

FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY IISB

MNE 2015, 41st International Conference on Micro and Nano Engineering, The Hague, The Netherlands

Defined area polymer working stamp manufacture for S&R UV-NIL by direct laser writing

M. Rumler^{a, c}, F. Michel^b, M. Becker^d, L. Baier^a, M. Förthner^{b,c}, M. Rommel^a, A. Schleunitz^e, J. Klein^e

^a Fraunhofer Institute for Integrated Systems and Device Technology (IISB), 91058 Erlangen, Germany

^b Chair of Electron Devices, University Erlangen-Nuremberg, 91058 Erlangen, Germany

IISB

^c Erlangen Graduate School in Advanced Optical Technologies (SAOT), 91058 Erlangen, Germany

^d NanoWorld Services GmbH, Erlangen, 91058, Germany

^e micro resist technology GmbH, Berlin, 12555, Germany

Introduction

- Hybrid polymer working stamps for UV-NIL have become a common alternative to quartz molds [1-3]
- Defined area working stamps are of great interest for e.g. seamless step & repeat

Challenges

Identification of process window for DLW on hybrid polymers [4] \rightarrow First exposure experiments in air, curing feasible?

UV-NIL [3]

Direct Laser Writing (DLW) could be an interesting option for the fabrication of the intended hybrid polymer molds (freedom of design, no mask needed)

Experimental setup

- Spin-coating of hybrid polymers OrmoStamp[®] and OrmoComp[®] @5000 rpm for 30 s
- Exposure @405 nm using Heidelberg DWL66+
- Development in OrmoDev for 2 min @RT
- Characterization using optical microscope, AFM and SEM

- Fabrication of defined mesa-structures (sufficient height, steep sidewalls)
- Faithful replication of master structures into hybrid polymer

✓ Transfer of master structures successful

- Trapped air due to non-conformal contact
- Severe overexposure due to shift in process window compared to exposure in air

Approx. dose: 665 mJ/cm²

SEM cross section showing widening of OrmoStamp[®] mesa structure

DLW Exposure under PDMS mold

Cured hybrid Laser irradiation polymer PDMS mold Silicon wafer Cured hybrid polymer Silicon wafer

Process scheme

Approx. dose: 665 mJ/cm²

Approx. dose: 5550 mJ/cm²

Results on silicon substrate

Mesa edges formed by approx. doses of 665 and 5550 mJ/cm²

Results on glass substrate

- Enhanced polymerization due to oxygen exclusion?
- Light scattering by master structures?

Use of PDMS-mold as master

- Transfer of master structures successful Less air traps \checkmark
- Problems with overexposure remain
- Influence of heat transfer?

Multi-pass exposure

- ✓ Vertical sidewalls on Si substrate
- Slight overexposure on glass substrate
- Test imprint failed due to ASL

approx. dose: 10750 mJ/cm²

problem

Further experiments on glass necessary

Conclusions

Successful fabrication of hybrid polymer mesas containing nanostructures by DLW Multi-pass exposure with reduced laser power leads to vertical sidewall formation

Outlook

Investigate influence of post exposure bake (decrease of UV dose possible?) Identify tolerable sidewall angle for S&R mesa structures (decrease of process time)

[1] A. Kuklowska et al., Microelectron. Eng. 4-6 (2009), 697. [2] M. Mühlberger et al., Microelectron. Eng. 4-6 (2009), 691. [3] A. Schleunitz et al., J. Vac. Sci. Technol. B 28 (2010) C6M37. [4] A. Singh et al., Micromachines 5 (2014), 472.

Fraunhofer Institute for Integrated Systems and Device Technology Schottkystraße 10

91058 Erlangen, Germany

maximilian.rumler@iisb.fraunhofer.de Mail:

http://www.iisb.fraunhofer.de Internet:

