Fraunhofer

IISB

FRAUNHOFER INSTITUTE FOR INTEGRATED SYSTEMS AND DEVICE TECHNOLOGY IISB

MNE 2015, $41^{\text {st }}$ International Conference on Micro and Nano Engineering, The Hague, The Netherlands

 Defined area polymer working stamp manufacture for S\&R UV-NIL by direct laser writing

 Defined area polymer working stamp manufacture for S\&R UV-NIL by direct laser writing}

${ }^{\text {a }}$ Fraunhofer Institute for Integrated Systems and Device Technology (IISB), 91058 Erlangen, Germany
${ }^{\text {b }}$ Chair of Electron Devices, University Erlangen-Nuremberg, 91058 Erlangen, Germany
${ }^{\text {c }}$ Erlangen Graduate School in Advanced Optical Technologies (SAOT), 91058 Erlangen, Germany
${ }^{\text {a }}$ NanoWorld Services GmbH, Erlangen, 91058, Germany
${ }^{e}$ micro resist technology GmbH, Berlin, 12555 , Germany

Introduction

- Hybrid polymer working stamps for UV-NIL have become a common alternative to quartz molds [1-3]
- Defined area working stamps are of great interest for e.g. seamless step \& repeat UV-NIL [3]
- Direct Laser Writing (DLW) could be an interesting option for the fabrication of the intended hybrid polymer molds (freedom of design, no mask needed)

Experimental setup

- Spin-coating of hybrid polymers OrmoStamp ${ }^{\circledR}$ and OrmoComp ${ }^{\circledR} @ 5000 \mathrm{rpm}$ for 30 s
- Exposure @405 nm using Heidelberg DWL66+
- Development in OrmoDev for 2 min @RT
- Characterization using optical microscope, AFM and SEM

DLW Exposure under glass

-

Conclusions

- Successful fabrication of hybrid polymer mesas containing nanostructures by DLW

Outlook

- Investigate influence of post exposure bake (decrease of UV dose possible?)

Multi-pass exposure with reduced laser power leads to vertical sidewall formation

- Identify tolerable sidewall angle for S\&R mesa structures (decrease of process time)
[1] A. Kuklowska et al., Microelectron. Eng. 4-6 (2009), 697.
$\begin{aligned} & \text { [3] A. Schleunitz et al., J. Vac. Sci. Technol. B } 28 \text { (2010) C6M37. Mühlberger et al., Microelectron. Eng. 4-6 (2009), } 691 . \\ & \text { [4] A. Singh et al., Micromachines } 5 \text { (2014), } 472 .\end{aligned}$

NANO

