
Extended Coverage without Roaming for beyond
5G Non-Public Networks

Marius Corici, Fabian Eichhorn, Bjoern Riemer, Thomas Magedanz
Software Defined Networking NGNI

Fraunhofer FOKUS Institute
Berlin, Germany

{marius-iulian.corici, fabian.eichhorn, bjoern.riemer, thomas.magedanz}@fokus.fraunhofer.de

Abstract—With the accelerating development and deployment
of 5G Non-Public Networks (NPNs), many customized and
private networks, providing services to local users and devices,
are being installed across the world. To fully use the capacity
of these networks, their services should also be reachable from
other locations outside their limited coverage area. The only
solution provided by 5G and beyond-5G 3GPP standardization
at the current moment is based on roaming interfaces, which
presumes that the NPN operator makes costly and complex
peering roaming agreements with many different large scale
and NPN operators. This article proposes an alternative to the
roaming mechanism based on an Over-The-Top (OTT) peering
approach. Similar to the non-3GPP integration, the connectivity
in the visited network is transparently used to establish a binding
with the home domain. Furthermore, the proposed architecture
is implemented and evaluated in a basic form using Fraunhofer
5G Playground, a comprehensive 5G testbed network using
commercial base stations and the Fraunhofer Open5GCore in
conjunction with standard Android OS devices. Showing that
such a solution represents a cost-effective, reduced functionality
and relatively easy to implement solution outperforming the
roaming approach in both dynamicity and ease of management.

Index Terms—Mobile Networks, Non-Public Networks, NPN,
national roaming, NPN extended coverage, 6G

I. INTRODUCTION

5G enables the deployment of small size Non-Public Net-
works (NPN) providing a dedicated service for the specific
use cases. In comparison to the public operator networks,
NPNs are characterized by geographically limited coverage
areas and local administration with its own specific policies.
It is foreseen that in the near future a large number of NPNs
will be deployed for the different use cases each with its own
limited number of subscribers.

The NPNs give the possibility to locally administer the
network with own policies and privacy as expected, and to
further customize them for the specific requirements. However,
in many situations the devices have to leave the NPN coverage
area and still use the local services.

This type of situation was traditionally solved for large
scale operators by developing specific international roaming
mechanisms. These include the establishment of end-to-end
peering between the networks, requiring the exposure of a
specific set of roaming APIs as well as the negotiation of
interchange policies in the form of roaming agreements.

However, with the deployment of NPNs, the need for these
roaming mechanisms will significantly increase. Specifically,
in this national roaming context, NPN devices pertaining to
local networks are aiming to use the ubiquitous coverage of
a wide area network (WAN) operator to reach their home
network services. Although some advancements were made
into NPN-NPN peering [1], the national roaming is stagnating
mainly because of the potential business cannibalization threat
in which an NPN could potentially provide full country
coverage while only deploying a minimal network, and thus
by roaming agreements, leaving the network deployment and
management costs to the WAN operator.

This article presents an innovative solution to provide home
services in the visited networks which does not require roam-
ing mechanisms. Specifically, it is assumed that devices have
two separate connectivity services: one in the home network
and one in the visited WAN. While in the visited network, it
uses the visited network subscription to establish a connection
to the home network as to any public internet service. On
top of this connection, a secure connectivity to the home
network is established similar to the non-3GPP inter-working
connections enabling the entry into the home network domain
and access to the home network services.

Our new OTT interoperability concept is exemplified as an
extension to the current 5G 3GPP standard, showcasing the
easy integration with the existing features. Furthermore, we
have implemented the concept using the Fraunhofer FOKUS
Open5GCore toolkit and a regular Android OS App, enabling
its assessment in a comprehensive realistic network environ-
ment.

The measured results from the test bed showcase the viabil-
ity of the proposed solution, underlining the minimal overhead
introduced against the significant reduction of the roaming
functionality. With this we have proven that our solution
overcomes the major functional limitations of roaming while
at the same time provides the expected services for visiting
devices making it a high-potential alternative to be considered
for the further beyond-5G and 6G standardization.

The rest of the paper is organized as follows. In Section II
we provide an overview of the 3GPP standard. In Section III
we describe the architecture and the functionality of our OTT
concept, followed in Section IV by our practical implementa-
tion of the concept and in Section V its evaluation. Finally,978-1-6654-3540-6/22 © 2022 IEEE



in Section VI we provide the conclusions and an outlook into
further work.

II. BACKGROUND

Since the third generation (3G), 3GPP is the global stan-
dards body in charge of specifying wireless mobile networks.
3GPP first specified the 5G system (5GS) in its release 15 and
later augmented it to support NPNs in release 16 [2]. In the
5GS the core network (CN) manages network access for user
terminals (UTs) connected via radio access networks (RANs).
How this works is presented briefly in this section.

A. Core Network

The CN comprises the services responsible for access
control, authorization, accounting, mobility and session man-
agement of a mobile network. It is split into multiple network
functions (NFs) that serve dedicated purposes. There are NFs
for accounting and mobility (AMF), session management
(SMF), user data management (UDM, UDR), network slicing
support (NSSF), policy control (PCF), user authentication
(AUSF), user plane traffic steering and forwarding (UPF) and
more. These NFs belong to the so-called control plane, with
the exception of the UPF, which exists in the user plane. An
overview of the basic 5GS architecture is shown in Fig. 1.
The CN NFs communicate over HTTP/2 in a service based

Fig. 1. Simplified 3GPP 5GS Architecture [3]

architecture (SBA). The RAN does not participate in the
SBA and instead uses the N2 reference point towards the
CN for signalling. To communicate with RAN devices e.g.,
eNodeB or gNodeB, the AMF supports the NG Application
Protocol (NGAP) [4]. NGAP also allows the AMF to exchange
signalling messages with UEs using the Non-Access Stratum
(NAS) via the N1 reference point [5]. The NAS messages are
forwarded by the gNodeB wrapped in NGAP packets. User
plane packets from the UE are transmitted from the RAN to
the UPF via the N3 reference point, using the GPRS Tunneling
Protocol (GTP).

In the case of non-3GPP radio access technologies (RAT),
a connection to the CN can be established using the Non-
3GPP inter-working Function (N3IWF) for untrusted access
networks or the Trusted Network Gateway Function (TNGF)
for trusted ones [3]. These two NFs will serve as N2/N3
endpoints. Prior to any signalling, a UE needs to establish an
IPSec security association and tunnel with the N3IWF/TNGF
to enable a trusted connection. The authentication and security
association for the IPSec connection, is performed using
extensible authentication protocol (EAP) with the EAP-5G
method and Internet key exchange version 2 (IKE) [6]. During

this authentication the UE registers with the AMF using NAS,
like during a regular attachment. The 3GPP also defines the
trusted WLAN inter-working function TWIF, to allow devices
which do not support NAS over non-3GPP registration to
register with a 5G CN. In this case, the TWIF performs the
registration on behalf of the UE and proxies an EAP-AKA’
procedure for its authentication.

Since the specifications for 5G non-3GPP access of release
16 are still new and undergoing changes, compatible commer-
cial devices were not known to the authors at the time of this
writing. Therefore custom user terminal and gateway functions
needed to be implemented.

The Fraunhofer Institute for Open Communication Systems
(FOKUS) develops the Open5GCore, a 3GPP aligned 5G
mobile CN for research and development [7]. Open5GCore
provides software implementations of the main core NFs, as
well as a virtual UE and gNodeB for RAN simulation. The
Open5GCore was chosen as basis for the implementation.

B. User Terminal

Future 6G mobile networks will connect various end devices
with different hard- and software capabilities. Smartphones
and tablet devices, for example, are widespread and employed
in many scenarios. They can feature user friendly interfaces,
while also supporting wireless connectivity and mobility. For
the sake of user privacy and security, their operating systems
are often more restrictive than those of general purpose per-
sonal computers. One example is the Linux based Android
operating system developed by Google Inc.. It is open source
and supported by many device manufacturers. An easily acces-
sible development environment, comprehensive documentation
and global community of developers, make it a good platform
for R&D endeavors. This work focuses on commercial off-
the-shelf Android devices with support for WiFi access. No
custom modifications to hardware or OS were made.

C. Problem Statement

5G NPNs are private networks that provide their connectiv-
ity services via the 5G new radio (NR) RAT and 5G CNs.
They are also referred to as campus networks [8], mobile
private networks (MPN) or plainly private 5G networks [9].
The operators of NPNs are often referred to as micro operators
(µO) [10]. The potential benefits of NPNs have been discussed
in the literature [11] [12] and above. Faced with potentially
large financial investments for new hardware, an aspiring NPN
operator may want to provide network services outside of the
coverage area of their base stations, or to devices not equipped
with the required networking hardware. Backwards compati-
bility and support for alternative access technologies have been
identified as key requirements and challenges of 5G NPNs
[11]. While a Public Network Integrated NPN (PNI-NPN)
can take advantage of roaming to alleviate coverage issues, a
standalone NPN (SNPN) cannot support roaming as of 3GPP’s
release 16.9.0 [1]. Neither does roaming allow connecting
incompatible and legacy devices. The 3GPP also allows OTT
connections via the Internet to an SNPN, but this has to be



supported by the devices and requires a publicly reachable
N3IWF [3]. How can SNPN operators provide access outside
the coverage area and to non-3GPP devices? They need a
secure, standard-compatible means of accomplishing this. The
N3IWF, TNGF and TWIF are intended to enable access to 5G
networks via alternative access technologies. However, these
NFs were specified recently and have not been implemented
in networks, yet. Neither do many existing devices support the
required functionality. NPN operators require an OTT solution,
avoiding the need for hardware and OS level support. How can
such an OTT solution be implemented?

III. CONCEPT

To solve the issue of accessing (S)NPNs from outside
and legacy (non-3GPP) devices, the core network architecture
needs to be extended. The approach proposed by this work is
shown in Fig. 2, where new elements are highlighted in green.

Fig. 2. Proposed Architecture Extension

It introduces a software component implementing the UE
signalling to be executed on devices. This software also needs
to redirect traffic of other apps and services of the device
towards the CN. A gateway function replacing the gNodeB,
to serve as an intermediary between this software and the CN,
accompanies the UE side software. Together these components
can emulate the RAN signalling and allow establishing a
connection to the NPN. The existing core NFs do not have to
be altered and can treat the new components like they would
other RAN components and devices.

IV. IMPLEMENTATION

To implement the presented concept and enable non-
standard roaming access to an SNPN, the following steps
needed to be taken:

1) Implementation of a new CN function supporting sig-
nalling over a non-3GPP access network (AN)

2) Implementation of the signalling logic to perform stan-
dard UE procedures over a non-3GPP AN on the UE

3) Establishment of a virtual communications tunnel be-
tween CN and UE

How these steps were realized is further discussed in the
following. The proposed architecture was implemented in the
form of a gateway NF and an Android app called 5GConnect,
as seen in Fig. 3.

A. Core Network Extension

As per the 3GPP architecture, the NAS signalling between
UE and core network is normally proxied by a gNodeB. In the

Fig. 3. Implemented Architecture

discussed scenario, the UE does not connect to a physical RAN
and gNodeB with it’s modem. A gateway NF, as indicated in
Fig. 3, is required to fill the gap in this situation and the
signalling packets need to be transmitted via the non-3GPP
AN. Open5GCore provides both a N3IWF and virtual gNodeB
to fill this gap. For the presented prototype, the virtual gNodeB
was used. It can receive NAS requests via UDP and TCP
and forward them to an AMF, using NGAP, to facilitate the
signalling like it’s physical counterpart.

B. User Terminal Endpoint

To implement the user terminal, a prototype application for
the Android operating system was developed. The application
comprises three main parts, a simple user interface, imple-
mentations of the signaling state machines and the logic for
tunneling data to the core network. In Fig. 3, the signaling is
represented by the virtual UE and the tunnel logic by the VPN
Service.

The user interface was implemented in Java/Kotlin. It was
based on standard Android jet pack libraries and Material de-
sign guidelines. The implementation was focused on simplicity
and straight-forwardness.

The signaling state machines were derived from the
Open5GCore virtual UE implementation. It supports sending
the NAS requests via a non-standard UDP messages. It was
written in native C code interacting with the rest of the
application through the Java Native Interface (JNI).

To create a virtual network tunnel, the app needs to be able
to receive and forward the traffic of other software running
on the device. On Linux, so-called TUN interfaces provide
a virtual network interface for IP tunneling. The Android
SDK provides the VPNService class, which can create such
a TUN interface that intercepts traffic. It is intended for the
creation of virtual private network (VPN) clients. Extending
this class allowed the implementation of a service that receives
a reference to a TUN interface during initialization. The
same service was also provided with a UDP socket pointed
towards the gateway, so it could pass back and forth packets.
The VPNService class also facilitates requesting permission
for intercepting traffic from the user in the same way other
permissions are acquired on Android.

C. Tunnel

Virtual network connections between two endpoints are
commonly created using tunneling protocols. A common ex-
ample is the Generic Routing Encapsulation (GRE) protocol



[13]. GRE is a transport layer protocol, encapsulating data for
transmission over an IP connection. The 3GPP specifies the
use of GRE for non-3GPP access tunneling [3]. On the android
operating system, regular user applications have limited op-
tions for communications and a standard GRE implementation
was, at the time of implementation, not part of the framework.
Therefore, a custom solution needed to be implemented. This
was further inhibited, because non-root applications cannot
create raw IP sockets, required to implement a transport
layer protocol. The best alternative is transmitting the GRE
packets over one of the common transport layer protocol
implementations provided by the framework, i.e., TCP or UDP.
An existing solution for UDP is ”GRE-in-UDP Encapsulation”
[14], which fit the requirements. It is straightforward and
entails wrapping packets with an additional GRE header and
sending them via UDP. The resulting protocol stack of the
forwarding tunnel is depicted in Fig. 4.

Fig. 4. Overlay tunnel protocol stack

On the CN’s end a GRE in UDP endpoint can be im-
plemented using Linux’s foo over UDP [15] implementation
with GRE encapsulation on top. The virtual gNodeB employs
the underlying Linux system’s IP tools to create the tunnel
endpoint. It then listens for incoming packets on the associated
socket. Any packets received are decapsulated by removing the
tunnel headers. The packets are subsequently forwarded to the
UPF using GTP-U, like regular user plane traffic. Conversely,
packets received from the UPF are encapsulated with GRE
and UDP headers and forwarded back to the android UE. On
the Android device, received packets can be stripped of the
GRE header and forwarded back through the TUN interface.
With this the user plane tunnel between UE and CN gateway
could be established.

However, there was another issue preventing end-to-end
connectivity beyond the CN. Normally, the CN assigns a UE
connected to its mobile network an IP address. The CN takes
care of routing traffic to and from the UE based on this
assignment. But, in the presented architecture, the UE’s IP
address cannot be controlled by the application, due to security
restrictions of the OS, and because the UE is virtual and the
underlying physical network access needs to remain intact.
Therefore, the Android application must ensure that outgoing
IP packets contain the source address assigned by the CN
and incoming packets use a valid destination address of the
end device. The presented solution handles this by rewriting
the IP addresses in the IP packet headers and recomputing
the checksums. In the classes receiving and sending data,
packets are accessed and manipulated at byte level, using the
Java NIO Buffer class and its sub-classes. The bytes of the

Fig. 5. Overview of the evaluation environment

source and destination addresses inside the IP headers are
rewritten given their fixed offset within the buffer. Afterwards,
the checksum of each packet is recomputed according to the
Internet checksum algorithm [16] and written to the Java NIO
buffer at the appropriate offset. Finally, the packets can be
forwarded to the gateway or the TUN interface respectively.
Thus the tunnel is completed and packets can be transmitted
end-to-end.

V. EVALUATION

To identify the performance impact of the tunneling,
throughput and round trip time were identified as key per-
formance indicators. They were measured in a controlled test
environment. Within the test environment, the Open5GCore
was run on a Lenovo ThinkCentre small form factor PC
with an Intel® Core™ i7-6700T CPU @ 2.80GHz, 16GB
of RAM and a standard Intel® on-board 1Gbps Ethernet
card. The computer was running a standard Ubuntu Linux OS
version 20.04. The Android devices were connected to the
network using a Ruckus® T710 802.11ac WiFi access point.
An 80MHz wide channel in a 5GHz band was used for the
radio link. The Connection between ThinkCentre and access
point passed through a data center grade manage GbE switch.
The setup is visualized in Fig. 5. The measurements were
conducted using two devices, a Samsung Galaxy Tab S7+ 5G
and a Samsung Galaxy S21+ 5G, both running Android 12.
Both devices can be counted towards early 5G capable devices
supporting NSA and SA. One should note, that the devices,
made by the same manufacturer, have different CPUs. The
relevance of which will reveal itself in the following. Table I
provides details on their CPUs, the Snapdragon 865 and the
Exynos 2100 respectively.

TABLE I
CPU SPECIFICATIONS OF MOBILE DEVICES USED DURING EVALUATION;

SOURCE: GSMARENA.COM

Device Year CPU Lith. Core Frequencies

Galaxy
Tab S7+
5G

2020

Qualcomm
SM8250
Snapdragon
865 5G+

7nm+
1x3.09 GHz Kryo 585,
3x2.42 GHz Kryo 585,
4x1.8 GHz Kryo 585

Galaxy
S21+ 5G 2021 Exynos

2100 5nm

1x2.9 GHz Cortex-X1,
3x2.80 GHz Cortex-
A78, 4x2.2 GHz
Cortex-A55

The reader should note, that these measurements are from
a limited campaign and potential errors cannot be ruled out.



A. TCP Throughput

TCP throughput was evaluated using the iperf3 tool. A
cross-compiled iperf3 executable from an app available in
the play store was used, on the smart devices. First the
uninhibited throughput from the devices was measured in
up and down link as presented in Fig. 6. With an average
of around 650-700Mbps, the performance was good for an
802.11ac connection. Both devices reached close to identical
rates.

Fig. 6. iperf3 TCP Throughput: Galaxy Tab S7+ vs. S21+

For both devices, the TCP throughput was also measured,
while the GRE tunnel towards the core network was active. To
visualize the difference, Fig. 7 and 8 show both up and down
link throughput with and without tunneling for the S21 and
the Tab S7 respectively. It is clear that the tunneling causes
a significant decrease in throughput. For both devices, a drop
of circa 60-75%, down to around 160Mbps on average, can
be observed. The S21 performed slightly better, as will be
discussed later on.

Fig. 7. iperf3 TCP Throughput from S21+ direct vs. tunnel

The tunneling affects throughput in two ways. First, there
is an overhead introduced by adding tunnel headers to each
packet. The minimal overhead is given by the sum of the
bytes in the tunneling headers, the outer IP, outer UDP and
GRE headers respectively: overheadtunnel = IPheader +
UDPheader + GREheader. For IPv4 the minimum overhead
amounts to 32 byte, which given a standard MTU of 1500
byte amounts to circa 2%. MIN(overhead)IPv4 = 16byte+
8byte + 8byte = 32byte. The overhead can be considered a

Fig. 8. iperf3 TCP Throughput from Tab S7+ direct vs. tunnel

minor factor and by itself this overhead cannot explain the
large drop in throughput.

Second, the prototypical tunneling implementation in a user
space JVM application can only provide limited performance.
Because the forwarding is executed on the CPU, the processing
power of the underlying hardware limits potential throughput.
Specifically, the tunneling is not taking advantage of dedicated
networking hardware. When comparing tunnel throughput
between the S21 and Tab S7, one can observe this quite
well. Figure 9 compares the up and down link throughput

Fig. 9. Comparison of tunneled iperf3 TCP Throughput: S21+ vs. Tab S7+

with active tunneling for both devices. The red and green
plots represent the down and up link throughput for the S21
and the blue and orange plots down and up link throughput
for the Tab S7 respectively. Down link throughput was less
for both devices, despite the fact that no notable difference
could be observed over the direct WiFi connection. This
has to be attributed to the forwarding implementation which
handles the incoming and outgoing traffic differently. With the
test environment practically identical, the S21 shows higher
throughput in both directions, as well as a higher variance.
Considering the CPU specifications in table I, reveals that both
S21 and Tab S7 are equipped with quite similar 8 core CPUs.
For both, the cores are split into three same size groups of
similar clock frequencies. The most significant difference then
stems from the lithography of the processors. The 5nm process
of the Exynos 2100 appears to give it a slight edge in these
measurements.

B. Round Trip Time
The effects of the tunnel on RTT were measured, by

comparing the results for connections from the Galaxy Tab S7
towards public hosts on the Internet over 802.11ac and the lab-
oratory internet access. The results for the www.fraunhofer.de
and Quad9 (9.9.9.9) hosts, are presented in the following. For
the comparison, a box and whiskers plot of all four measure-
ments can be seen in Figure 10. The blue and orange graphs
represent the RTT values measured towards fraunhofer.de and
the green and red graphs represent those measured towards
Quad9. One can only observe a minor impact on RTT from
the tunneling. This conforms with expectations, since there
was little to no background traffic and the ICMP packets of
64 Byte size should not stress the tunnel significantly.

VI. CONCLUSIONS AND FURTHER WORK

This work presented a non-roaming, OTT solution to the
problem of accessing 5G NPNs from incompatible devices or



Fig. 10. RTT from test environment towards fraunhofer.de & 9.9.9.9: direct
vs. tunneled

from outside of the coverage area. A problem which has, to the
best the authors’ knowledge, not been addressed adequately
in literature and standards, yet. The solution employs a non-
disruptive extension to the existing 3GPP architecture for
5G mobile networks, similar to the newly standardized non-
3GPP access but foregoing device support. An implementation
using the Open5GCore virtual NFs and the Android OS was
detailed and evaluated using COTS devices. The presented
approach was shown to be viable in R&D environments and
less traffic-intensive use cases. While we don’t expect this
solution to outperform a PNI-NPN with roaming, with regards
to throughput, for µOs who demand complete control over
the end to end connection, the presented SNPN approach is
preferable.

In the future, the android application can be extended to
support standard non-3GPP access, which requires an IPSec
implementation supporting EAP-5G. Such an implementation
was not available on current Android OS versions to the best
of the authors knowledge. Furthermore, multi-homing can be
introduced as an extension for better performance [17].

Additionally, we consider adding a policy based decision
layer on top of this implementation, to be able to determine
and properly select the WAN operator transporting the com-
munication in the ubiquitous environment, having additional
data layer with acquisition and exchange capabilities [18].

To improve performance, alternative tunneling implementa-
tions, e.g., Android NDK C/C++ based, could be evaluated.
Further evaluation on additional Android devices of differ-
ing specification and from additional manufacturers, could
clarify the impact of the underlying hardware. The energy
consumption and impact on battery life should be evaluated
and optimized. Support of multiple device connections needs
to be implemented and evaluated.

In future 6G networks the end devices are expected to
become part of or collaborate closely with the RAN and CN
control plane [19], [20], [21], [22]. The software presented
can serve as a prototype to experiment with this collaboration
and support initial evaluations. With its OTT approach, it will
allow bypassing deeper system access, normally required for
this kind of R&D work.

ACKNOWLEDGMENT

The authors acknowledge the financial support by the Ger-
man Federal Ministry for Education and Research (BMBF)
within the project ”Open6GHub” {16KISK003K}. We also

thank the Open5GCore [19] development team for providing
continuous feedback from the software development perspec-
tive on how to simplify the implementation.

REFERENCES

[1] M. Corici, P. Chakraborty, T. Magedanz, A. S. Gomes, L. Cordeiro, and
K. Mahmood, “5g non-public-networks (npn) roaming architecture,” in
2021 12th International Conference on Network of the Future (NoF),
2021, pp. 1–5.

[2] A. Ghosh, A. Maeder, M. Baker, and D. Chandramouli, “5g evolution: A
view on 5g cellular technology beyond 3gpp release 15,” IEEE Access,
vol. 7, pp. 127 639–127 651, 2019.

[3] TS 23.501: System Architecture for the 5G System (5GS), 3GPP Std.
[4] TS 38.413: 5G NG-RAN, NG Application Protocol (NGAP)/Non-Access

Stratum (NAS), 3GPP Std.
[5] TS 24.501: Non-Access-Stratum (NAS) protocol for 5G System (5GS);

Stage 3, 3GPP Std.
[6] TS 33.501: Security architecture and procedures for 5G System, 3GPP

Std.
[7] Fraunhofer FOKUS Institute. (2022) Open5GCore - the next mobile core

network testbed platform. [Online]. Available: www.open5gcore.org
[8] J. Rischke, P. Sossalla, S. Itting, F. H. P. Fitzek, and M. Reisslein, “5g

campus networks: A first measurement study,” IEEE Access, vol. 9, pp.
121 786–121 803, 2021.

[9] E. O’Connell, D. Moore, and T. Newe, “Challenges associated with
implementing 5g in manufacturing,” Telecom, vol. 1, no. 1, pp. 48–67,
2020. [Online]. Available: https://www.mdpi.com/2673-4001/1/1/5

[10] M. Matinmikko-Blue and M. Latva-aho, “Micro operators accelerating
5g deployment,” in 2017 IEEE International Conference on Industrial
and Information Systems (ICIIS), 2017, pp. 1–5.

[11] J. Prados-Garzon, P. Ameigeiras, J. Ordonez-Lucena, P. Muñoz,
O. Adamuz-Hinojosa, and D. Camps-Mur, “5g non-public networks:
Standardization, architectures and challenges,” IEEE Access, vol. 9, pp.
153 893–153 908, 2021.

[12] C. Guimarães, X. Li, C. Papagianni, J. Mangues-Bafalluy, L. M.
Contreras, A. Garcia-Saavedra, J. Brenes, D. S. Cristobal, J. Alonso,
A. Zabala, J.-P. Kainulainen, A. Mourad, M. Lorenzo, and C. J. Bernar-
dos, “Public and non-public network integration for 5growth industry
4.0 use cases,” IEEE Communications Magazine, vol. 59, no. 7, pp.
108–114, 2021.

[13] T. Li, D. Farinacci, S. P. Hanks, D. Meyer, and P. S. Traina, “Generic
Routing Encapsulation (GRE),” RFC 2784, Mar. 2000. [Online].
Available: https://rfc-editor.org/rfc/rfc2784.txt

[14] L. Yong, E. Crabbe, X. Xu, and T. Herbert, “GRE-in-UDP
Encapsulation,” RFC 8086, Mar. 2017. [Online]. Available: https://rfc-
editor.org/rfc/rfc8086.txt

[15] T. Herbert. (2014) [patch v4 net-next 0/7] net: foo-over-udp (fou).
[Online]. Available: https://lwn.net/Articles/614433/

[16] R. Braden, D. Borman, and C. Partridge, “Computing the Internet
checksum,” RFC 1071, Sep. 1988. [Online]. Available: https://www.rfc-
editor.org/info/rfc1071

[17] K.-F. Krentz and M.-I. Corici, “Poster: multipath extensions for wire-
guard,” in 2021 IFIP Networking Conference (IFIP Networking). IEEE,
2021, pp. 1–3.

[18] M. Corici and T. Magedanz, ““one layer to rule them all” data layer-
oriented 6g networks,” Shaping Future 6G Networks: Needs, Impacts,
and Technologies, pp. 221–233, 2021.

[19] M. Corici, E. Troudt, P. Chakraborty, and T. Magedanz, “An ultra-
flexible software architecture concept for 6g core networks,” in 2021
IEEE 4th 5G World Forum (5GWF), 2021, pp. 400–405.

[20] M. Corici, E. Troudt, and T. Magedanz, “An organic 6g core network
architecture,” in 2022 25th Conference on Innovation in Clouds, Internet
and Networks (ICIN). IEEE, 2022, pp. 1–7.

[21] M. Corici, E. Troudt, T. Magedanz, and H. Schotten, “Organic 6g
networks: Decomplexification of software-based core networks,” in 2022
Joint European Conference on Networks and Communications & 6G
Summit (EuCNC/6G Summit). IEEE, 2022, pp. 541–546.

[22] The 5G Infrastructure Association. (2021, 06) 5G IA White Paper
– European Vision for the 6G Network Ecosystem. [Online].
Available: https://5g-ppp.eu/wp-content/uploads/2021/06/WhitePaper-
6G-Europe.pdf


