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Abstract. In this paper, knowledge-based recognition of objects in a bureau
scene is studied and compared using two different systems on a common data
set: In the first system active scene exploration is based on semantic networks
and an A*-control algorithm which uses color cues and 2-d image segmentation
into regions. The other system is based on production nets and uses line
extraction and views of 3-d polyhedral models. For the latter a new
probabilistic foundation is given. In the experiments, wide-angle overviews are
used to generate hypotheses. The active component then takes close-up views
which are verified exploiting the knowledge bases, i.e. either the semantic
network or the production net.

1 Introduction

Object localization from intensity images has a long history of research, but has not
led to a general solution yet. Approaches proposed differ in objectives, exploited
features, constraints, precision, reliability, processing time etc. Although surveys exist
on knowledge-based object recognition [8, 6, 1], little has been published on
experiments by different groups on a common task. Comparisons mainly exist on
data-driven or appearance-based approaches, e.g. on the COIL-data base [7]. We
compare two different approaches developed by different groups to solve one
common task. We chose the localization of a hole punch from oblique views on an
office desk. Fig. 3a,f,g,h below show such frames taken with different focal lengths
by a video camera.

In the experiments camera parameters (focal length, pan, tilt) are adjustable and
camera actions are controlled by the recognition process. The 3-d position of the hole
punch is constrained by a desk. The rotation is restricted to the axis perpendicular to
the ground plate (azimuth). The overviews are used to generate hypotheses of the hole
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punch´s position which result in camera actions to take close-up views. These are the
input for final recognition or verification.

In Sect. 2 we outline the structure and interaction of the two systems and present a
new probabilistic foundation of the production net system. Results of experiments on
a common data-base are given in Sect. 3. In Sect. 4 a discussion of pros and cons of
both approaches is given.

2 Architectures of the Two Systems

Initially we describe how the two systems interact on common data.
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Fig. 1. Overview of the experimental localization setup with semantic network system (SN) and
production net system (PN)

Fig. 1 shows the different components of the two localization systems and the data
flow between them. Starting with an overview color-image (like the one presented in
Fig. 3a) two different algorithms are applied that generate hypotheses for the hole
punch´s location. The first system uses a pixel-based color classifier resulting in an
interest map (Sect. 2.1), whereas the second system determines the hypotheses with a
knowledge-based approach (Sect. 2.2). Both detection systems provide hypotheses as
2-d-coordinates in the image and an assessment value.

Based on the hypotheses, close-up views are then generated by adjusting pan and
tilt and increasing the focal length of the active camera. Since close-up views contain
objects in more detail, recognition is expected to be more reliable. Results of region
segmentation are interpreted by the SN-system providing the center of gravity for
each hypothesis. Lines constitute the input for the PN-system yielding a 3-d pose
estimate for each hypothesis. This verification utilizes a different parameter setting
and finer model compared to the detection phase. Both systems give an assessment
value for the results.
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2.1 Localization with the Semantic Network System (SN)

The semantic network approach uses the object's color as a cue to hypothesize
possible positions of the hole punch in a scene. An interest operator based on
histogram back-projection is applied [13], which learns the color distribution of the
hole punch and applies this distribution to find pixels of similar color in the overview
images. We calculate the color histograms in the normalized rg color space to be
insensitive to illumination changes. Since the hole punch is red, the interest operator
yields hypotheses for red objects.

The verification of the hypotheses is done by matching the hole punch's model to
color regions. These regions are determined by segmenting the close-up views using a
split and merge approach. The semantic network represents the 2-d object model by a
concept which is linked to a color region concept [2]. The latter concept contains
attributes for the region's height, width, and color as well as the allowed value range
for each of these attributes. During analysis the expected values for the object are
compared to the corresponding feature values calculated for each color region of the
close up views. A match is judged according to a probability based optimality
criterion [3]. The search for the best matching region is embedded into an A*-search.

2.2 Localization with the Production Net System (PN)

Production nets [12] have been described for different tasks like recognition of roads
in maps and aerial images, 3D reconstruction of buildings, and vehicle detection. A
syntactic foundation using coordinate grammars is given in [9]. Initially contours are
extracted from gray-value images and approximated by straight line segments. The
production system works on the set of lines reconstructing according to the
production net the model structure of the hole punch. This search process is
performed with a bottom-up strategy. Accumulating irrevocable control and
associative access is used to reduce the computational load [11, 9].

The view-based localization utilized here for the hole punch search implements
accumulation of evidence by means of cycles in the net with recursive productions
[10]. The accumulation resembles generalized Hough transform [4]. The hole punch is
modeled by a 3-d polyhedron. The 3-d pose space is equidistantly sampled rotating
the object in azimuth α in steps of 10o and varying the distance d in 5 steps of 10cm.
For each of these 180 poses a 2-d model is automatically generated off-line by a
hidden line projection assuming perspective projection and internal camera
parameters estimated by previous calibration (see Fig. 2). The recognition relies on
matching structures formed of straight line segments. Below only L-shaped structures
are used, that are 4-d attributed by the location of the vertex and the two orientations.
If a L-structure in the image is constructed from two lines, then similar L-structures in
each 2-d model are searched, where the two orientations account for the similarity.
Matches are inserted as cue instances into an 4-d accumulator of position in the image
(x,y), azimuth α, and distance d. Accumulation is performed by recursive productions
operating on the associative memory which is discretized in Pixel, 1o and 1cm. Values
found in the accumulator highly depend on structures and parameters. High values
indicate the presence of the object for a corresponding pose.



340

Fig. 2. Selected set of 2-d models projected from a 3-d polyhedron model (∆α=15o)

We now replace the accumulator values by an objective function based on
probabilistic assessment. For this purpose we modified the theory derived by Wells
[14]. But while he uses contour primitives attributed by their location, orientation and
curvature our approach matches L-structures; while he operates in the image domain
we operate in the accumulator.

Wells´ Theory of Feature-Based Object Recognition
Wells uses a linear pose vector β of dimension 4 (for similarity transform) or 8 (for
limited 3-d rotations according to the linear combination of views method), and a
correspondence function Γ, mapping the image features to a model feature or to the
background. A scaled likelihood
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of an image-to-model correspondence and a pose is derived from independence and
distribution assumptions. The first term in Eq. 1 results from a normal prior
distribution on the pose, where ψβ is the corresponding covariance matrix and β0 the
center. The second term is due to the conditional probability that a set of
correspondences between the image features Yi and model features Mj may be true,
given a pose β. Wells gives the model features Mj in a matrix format, that enables
linear transformation to the image feature domain. Inside the sum there appears a
trade-off rewarding each image-to-model correspondence by a constant λ and
punishing the match errors. The punishing term for each correspondence results from
the assumption of linear projection and normal distributed error in the mapping of
object to image features with covariance ψ. To reduce the complexity of the
estimation process, this matrix is independent of the indices i and j. The reward term
λ is to be calculated from a representative training-set according to
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The middle factor in this product is calculated from the ratio between the probability
B that a feature is due to the background, and the probability (1-B)/m that it
corresponds to a certain model feature, where m is the number of features in the
model. The rightmost factor in the product is given by the ratio between the volume
of the whole feature domain W1 ... W� and the volume of a standard deviation
ellipsoid of ψ.
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Modification for Accumulator-Productions in the PN-System
To apply the theory of Wells to our problem we set βT=(x,y,α,d). The objective
funktion L is calculated for each cluster of cues. The pose β is estimated as mean

)d̂,ˆ,ŷ,x̂(ˆ T αβ =  of the poses of  the member cues of the cluster. The correspondence

Γ is coded as an attribute of the cues. For each model feature j put into
correspondence in the cluster the closest cue i to the mean is taken as representative of
the set of all cues i corresponding to j. This is done, because we regard multiple cues
to the same model feature as not being mutual independent. The attribute values (xi,,
y,i αi, di) directly serve as Yi for formula (1). There is no need for coding model
features in a matrix format, because the projection has been treated off-line in the
generation of the 2-d models. We just determine the deviation for each such cue
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The covariance matrix ψ of  the cues and the background probability B are estimated
from the training-set. These differ in the present bureau application significantly
between overviews and close-ups. For the overviews the reward λ is close to the
critical value zero indicating that recognition in these data is difficult and not very
stable. Recall that the maximization must not take those Γ into account, that include
negative terms into the sum. This condition gives a new way to infer the threshold
parameters for adjacency in the cluster productions from a training set. In the
verification step parameters are set different compared to the detection step, e. g. the
accumulator is now sampled in ∆α=5o and ∆d=5cm. Fig. 2 shows 2-d models used
for close-up views, whereas Fig. 3d,e show two coarser 2-d models used for the
overviews.

The theory of Wells rejects scenes as non recognizable, if λ turns out to be
negative according to Eq. 2. In such situation we still may use a positive reward λ´
instead indicating that cues with high values for this objective function will contain
more false matches than correct ones with high probability. Still among the set of all
cues exciding a threshold, there will be the correct hypothesis with a probability that
may be calculated from the difference λ-λ´.

For the close-ups a ML-decision is needed and we have to use the correct reward
term λ. For these data the estimation for λ is much bigger. Compared to the Hough-
accumulator value used as decision criterion in [10] the likelihood function includes
an error measurement on the structures set in correspondence with the model and
evaluates the match based on an estimated background probability.

3 Experiments

Each system used its own set of training images for hypothesis generation and
object recognition. The training of the SN-system is based on 40 close-up images for
model parameter estimation and a histogram for red objects that is calculated using
one close-up image of the hole punch. For the PN-system 7 desk scene overview and
7 close-up images were used as training set. The evaluation was done on 11 common
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scenes disjoint from the training sets. One of these overviews is depicted in Fig. 3a.
For each test scene both systems generated their hypotheses (Fig. 3b,c), and
corresponding close-up sets were taken by the scene exploration system.

Success and failure was judged manually. In Fig. the highest objective function
value L is detected by the PN-system in the correct location. Fig. 3d presents the 2-d
model corresponding to this result. The pose is incorrectly determined on this image.
Fig. 3e shows 2-d model of a cue cluster with correct pose and location but having a
smaller likelihood. On the 11 overview images only two localization results are
successful where one gives the correct pose, too. This shows that in this case pure ML
is not sufficient. Therefore clusters are sorted according to L and the 1‰-highest-L
scoring clusters were taken as hypotheses (see white crosses in Fig. 3b). A successful
localization according to the definition is contained in 5 of the 11 hypotheses sets.

The color-based detection of the SN-system does not determine pose. It gives 8
correct ML-localization results in the overview images. In 10 results the hypotheses
set contains the correct cue. Fig. 3c shows an interest-map of the overview image.
Dark regions correspond to high likelihood of the hole punch´s position. Note that
hypotheses sets of the two systems differ substantially, as can be seen comparing Fig.
3b and Fig. 3c. Where the SN-system finds red objects like the glue stick and the
adhesive tape dispenser, the PN-system finds rectilinear structures like books.

Fig. 3f,g,h show the three close-up views taken according to the PN-system
detection. In the verification step the ML-decision includes all cues from a close-up
set resulting from one overview. Fig. 3i,j,k display the result, where the third scores
correctly the highest.  A successful verification with the PN-system additionally
requires the correct pose. This is performed correctly on 3 of the 11 examples. The
SN-system succeeds on 9 close-up sets without giving a pose. The PN-system
succeeds on one of the two failure examples of the SN-system.

4 Discussion

In this contribution we demonstrated how the difficult problem of object recognition
can be solved for a specific task. An office tool is found by two model-based active
vision systems. In both cases the object was modeled manually in a knowledge base.
A 3-d polyhedral model was used in the PN-system requiring line segmentation for
the recognition. 2-d object views were modeled in SN-system using a region based
approach. The experiments revealed that color interest maps of the SN-system
outperform the line-based hypothesis generation of the PN-system on the considered
scenery. We conjecture that this is due to high color saturation and small size of the
object in the overview images. Close-up views captured by the active camera increase
the recognition stability of both systems; in some cases overview images already
yielded the correct result.
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Fig. 3. Localization of the hole punch in a bureau scene; close-up views and
verification of the SN-system omitted

For the line-based recognition the process had to be parameterized differently for
overview and close-up images. A new probabilistic objective function for the PN-
system allows parameter inference from a training set, and opens the way for a better
interpretation of the results. Both systems achieved recognition rates that – with
respect to the complexity of the task - were satisfactory. It is expected that the
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combination of line and color segmentation will eventually outperform either
approach. This is subject to future work.

The PN-system is designed to work on T-shaped structures as well. Other
possibilities like U-shaped structures would be a straight forward extension. Further
investigations will include an EM-type optimization of pose and correspondence in
the final verification step also following [14].

We proved that one common experimental set-up can be used by two different
working groups to generate competitive hypotheses and to verify these hypotheses,
even in an active vision system. The image data is publicly available to other groups
to allow further comparisons under the web site of the authors.
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