
Novice2Expert - a Cognitive Model within
a Usability Evaluation Framework

Karen Insa Wolf ∗ Rashik Thalappully ∗ Yves Wagner ∗∗

Frank Wallhoff ∗,∗∗ Jens-E. Appell ∗

∗ Fraunhofer Institute for Digital Media Technology IDMT
Marie-Curie-Str. 2, 26129 Oldenburg (e-mail: {insa.wolf,

rashik.thalappully, jens.appell} @idmt.fraunhofer.de).
∗∗ Jade University of Applied Sciences (e-mail: {wager,wallhoff}

@jade-hs.de)

Abstract: The motivation of the usability evaluation framework CogUA (Cognitive Usability
Analysis) is to support usability analysis processes of graphical user interfaces (GUI) based on
software tools deriving objective and reproducible evaluation parameters in a partly automatic
process. In the current prototype status, it consists of five modules: (i) Observer, (ii) Trace
Illustrator, (iii) Screen Shot Analyser, (iv) Use Case Detector and (v) Predictor. The framework
and its modules are shortly described in the paper. The focus of this paper lies on the fifth
module, the Predictor. It is based on a cognitive model to simulate human users while interacting
with a GUI. For the investigation, a test application is set up in which a label is presented as a
task on the screen. The user, respectively the model, has to find and click the button with the
presented label. The derived interaction times based on the model are compared with results of a
small user study in order to evaluate the different versions of the cognitive model. Three different
scenarios are investigated: (a) the model as a novice, searching each time for the correct button
on the screen, (b) the model, which is able to remember the position of buttons of the GUI,
and (c) the model, which is able to remember the position of buttons as well as the sequence
of the tasks. The interaction time necessary to execute a specific task sequence is reduced from
scenario (a) to (b) to (c). The relative reduction of interaction times derived from the user study
and predicted by the model is comparable.

Keywords: automated usability analysis, user interaction simulation, cognitive modelling,
ACT-R, computer vision

1. INTRODUCTION

The basic concept of CogUA was described in Wolf et al.
(2016). Originally the work is motivated by the idea that
software tools can support usability analysis especially in
application areas where classical usability methods are
rarely implemented. One such application area is the
production of special purpose machines. Future users come
commonly only in a very late phase in touch with the
user interface. Additionally, the direct exchange between
the developer of the user interface and the future user
is limited. The CogUA software tools aim at providing
relevant information for usability considerations. For this
different areas of computer science are combined within
the CogUA framework: computer vision, data mining
and cognitive modelling. The framework has now been
extended as described in the following paper.

2. USABILITY EVALUATION FRAMEWORK
COGUA

In the current prototype status CogUA consists of five
modules:

• Observer:
The Observer records user interactions like mouse

and keyboard events while interacting with an ap-
plication. The application is selected by the user.
Interactions linked to other applications are neglected
by the Observer to respect privacy aspects. In case
of a mouse click, a screenshot of the application is
taken. The recorded events are stored in a human-
readable log file, named as traces.

• Trace Illustrator
This module is used to visualize the trace informa-
tion time- and space-based. In Fig. 1 a time-based
overview is shown with different interaction events.
In the time-based overview, events can be selected to
replay the interaction sequences as a film based on
the screenshots including mouse movement and click
information, as depicted in Fig. 2. One can jump from
event to event to get a fast overview of the content of
the session.

• Screen Shot Analyser
This module is based on computer vision approaches
to identify the graphical elements like button and
text on the screen. This knowledge is applied in two
different ways. Firstly, it is used to link a mouse
click to a specific functional element of the GUI.
Augmented traces including this additional informa-
tion for the mouse events are generated. The second

7. Interdisziplinärer Workshop: Kognitive Systeme 
21.-22.6.2018, Braunschweig



Fig. 1. A time based overview of a recorded interaction
session. Green areas mark active breaks in which the
selected application is active but no action from the
user (especially no mouse movements), red areas mark
passive breaks in which another application than the
selected one is active.

Fig. 2. Re-constructed interaction session based on trace
information and screenshots recorded by the Ob-
server, shown in the Trace Illustrator.

way is the derivation of quality parameters of the
graphical layout considering the structure and layout
of the functional elements (e. g. contrast, size) as
very first rough usability check. The parameters are
categorized into different classes as shown in Fig.3.
Itention is to give a quick overview of the overall
quality focussing on the probably most critical pages
of the user interface.
• Use Case Detector

Based on the augmented traces this module detects
use cases as a repetitive pattern with the help of
a sequential data mining approach, cf. Wolf et al.
(2016).
• Predictor

This module simulates user interactions based on a
cognitive model to predict interaction times. It will
be explained in more detail in the following section.

3. MODULE COGUA PREDICTOR

In this paper, the focus lies on the cognitive model part,
the CogUA Predictor, which is evaluated based on a
small user study. The application of a cognitive model in
usability analysis is motivated by the full control of the
setting, the behaviour of the subjects and the options to
evaluate the detailed results, Ritter et al. (2001), West
and Emond (2002), followed also in current approaches,
e.g. Halbrügge (2013); Quade et al. (2014); Russwinkel and
Prezenski (2014); Prezenski et al. (2017).

Fig. 3. Concept of the score based quality check as part of
the Screen Shot Analyser. An extract of the GUI
is shown in the background with detected functional
elements marked in purple.

3.1 Concept

The use of a cognitive model to simulate user interactions
linked to a user interface is at least in research a common
practice, e.g. in gaming scenarios (Smart et al., 2016) or
car driving scenarios (Kujala and Salvucci, 2015). A moti-
vation for applying a cognitive model in usability analysis
is given in Ritter et al. (2001) and West and Emond (2002).
Summarizing, the usability analysis based on a virtual user
can supplement a standard usability evaluation. The ad-
vantages are the full control of the settings (background of
the subjects, the number of subjects, motivation validity,
exclusion of an experimental bias e.g. by comments of
the experimenter), and the drawbacks are the technical
limitations of the cognitive model which is complex and
time-consuming to implement.

In the next section, a short overview of existing approaches
of automated usability analysis with a link to a cognitive
model is given, followed by the description of main features
of the tool CogUA, which is under development.

3.2 State of the art

Cognitive models aim at simulating processes of the human
brain. Relevant processes for the mentioned application are
the perception (vision), motor functions (moving a hand,
fingers) and decision making using pieces of knowledge
stored in memory. There are different known realizations
of a cognitive model, as EPIC (Executive Process Inter-
active Control, Kieras and Meyer (1997)), SOAR (States,
Operators And Reasoning, Laird et al. (1987)) and ACT-
R (Adaptive Control of Thought-Rational, Anderson et al.
(2004)).

Different approaches of automated usability analysis in the
past 15 years also have a similar motivation as sketched
above, e.g. Misker et al. (2001); Ritter et al. (2001, 2002);
John et al. (2004); Heinath and Urbas (2007); Halbrügge
(2013); Quade et al. (2014); Russwinkel and Prezenski
(2014); Prezenski et al. (2017). Especially, the integration
of a cognitive model into usability analysis should be
simplified to allow a practical application in daily work
of a software developer of user interfaces. A framework of
templates of common user interactions (like mouse click,
keyboard stroke) linked to the cognitive model ACT-R is
proposed in Salvucci and Lee (2003). A similar idea is
realized in Heinath and Urbas (2007). The purpose is that

7. Interdisziplinärer Workshop: Kognitive Systeme 
21.-22.6.2018, Braunschweig



the person who sets up the usability test does not require
detailed knowledge of a cognitive model.

The CogTool (John et al., 2004) therefore provides a
graphical user interface with the help of which a user can
set up a visualization of the specific user interface he/she
wants to analyze. Alternatively, Hyper Text Markup Lan-
guage (HTML) code can be imported as the description
of the user interface. Based on this visualization of the
user interface a specific task consisting of different user
interactions (mouse click, keyboard strokes) can be defined
interactively with the CogTool GUI. Finally, the user runs
the analysis based on the cognitive model. The outcome
is a protocol of the predicted interactions including time
stamps. The duration of interaction is a key criterion in
the usability evaluation, cf. ISO 9241-210. The approach
of Misker et al. (2001) goes one step further by avoiding
the re-implementation of the user interface. On a Microsoft
Windows system Misker et al. (2001) take the information
about the user interface of an application from the window
handlers. This information is transferred to the cognitive
model. Actions, like a keyboard stroke, are returned from
the cognitive model to the application. In this way, the
cognitive model is directly linked to the user interface of
the original application. The approach is evaluated for
specifically defined use cases consisting of a sequence of
interaction steps. A newer approach focussing on Android
platform application is described in Prezenski et al. (2017).
A crawler software is used to get information about the
interaction elements of the selected application to derive in
an automated way pre-knowledge for the cognitive model.

The intention of the last mentioned approaches is to
minimize the workload to set up a cognitive model based
test. The high workload due to the complexity of the
model is one main obstacle for practical use of cognitive
models. The CogUA framework follows this motivation
to automate as much of the process as possible.

The approaches cited above, especially the one of Misker
et al. (2001) and CogTool, John et al. (2004), provide a
good basis, as no or only litte knowledge of a cognitive
model is required. But in the case of CogTool, it is
still necessary to re-implement the user interface (except
for web pages coded in HTML). In both approaches,
each specific use case must be defined step by step to
set up the test scenario. This definition of the use case
requires manual work by analyzing the user interface in
detail, e.g. by applying the Hierarchical Task Analysis,
cf. Heinath and Urbas (2007).

CogUA aims at the reduction of the effort of defining the
use cases manually. The idea in CogUA is to monitor user
interactions and to derive interaction traces. These traces
can then be analyzed to identify use cases. Additionally,
the approach of Misker et al. (2001) is extended by
automated analysis of the graphics of the user interface.
Thereby, the information of the GUI elements is not
limited by the restricted content of the window handler.

The recording of user interaction traces is applicable if an
implementation of the user interface already exists, either
(a) as a prototype or (b) as running application, which
should be modernized. In case (a), the steps of a use case
can be defined by executing them on the prototype user
interface. A manual pre-analysis of the workflow or expert

Fig. 4. Screen shot of one layout of the application for the
user study. The button which are used repetitively
are marked, in scenario Novice and Task in a fixed
order which is colour coded from light to dark color.

knowledge is here necessary in order to select appropriate
use cases. In case (b), the idea is that use cases are derived
based on interaction traces recorded during the use of the
software in practical work. The identified use cases are the
basis to define the final use cases for the cognitive model.
Additionally, the use cases can already be helpful for the
design of a new version of the user interface with a better
mapping of the workflow. Former workarounds, detected
in the traces, can be re-designed as a standard process.

3.3 Architecture

The model is implemented based on the ACT-R archi-
tecture (Adaptive Control of Thought-Rational, Anderson
et al. (2004)). A prototypic implementation of CogUA
allows to link the model to any windows based application
as the input information for the model is derived using
the recording and subsequent computer vision analysis
functionality. Within the user study comparison, a source
code based link between the application and the model
is realized to exchange in real-time visual and motoric
information (mouse clicks). The GUI used in the user
study is implemented in Python as shown in Fig. 4.

The framework consists of two parts and is based on
the client-server architecture. The first part, the task
environment which is developed in Python acts as the
server. Task environment’s duty is to define that tasks and
communicate the tasks to the ACT-R model which in turn
will perform the specified task.

The second part is an ACT-R module developed in Lisp
in order to interact with the external environments. The
implementation is similar to the module described in
Hope (2013). This module acts as the client in the client-
server model. The information exchange between client
and server is happening over TCP-IP and is encoded in
JSON Format.

3.4 Implementation of the model

The idea is to investigate the behaviour of a novice user in
comparison to users who already know a specific interface.
Therefore three different versions of the cognitive model
are implemented:

• Model Novice:
The model is a novice, who has no information where

7. Interdisziplinärer Workshop: Kognitive Systeme 
21.-22.6.2018, Braunschweig



the correct button is. The model has to start a visual
search to find the correct button.
• Model Button:

This model starts as a novice but is able to remember
the position of the buttons. As consequence, the
interaction times are reduced when the same tasks
occur as no visual search is necessary.
• Model Task:

This model is able to remember the position of the
buttons and additionally remembers the sequence of
the tasks. This reduces the interaction time again as
there is no need to check for the new task.

To keep the implementation and the evaluation simple
in the first step no noise, no subsymbolic learning is
activated for the model. As consequence the model behaves
as ”perfect learner”, never forgetting something. It is clear
that this does not simulate a human user but is chosen to
prove easily the correct functionality of the first versions
of the model.

Additionally, a simple visual search strategy for the model
is implemented. It searches row-wise from upper left corner
to lower right corner for the correct button. The search is
based on visual search window of size 100 by 100 pixels.

4. SET UP OF THE USER STUDY

The intention for the user study is to evaluate the three
first versions of the cognitive model. The tasks for the users
is based on a very simple GUI application which is shown
in Fig. 4. Similar to a calculator application 20 buttons
are ordered in a five by four matrix. Above this button
matrix, the user gets presented new tasks on left white
area, on the right the result of the last click.

Three different scenarios are considered to match the
different capabilities of the three versions of the model
described above. The first scenario asks for a novice user.
Looking at the model it is quite easy to generate a novice:
it is just not able to remember something. But how to set
up a user study avoiding that humans do not remember?
The simplest way to realize this is to shuffle the labels of
the buttons after every click. The user is then forced to
search the correct button exactly the same way the model
has to.

In the second scenario, the user should be able to re-
member the position of the button just like the model.
Therefore, the layout is fixed, the labels of the buttons
remain the same. But the tasks are presented in a random
order.

Finally, in the third scenario, also the sequence of the
tasks is fixed. This allows the user to remember it and
to directly click on the next button without looking at the
task window.

Based on this, the following cases for the user study were
set up. All study cases consist of three runs with a sequence
of click tasks which should be executed as concentrated
as possible. After one run the user gets a break of at
least five seconds. A subgroup of buttons is chosen as
task sequence to make the recorded data comparable. The
subgroup contains seven buttons as displayed in Fig. ??.
Within one run this task sequence is repeated.

• Study Novice
In this study, the selected task sequence is repeated
three times, other - randomly chosen - buttons are in-
troduced between the sequences to hide the repetitive
pattern for the user. One run consists of 30 tasks.

• Study Button
In this study, the selected task sequence is repeated
four times in a shuffled order. One run consists of 28
tasks.

• Study Task
In this study, the selected task sequence is repeated
four times in a fixed order. One run consists of 28
tasks.

A number of n = 12 users executed the three different
study cases as described above and the click times are
recorded. The model was linked to the same application
and the click times were recorded in the same way.

5. RESULTS OF THE USER STUDY

The reduction of interaction times from case Study Novice
to Study Button and to Study Task can be seen in
the user data, as expected. The resulting interaction times
for each of the three runs for three selected users and the
model is shown in Fig. 5.

The difference between the three users is large. User-2 is a
candidate with very few practical experience in computer
interaction. User-3 matches very well the predicted time
of the model. The results of the studies Study Button
and Study Task show a plausible reduction of interaction
time from run to run.

This reduction of interaction time is investigated based on
the overall time necessary for completing one task sequence
with seven buttons to be clicked. In study Study Novice,
this is done three times per run, so in total nine times. For
the two other study cases, this is completed 12 times. Fig. 6
shows mean values of these times average over all users in
comparison to the results of the model.

The range of the interaction time is approximately the
same, the pattern is similar. Due to the fixed visual search
strategy, the interaction times for the model are constant
in the study Study Novice. And as described above the
model behaves in the current version as a perfect learner.
Consequently, the effect of reduction in interaction times
occurs directly for the second sequence. Thereafter the
time remains constant, with slight differences in study case
Study Button due to the different order of the tasks in
each task sequence. The differences can be explained by
Fitts’ law based on the differences in the click paths.

Considering the standard deviations the mean values
based on the user data are compared with the predicted
times from the model. The standard deviation is marked
in black color if the difference between mean value of user
data and the model prediction is non-significant, otherwise
in red. In case Study Button the last two and in case
Study Task the last three sequences of the model agrees
with the data from the user study following a t-test with
α = 5%.

What about the relative reduction of interaction time? We
compare the reduction in time based on the last sequence

7. Interdisziplinärer Workshop: Kognitive Systeme 
21.-22.6.2018, Braunschweig



Fig. 5. Accumulated interaction time necessary to com-
plete the task in each of the three runs in all
three study cases. Overall time is reduced from
Study Novice to Study Button to Study Task
as expected.

in Study Button and Study Task in comparison to
the weighted mean of all sequences in Study Novice.
This results for the mean values of the users in a time
improvement of 32% in case of Study Button and
45% in case of Study Task. The model predicts an
improvement of 23% and 38%, respectively. Considering
the propagated standard deviation the differences between
model and user are not significant. Of course, one has to
admit that the variance between the different users are
relatively high, the standard deviation of a single time

Fig. 6. Mean time based on all users (n = 12) neces-
sary to complete one task sequence of length seven.
Study Button and Study Task show a reduction
of interaction time as the positions of the buttons
or even the task sequence can be remembered. As
the model is implemented as ”perfect learner” the
reduction occurs directly for the second sequence and
remains constant in the following sequences. The ver-
tical lines indicate the standard deviation of the mean
values of the user data. The lines are marked red if the
difference between the time predicted by the model is
significantly different to those of the users.

value for one task sequence range from 2 to 9 seconds.
Especially in the Study Novice outliers occur when a
user misses several times the correct button in the visual
search.

6. CONCLUSIONS AND OUTLOOK

In this paper, results of the simulation of user interactions
based on a cognitive model are shown as next develop-
ment step of the CogUA framework. Interaction times
of different simulation scenarios for the cognitive model
compared to times recorded in user studies are discussed.
The variance within the user data is high, especially under
the condition of a novice, forced to search for the correct
button. Three different scenarios are investigated with
different memory capabilities of the model. The user study
is designed in the way that the human users are limited to
the same memory capabilities as the model. The more the
model and the user are able to remember (button position,
task sequence) the smaller are the necessary interaction
times for a specific task, as expected. The relative reduc-
tion of interaction times of the model agrees statistically
with the user data. Overall shows the cognitive model in
the current version too low interaction times, it is too fast.

The described user study was used to check the principle
plausibility of the model implementation. The simple these
versions of the model are, they could be used as reference
basis for comparison of different user interfaces in a relativ
manner. Such a virtual user can supplement a standard us-
ability evaluation by providing reproducible and tangible
usability results that can easily be compared. A remaining
disadvantage of this kind of cognitive model is the missing
context knowledge.

REFERENCES

Anderson, J.R., Bothell, D., Byrne, M.D., Douglass, S.,
Lebiere, C., and Qin, Y. (2004). An integrated theory
of the mind. Psychological review, 111(4), 1036–1060.

7. Interdisziplinärer Workshop: Kognitive Systeme 
21.-22.6.2018, Braunschweig



Halbrügge, M. (2013). ACT-CV: Bridging the gap be-
tween cognitive models and the outer world. In
E. Brandenburg, L. Doria, A. Gross, T. Günzlera, and
H. Smieszek (eds.), Grundlagen und Anwendungen der
Mensch-Maschine-Interaktion - 10. Berliner Werkstatt
Mensch-Maschine-Systeme, 205–210. Universitätsverlag
der TU Berlin.

Heinath, M. and Urbas, L. (2007). Simplifying the develop-
ment of cognitive models using pattern-based modeling.
In 10th IFAC/IFIP/IFORS/IEA Symposium Analysis,
Design, and Evaluation of Human-Machine Systems.
Seoul, Korea., 130–135.

Hope, R.M. (2013). The JSON network interface program-
mers guide. Technical report, Rensselaer Polytechnic In-
stitute. https://github.com/RyanHope/json-network-
interface/tree/master/documentation, 15.6.2018.

John, B.E., Prevas, K., Salvucci, D.D., and Koedinger,
K. (2004). Predictive human performance modeling
made easy. In Proceedings of the SIGCHI conference on
Human factors in computing systems, 455–462. ACM.

Kieras, D.E. and Meyer, D.E. (1997). An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Human-
computer interaction, 12(4), 391–438.

Kujala, T. and Salvucci, D.D. (2015). Modeling visual
sampling on in-car displays: The challenge of predicting
safety-critical lapses of control. International Journal of
Human-Computer Studies, 79, 66–78.

Laird, J.E., Newell, A., and Rosenbloom, P.S. (1987).
Soar: An architecture for general intelligence. Artificial
intelligence, 33(1), 1–64.

Misker, J., Taatgen, N.A., and Aasman, J. (2001). Validat-
ing a tool for simulating user interaction. In Proceedings
of the Fourth International Conference on Cognitive
Modeling, 163–168.

Prezenski, S., Bruechner, D., and Russwinkel, N. (2017).
Predictive cognitive modemodel of applications. In
Proceedings of the 12th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications - Volume 2: HUCAPP, (VISI-
GRAPP 2017), 165–171.

Quade, M., Halbrügge, M., Engelbrecht, K.P., Albayrak,
S., and Möller, S. (2014). Predicting task execution
times by deriving enhanced cognitive models from user
interface development models. In Proc EICS 2014, 139–
148.

Ritter, F.E., Baxter, G.D., Jones, G., and Young, R.M.
(2001). User interface evaluation: How cognitive models
can help. Human-computer interaction in the new
millennium, 125–147.

Ritter, F.E., Van Rooy, D., and Amant, R.S. (2002). A user
modeling design tool based on a cognitive architecture
for comparing interfaces. In Computer-Aided Design of
User Interfaces III, 111–118. Springer.

Russwinkel, N. and Prezenski, S. (2014). ACT-R meets
usability. In Proc 6th International Conference on Ad-
vanced Cognitive Technologies and Applications COG-
NITIVE, 2014. Venice, Italy: IARIA.

Salvucci, D.D. and Lee, F.J. (2003). Simple cognitive
modeling in a complex cognitive architecture. In Pro-
ceedings of the SIGCHI conference on Human factors in
computing systems, 265–272. ACM.

Smart, P.R., Scutt, T., Sycara, K., and Shadbolt, N.
(2016). Integrating ACT-R cognitive models with the
unity game engine. Integrating Cognitive Architectures
into Virtual Character Design. IGI Global, Hershey,
Pennsylvania, USA.

West, R.L. and Emond, B. (2002). Can cognitive mod-
eling improve rapid prototyping. Carleton University
Cognitive Science Technical Report, 5.

Wolf, K.I., Thalappully, R., Goetze, S., and Wallhoff, F.
(2016). Concept of automated usability evaluation of
graphical user interfaces. In Proc 5. Interdisziplinärer
Workshop Kognitive Systeme, 14.-16.3.2016, Bochum.

7. Interdisziplinärer Workshop: Kognitive Systeme 
21.-22.6.2018, Braunschweig




