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ABSTRACT

In our work, we highlight the conceptual and numerical aspects of mixed type formulations of
geometrically exact beams. The governing set of equations obtained from mixed-type variational
formulations consist of kinematic equations, constitutive equations, equilibrium equations and
their boundary conditions, and a special set of equations denoted here as consistency conditions.
The consistency conditions impose the requirement that the cross-sectional stress resultant forces
and moments are equal to the constitutive forces and moments, respectively, along each point of
the beam centerline. We present three beam formulations with assumed constant strains, which is
equivalent to linear interpolation of displacements and helicoidal interpolation of rotations. Two
of the formulations employ the consistency conditions as separate equations and are of the mixed-
type, while in the third formulation the consistency conditions are eliminated from the governing
system of equations. The configuration space of mixed-type formulations is simpler, which im-
proves the performance (faster convergence, larger load or prescribed displacement steps) of the
iterative solvers, and results in faster computational times. We demonstrate the performance of the
formulations with a numerical example.
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1 INTRODUCTION

We concern ourselves with geometrically exact beam formulations and their numerical applica-
tions. A rigorous approach to derive the governing equations of the beam is to apply the principle
of virtual work in the static case or its generalization for dynamics — d’Alembert’s principle. An
important part of deriving the governing equations is the treatment of the kinematic relations be-
tween displacements, rotations and strains. In the classical approach, the strains are taken as
dependent variables and are obtained from the kinematic equations by means of interpolation of
the configuration variables which are subsequently differentiated. This leads to formulations with
displacement and rotational parameters as the primary variables — so called configuration based
formulations. Equilibrium problems can likewise be formulated using the strains as independent
variables, where the kinematic equations are added to the virtual work principle with the method
of Lagrange multipliers. This leads to mixed formulations where the strains and Lagrange mul-
tipliers take the role of primary unknowns of the problem. Examples of such formulations for
three-dimensional geometrically exact beam are the strain-based formulation of Zupan and Saje
[1] and the intrinsic dynamic formulation presented by Hodges [2].

The history of mixed formulations for beams, shells and solids goes back to the 1960’s, and since
then they have been applied to many engineering problems. Their most attractive features are the
accuracy of the numerically evaluated internal stresses, they successfully overcome the problems
that arise in the elastic analysis of (nearly) incompressible solids, avoid the problem of locking
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in shells and beams and are natural for solving inelastic problems [3]. The main disadvantage of
mixed formulations is the computational expense that comes with additional unknowns in the for-
mulation. Because of that, the displacement-based formulations remained dominant, and reduced
integration approaches were developed to overcome the locking problems. A lot of effort was put
into establishing the connection between mixed and reduced/selective integration methods, e.g.
[4], which constituted the reduced integration approach as a valid methodology, rather than a com-
putational trick. For geometrically nonlinear elastic planar beams the equivalence between mixed
and reduced integration methods has been discussed in [5], where mixed formulations are also
claimed to be effective in comparison with displacement-based models.

In our work, we highlight the conceptual aspects of mixed formulations for finite-strain three-
dimensional beam theory and compare the numerical efficiency of two formulations of finite el-
ements based on the mixed formulations with the configuration-based finite elements. A partic-
ularly attractive choice of beam elements for flexible multibody applications are elements with
assumed constant strains [6], or linear interpolation of displacements and helicoidal interpolation
of rotations [7-9]. The strain-based formulation [6] employs configuration variables, strains and
generalized forces as the primary unknowns and is of mixed-type (SB-mixed formulation). When
the strains are eliminated from the set of primary variables using the analytical integration of the
kinematic equations, it leads to a formulation where configuration variables and generalized forces
are the only primary variables (CB-mixed formulation). A further reduction of such a formulation
involves the extraction of generalized forces from the constitutive equations which are assumed to
be satisfied. This leads to a classical configuration-based (CB) formulation where only displace-
ment and rotational parameters are the primary unknowns.

2 BEAM FORMULATIONS
2.1 Beam kinematics and constitutive equations

Geometrically exact rod models [10—13] provide kinematical relations between configuration vari-
ables and resultant strain measures of the beam, regardless of the magnitude of displacements and
rotations. The adopted strain measures are consistent with the virtual work principle and are de-
fined by the first derivatives of configuration variables with respect to arc length parameter s of the
beam centerline. The deformation of the centerline, determined by position vector r, is given by
the translational strain measure y

r=ry-=v (M
The rate of change of orientation of the moving frame, attached to the beam centerline, with respect

to the fixed frame, is given by the rotational strain measure k. For rotations represented with a
rotation matrix A the corresponding kinematic relation reads

AN =S (k—K")A, (2a)
for rotations given in terms of a rotational quaternion q it reads

]

q9 =5

5 (k—x°)og (2b)

and for rotations parametrized by the rotational vector » (A =A (5) org=gq (5)) the kine-
matic equation is given by

o =T (9) (k= "), (20)
where S is the skew-symmetric operator, T is a tangent operator of the rotational map, see e.g. [6],
and ‘o’ denotes quaternion multiplication. ¥° and x° do not depend on the deformation of the beam

and represent the initial strains which can be expressed from the known initial configuration of the
beam. y° coincides with the normal of the cross section, while k° describes the initial curvature
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or twist of the beam centerline. The solution of the first order ODEs (1) and (2) is determined by
initial values

F(0) =7,
(3a)
A(0)=A,,
and must satisfy the boundary conditions at s = 4
P =7,
r(h) =rat1 (3b)
A (h) = An+l )

where n and n+ 1 denote the boundary nodes and # is the length of the beam segment: s € [0, 4].

For the description of the material behaviour we assume a general (nonlinear elastic) form of the
constitutive equations

~ .
1< =Cr(7,%)
A\C —_
m© =Cy (7,x),
where € and m© are the resultant cross-sectional constitutive force and moment vectors, and the
operators Cr and C are at least once differentiable with respect to 7, k and s.

“

2.2 Generalized virtual work principle

Next, we state the equilibrium problem for the beam presented in Figure 1. For simplicity we only
consider the static case with a uniformly distributed external load f.,; and discrete loads f, ¢y,

Jnt1.exts Mnext, Myt 1 ex applied at boundaries.

fext N
- My+1,ext
fn,ext
N ?n_;,_], A (19'”+1 N
N Iy, A <19n> fnJrl,ext
My ext
Constitutive equations: Kinematic equations:

~C v |

fe=Cr(r.x) r=y-y

AC - = —_ —_ N N

m® = Cu (7,K) T(ﬂ)ﬂ’:K—KO

Figure 1. Problem formulation

Before we proceed with the variational formulation we must first choose the parametrization of
rotations. We could choose either the components of the rotation matrix or quaternion parameters,
but such an approach requires that the equilibrium problem is formulated with additional con-
straints [14, 15]. However, we here choose the representation of rotations with a rotational vector,
but we need to stress that the choice of the rotation parameters is not crucial for the comparisons
of the formulations presented here.

The virtual work principle [11, 12] for the beam in Figure 1 states

/Oh (fC.6?+n7C.6E>dS:/Oh (ﬁxt'6?+n7at‘55>dS+ﬁ,7ext-6?(0)

F iy et - 80 (0) + fost.ext - 87 (B) + My t.xt - 80 ().

)

In the mixed approach we treat strains as independent quantities, therefore we enforce the kine-
matic equations (1) and (2¢), which relate the configuration variables and strains, using the method

68



of Lagrange multipliers. First, the constraining equations are multiplied by Lagrange multipliers
f and m and integrated over the length of the beam

h .
| 7= =) as =0
0

h N
/ me (k=0 =T (9) ') ds =0,
0
Secondly, equations (6) are varied with respect to the kinematic variables &7, & 5, 87, 8« and

the Lagrange multipliers & / and 8m, and added to virtual work principle (5). This leads to the
modified principle of virtual work

[ 67 (76 7)as+ [ 5% (€~ as
_/Ohg,f. (f’+fm) ds—/ohsé- (n?’+7’><f)ds

—/Oh5f- ()7—}70—7/)ds—/ Sm-(K—x —T(@) 5/>ds 0
))+619

(6)

+ 5?(0) ’ (J?n,ext +J?(O ( ) ’ (’71”76)“ +m (O))

T 6?(}1) ’ (ﬁl-‘rl,ext _f(h)) + 69 <h> : <%n+l7ext —m (h)) =0.

The coefficients at the independent variations in (7) must vanish, which results in the Euler-
Lagrange equations of the three dimensional beam. They consist of:

(i) the kinematic equations

y=7" = =0 ®)
E—2°—T<5) B =0, )
(i1) the equilibrium equations B B
+ for =0
S Jen 0 (10)
m' +7' x f 0
and their boundary conditions
Jnen+£(0)=0 Joitea — f(h) =0 (a0
”?ln,exl +”T’l (0) =0 '?ln-‘rl,ext - I’T’l (h) - 07
(iii) and a special set of equations here denoted as the consistency conditions
fC—f=0
fc /=9 (12)
m- —m=0.

The equilibrium equations reveal the physical meaning of Lagrange multipliers in our approach,
which are found to be the cross-sectional stress resultant force f'and moment m of the beam, while
the consistency conditions impose the requirement that /" and m are equal to the constitutive force
f€ and moment mC, respectively, along each point of the beam centerline.
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2.3 A general solution approach

Usually it is assumed that the consistency conditions are exactly satisfied, such that they could be
eliminated from the governing equations, which reduces the size of the problem. However, after
the problem is discretized, the consistency is not necessarily preserved. From this perspective it
is advantageous not to eliminate the consistency conditions from the problem, but to keep them
as an independent member among the set of the governing equations. In mixed-type finite ele-
ment formulations the generalized forces are members of the primary variables. This means that
the equilibrium-based resultant forces f and moments m, which take the role of Lagrange multi-
pliers associated with the preservation of kinematic constraints, are demanded to be equal to the
corresponding constitutive quantities obtained from the strains, using the constitutive equations.
This approach completely avoids the shear locking problem without the necessity of any special
numerical treatment of the governing equations [1].

Since the consistency equations are not eliminated in our formulation we need to solve the problem
for a full set of unknowns: r, ¥, f, m, }7 and K. The problem is solved by the finite-element
method. The unknowns are approximated by discrete values and suitable shape functions. In
general we could introduce the interpolation of all the unknowns of the formulation, or — similar
to [16] — the interpolation of generalized strains and forces. Here, we follow the approach of
Zupan and Saje [1] and select the strains to be the only interpolated variables, while we express
the remaining unknowns with strains. By doing so, we minimize the number of unknowns of the
mixed formulation. A general solution approach to solve the system of equations (8)—(12) is then
as follows:

(1) introduce the interpolation of strain measures,
(i1) integrate the kinematic equations (8)—(9),
(iii) integrate the equilibrium equations (10),

(iv) the remaining equations (consistency conditions (12), static (11) and kinematic (3) bound-
ary conditions) form the governing system of equations, which is solved for the unknown
discrete values of interpolated strains, boundary values of the configuration variables, and
the discrete-point values of stress-resultants.

The solution approach presented above summarises the conceptual aspect of the mixed (strain-
based) formulation presented in [1, 6]. In this computational approach abstract vectors are re-
placed by their component representations with respect to the global or local — material basis.
Strain measures in particular are naturally expressed in material frame. In the following, the vec-
tors expressed in the fixed basis are marked by a lower case font and vectors expressed in the
moving base are denoted by an upper case font. The relationship between the two component
representations of a vector is established by the rotation matrix as: u = AU.

2.4 Formulations
Mixed strain based formulation

In general any interpolation function can be chosen for the interpolation of strains. Particularly
interesting for the multibody applications [9] are the elements with assumed constant material
strains

I'(s)=T, K(s) =K.
When the material strains I" and K are taken to be constant, the kinematic equations can be solved
analytically. While the kinematic equation for rotations expressed with rotational vector (9) is not
appropriate for exact integration, however, the solution of the equivalent equation (2a), written for
the material rotational strain, is well known, e.g. [6]; it reads:

A(s) =A(0) exp (s (K—K")) =A(0) A(s (K—K?)). (13)
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Having a closed-form analytical expression for rotations, we can now integrate the kinematic equa-
tion (8) to obtain the analytical expression for the position vector

r(s):r(O)—i-/OSAds(F—FO). (14)

The kinematics of the beam is a boundary value problem, therefore we explicitly demand that the
boundary conditions (3) are satisfied: 7(0) = r,, #(h) = ryr1, A(0) = Ay, A(h) = Ayyq. After
taking into account (13) and (14) this leads to

h
r,,+1—rn—/ A(s)ds (M=) =0 (15)
0
Ani1 — A A (h(K=K")) =0. (16)

Equation (16) is a matrix equation in SO (3) and consists of nine algebraic equations of which only
3 are independent. Because the exact integration rule for rotations (13) was used, the components
of rotation matrix A (h (K —KO)) satisfy the unit length and orthogonality conditions, therefore
the remaining six equations are automatically satisfied. The vector representation of equation (16)
can be obtained using the extraction of rotational vectors from the rotation matrices. The extraction
cannot be expressed by an explicit formula, thus we will use the symbolic notation

[An-i-l —ApA (hKn+l/2)]R3 =0.

In the present mixed approach we express the stress-resultants with strains. To that end we inte-
grate equilibrium equations (10):

S S (17)
m(s):m(O)—/0 r’xfds:m(O)—/O A-(F—Fo)xfds.

The remaining equations — consistency conditions (12), static boundary conditions (11) and kine-
matic conditions (15) and (16), now constitute the governing system of equations of the present
mixed formulation. Because we used the lowest order of interpolation for strains, the integrals over
the length of the beam can be evaluated using simple a midpoint rule. The integrated kinematic
boundary condition (15) then simplifies to

Fait —Tn—hAyy1 )2+ (T =T°) =0. (18)

where A, 1o = AuA (4 (K — K°)). After the discretization, the continuous consistency conditions
(12) cannot be satisfied at an arbitrary point along the beam centerline. We employ the collocation
method and satisfy them at a discrete point. In accord with the integration rule, we choose to
satisfy the consistency conditions at the midpoint of the element, i.e. ats =s,,1/, = % We also
choose the discrete values of stress-resultants at the midpoint of the beam f, 1, = f (%) and
My 1) =M (%) to be the primary variables and express the boundary values using (17):

£(0) = 2fexz+f()
m(0) =541/ (0 =T°) x (f(4) + 5 fexe) +m ()
f(h) = zfm+f()
m(h) = =517 (0 =T°) % (f(§) = 4 fea) +m(3).
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The final governing system of equations of the strain-based formulation of the lowest order now
reads:
g1 = Jﬁl/z — fur12=0,
Q@ =my )y —My1j2 =0,
g3 = fren+ 5o+ fri12=0
84 = Myex + %An+l/2 (r-re x (fur1/2+ ) +my12=0,
85 = futlen+ %fext = fur12=0,
86 =Mptext + 3812 (T =T°) X (f1/2 = % foxt) = Myi12 =0,
g1 =rui1—rn—hA12 (G —T°) =0,
g8 = [Ani1 — MuA (hKi1)2) ] s = O,
where ¢ )2 = Ayy1/2Cr (IM,K) and mn L = = Ay+1/2Cu (I',K) denote the spatial representa-

tions of the constitutive material stress-resultants. The unknowns of system (19) are the kinematic
vectors 7, Uy, Fpt1, Unt1, the equilibrium stress resultants f, /2> Mui1/2 and the strain vectors

Iy1pand Ky q 0.

(19)

Mixed configuration based formulation
Among the primary unknowns of the mixed formulation (19) are the strain vectors. We can elimi-
nate them from the system using equations g7 (18) and gg (16)

1
Lipp= ZAZ;-H/Z (Fae1 =) +1°
(20)

1
Kn+l/2:z6+K07 A<6):A£An+l

Not surprisingly, the discrete strain approximations (20) are equivalent to the ones obtained by
the linear interpolation of displacements and helicoidal interpolation of rotations [17]. After the
elimination of the strains from the mixed strain-based formulation (19), we obtain a new partially
reduced formulation of the geometrically exact beam, which reads:

81 =lip = far12 =
&= ,?+1/z—mn+1/z =0,
83 = foen + 4 fox + for12 =
Q4= My g + 210 (ﬁl+1/2+4fe)€l‘)+ml’l+1/2_
= fotlex + §fext = for12=

h
&6 —mn+lext+2u (fn+1/2_ Zfext) —Mpy1)2 =0.

21

The system (21) represents a mixed-type formulation that needs to be solved for the kinematic
Vectors 7y, Uy, Fnt1, Unt1 and the equilibrium stress resultants f,,, 1/, and m,, /5.

Configuration based formulation

If we proceed and eliminate the equilibrium stress resultants f, 1/, and m, 1/, from equations g
and g, of the system (21) by employing the consistency conditions (12)

Jus1/2 :fnc+1/2

_ . C
Mpt1/2 = My )2
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we obtain the further reduced set of equilibrium equations
& = foex + %fext JanCH/z =0,
Q4 = My g + 525200 ( nc+1/2 + %fw) "‘mnc+1/2 =0,
g5 = fotlew+ %fexz —f,,c+1/2 =0,

_ h rnp1—T C h C _
86 = My+1,ext + f—”+h £ X (f,,+1/2 - Zfext) —mn+1/2 - 07

(22)

in which only the kinematic vectors r,, ¥, and 7,41, ¥,+1 are unknown. The formulation (22)
can be identified as a classical configuration-based formulation, which is usually obtained using
virtual work principle (5) where the strains are expressed with the configuration variables using
the discrete kinematic equations (20).

2.5 Notes on numerical implementation

We solve the governing system of equations of the mixed strain-based formulation (19), the mixed
configuration-based formulation (21) and the classical configuration-based formulation (22) with
Newton’s iterative method. To that end, the systems of equations g (x) = 0 are linearized as

Kéx=—g

and then iteratively solved to obtain corrections of the primary variables, until the convergence
criteria are satisfied. K denotes the Jacobian (tangent stiffness) matrix of the system. Ox is the
vector of unknowns, which consists of the nodal configuration variables &r;,, 83,, 07,11, 0,11,
and in case of mixed formulations, additional internal element variables 6 f,, 11 /2, 6m, 1/, — mixed
configuration-based formulation (21), or 6 £, 1 /2, 6,11 /2, 61,11 /2, 6K, 1 j» — mixed strain-based
formulation (19). In practice, the additional variables of the mixed methods are eliminated at the
element level by static condensation [18], which can be executed at low computational costs. The
efficiency of the static condensation, however, is not a part of this study. The importance of static
condensation is twofold, first, it enhances the robustness of the linear solver, and second, by an
elimination of the additional variables, the resulting system involves only (primal) configuration
degrees of freedom, such that it could be easily incorporated into computational environments
based on displacement-based methods.

3 NUMERICAL EXPERIMENT
Bending of 45°cantilever

In order to demonstrate the performance of the presented formulations (19) — SB-mixed, (21) —
CB-mixed and (22) — CB, we analysed a 45°cantilever bend presented in [19]. The axis of the
bending is in the form of the circular arc with the central angle 45°and radius R = 100. Bending
is located in the horizontal plane (x,y) and subject to an out-of-plane point load P = 600 in the z
direction at the free-end, see Figure 2, which triggers all modes of deformation of the structure:
bending, shear, extension and torsion. The elastic material data and the geometric properties of the
cross-section of the beam are: E =107, G=E /2,41 =1,4,=A43=5/6,J1=1/6,J, =J3=1/12.
The beam was discretized using 8 equal straight elements.

The first observation from the simulations is that all of the formulations return the same solution.
Results for configuration parameters of the tip and internal forces at the midpoint of the fourth
element are presented in Figure 2. Next, we compare the execution times for the calculation of
element stiffness matrix and the residual vector, and the computational time required by the linear
solver in each iteration. Relative values of the time measurements are presented in Figure 3. The
linearization of the strain-based formulation is slightly more complex than the linearization of the
configuration-based formulations, which results in a larger computational time for the element
stiffness matrix (Figure 3(a)). On the other hand, tangent matrices of the mixed formulations
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are less dependent on the actual configuration, which results in a faster solution of the linearized

system of equations (Figure 3(b)).

60

P, =600

40 |
final

/\\ lnfy

= position and orientation of the tip:

re =15.80 Y, =2.0376
ry =47.23 ¥, = —0.1390
r, =53.37 ¥, = 1.5057
= internal forces at midpoint
of @th element:

Fx =448 My = —2549

Fy =396 My = 1582

F, =41 Mz = 12588

Figure 2. Bending of 45°cantilever: initial and deformed configuration, and converged re-

sults.
1.5 - -
with condensation

g | == without condensation
°
2
205
e

0

SB-mixed CB-mixed

(a) Tangent matrix and residual vector

1.5

[u—

0.5

relative time

0
SB-mixed CB-mixed CB

(b) Linear solver

Figure 3. Bending of 45°cantilever: relative computational times for calculation of element
tangent matrix and residual, and relative computational times of linear solver.

The latter becomes more important if we observe Newton iterations and total computational times.
Results for simulations with different numbers of equal load increments are presented in Table 1.

Table 1. Bending of 45°cantilever: convergence of Newton iteration scheme and relative
computational times. The iteration stopping criterion was 10~ for the Euclidean norm of the
residual.

formulation Nipe = 1 Nipe = 4 Ripe = 10 Nine = 40
Niter  XMiter brel Miter  XMiter brel Miter  2Miter trel Miter 2 Miter rel
SB-mixed 7 7 1 5 20 1 5 50 1 4 160 1
CB-mixed 10 10 09 8 31 09 7 71 09 6 237 1
CB / / /13 52 1.8 8 8 1.2 8 310 1.1

nine — number of load increments, 7., — typical number of iterations per increment,
> nier — total number of iterations, #,.; — relative computational time

We can observe that the mixed-strain based formulation shows the best convergence properties,
however, due to the smaller computational effort, the mixed configuration-based formulation is
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faster. The classical configuration based formulation is most dependent on the configuration pa-
rameters and typically requires more iterations per load increment compared to the mixed formu-
lations. This can in some cases result in a mediocre performance, as in the present case, where
the configuration based formulation does not converge when the load is applied in one step, and
is two times slower then the mixed formulations, if the load is applied in four increments. When
the solution of the problem is required at a larger number of load stages, e.g. to obtain a smoother
response for visualization purposes, all of the formulations have approximately the same compu-
tational efficiency.

4 CONCLUSIONS

We compared three geometrically exact beam formulations for large displacement analysis. The
governing equations of the formulations were derived from a modified principle of virtual work.
Two of the formulations are of mixed-type and employ stress-resultants and strains as independent
members of the primary variables. These additional variables add some computational expense,
yet they simplify the configuration space, which results in an excellent performance of the mixed
formulations. The numerical results proved that all three formulations converge to the same solu-
tion and showed that mixed formulations are computationally not only comparably efficient, but
can be more efficient as the classical displacement based formulations.
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