plant before the maximum aggregated consumption occurs at the consumption
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Figure 6.3: Result of the optimal control problem for TC1 at −3 ◦C visualizing the
control at the power plant (orange) leading to a feed-in power (green)
below the maximum constraint (upper dashed line). Red areas indicate
regions in which pre-heating happens: The feed-in power exceeds the cur-
rent consumption (solid, black line). Vertical, dashed lines visualize the
time difference between the maximum injected temperature and the maxi-
mum consumption. The lower, dashed line indicates the mean consumption
during one day as a guide for the eye.

points. A common feature of the standardized consumption profiles are peak con-
sumption around 6 a.m. and 6 p.m. Indeed, two pre-heating phases can be observed
reflecting these two phases of high consumption, cf. fig. 6.3. To avoid finite horizon
effects, in which the suggested optimal control exploits the energy incorporated in the
initial state, the setup is simulated for three periods of 24 hours. Focusing on the in-
jected power coupling to volume flows at consumer stations as state variables, a state
close to periodicity is reached quickly.

FOM 0 FOM 1 ROM 1 FOMR
runtime opt./s 2765.0 2640.0 608.5 16100.0
runtime sim./s 2685.0 2585.0 557.0 15900.0
# solves DAE 16 9 11 12
DOF 775 1789 180 9538
J (u) 55.9 53.0 52.9 52.6
‖u− ũ‖2/‖ũ‖2 8.10×10−3 9.48×10−4 7.25×10−4 0
‖P − P̄‖max/P̄ 5.41×10−3 4.60×10−4 4.49×10−4 0
maxh ‖yh − yhR‖2/‖yhR‖2 3.03×10−2 1.23×10−3 5.28×10−3 0

Table 6.3: Optimal controls and runtime comparison of TC1 (−3 ◦C) for varying num-
ber of state variables (DOF) including full and reduced order models. The
reference control ũ results from the optimal control strategy described in
section 6.4 using the reference discretization FOMR. The feed-in P is mea-
sured by FOMR based on the control suggested by each coarse model. The
last row measures the relative error of outputs y comparing reference model
FOMR, and each coarse model.
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Optimal controls resulting from different spatial discretizations

Tab. 6.3 compares the runtimes and approximation qualities of both full and reduced
order models. As quality indicators of the optimal control, the objective function, the
relative l2 error of the control and the maximal relative error of the feed-in constraint
are considered. In addition, the maximum relative l2 error of all outputs y is measured.
Here, yhR ∈ C refers to output h determined by the reference discretization. Specifically,
ũ is the optimal control determined by the fine model FOMR, and ‖P − P̄‖max/P̄
results from the control suggested by a coarse model simulated using FOMR.

Focusing on TC1 and the suggested objective functions J (u), FOM1, FOMR, and
ROM1 converge to a comparable value with FOMR taking the minimum of 52.6.
FOM0 deviates clearly to 55.9. Regarding the relative deviation to the reference con-
trol, ROM1 shows the best approximation with 7.25× 10−4, followed by the full order
models FOM1 and FOM0. The relative violation of the feed-in constraint is smallest
for ROM1, followed by FOM1 and FOM0, while all models exhibit relative errors be-
low one percent. Regarding the approximation quality of the outputs, FOM0 shows
the expected strong diffusion, leading to a maximum relative error of 3.03 × 10−2.
Although this error does not affect the feasibility of the feed-in constraint, it leads
to violations of the temperature constraints, measurable in practical applications. In
contrast, ROM1 still approximates the outputs with an error of 5.28× 10−3.

Focusing on the runtimes for determination of the optimal control, ROM1 allows for
a speed-up of 4.5 of the entire optimization compared to the coarsest and thus fastest
possible unreduced model FOM0. In addition, the speed up compared to FOM1
amounts to 4.3, while achieving comparable results. The runtime of FOM0 results
from a higher number of iterations necessary to fulfill the optimization tolerances. For
the determination of the optimal control, resimulating the dynamics for a new control
candidate takes the largest computational cost.

Different environmental temperatures

Hereafter, test cases TC2, TC3 are discussed, simulating higher mean daily temper-
atures. In these scenarios, both mean and maximum power consumption decrease
compared to TC1. To achieve comparable power constraints for different test cases, a
relative constraint P̄ = G0 + 0.5(Ĝ−G0) for the feed-in is chosen.

In contrast to TC1, the optimal control suggested for TC2 by ROM1 decreases the
thermal control uκT compared to the initial control at 90 ◦C, cf. fig. 6.4. The corre-
sponding average volume flow increases. This happens at the expense of increasing
pumping costs which can be neglected as described in section 6.3. Since the total
power consumption for TC2 is smaller, the resulting increase in the volume flow does
not exceed the level of TC1, allowing for identical pressure differences within the re-
quired constraints. In addition to a decreased mean value of the thermal control, also
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Figure 6.4: Optimal control problem for TC2 at 3 ◦C comparing the initial control (red)
to the optimized control (green), obtained by the reduced model ROM1.
For a detailed explanation we refer to fig. 6.2.

the temporal variation can be decreased. This leads to a smaller objective function
of 14.6. Concerning error measures, the same observations discussed for TC1 apply,
cf. tab. 6.4. The speed-up of ROM1 compared to FOM0(FOM1) results in a factor of
4.2 (5.4). For the last scenario TC3 simulating a mean daily temperature of 7.5 ◦C,
the thermal control decreases in average value and temporal variation even further cf.
fig. 6.5. The reduced consumption allows to increase the injected volume without vio-
lating pressure constraints. The injected flow temperature now approaches the lower
limit defined at 75 ◦C. As observed for the other test cases, the approximation of the
feed-in power is remarkably precise even for large deviations in the approximations of
the outputs. For the coarsest discretization FOM0, the relative error of the feed-in
constraint results in 1.46× 10−2, cf. tab. 6.5. To illustrate this observation for TC3,
fig. 6.6(a) shows the output with the largest relative error compared to the reference
discretization FOMR. The robustness of the feed-in constraint towards errors in the
state-space approximation is unexpected by (6.17), in which the feed-in depends on
the volume flows at households defined by the thermal outputs y. Two explanations
can be supplied for this effect. First, the feed-in depends on the sum of volume flows
over all consumer points, allowing approximation errors to cancel. Furthermore, as the
upwind discretization is a conservative finite volume scheme, the total stored energy
is preserved on every discretization level.

In contrast to the large deviations observed for FOM0, ROM1 displayed in fig. 6.6(c,d)
exhibits smaller errors in the output approximation. Specifically, it mainly deviates
around the large gradient at t = 54 h resulting from changes in the flux direction
occurring in the dynamical simulation visible for the reference discretization. Again,
the error in the feed-in constraint resulting from an imprecise approximation of flux
changes is small by two reasons. First, only few consumers are affected by changing
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Figure 6.5: Optimal control problem for TC3 at 7.5 ◦C comparing the initial control
(red) to the optimized control (green), obtained by the reduced model
ROM1. For a detailed explanation we refer to fig. 6.2.

flux directions. Second, a change of flux directions is associated with the volume flow
tending to zero, forcing the implied power to be zero as well. Hence, the absolute error
in the power approximation remains small.
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Figure 6.6: Temperature signal for TC3 at the consumer exhibiting the largest relative
l2 error (top) and feed-in power (bottom) comparing FOM0 (left) and the
reduced model ROM1 (right). The output of both models (orange, solid)
is compared to their validation using the reference discretization FOMR
(blue, dashed line).
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FOM 0 FOM 1 ROM 1 FOMR
runtime opt./s 2525.0 3210.0 596.2 18300.0
runtime sim./s 2455.0 3146.7 546.2 18100.0
# solves DAE 15 11 11 13
DOF 775 1789 180 9538
J (u) 16.5 14.8 14.8 14.6
‖u− ũ‖2/‖ũ‖2 7.10×10−3 6.17×10−4 5.26×10−4 0
‖P − P̄‖max/P̄ 8.11×10−3 6.86×10−4 6.80×10−4 0
maxh ‖yh − yhR‖2/‖yhR‖2 2.60×10−2 1.25×10−3 4.72×10−3 0

Table 6.4: Optimization results and runtime comparison of TC 2(+3 ◦C) for differ-
ent spatial discretizations including full and reduced order models. For a
detailed explanation we refer the reader to table 6.3.

FOM 0 FOM 1 ROM 1 FOMR
runtime opt./s 3165.0 5930.0 801.8 16400.0
runtime sim./s 3070.0 5795.0 735.2 16200.0
# solves DAE 19 21 15 13
DOF 775 1789 180 9538
J (u) 6.7 5.6 5.6 5.5
‖u− ũ‖2/‖ũ‖2 6.16×10−3 6.14×10−4 9.63×10−4 0
‖P − P̄‖max/P̄ 1.46×10−2 1.34×10−3 1.37×10−3 0
maxh ‖yh − yhR‖2/‖yhR‖2 2.35×10−2 1.57×10−3 5.01×10−3 0

Table 6.5: Optimization results and runtime comparison of TC 3(+7.5 ◦C) for differ-
ent spatial discretizations including full and reduced order models. For a
detailed explanation we refer the reader to table 6.3.

6.5.4 Components of the speed-up of the reduced order model

As discussed above, resimulating the dynamics is the central computational cost in
determining an optimal control. One cause for the speed-up of the ROM is the few
number of simulations of the forward problem to satisfy the tolerances for constraints
and the objective function. The second cause is the speed-up resulting for a single
solution of the DAE (6.10), which is discussed subsequently. For the implicit midpoint
rule with nt time steps, the computational cost csim splits into the following parts,

csim = nt(nimp(ch + cf ) + cJ), (6.25)

where nimp is the number of iterations to solve for the upcoming time step, ch is the
cost of solving the algebraic equations (6.1e-6.1g) defining the flow field, and cf is
the cost of evaluating the differential part of the DAE. Finally, cJ denotes the cost to
determine the Jacobian of the DAE with respect to energy densities. Since only the
thermal transport is reduced, ch is identical for both full and reduced order models.
The cost for the evaluation of the ODE scales with the number of entries implied in
the system operators A(q), Ar(q) defined in (6.3). Using the upwind discretization,
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Figure 6.7: Illustration of the Jacobian matrix for the models FOM1 (left) and ROM1
(right) corresponding to the values shown in tab. 6.6.

A(q) ∈ Rn×n is a sparse matrix. For typical networks, the number of nonzero entries
can be limited by 3n. In contrast, the system operator Ar(q) ∈ Rr×r resulting from a
Galerkin projection is dense with r2 nonzero entries. As a consequence, the number
of reduced states needs to be significantly smaller to reduce the computational cost.
For the coarse discretization sufficient for the determination of an optimal control,
this degree of reduction is barely possible. The key saving in applying the reduced
order model stems from the computation of the Jacobian matrix. Based on the system
operator description (6.3) and the structure of the equations defining the volume flow
(6.1c - 6.1f), the Jacobian reads

Jė(q, e) =
∂ė

∂e
= A(q) +

nq∑
i=1

∂γi
∂e

(Aie+BiuT ).

Since by the power balance at consumers (6.1e) and volume conservation (6.1c) each
velocity depends on the energy densities at consumer stations, Jė(q, e) carries signifi-
cantly more non-zero entries in the full order case than A(q), cf. tab. 6.6, and fig. 6.7.
In contrast, since the reduced order operator Ar(q) is already densely populated by
Galerkin projection, the number of non-zero entries does not increase significantly for
the reduced Jacobian.

FOM 0 FOM 1 ROM 1 FOMR
# nonzero entries A(q) 1555 3583 8519 19081
# nonzero entries Jė(q, e) 67837 139922 14018 662200
DOF 775 1789 180 9538

Table 6.6: Maximal population density determined in the simulation of system opera-
tor and Jacobian for different discretizations. DOF denotes the number of
differential state variables.
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6.6 Conclusions

In this contribution, the optimal control of district heating networks using the reduced
order model (ROM) suggested in chapter 4 was discussed. The suggested optimal
controls resulting from minimizing the temporal variation of the control successfully
limited the maximum feed-in power to the average of mean and maximum total con-
sumption. In addition, practically relevant constraints on temperature and pressure
were included reproducing realistic operation conditions. For the presented scenarios,
this allowed to avoid the usage of additional, unfavorable sources of energy. While the
ROM approximates both relevant state variables and gradient information sufficiently
fine for the determination of an optimal control, it allowed for a speed up of the entire
optimization phase by at least a factor 4, compared to even coarse levels of upwind
discretizations used as full order models. For distinct test scenarios we observed even
higher speed-ups of 7.3. Thus, the ROM gaps the bridge towards the determination
of an optimal control within an online planning. The effectiveness of the ROM was
demonstrated for an existing large scale network in which different pipelines change
their flux direction dynamically. Runtime and approximation quality were studied for
multiple real world scenarios including varying daily mean temperatures. This allows
to apply the presented model to other networks and operation conditions relevant in
practice.
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Chapter 7

Conclusions and outlook

This work aimed at deriving a reduced order model for an efficient simulation and
optimization of district heating networks. A suitable model for the description of the
energy transport of heating networks was derived based on hyperbolic Euler-like equa-
tions in the incompressible limit. Using an upwind discretization of the internal energy
density, a DAE which is quadratic in state resulted, including coupling conditions at
pipeline junctions as algebraic constraints. The latter DAE describes an advection
dominated, solenoidal transport of thermal energy along pipelines. The time- and
state dependent boundary conditions formed by heat exchangers in combination with
the momentum balance occurring in the Euler-like equations yield a nonlinear system
of equations defining the velocity field. By neglecting the acceleration contribution
in the momentum balance, the differentiation index of the DAE reduces from 2 to 1.
This description allowed to derive a control system, for which Lyapunov stability of
arbitrary topologies of district heating networks was proven under the assumption of
volume conservation at network nodes. The existence of a unique solution is ensured
for networks without cycles in the flow- and the return part of the topology. For net-
works in which no changes of flux directions occur, asymptotic stability to equilibrium
states was shown. In proving Lyapunov stability, the corresponding Lyapunov func-
tion was explicitly constructed based on an energy matrix Q. This allows to embed
the control system into a family of parameter varying port-Hamiltonian systems.

By splitting the DAE into a differential part describing the transport of energy density
and an algebraic part defining the volume flow field, a linear time-varying system
in the vector of energy densities results. The velocity field acts as a time-varying
parameter to the advection equation on the network. This formulation enables to use
concepts from parameterized model order reduction. To face the difficulties in the
reduction of hyperbolic systems, a moment matching technique in frequency space
was applied, approximating the input output relation defined by the transfer function.
For linear models arising from fixed volume flow fields, a local Galerkin projection is
determined. Subsequently, the Krylov subspaces of the local models are combined to a
global Galerkin projection using a SVD. By incorporating the Kernel of the Lyapunov
function Q, the reduction using the global Galerkin projection ensures a Lyapunov
stable reduced order model. The linearizations entering the global projection are
determined by a Greedy method. Using a frequency weighting in the determination
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of the corresponding approximation error of the transfer function allows to further
decrease the dimension of the reduced order model.

Decomposing the district heating network into subnetworks allows to define a block
structure in the system operators which is preserved when applying a Galerkin pro-
jection. The suggested decomposition algorithm aims at equalizing the number of
outputs in each subnetwork. Numerical investigations were conducted for two existing
heating networks, including a large scale network exhibiting changes of flow directions.
The investigations showed that the decomposition allows for a faster assembly of the
system operators, and for a more efficient solution for a future time step when using
implicit time integration schemes. A further decrease in computational time is ac-
counted to the smaller dimension of the suggested reduced order model. The global
Galerkin projection resulting from reduced order models of local linearizations is able
to approximate the time-varying transport process with high accuracy. Using the ap-
proximation error of the global model to the local transfer functions proved to be a
sufficient indicator for the approximation error in the time domain of the resulting
simulations. An implicit Runge-Kutta scheme with an adaptive choice of the time
step yielded the best results for the time integration of the DAE system resulting from
upwind discretization.

The benefits of the suggested reduced order model were also validated in the deter-
mination of an optimal control. The optimization problem consisted of minimizing
the absolute value and the temporal variation of the input energy density subject to a
limit in the feed-in power as the central optimization constraint. The control problem
was solved using the MATLAB®function fmincon. A key feature of the presented ap-
proach consisted of solving the DAE for the transport of energy density explicitly, and
only passing the results including the objective function and technical constraints to
fmincon. To facilitate the evaluation of sensitivities of relevant system outputs to the
parameter vector, the implicit midpoint rule was used as a time integration scheme.
Expressing the transport of energy in a system description allowed to analytically de-
rive the Jacobian matrix in an efficient fashion. The suggested reduced order model
proved to be significantly faster in the determination of an admissible control within
three test scenarios. A main decrease in computational complexity arose from the
formation of the Jacobian.

The results achieved in this thesis raise interesting further research topics. A central
task is a model refinement towards three directions. First, incorporating thermal
losses adds an additional nonlinear term to the transport of energy density. While
this term is expected to further stabilize the system dynamics, embedding it into
a port-Hamiltonian formulation is difficult. Specifically, even for a locally constant
velocity field, the resulting dynamics of energy densities are nonlinear, and thus the
reduction approach by moment matching in the transfer function can not be applied
directly. A possible strategy is a linearization of the nonlinear thermal losses, to apply
the suggested reduction approach. Second, adding the acceleration contribution to
the momentum balance will effect the resulting solutions of the velocity fields for a
given vector of energy densities. Moreover, an additional differential component is
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introduced to the system which might qualitatively change the stability analysis of
the DAE, as well as its port-Hamiltonian description. Still, the suggested algorithm
to generate a reduced order model can be applied to the thermal transport. It will
be interesting to study how the acceleration contribution alters the solutions of the
velocity field, also in terms of flow changing pipelines in large scale networks. Third,
adapting mass density and friction factor dynamically during the simulation will lead
to a more accurate approximation of realistic transport dynamics. The achieved results
concerning the stability of the resulting DAE and the benefits of the reduced order
model are not expected to change, since solely the solution space of the velocity field
is modified. An open task is a more efficient treatment of pipelines changing the
direction of flow dynamically. These act as an additional nonlinearity by qualitatively
changing the coupling structure of energy densities. To this end, it will be interesting
to study different schemes for model order reduction as well as other discretization
schemes for hyperbolic systems of equations.

Concerning the determination of optimal controls for the setup considered in chap-
ter 6, a comparison to direct optimization approaches will be appealing, in which the
transport dynamics of the network directly appear as optimization constraints, avoid-
ing to resimulate the network dynamics in each iteration of the optimization routine.
The number of additional optimization constraints resulting from the dynamics will be
very high for a sufficiently fine discretization of the presented large scale network. A
key observation will be the determination for which network topology which strategy
performs best.
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Springer Berlin Heidelberg, 2014, pp. 183–205.

[109] J. T. Borggaard and S. Gugercin. “Model reduction for DAEs with an applica-
tion to flow control”. In: Active Flow and Combustion Control 2014. Springer,
2015, pp. 381–396.

[110] M. Rein et al. “Model order reduction of hyperbolic systems at the example of
district heating networks”. In: arXiv:1903.03342 [math] (2019).

[111] Bundesverband der deutschen Gas- und Wasserwirtschaft (BGW). Bundesver-
band der deutschen Gas- und Wasserwirtschaft (BGW), 2006.

136



Curriculum vitae

Markus Rein

Personal information

Place of birth Mannheim, Germany
Nationality German

Education

10/2016 - present Doctoral candidate
Fraunhofer Institute for Industrial Mathematics ITWM
Kaiserslautern

10/2016 - present Doctoral candidate
Technomathematics group
Technische Universität Kaiserslautern

04/2016 - 10/2016 Qualification studies for a PhD in mathematics
University of Kaiserslautern

12/2015 - 03/2016 Research assistant: Condensed matter theory
Johannes Gutenberg-University Mainz

10/2013 - 12/2015 Master of Science Physics
Johannes Gutenberg-University Mainz

04/2010 - 09/2013 Bachelor of Science Physics
Johannes Gutenberg-University Mainz

03/2010 A-levels, Leininger-Gymnasium, Grünstadt

137



Lebenslauf

Markus Rein

Persönliche Daten

Geburtsort Mannheim
Nationalität deutsch

Akademischer Werdegang

Seit 10/2016 Doktorand
Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Kaiserslautern

Seit 10/2016 Doktorand
Arbeitsgruppe Technomathematik
Technische Universität Kaiserslautern

04/2016 - 10/2016 Promotionsqualifikationsstudium Mathematik
Technische Universität Kaiserslautern

12/2015 - 03/2016 Wissenschaftlicher Mitarbeiter: Theorie kondensierter Materie
Johannes Gutenberg-Universität Mainz

10/2013 - 12/2015 Master of Science Physik
Johannes Gutenberg-Universität Mainz

04/2010 - 09/2013 Bachelor of Science Physik
Johannes Gutenberg-Universität Mainz

03/2010 Abitur, Leininger-Gymnasium, Grünstadt

138



This thesis focuses on the formulation of reduced order models for a numerically 

FRAUNHOFER VERLAG

9 783839 615812

ISBN 978-3-8396-1581-2


	Publications
	Abstract
	Introduction
	PDE modeling of heating networks
	Model components
	Incompressible flow in a pipeline
	Material laws and state equations
	Coupling conditions on the network
	Network boundary conditions: source and consumers

	Elimination of algebraic equations
	Hydrodynamic equations
	Basic PDE model

	DAE model
	Spatial discretization of advection dominated transport
	Finite difference methods
	Finite volume methods
	Discontinuous Galerkin methods
	Upwind scheme on heating networks
	Basic DAE model resulting from upwind discretization

	Formulation of a control system
	Linear time varying system

	Affine decomposition of system and input operator
	Existence and uniqueness of solutions
	Differentation index of the DAE
	Stability
	Lyapunov stability
	Comparison of volume- and mass conservation
	Asymptotic stability

	Controllability and observability
	Port-Hamiltonian systems
	Nonlinear port-Hamiltonian systems
	Semi-discrete port-Hamiltonian description for heating networks

	Conclusions

	Model order reduction for district heating networks
	Reduction by projection
	Reduction of linear time varying systems
	Proper orthogonal decomposition
	Model reduction by interpolation
	Parametric model order reduction

	Transfer function on a single pipeline
	Further reduction approaches
	Generation of suitable Galerkin projections
	Conclusions

	Numerical analysis of the reduced order model
	Model assumptions
	Simulation setup
	Domain decomposition of heating networks
	Decomposition into main- and subnetworks
	Preservation of Lyapunov stability
	Decomposition strategy and numerical validation

	Numerical analysis of the reduced order model
	Test case street network
	Test case district network
	Reduction of subnetworks including changes of flow direction

	Conclusions

	Optimal control of heating networks using reduced order models
	Optimization objectives of heating networks
	Model assumptions
	Control problem
	Determination of an optimal control
	Numerical validation
	Time integration of the DAE
	Definition of test scenarios
	Numerical controls obtained by full and reduced order model
	Components of the speed-up of the reduced order model

	Conclusions

	Conclusions and outlook
	Bibliography
	Curriculum vitae
	Lebenslauf



