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Abstract

Product variety has steadily increased for different reasons in many industries in the
past. The challenge is to manage the high degree of necessary variety while keeping the
engineering and production efforts and costs under control. The answer to satisfy the need
of “mass customization” has been a product line approach where a set of similar products (a
product family) is based on a common platform and common assets, but still possess specific
features and functionality in order to meet particular customer requirements. The solution
strategy is to exploit commonality between products and efficiently handle the product variety
while keeping the product distinct.

These ideas were successfully applied within the software development area. However,
the application of this methodology within the automotive domain of embedded software
is still not addressed completely. Although there is a need for a pervasive and consistent
variability management, its introduction within an often long-established development process
where users have to change their engineering praxis is challenging. We need to introduce a
development process that is on the one hand flexible enough to meet the requirements of
the engineers and on the other hand powerful enough to pervasively specify and analyze
variability within requirements, functions, software, and hardware descriptions.

In this paper, we will describe a concrete approach for the development of automotive
E/E systems which is based on the integration of product line concepts with an architecture-
centric development. The main focus is set on the pervasive handling of variability and
its analysis concerning concurring solutions strategies. In addition to the results which we
already introduced in the Embedded World Conference 2009, the focus of the research project
EBASO is expanded from functional requirements to software architectural descriptions and
implementation aspects.

1 Introduction

In current automotive development projects it turns out that the product line approach gets
more and more awareness not only in the software development but also in typical mechanical
engineering disciplines. The benefits of using a product line approach are clearly defined in
literature and are widely accepted. Nevertheless, until now there are no applications that exploit
the variability knowledge during a complete development process; from requirements engineering
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Figure 1: Artifacts of the VEIA reference process.

to the specification and execution of tests. We argue that all the necessary prerequisites for
the handling or management of variability are present as industrial tools like pure::variants
[2,24] or the Feature Modeling Plugin [32] demonstrate. But the complete integration of these
techniques within the typical domain-specific development tools and the seamless transfer of
variant information between different engineering tools is still not industrial practice. In the BMBF
funded research project VEIA1 a reference process was defined [14,15] that allows for such an
integrated approach as demanded above. The views in the functional swimlane (see Figure 1)
are different abstractions of a functional view onto systems. They are related by realization or
refinement relationships. Between the functional views and the infrastructural views there is an
allocation mapping or deployment relationship. Thus, function nets are used for the specification
of the functionality which has to be implemented within the underlying layers as there are a
software and a hardware layer. A feature model is used for the abstract specification of the
wanted variability which should be implemented within the product line. It can be used to control
the variability within the other development artifacts.

Within the research project EBASO this approach is extended with respect to an exemplified
integration of variability within the specialized engineering tool MATLAB / Simulink [31]. Thus,
developers have the possibility to use this tool as a stand-alone engineering tool for the devel-
opment of their applications within the already known framework. The advantage comes with
the integrated variability management that was completely adapted to the usual development
practice in MATLAB / Simulink. Consistency checks, interactive configuration, dead feature
detection, and switching between different variants of the Simulink model can be done without
using an external variability management tool. Thus, the user is not forced to be trained on a
new tool. The usage of the new functionality is intuitive and it was realized as close as possible
to the usual development steps within Simulink as shown in section 3.

The rest of the paper focuses on the realization of this work, and thus constitutes a proof of
concepts for the before demanded complete integration of variability management within domain
specific development tools.

2 Model-based variability management

Variability management needs to be done continuously during the development process: from
requirements to solutions in form of software and hardware. In the beginning, it is necessary

1VEIA is the German acronym for “distributed development and integration of automotive product lines”.



to define what variability needs to be supported by the product line under development, what
products should be developed within the product line, what they differ in, and what they have
in common. Then, a step-wise realization follows, where on different abstraction levels the
functionality is determined, and the variability is analyzed to commit to the most appropriate
solution under the given circumstances. And finally, the product line needs to be implemented
by both software and hardware.

AUTOSAR [1] becomes a standard for the development of automotive software systems:
Besides the important standardization of basic software in vehicles, it also provides the means
to describe the application software, the technical architecture and the allocation of software
onto hardware (cf. Figure 1).

An ideal development process begins with the collection of requirements, continues with the
commitment on functions to be implemented (described and organized within a function net),
and finally, the realization is designed by specifying software components which will be installed
on and executed by electronic control units (ECUs). Variability occurs in all these development
artifacts. Therefore, we need means to manage it continuously.

Feature models [7, 16, 17, 19] are appropriate to capture variability requirements or solu-
tions on a high abstraction level. They are widely used and already supported by tools, e.g.
pure::variants, Feature Modeling Plugin.

To capture variation in functions, data and control flow we suggest to use functional archi-
tecture models which are capable of (formally) analyzing the variability to guide the realization
process. The prototype v.control [20,21,26] supports the management of function nets for prod-
uct lines: A function net consists of functional components that may be mandatory or optional.
Furthermore, there are XOR functions which encapsulate functional alternatives. Functions
may also vary with respect to their interface: there may be optional ports or varying signal
sets on ports. This variability may be controlled with a connected feature model. Hereby it is
possible to control the variability of the functionality by selecting (or deselecting) features in the
feature model. This step is often called configuration (of the variability). A valid and complete
configuration represents a specific product of the product line.

In v.control it is possible to represent feature models, function nets and their interrelation.
Furthermore, these models can be jointly configured and analyzed [20]. The application of
metrics for assessment purposes is also supported, as already described in [21].

A next step is to detail the specification and to prepare the implementation steps. This can
be done by behavioral specifications which can be simulated or used to generate software code.
For this, we use the commercially available tool suite MATLAB / Simulink. With the help of the
v.control.mbd plugin we are able to represent and configure the above mentioned variant-rich
function nets as Simulink models. This allows the developer to simulate the models as well as to
use available code generators to produce software code.

3 Variability management in MATLAB / Simulink

MATLAB / Simulink is a tool for modeling, simulating and analyzing multi-domain dynamic
systems. The main part of Simulink is a graphical editing language based on block libraries
which are used to specify dynamic systems. There are standard library blocks which can be
used to model variability: enabled subsystems, configurable subsystems and model variants, for
example. This was already described by the authors of [3,10]. But the main purpose of these
mechanisms is to model the behavior of single systems. Thus, we extend and reinterpret them
to explicitly represent variation points in Simulink. The resulting Simulink extension, which we
called “v.control.mbd”, consists of

• an additional block library for modeling variation points in Simulink models,
• a consistent data management, and



Figure 2: Elements of the v.control.mbd block library in Simulink.

• a graphical user interface (GUI) for the configuration, analysis and assessment of variant-
rich Simulink models.

Our block library consists of three types of variation points (Figure 2): There is an optional
subsystem block, i.e. a subsystem which can be present in a configuration, but it does not have
to be present. It can be turned on and off during a configuration step. The second type, an XOR
variation point block, represents a subsystem which encapsulates subsystem alternatives. If the
XOR variation point itself is present in a configuration, then exactly one of its children will be
present. Finally there is a combination of both mechanisms, i.e. an XOR variation point itself can
be additionally optional.

These introduced variability mechanisms can be used within a hierarchical structure as usual
within Simulink. Thus, it is possible to specify an XOR variation point that again consists of XOR
variation points, for example.

In the implementation of v.control.mbd, optional subsystems are realized using enabled
subsystem blocks of Simulink connected with a control block (e.g. normalCB in Figure 5b). An
optional subsystem can be activated and deactivated by changing the respective value of its
control block. XOR variation points are realized by standard subsystem blocks. Each subsystem
alternative is again realized by an enabled subsystem block connected with a control block. It
is ensured by the v.control.mbd implementation that only one alternative is active at a specific
point of time.

The introduced variation points can be easily used within any Simulink model. The user
simply has to insert a block from the v.control.mbd block library. The tool automatically creates
the respective constraints and the needed variability data. This data is administered using a
structure called VarInfo (see Figure 3). It contains the complete variability data of the current
Simulink model and is stored in the base workspace of MATLAB. This approach allows to
distinguish between model elements for the product line structure and model elements used to
specify the functional behavior.

The third part of the v.control.mbd plugin is the configuration and analysis user interface
shown in Figure 5a. The configuration GUI is used to interactively specify a configuration of
the Simulink model. A formal analysis engine is used during the configuration step in order to
justify all the user made decisions and to check whether all the constraints are fulfilled.2 The
result of one or more configuration steps is a configuration consisting of a selection status for
every subsystem. We distinguish between the following selection statuses (see enumeration
type Selection in Figure 3):

• selected_explicit: The user has explicitly selected this subsystem (green check mark3)
• deselected_explicit: The user has explicitly deselected this subsystem (red cross3)
• selected_derived: a constraint-based deduced selection (gray check mark3)
• deselected_derived: a constraint-based deduced deselection (gray cross3)

2A binary decision diagram (BDD) based engine is used in the current implementation.
3in Figure 5



<<MatlabStruct>>
VarInfo

<<MatlabCellArray>>
Configuration

-currentStatus : boolean
-isOptional : boolean
-isXOR : boolean

<<MatlabCellArray>>
VariationPoint

-status : Selection

<<MatlabCellArray>>
SelectionStatus

<<SimulinkBlockHandle>>
ControlBlock
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-SELECTED_DERIVED
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Figure 3: Data model of v.control.mbd in Simulink.

• not_yet_decided: No decision has been made yet (yellow question mark)

The user is guided during the configuration process to guarantee that the resulting configura-
tion is consistent and respects all the automatically generated constraints. Additional constraints
can as well be added by the user in the GUI.

As sketched in section 2, the usage of v.control.mbd is embedded in our reference process.
Like the function nets of our logical architecture (Figure 1), a Simulink model also consists of
hierarchical subsystems with input and output ports, connections between the ports (called lines
in Simulink) and behavioral specifications. This allows us to generate Simulink models from
function nets.

The v.control.mbd implementation is capable to generate a Simulink model based on a
function net which was modeled in the v.control prototype. Currently, the generated models
do not contain any system behavior, but they are a starting point for the behavioral modeling
in Simulink. However, the variability modeled in the function net is transferred to the Simulink
model and is managed by the v.control.mbd plugin. The following section presents a small
example of the usage of v.control.mbd.

4 Example

To illustrate the before introduced concepts, a traffic lights product line is taken as an example.
It consists of signalers for cars and for pedestrians. The traffic lights have additional right arrows
to independently control cars turning to the right. Also, some of the members of our product
line have signal buttons for pedestrians to request a green phase for them. We specify two
alternative sequences how the pedestrian light switches to green:

• an immediate switching to green and
• a switching after a specific time period to ensure that cars will get a minimum time span for

their green phase.

The corresponding variability is depicted in the feature model in Figure 4a.
Based on the feature model, a logical architecture (a function net) is defined as shown in

Figure 4b. Within this development step a structural layout of the product line, its communica-
tion relationships and its variants are defined which gives us a starting point for the detailed
specification of the behavior with the help of MATLAB / Simulink.
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(b) Function net.

Figure 4: Specification of a traffic lights product line.

Our prototypical tool v.control.mbd is capable of generating a variant-rich Simulink model
based on function nets defined in v.control. The resulting Simulink model consists of a structural
framework of the specified functions. For example, see how the XOR function ahead_signaler
in Figure 4b is translated into the corresponding Simulink specification depicted in Figure 5b.

The graphical user interface (GUI) allows the developer to interactively configure the Simulink
model and to switch between different specified configurations. The first column in Figure 5a
shows a representation of the Simulink model structure. The other columns in the GUI represent
different product configurations. Each row represents a subsystem in the model (a function)
and its corresponding configuration status. The configuration status can be changed simply by
clicking on the icon. This will automatically change the status of the corresponding subsystem in
the Simulink model and will enable or disable this element as depicted in Figure 5b. Thus, the
configuration information is visualized within the Simulink model itself.

The user has the possibility to switch between different configurations and to activate exactly
one configuration which may be simulated in Simulink afterwards. As you can see in Figure 5a,
the active configuration immediately is highlighted (by a green shaded background). Because
the subsystem immediately has been explicitly selected by the user in this configuration, the
signalers for cars will immediately switch to red when a pedestrian pushes the signal button.

When a configuration is changed by clicking on a status in the configuration GUI, v.control.mbd
adjusts the selection status of all subsystems ensuring that constraints and rules derived from the
architectural model are continuously valid. In addition, the user can define additional constraints
directly in the GUI and check the new specification for consistency. All of these features (i.e.
configuration, consistency check, constraints editing, simulation of the active configuration) can
be done directly in MATLAB / Simulink with the help of the v.control.mbd plugin.

5 Related work

The main focus of our activities is the application of product line principles together with a step-
wise, function-oriented, and architecture-centric development. Such a modular and compositional
approach is necessary to tackle the complexity found in the automotive domain as described
in [27], for instance. AUTOSAR [1] becomes a standard in this domain: On the one hand, it
standardizes the basic software in vehicles (the hardware abstraction layer for the application



(a) User interface for the configuration of a
Simulink model.

(b) The configured Simulink model
(extract): XOR variation point
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Figure 5: Extensions of MATLAB / Simulink for variability support.

software), on the other hand it also provides the description means to specify automotive systems
in terms of both application software and hardware architectures. The main purpose of the
description language is the exchange of specifications between development partners. However,
the AUTOSAR standardization does not prescribe any specific development processes and
methods. The current status of AUTOSAR also does not contain a direct support of variability
management issues besides a low level calibration and configuration. Our emphasis is to
provide methods and techniques for a product line engineering support which are compatible to
AUTOSAR.

Architecture description languages (ADLs) are widely used to specify systems and software
designs in the large. There exist quite a lot of approaches, e.g. see [22]. However, only
a few support embedded or automotive software engineering on different abstraction levels,
e.g. [5, 12, 25, 28, 30], or variability management, e.g. [11, 23, 30]. There is a tool support for
some of these approaches, but they are mostly isolated solutions which are not tightly connected
to standard development tools found in the automotive industry.

There are already several surveys of the usage of MATLAB / Simulink for product line
engineering. In [6] it was investigated how code generators interpret Simulink constructs which
were used for modeling variable parts. The construction of a product model on the basis of
model libraries and templates by selecting features was investigated in [18]. Which Simulink
constructs are suitable to express variability, how they can be configured, and how product
models can be derived from such models is investigated in [3,10]. The approach we presented
here is very similar to this work. However, we have chosen to realize a deep integration of the
variability handling mechanisms within Simulink which allows for a stand-alone usage of the new
functionality in Simulink as well as for the integration of Simulink within an architecture-centric
development methodology [14].

Model elements in application models are annotated with features in [8]. The features are
used to specify presence conditions for the elements. The approach how application models



(e.g. UML class diagrams, Simulink models etc.) are configured with the help of features is
similar to our work. Also, we use an analog approach for the verification of feature models.
But in contrast to [8], we have explicitly integrated the notion of variability into our application
models [20]. Thus, we are able to configure and analyze the variability in application models
without an external feature model.

[13] also introduces an approach of “implementing” variability on model level. They dis-
tinguish between positive and negative variability which they can also control with the help of
features from feature models. The former kind of variability is realized by using aspect-oriented
techniques in which additional parts are weaved into the common model platform. The latter is
realized by removing optional parts from a given model base. According to their terminology,
the approaches in [8] and [4] as well as our approach are examples of implementing negative
variability on model level in which features are connected to model elements. The selection
(or deselection) of a feature affects the occurrence of the linked model element in the resulting
product model. As in [8], variability is not an explicit and distinctive modeling concept in their
application models. The tool support or the process has to ensure that a valid configuration of a
feature model will result into a well-formed and valid product model on application model level.
In our approach, variability is explicitly represented in our application models. This gives us the
possibility to interpret the variability internally as a feature model. By this, the verification if a
configuration is satisfiable is based on a pure check of feature model configurations.

In [29] a catalog of verification properties that are essential to a type safe composition of
modules are introduced on the basis of a formal interpretation of feature models. However, they
assume that each feature is implemented by a distinct module, which is not the case in our
approach.

A similar approach for the configuration of variant-rich (architectural) models with the help
of a feature model is implemented in [4]. As in [20], they integrate a feature model with the
other models by building an internal, unified feature model which is used for an interactive
configuration with feedbacks.

6 Ongoing and future work

The approach presented here is work in progress. The introduced adaptation of MATLAB /
Simulink is a first step. We aim to integrate and implement further analyzing and assessment
methods into our approach. Especially the use of metrics, as already applied on the function
net level [21, 26], is one of the main goals in EBASO. The definition and implementation of
an application interface for the assessment of variant-rich Simulink models is under progress.
Additionally, the selection, definition, and finally the implementation of useful metrics is future
work.

An interesting and important aspect in product line engineering is the consideration of
variability binding times. The binding time is the latest moment in the development life-cycle at
which engineers can bind a variation point [9]. In general, realization mechanisms are highly
interrelated to the binding time of variability. An interesting, but first sketch of the specification of
binding times in Simulink is given in [3]. They analyzed the relation to code generation options
provided by a specific, commercially available code generator (namely dSpace TargetLink). Up
to now, the explicit consideration of binding times was out of focus. But it is a necessary task for
the assessment of alternative solutions for the realization of a product line.

7 Conclusion

Development tasks in automotive industry are usually very complex. Not only the complexity,
but also the huge size of data to be handled during a complete product development lead to



the necessity to introduce new development methods that tackle these problems. One of the
most effective way to overcome the described complexity and size problem is the proactive,
planned and optimized reuse of development artifacts. A high grade of reuse can be reached
using the development paradigm of product lines. A necessary prerequisite therefor is the
possibility to express and analyze variability already during the development. The approach
presented in this paper allows for such an integrated and early specification and analysis of
variability. Based on the general ideas of feature modeling, it is possible to combine stand-alone
applications with an overall development process to handle variability as we have shown for the
development of embedded software with Simulink in this paper. Although we have presented
only one possible witness for such an integration, we think that it could be extended to many
engineering tools in general. This would lead to a pervasive variability management approach
that will find acceptance within the industrial development departments.
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