
A publication by Fraunhofer IESE

GoPhone - A Software Product Line in the
Mobile Phone Domain

Authors:
Dirk Muthig
Isabel John
Michalis Anastasopoulos
Thomas Forster
Jörg Dörr
Klaus Schmid

IESE-Report No. 025.04/E
Version 1.0
March 5, 2004

Fraunhofer Institut
Experimentelles

IESE

Software Engineering

GoPhone - A Software Product Line in
the Mobile Phone Domain

Autoren:
Dirk Muthig
Isabel John
Michalis Anastasopoulos
Thomas Forster
Jörg Dörr
Klaus Schmid

Report ViSEK/016/E
Version 1.0
05.03.2004
Klassifikation: public

vCopyright  ViSEK 2004

Zusammenfassung

This report provides insights into component-based product line engineering on
the basis of a case study from the mobile phones domain. The reader follows
the systematic creation of a hypothetical software product line according to the
PuLSETM and KobrA methods developed at Fraunhofer IESE. Scoping as well as
Application and Framework Engineering are covered. Our goal was to provide as
broad an overview as possible. For that reason many details haven been inten-
tionally left out.

Schlagworte: Software Product Lines, Component-oriented development, Scoping, Domain
Analysis, Architecting, Implementation, Decision Modelling, Instantiation, Appli-
cation Engineering, Framework Engineering

Das diesem Bericht zugrundeliegende Vorhaben wurde mit Mitteln des Bundesministeriums für
Bildung und Forschung unter dem Förderkennzeichen 01 IS A02 gefördert.
Die Verantwortung für den Inhalt dieser Veröffentlichung liegt bei den Autoren.

vi Copyright  ViSEK 2004

viiCopyright  ViSEK 2004

Inhaltsverzeichnis

1 Introduction 1
1.1 Motivation 1
1.2 Software Product Lines 2
1.3 PuLSE (Product Line Software Engineering) 4
1.3.1 Deployment Phases 5
1.3.2 Technical Components 6
1.3.3 Support Components 8
1.4 The KobrA Method 9
1.4.1 Framework Engineering 10
1.4.2 Application Engineering 14
1.5 The Go Phone Case Study 17
1.6 Outline 18

2 Product Line Scoping 20
2.1 Understanding the Product Portfolio 22
2.2 Describing the product portfolio 23
2.2.1 Go Phone Smart 26
2.2.2 Go Phone XS 27
2.2.3 Product Genealogy and Characterization 28
2.3 Describing the relevant domains 32
2.3.1 Messaging 33
2.3.2 Message Controller 36
2.3.3 Domain Structure 39
2.3.4 Initial Product Map 39
2.4 Analyzing benefits and risks of domains 42

3 Domain Analysis 49
3.1 Customization of PuLSE CDA 50
3.2 Use Case Modelling 52
3.2.1 Use Case Send Message 56
3.2.2 Use Case Show Message 58
3.2.3 Use Case Start Chat 62
3.2.4 Use Case View and Save calendar entry 65
3.3 Feature Modelling 66
3.4 Decision Modelling 72

4 Product Line Architecture 74
4.1 Architectural Styles & Patterns 74
4.1.1 Mediator Pattern 74
4.1.2 State pattern 75

viii Copyright  ViSEK 2004

4.2 The KobrA process 76
4.2.1 Context Realization 76
4.2.2 PhoneComponent 78
4.2.3 ComponentManager 80
4.2.4 Component Tree 81
4.2.5 Implementation models 82
4.3 Variability Mechanisms 83
4.3.1 Aspect oriented programming 85

5 Infrastructure Usage 88
5.1 Product Derivation Process 88
5.2 Domain Model Instantiation 88
5.3 Process Hierarchy Instantiation 92
5.4 Architecture Instantiation 93
5.5 Code Generation 94
5.5.1 Increasing the efficiency of Component implementation 94
5.5.2 Graphical Modelling of a Phone Component 95
5.5.3 Supporting Variability 95
5.5.4 The technical realization 96
5.5.5 Conclusion 99

6 Analysis and Future Work 100

7 Glossary 101

8 References 102

1

Introduction

Copyright  ViSEK 2004

1 Introduction

This report describes a case study in developing and documenting software
product lines, which has been performed in the context of the ViSEK project.

This chapter introduces the context and the background of the case study. It
begins with the overall motivation for performing it, then it introduces the gen-
eral concepts of software product lines, as well as describes the methods and
techniques used, that is, PuLSE (Product Line Software Engineering) and the
KobrA method.

Section 1.5 and Section 1.6 finally give a high-level overview of the case study
described and respectively of the outline of the overall report.

1.1 Motivation

Software development today faces several challenges. There is a critical need to
reduce cost, effort, and time-to-market of software products, but, at the same
time, complexity and size of products are rapidly increasing and customers are
requesting more and more quality products tailored to their individual needs
[10].

Experience of many software organizations shows that the traditional way of
software development is not efficient enough to meet all these challenges.
Here, traditional software development means that all development activities
are performed in the context of a development project and thus focus only on
the particular software ultimately delivered by a single project. Hence, an
approach is needed that provides a point-of-view orthogonal to the project
structure and thus allows commonalities among projects to be identified and
effort to be shared between several projects.

Software product line engineering is such an approach that views the software
products delivered by an organization as members of the same product family,
which share several common characteristics. Although significant effort has
been invested into research and transfer of product line concepts, theory, and
methods in academia, as well as in industry ([11], [12], [13]) it is still a challenge
for organizations to identify the methods and techniques applicable in their par-
ticular context and to seamlessly integrate them with their current practices,
tools, and standards.

2

Introduction

Copyright  ViSEK 2004

This also results from the fact that product line methods are typically described
and published in a very abstract way simply because the concrete examples are
too valuable to an organization to be made publicly available.

The case study described in this report thus serves two purposes. On the one
hand, it is directly meant to be a “complete” example of a software product line
that can be studied by researchers and practitioners to support their under-
standing of what software product lines practically are. On the other hand, we
hope that the case study provides the material that more people developing and
describing product line technologies can use to demonstrate and illustrate their
methods, techniques, or tools. If this would be achieved, researcher and practi-
tioners could both better compare the different approaches available.

1.2 Software Product Lines

Nearly all software organizations today develop and maintain more than a single
product. This holds for organizations that develop tailored systems individually
for single customers, as well as for organizations that develop products for a
mass market. Even for organizations that believe to develop a single product
only, surveys have uncovered that also these organizations spend most of their
resources on tailoring their systems to the needs of individual customers or
enhancing systems by features that are newly required by customers [14], and
thus also these organizations must maintain and evolve a set of customer-spe-
cific variants.

The products developed by an organization typically are similar applications in
the same application domain. Hence, these products share some common char-
acteristics and thus can be viewed as a software product line. Product lines of
organizations can generally be characterized by the rate of variety and change
over time, that is the number of product variants existing at a given point in time
and the difference between the sets of existing product variants between a fixed
time span. The main product-line categories are visualized in Figure 1.

Figure 1:Character-
ization scheme for
software product
lines

Variety

Change Rate

Variety-
Intensive

Change-
Intensive

Dynamic

Variety

Change Rate

Variety-
Intensive

Change-
Intensive

Dynamic

3

Introduction

Copyright  ViSEK 2004

Today, complexity and size of software products is rapidly increasing and cus-
tomers are requesting more and more quality products tailored to their individ-
ual needs. Consequently, the variety and the change rate of the average prod-
uct line increase. The higher the variety or the change rate of its product line,
the bigger the challenges an organization must master and thus the higher the
requirements on its development skills. Hence, there is a need for organizations
to learn how to manage a product line or how to improve their way of manag-
ing it.

The following list gives an overview of typical problems that arise as the com-
plexity of a product line increases:

• The same functionality is developed several times for different products or
customers.

• The same changes must be repeated for different products.
• Identical features behave differently depending on the particular product.
• Some products cannot be updated anymore and customers must migrate to

another product variant or version.
• It is not possible to predict the costs of introducing an implemented feature

from a product into another variant.
• Changes to the common infrastructure lead to unpredictable changes of

behavior in the various products.
• The maintenance effort explodes and thus free resources for new product

developments become rare.

Product line engineering is an approach whose goal is to avoid these kind of
problems by explicitly managing software product lines. Therefore, the overall
development life-cycle is split into two concurrent phases: family engineering
and application engineering (as depicted in Figure 2). Family engineering ana-
lyzes current and planned products developed by an organization with respect
to their common and varying characteristics (i.e. commonalities and variabilities).
The commonalities and variabilities are then used to construct a product line
infrastructure, which is a repository of reusable artifacts. Application engineer-
ing uses this infrastructure to construct particular products

4

Introduction

Copyright  ViSEK 2004

Figure 2:Product line
engineering life-
cycle

.

However, the above problems may also exist in organizations that already recog-
nized their product line and thus created a product line infrastructure (or a com-
mon platform) for their systems. This happens simply because either developers
of particular products do not know that the functionality they require has
already been realized as part of the platform (or in the context of another
project) or the platform does not evolve as fast as required and thus provides
over time less and less of the functionality required. Hence, the usage and evolu-
tion of the product line infrastructure must be supported in a way that avoids
these problems. Therefore, product line technologies are required that effec-
tively support the identification of reusable artifacts, as well as the efficient
adaptation and extension of the infrastructure. The latter requires explicit means
for capturing and controlling commonalities and variabilities.

This report describes a case study that demonstrate how a software product line
can be realized successfully in practice. The case study applies two methods for
systematically developing software product lines: PuLSE and the KobrA method.
These are described in the following two subsections.

1.3 PuLSE (Product Line Software Engineering)

PuLSE is a method for enabling the conception and deployment of software
product lines within a large variety of enterprise contexts. This is achieved via a
product-centric focus throughout its phases, customizability of its components,
an incremental introduction capability, a maturity scale for structured evolution,
and adaptations to a few main product development situations.

Figure 3 shows an overview of PuLSE.

Software Development Organization

Domain

Family Engineering

Application Engineering

Product Line
Infrastructure

(Domain
Artifact Base)

Feedback

Requirements C
Requirements B

Product
Requirements A

Product
Product

Requirements

Software Development Organization

Domain

Family Engineering

Application Engineering

Product Line
Infrastructure

(Domain
Artifact Base)

Feedback

Requirements C
Requirements B

Product
Requirements A

Product
Product

Requirements

5

Introduction

Copyright  ViSEK 2004

Figure 3:PuLSE over-
view

.

PuLSE is centered around three main elements: the deployment phases, the
technical components, and the support components.

1.3.1 Deployment Phases

The deployment phases are logical stages of the product line life cycle. They
describe activities performed to set up, use, and evolve product lines. The
deployment phases are:

PuLSE initialization

PuLSE is customized to the context of its application. The principle dimensions of
adaptation are the nature of the domain, the project structure, the organiza-
tional context, and the reuse aims.

The initialization phase is realized by the technical component for customizing,
PuLSE-BC.

Product line infrastructure construction

The product line infrastructure is set up. This is done by scoping, modelling, and
architecting the product line.

These activities are realized by the corresponding technical components PuLSE-
Eco, PuLSE-CDA, and PuLSE-DSSA, respectively.

Customizing (BC)

Product Line
Infrastructure

Evolution

PuLSE Initialization

Product Line
Infrastructure
Construction

Product Line
Infrastructure Usage

Scoping (Eco)

Modelling (CDA)

Architecting (DSSA)

Evolving & Mgmt. (EM)

Project Entry Points Maturity Scale Organization Issues

Support Components

Deployment Phases Technical Components

Instantiating (I)

6

Introduction

Copyright  ViSEK 2004

Product line infrastructure usage

The product line infrastructure is used to create a single product line member.
This is done by instantiating the product line model and architecture.

The PuLSE-I technical component realizes this phase.

Product line infrastructure evolution

Concepts within the domain or other requirements on the product line may
change over time. The evolution of the product line is handled in this phase.
The process for controlling evolution is realized by the PuLSE-EM technical com-
ponent.

1.3.2 Technical Components

The technical components provide the technical know-how needed to opera-
tionalize the product line development. They are used throughout the deploy-
ment phases. The technical components are:

Baselining and Customization (PuLSE-BC)

Baseline the enterprise and customize PuLSE. The result is an instance of PuLSE
— that is, instances of the other technical components — tailored to the specific
application context.

Economic scoping (PuLSE-Eco [3])

Identify, describe, and bound the product line. This is done by determining the
characteristics of the products that constitute the product line. Economic scop-
ing in PuLSE means that the scope is determined with respect to business objec-
tives and planned products.

The output of PuLSE-Eco are the product characteristic information and the
scope definition. These outputs together describe the contents of the product
line. The product characteristic information describes the common and variable
characteristics of all products in the product line.
The scope definition identifies the range of characteristics that systems in the
product line should cover. The basis for the scope definition is a product map
that relates the characteristics to the different products. A product map is a
table, which lists the characteristics mentioned in the product characteristic
information as its rows and the products as its columns. The table cells contain a
cross when a product contains a characteristic.

7

Introduction

Copyright  ViSEK 2004

To determine the scope, the benefit provided by including a characteristic into
the scope relative to business objectives is determined. The scope definition is
then an identification of a subset of the characteristics that shall be developed
for reuse.

The benefit is calculated with functions. Characterization functions describe the
benefit of having a certain characteristic in a certain product. The business
objectives are expressed in terms of benefit functions that describe the benefit
accrued by integrating a certain characteristic into the product line scope. By
gathering values for the characterization functions, the benefit functions can be
solved to determine the appropriate scope.

Customizable Domain Analysis (PuLSE-CDA [4])

Elicit the requirements for a domain and document them in a domain model
(a.k.a. product line model).

A product line model is composed of multiple workproducts that capture differ-
ent views of a domain. Each view focuses on particular information types and
relations among them. In the workproducts, common requirements (commonal-
ities) and requirements that vary for the different systems (variabilities) are mod-
eled. Therefore, they are referred to as generic workproducts. There are three
types of variabilities: optional, alternative, and range requirements.

Each generic workproduct has defined meta elements for each variability type.
Meta elements indicate points of variation and enable the instantiation of the
workproducts.

The variabilities (expressed by meta elements) are connected to decisions that,
when completely resolved, specify a particular system, a member of the product
line. The decisions are at different levels of abstraction and are hierarchically
structured based on constraints among them. The decision hierarchy is called
the domain.

To specify a particular system in the product line, the product line model is com-
pletely instantiated. The instance of the product line model is generated by pass-
ing all resolutions of the decisions to the connected meta elements, which
instantiate their corresponding part of the product line model.

Domain Specific Software Architecture development (PuLSE-DSSA [5])

Develop a reference (or domain specific) architecture based on the product line
model.

A reference architecture description consists of multiple models that describe
different views on the reference architecture. Each of the views is composed of

8

Introduction

Copyright  ViSEK 2004

view-specific components and connectors that describe the architecture from a
different perspective. Similar to a product line model, a reference architecture
description is an architecture description that also captures variability in the
architectures for the different systems in the product line.

During the reference architecture development, certain decisions arise that are
not driven by the domain. These decisions may introduce domain-independent
variabilities. The resulting decision model is called the architecture decision
model.

An optional output of PuLSE-DSSA is a prototype that may have been created.

Instantiation (PuLSE-I)

Specify, construct and validate one member of the product line. This encom-
passes the instantiation of the product line model and the reference architec-
ture, the creation and/or reuse of assets that constitute the instance, and the
validation of the resulting product. Additionally, reusable assets that are
needed, that have not been created yet, are developed and put into the reus-
able asset base.

Evolution and Management (PuLSE-EM)

Guide and support the application of PuLSE throughout the deployment phases
initialization, construction, usage, and evolution.

PuLSE-EM is centered around three basic tasks: product line management, evo-
lution, and learning. Product line management provides means for scheduling
and coordinating the technical components, as well as for observing the product
line and its environment to be able to respond quickly to emerging needs. Prod-
uct line evolution supports systematic change request processing. This includes
the evaluation of change requests and the assessment of their effects on exist-
ing parts of the product line infrastructure. Learning analyzes the product line
and changes that occur over time. The goal is to learn about patterns of product
line evolution that would allow for acting in anticipation of future problems,
needs, or changes.

Additionally, PuLSE-EM includes the configuration management framework that
underlies and supports the product line infrastructure.

1.3.3 Support Components

The support components provide guidelines that support the other components.
They are:

9

Introduction

Copyright  ViSEK 2004

Project Entry Points

Project entry points are guidelines to customize PuLSE for a set of standard situ-
ations. For example, in reengineering driven PuLSE projects, legacy assets are a
major source of information and guidelines on how to integrate them are given
in the respective entry point.

Maturity Scale

It is used to evaluate the quality of a PuLSE process application in enterprises
with the intention to identify and improve weak points. The levels on the scale
are: initial, defined, controlled, and optimizing.

Organizational Issues

For PuLSE to be most effective, an organization structure has to be set up and
maintained that supports the development and management of product lines.
Guidelines on how to do that are given here.

1.4 The KobrA Method

The KobrA method1 represents a synthesis of several advanced software engi-
neering technologies, including product line development, component-based
software development, frameworks, architecture-centric inspections, quality
modelling, and process modelling [19]. These have been integrated into the
KobrA method with the basic goal of providing a systematic approach to the
development of high-quality, component-based application frameworks.
Numerous methods claim to support component-based product line develop-
ment, but as already mentioned above, many of these invariably tend to be
rather vague and unprescriptive in nature. They define a lot of possibilities, but
provide little, if any, help in resolving the resulting choices between them. The
KobrA method, in contrast, aims at being as concrete and prescriptive as possi-
ble.

A fundamental tenet of the KobrA method is the strict distinction of products
and processes. The products of a project (e.g., models, documents, code mod-
ules, test cases, etc.) are defined independently of, and prior to, the processes
by which they are created, and effectively represent the goals of these pro-
cesses. Furthermore, all products are organized around, and oriented towards,

1 The KobrA project was funded by the German Government and was being undertaken by a consortium
of four organizations: Softlab GmbH, Munich, Psipenta GmbH, Berlin, Fraunhofer-FIRST, Berlin and
Fraunhofer IESE, Kaiserslautern.

10

Introduction

Copyright  ViSEK 2004

the description of individual components. This means that, as far as possible,
there are no global or system-wide products - all products (and accompanying
processes) are defined to carry information only related to their particular com-
ponent. The advantage is that components (and the products that describe
them) can then easily be separated from the environment in which they were
developed and therefore can be reused independently.

From a product line perspective, the KobrA method represents an object-ori-
ented customization of the PuLSE method. The infrastructure construction
phase of PuLSE corresponds to the framework engineering activity, the infra-
structure usage phase of PuLSE corresponds to the application engineering
activity, and the product line evolution phase of PuLSE corresponds to the main-
tenance of the frameworks and applications.

The purpose of the framework engineering activity is to create, and later main-
tain, a generic framework that embodies all product variants that make up the
family, including information about their common and disjoint features. The
purpose of the application engineering activity is to instantiate this framework
to create particular variants in the product family, each tailored to meet the spe-
cific needs of different customers, and later to maintain these concrete variants.
A given framework can therefore be instantiated multiple times to yield multiple
applications.

It is important to note that the distinction between the framework activities in
the KobrA method is the level of generality/specificity, not the level of detail. In
fact, the framework and application engineering activities both result in descrip-
tions of components in terms of a mixture of textual and UML-based (graphical)
models. The difference between the two is that the framework models poten-
tially contain variabilities, while the application models do not. The advantage of
using the UML is that frameworks and associated application are independent
of any particular programming language or component technology (e.g., Java
Beans, COM, CORBA).

The transformation of an application into an executable form is carried out in a
distinct set of activities that are essentially orthogonal to the framework and
application engineering activities. The implementation activity takes instantiated
UML models and maps them, through a series of well-defined refinement and
translation steps into an executable representation (e.g., high-level source code)
[6]. Finally, the build activity actually creates binary load modules ready for
deployment in the target environment.

1.4.1 Framework Engineering

In the KobrA method, a framework is the static representation of a set of
Komponents1 organized in the form of a tree. Each Komponent is described at

11

Introduction

Copyright  ViSEK 2004

two levels of abstraction - a specification, which defines the Komponent's exter-
nally visible properties and behaviors, and thus serves to capture the contract
that the Komponent fulfils, and a realization, which describes how the Kompo-
nent fulfils this contract in terms of contracts with lower level Komponents. A
framework, therefore, is a tightly coupled arrangement of Komponent specifica-
tions and realizations. Figure 4 shows

Figure 4:Kompo-
nent Specification
and Realization

the general set of UML models, which make up Komponent specifications and
realizations.

To start the framework development process, the context of the Komponent at
the root of the tree is modeled. Since this takes the form of a realization it is
known as the context realization. Subkomponents are then identified, their
specifications derived from the context realization models, and finally the subko-
mponents realizations are designed. This is performed recursively until no fur-
ther subkomponents are required.

The framework is a reuse infrastructure for creating systems within the applica-
tion domain. The family aspects are captured by decision models, which, are a
part of all specifications and realizations. The decisions relate to variabilities in
the domain that are explicitly reflected in the models of the generic framework.

1 In the KobrA method, we use the term “Komponent” as shorthand for “KobrA component”

Specification Models

Realization Models

Functional Model
(Operation Schemata)

Decision Model
(Textual)

Structural Model
(UML Class/Object Diagrams)

Behavioral Model
(UML Statechart Diagrams)

Structural Model
(UML Class/Object Diagrams)

Execution Model
(UML Activity Diagrams)

Decision Model
(Textual)

Interaction Model
(UML Collaboration Diagrams)

Komponent

This font is too small to be read
This font is too small to be read

This font is too small to be read
This font is too small to be read

This font is too small to be read

This font is too small to be read
This font is too small to be read

This font is too small to be read
This font is too small to be read

This font is too small to be read

This font is too small to be read
This font is too small to be read

This font is too small to be read
This font is too small to be read

This font is too small to be read

12

Introduction

Copyright  ViSEK 2004

Context Realization

Framework engineering starts with the elicitation of the environment properties
for the planned system family, including the determination of the framework's
scope. The underlying elicitation process and the used workproducts depend on
the domain of interest and the project context, as described in [7]. However, the
application of KobrA requires a particular set of models at the end of context
realization, which is needed to begin the recursive KobrA development process.
These models correspond to the models used for realizing Komponents.

Komponent Specification

The goal of Komponent Specification is to create a set of models that collectively
describe the externally visible properties of a Komponent. As such, the specifica-
tion can be viewed as defining the interface of a Komponent and describing the
services a Komponent provides to its parent. The specification of a Komponent
is comprised of four main models: the structural model, the behavioral model,
the functional model, and the decision model. The structural, behavioral and
functional models constitute the specification models for a Komponent as it is
used in all applications covered by the framework. The decision model contains
information about how the models change for the different applications.

The structural model describes the classes and relationships by which a Kompo-
nent interacts with its environment, as well as any internal structure of the
Komponent, which is visible at its interface. The structural model is composed of
UML class diagrams and UML object diagrams. Class diagrams define the
classes, attributes, and relationships that describe the externally visible types
characterizing the Komponent's relationship to its environment. Object dia-
grams are only needed if the Komponent under specification contains white box
components. If this is the case, the purpose of the object diagrams is to describe
the parts of the internal structure that are externally visible.

A Komponent's decision model describes the different variants of the Kompo-
nent. It is an extension of the decision model of the Komponent's parent. Vari-
abilities that arise during the Komponent specification are investigated, and a
determination made about whether variabilities can be captured by already
existing decisions or if new decisions have to be added to the decision model.

The behavioral model describes how a Komponent reacts in response to external
stimuli. It consists of an arbitrary number of UML statechart diagrams and an
optional event map. A statechart in a KobrA specification describes user visible
states of a Komponent and state changes that are reactions on user visible
events. Events represent requests for the execution of an operation. The opera-
tions are exactly the operations given in the specification class diagram of the
respective Komponent. Event maps capture the event-operation mapping.

13

Introduction

Copyright  ViSEK 2004

The functional model of a KobrA Komponent describes the externally visible
effects of the operations that are provided by that Komponent. It consists of a
set of operation schemata (operation schemata are not part of the UML, but
have their origin in Fusion [2]). Each operation listed in the class diagram must
have a corresponding operation schema which defines its effects in terms of
input parameters, changed variables, output values (reads, changes, and sends
clauses), as well as pre- and post conditions (assumes and result clauses).

Komponent Realization

The goal of Komponent Realization is to create a set of models that collectively
describe the private design of a Komponent. As with all design, the basic
requirement is that the realization must realize the Komponent's specification. A
Komponent's realization is comprised of four main models: the interaction
model, the structural model, the activity model, and the decision model.

Interaction models define how groups of objects interact at run-time to realize
Komponent operations. A UML interaction diagram (either a UML collaboration
diagram or a UML sequence diagram) describes each operation that is part of
the specification. The operation schemata from the Komponent specification
provide most of the information needed to develop the interaction diagrams.
The basic requirement is that the corresponding interaction diagram must real-
ize all the effects defined in the result clause of a schema. In particular, when-
ever an object is read or changed, a corresponding message is required in the
interaction diagram.

Activity diagrams can be used as intermediate models to bridge the step from
operation schemata to interaction models. Activity models provide a process-ori-
ented view of the realization of the Komponent operations. For each operation
described by an operation schema in the specification, a UML activity diagram is
created. Using activity diagrams, the activities that are necessary to perform an
operation are modeled and subsequently used to create the interaction models.

The realization structural model describes the classes and relationships from
which the Komponent is realized, and the architecture of the Komponent. Like
the specification structural model, the realization structural model consists of a
number of UML class and UML object diagrams. The realization class diagram is
basically a superset and refinement of the corresponding specialization class dia-
gram. Elements taken from the specification class diagram are described in more
detail and additionally new elements (often subkomponents) uncovered during
the creation of the interaction are included. In contrast to specification class dia-
grams, however, in realization class diagrams there are no restrictions on the
inclusion of operations, or any other features, for any of the classes. Object dia-
grams at the realization level describe the actual instances of the elements
depicted in the class diagram, and hence provide a snapshot of a typical config-

14

Introduction

Copyright  ViSEK 2004

uration of the objects in a Komponent. They essentially capture the architecture
of the Komponent, therefore.

A Komponent realization serves as the starting point for creating the next level
in a Komponent framework. Based on the realization, subkomponents of the
Komponent under investigation are identified. For each of the identified subko-
mponents, a Komponent specification is created as described in the previous
section. Thus, the realization models are the primary information source for the
creation of the specifications of subkomponents.

Another possible way of realizing a specification is to reuse pre-existing compo-
nents such as COTS components or reengineered legacy components. To
achieve this, parts of the specified interface are matched to the interface sup-
plied by the pre-existing component. When the two interfaces are the same
they are said to be in "mutual interface" agreement and the supplier compo-
nent can be integrated in the Komponent framework. If the two interfaces are
not initially the same, changes must be made to the reused component and/or
the client Komponent in the framework.

1.4.2 Application Engineering

Application engineering uses the framework built during framework engineer-
ing to construct specific applications in the domain covered by the framework.
Therefore, to be cost-effective, the benefits gained from reusing framework
Komponents in the creation of several applications must be greater than the
effort needed to develop the framework. This is achieved by assembling single
products, or at least significant parts of them, from framework components.
However, in order to benefit systematically from the framework, a defined
method for application engineering must accompany the processes for develop-
ing the framework. This method by necessity tightly coupled with the models
that are developed during framework engineering.

The application engineering process is centered on the given framework and
driven by the framework's decision models. The framework is traversed in a top-
down manner, recursively resolving decisions until all the generic framework
models are transformed into specific models for the particular application.

According to the common separation of requirements engineering and system
design, the application engineering process is split into two primary steps: con-
text realization instantiation and framework instantiation.

Application Context Realization

The instantiation of the framework's context realization is the first major activity
of application engineering. It starts when the software development organiza-

15

Introduction

Copyright  ViSEK 2004

tion has established an initial contact to a potential customer who is interested
in a software system in the domain of one of the organization's frameworks.
The outputs of this process are the context decisions and a concrete realization
of the application's context.

Ideally, a consultant handles interaction with the customer during this activity.
The role of a consultant is played by a person who is an expert with respect to
the application domain and to applications based on the existing framework.
The consultant elicits the requirements for the application to be developed while
working with the customer to identify problems

The elicitation process is driven by a decision sequence derived from the decision
model of the framework's context realization. For example, the consultant asks
the customer whether future users of the library system must pay for loaning
items. According to the customer's resolution, all models are changed with
respect to the effect described in the decision model.

When a decision cannot be resolved directly by the customer, the resolution is
supported by partially instantiated framework models, which represent the
intermediate state of the application context (e.g., the activity diagram "Item
Check In" without the cost collection activity).

This strategy for requirement elicitation is tightly coupled with the framework
because exactly the alternatives supported by the existing framework are pro-
vided to the customer. The offering of a set of possible alternatives also simpli-
fies the elicitation process because it corresponds to the selection of one of the
provided choices.

Only when none of the supported alternatives meets the customer's needs must
the required properties be explicitly modeled during requirement elicitation. The
framework alternative that is the closest to the required one serves as the input
for the modelling activity. Hence, the alternative not yet supported by the
framework can be expressed by means of differences to requirements sup-
ported by the existing framework. This not only simplifies the later integration,
either generally with the framework (i.e., a new framework revision) or specifi-
cally with a particular instance, but also guides reuse during its implementation.

When all decisions in the decision model of the framework's context realization
have been resolved, the main phase of the elicitation process is finished. The
result is a concrete instance containing a set of models that realize the context
of the particular application to be developed. In addition to the instances of the
generic framework models, customer-specific requirements that are not part of
the framework can be added to extend the application context realization.

The instantiation of the generic framework context realization stops when the
customer accepts the realization of the application context after checking it for

16

Introduction

Copyright  ViSEK 2004

completeness and correctness. The application context realization contains the
requirements for the application to be developed, and the context decisions
contain the choices made by the customer. They enable traceability between the
realizations of the framework context and the application context. Both are
passed to the developers and used during the further development of the appli-
cation.

Framework Instantiation

The instantiation of the framework is the second major activity of application-
engineering. It starts when the application context realization is (partially) cre-
ated and thus also the context decisions (partially) exist.

The context decisions are used to initially instantiate the generic Komponent
hierarchy of the framework. This is achieved by identifying decisions at lower
levels in the Komponent hierarchy that are connected to decisions resolved dur-
ing the instantiation of the framework context realization. These lower-level
decisions are then resolved in accordance with the resolution of the connected
context.

The intermediate result is a partially instantiated Komponent hierarchy which is
an application tree with unresolved points of variation, and decision models that
contain the still unresolved decisions. These unresolved decisions relate either to
design-related issues or user requirements that have not been handled during
requirement elicitation. Both kinds of unresolved decisions are fed back to the
consultant who is responsible for their resolution. The consultant resolves them
either personally, together with the customer, or together with the developers.
All resolutions are collected as decisions in the appropriate place in Komponent
hierarchy.

In addition to the resolution of the decisions provided by the decision models of
the Komponent hierarchy, customer-specific requirements must be realized and
therefore integrated into either the framework or the instantiated models of the
particular application. If it is expected that other customers in the future will
have the same requirements, the generic integration of the realization of cus-
tomer-specific requirements is the preferred alternative. The determination of
whether the framework can support the new requirements must, in general, be
performed by the organization.

If the new requirements are integrated into the framework, there will be a deci-
sion in the framework concerning the new requirements. The application engi-
neering process then resolves the new decision and instantiates the new frame-
work models so that the new requirements are part of the application tree. On
the other hand, if the new requirements are not integrated into the framework,
they must be modeled exclusively for the particular application in hand and inte-
grated into the already instantiated framework models. The decision models

17

Introduction

Copyright  ViSEK 2004

support the integration process by indicating where in models points of varia-
tion already exist and where there are similar variants integrated or attached to
the framework models.

Problems that occur during the processing of customer-specific requirements,
while integrating them into the framework or into the instantiated models, may
have two causes: the customer-specific requirements are either incompatible
with some other requirements or with their realization in the framework. In the
first case, the problem must be solved within the requirement elicitation process
because this indicates an incompatibility among requirements themselves. In the
other case, both the customer-specific and the incompatible requirements sup-
ported by the framework become more expensive because they have to be real-
ized individually for the particular customer. Together with the customer the
consultant must be decided whether the requirements are still to be developed
as specified or whether they can be changed with respect to framework-com-
patible alternatives so that they finally can be realized less expensively.

Throughout the whole instantiation of the Komponent hierarchy, consistency
between adjacent layers, as well as the internal consistency of each specification
and realization must be ensured. When no unresolved decision points are left,
all customer-specific requirements are separately modeled and integrated and
the application has successfully passed all quality assurance activities, the appli-
cation engineering process is finished. The final results are the application deci-
sions consisting of the context decisions and the Komponent hierarchy deci-
sions, together with the application realization and the application tree.

1.5 The Go Phone Case Study

The case study we describe in this report is based on a hypothetical context of a
mobile phone company. Go-Phone Inc. is founded in the year 2002 as a subsid-
iary of the telecommunications company TelCOM Inc. While the holding com-
pany is since many years active in the telecom business they did not address the
market of mobile phones so far. A new company is set up for this business. This
company has no restrictions whatsoever in terms of setting up its software
development activities. Experienced people (in telecommunications infrastruc-
ture) can be drawn upon from the original company. New people with mobile
phone background have already been hired. The need to develop a product line
of mobile phones is clear from the start.

In order to organize for product line development the company decides that the
major structure of its organization should be driven from the structure of its
products. Thus a core development department is formed, which is responsible
for both development for reuse and with reuse. Once the product structure is
defined on a high level, this structure will be used as an input to form groups

18

Introduction

Copyright  ViSEK 2004

within this department. Additionally, there will be project managers who are
responsible for specific product (versions).

As the software development process is open and the main constraint is to apply
a strongly product line based approach, the company decides to introduce a
customized approach based on PuLSE and the KobrA method.

The case study is meant to illustrate (a part of) a mobile phone software product
line in a realistic way but due to the complexity of a mobile phone’s software
some assumptions had to be made:

• Only functionality a user interacts with is taken into account but no network-
related issues are considered. The exact functionality considered is defined in
the scoping activity described in Chapter 2 according to the selected
approach based on PuLSE.

• As implementation technology, the Java 2 Micro Edition (J2ME) has been
selected although mobile phones are typically programmed in C in practice.
This was done to keep the code free of hardware-specific details and thus
allow to focus more on the product-line-specific issues. As a side effect, the
phone emulators provided by J2ME can be used to realistically visualize the
running software.

• The case study as described in this report is not meant to be the final version
but it will be extended by more and more product line aspects, as well as
more and more product line technologies will be applied to it. Therefore, not
all product line issues and technologies have yet been realized at all life-cycle
stages completely.

1.6 Outline

The report’s chapters reflect the main activities of the underlying approach.
Their order corresponds to a performing all product line activities in a waterfall
manner. Of course, this is neither the way how the activities are performed in
practice nor how they were performed in the case study. Potential inconsisten-
cies among the different stages would be a consequent of the latter and we are
sorry for all inconsistency that may slipped through.

Chapter 2 starts with the scoping of the software product line, that is, it ana-
lyzes at a high-level what the main features and characteristics of a mobile
phone family are and how the supported feature set varies from product to
product. As a result, the subdomains promoting the best benefits for an organi-
zation are selected to apply product line technologies to them first.

19

Introduction

Copyright  ViSEK 2004

Chapter 3 describes the analysis of the selected subdomains. That is, it refines
the high-level features of a selected subdomain by describing use cases in detail.
These use cases must be generic because their scenarios will vary from product
to product.

Chapter 4 defines an architecture for a mobile phone family, shows how the
architecture can be mapped to a concrete technology and provides insights to
mechanisms that handle the product line variability. The product line architec-
ture is created on the basis of the KobrA method and will support all the generic
use cases required from the previous activities.

Chapter 5 concludes the report by summarizing the current status of the case
study and describing current activities, as well as plans for future in evolving and
exploiting the case study results.

This report combines the PuLSE and KobrA methods but the document structure
is PuLSE-oriented with KobrA coming into play mainly during the architectural
design. It must noted here that a KobrA-oriented view of the document is also
possible. In this case the context realization of KobrA part would be introduced
right at the beginning and would encompass the scoping and domain analysis
activities.

20

Product Line Scoping

Copyright  ViSEK 2004

2 Product Line Scoping

Scoping is an activity that bounds a system or set of systems by defining those
behaviors or aspects that are "in" and those behaviors or aspects that are
"out." All system development involves scoping; there is no system for which
everything is "in" [20]. Scoping is the process of identifying and bounding the
area of product line development with a focus on reuse.The scoping activity
addresses some key planning steps in the product line development. These are:

• Product Portfolio Planning — which products shall be developed and which
requirements are relevant to each of these products

• Domain Scoping — Which domains (technical domains = functional areas)
are relevant to the products? Which ones provide a good benefit/risk-ratio
for reuse exploitation?

• Asset Scoping — which functionalities (features) should be made reusable, in
order to maximize reuse benefit across the product line?

In this example we will focus on the following steps:

1. Understanding the product portfolio: which products shall we plan for?

2. Describing the product portfolio: How do the products in our product line
that we plan for the next years look like?

3. Describing the relevant domains: What domains or technical areas do the
products in the product line cover?

4. Analyzing benefits and risks of domains: What are the primary advantages
and disadvantages when we focus on developing reusable functionality in cer-
tain domains?

5. Identifying the most appropriate reusable assets: What assets, code docu-
mentation or other are there and what assets should be made reusable to opti-
mize the advantages of overlapping functionality.

Obviously, this process will typically not be performed as a simple cycle. Rather
iterations might and should occur. In particular, there can be feedback from the
identification of reusable assets to the product portfolio as the opportunities for
new products are identified or specific product requirements are altered to give
a better pay-off from reuse. In order to perform scoping a description of the rel-
evant object(s) that are to be scoped needs to be given which can then be used

21

Product Line Scoping

Copyright  ViSEK 2004

for performing the actual scoping step. We mainly concentrate on features for
the purpose of this description.

In the context of the specific approach we describe here (called product line
mapping), the aim is to adequately describe the products and based on this the
specific technical domains that are relevant to the products. While the informa-
tion we model with the approach can actually be used on all three levels of In
the context of the specific approach we describe here (called product line map-
ping), the aim is to adequately describe the products and based on this the spe-
cific technical domains that are relevant to the products. scoping identified
above, we strongly aim here on the scoping of domains and to use these
domain descriptions as a basis for domain assessments with respect to reuse
opportunities (cf. [21]). Additionally, feature descriptions are given, which are
supposed to be used as a basis for asset scoping. Underlying to this approach is
the view that domains can be hierarchically structured and of a product line as
being both embedded in a domain and consisting of domains. In turn, the vari-
ous products will overlay the domains, but usually not fully cover it, as not all
potential variability will also be implemented in a product. Thus, a domain (i.e.,
area of functionality) will usually only cover a subset of the functionality in a sys-
tem, but at the same time will cover more than this. So those are actually two
orthogonal concepts. This is depicted in Figure 5.

Figure 5:Relation-
ship between
domains and sys-
tems

The major results of applying this approach are:

• The products that are part of the product line are identified and described.
• The variation among these products is captured.
• The various sub-domains that are relevant to the systems in the product line

are identified.
• The interactions among the sub-domains are determined.
• Sub-domains within which the systems show no variance are identified (Here,

no detailed scoping is necessary as this component needs to exist in all sys-
tems.)

• Sub-domains within which the systems show insufficient systematic varia-
tions as their requirements are too customer-specific have been identified. (In
cases where a detailed identification of the necessary variants is not possible,
a detailed evaluation of the importance of the variants is not possible either.)

domains

systems

22

Product Line Scoping

Copyright  ViSEK 2004

2.1 Understanding the Product Portfolio

Depending on the specific context this can either simply be given by marketing
or it can be developed in a synergistic manner. We assume here the (initial)
product portfolio definition is based on combined meetings by marketing and
senior development personnel.

Common agreement is easily reached upon the fact that several categories
mostly independent of variability exist that are relevant to mobile phones:

The product category (this is actually the main driver of the variation as it is this
distinction that drives sales). The following sub-categories are identified:

Basic phones: These products include only the essential features and are sold at
a cheap price (which, among other things, implies a low-frequency processor
and little memory); basic phones provide the most important communication-
related applications, but only reduced input (usually, a telephone keypad plus a
number of function keys) and output devices (a small-sized, low-resolution dis-
play).

Communicators: They combine a mobile phone with a PDA. The most com-
mon communicator concept features a dual input/output mechanism: an ordi-
nary mobile phone keypad and display that handles communications functional-
ity, and an extended, laptop-PC-like keyboard with a large, high-resolution
graphical display for PDA functionality.

Smart Phones: This rather new concept is an evolution of the basic mobile
phone. The typical smart phone has a medium-size, high-resolution screen, a
reduced keypad aided by different, co-existing input mechanisms (e.g. touch
screen, pen, voice, keypad, mouse).

Web Pads, or pocket web browsers: Web pads are similar to smart phones,
e.g. they also support different input devices (such as wireless mouse, pen, voice
recognition, eyeball movement). There is a difference in flavor between smart-
phones and web pads: the former are mainly conceived to be used as tele-
phones, with additional functionality such as multimedia or wireless internet
connection; the latter, on the other hand, are specially made for web naviga-
tion, although they do support basic telephony functionality and may run
selected office applications.

The network type. This impacts the specific protocols that need to be available
in the phone, but it has also an impact on the features that are available in the
phone, as not all features are supported by all network types.
Typical examples are: GSM, TDMA, UMTS

23

Product Line Scoping

Copyright  ViSEK 2004

The localization. This defines the country in which the phone is to be sold. This
impacts in particular the user interface, e.g., in which way information is entered
and displayed. But it may also impact other parts of the phone functionality.
Typical examples are: chinese, dutch, french, german, arab, etc.

Thus, we see that this product line has underlying a high degree of systematic
variability which makes the reuse potential for product line reuse just the more
likely.

A first product portfolio was sketched in terms of major product categories.

This product portfolio shall initially consist of:

• Two basic phone products
(The market for base products was decomposed into a low and a high range
segment, each of the products is supposed to target one of these markets.)

• One communicator product
• One smart phone product
• No Web Pad product

It is the explicit plan to develop these products over the next two years and then
to introduce them within one year rapidly on the market in order to generate a
sufficient market share.

In addition, it is clear right from the start that further products are needed in
order to expand on the initial success that is expected from the first round of
introduced products. To this end a second round of products are planned, that
shall be introduced within another year, starting about one year after the first
round of products.

In this second round the following products are planned:

• One basic product (positioned between the two initial products)
• One communicator product (positioned above the initial product)
• One smart phone (positioned above the initial product)
• A Web Pad product

2.2 Describing the product portfolio

Once the product portfolio is roughly defined, we can enter the stage of making
it explicit. For this we use the approach prescribed by Product Line Mapping
[22].

In order to find out what the product portfolio looks like, the following ques-
tions should be used during gathering of the systems information:

24

Product Line Scoping

Copyright  ViSEK 2004

• What systems that are relevant to the product line are currently under devel-
opment?
– Which releases are planned for the future?

At what time and with which functionality?
(What are major distinctive features between consecutive releases?)

• Which previous systems that exhibited a similar functionality have been
developed? (Although they may not be part of the product line they may pro-
vide assets.)
– Is there further maintenance needed for these systems?

• Which systems that could/should be part of the product line are planned for
the future?
– Which releases are planned for the future?

At what time and with which functionality?

• What are hypothetical systems?
– In which contexts could the to be developed functionality also be used?
– What kind of systems that may be developed in this or another part of the

company is functionally related?

For all kind of systems the description should include:

– What is the major functionality?

– What are the environments in which the systems have to be deployed?

The product line mapping approach provides a template that describes in some
detail on what information categories data should be gathered. One should
note that especially for customer-specific systems, usually only a type-of-system
will be identified and typical customizations per system type will be then given
as the detailed specification for future systems will not be available in this case.
But in our case with the Go-Phone Case study, development for a market was
performed and so the future products could be planned concretely. The tem-
plate has the following entries:

1 System Type

What are these systems about? (e.g., short descriptive name)

2 Information Source

(Who/How/When) – how was the information acquired?

3 System Status

What is the current development status of this type of systems? (hypotheti-
cal, planned, under development, maintenance only, legacy)

25

Product Line Scoping

Copyright  ViSEK 2004

4 Short Description

A brief description of the systems. This should be more about the market
perception and user benefit than about the specific functionality provided

5 Major Functions

What is the major functionality the system provides to the user(s). Usually a
5–10 bullet list.

6 Market Segment

Different ways of describing market segments exist. The major ones are:
Price-segment: by price (e.g., low-, mid-, high-range products)
User group: who is going to use these systems (different user-categories
might be distinguished, if this is helpful)
Function segment: what functionality is provided (viewer-only solution,
editing tool, ...) this should not be repetition of the major functionality!

7 Differentiating features to other systems

What makes this system different from other systems
– developed within the same organization
– developed elsewhere but address the same market segment

8 Individual Systems

Will there be several systems of this type developed? If so, how many will
be there and is it already clear how they will vary.

9 System Customization

What customizations are planned (list them by type of functionality, e.g.,
GUI, accounting) depending on the level of plannability this can either
describe exact customizations (e.g., XYZ conformant control interface) or it
simply denotes the area of change.

10 Release Plan

When will which systems be fielded (for non-contracted systems = proba-
bility) in case specific customizations were listed above, link them to system
releases

11 Environmental Constraints

Organizational Environment:
In what type of organization will the systems be used, who is going to use
them, consequential software restrictions (e.g., Internet use)
Software Environment:
What environment will the software need to run (platform, network,
related software)

26

Product Line Scoping

Copyright  ViSEK 2004

12 Non-Functional Constraints

What are other non-functional constraints: if the constraints only relate to
part of the functionality identify the respective part.

Normally product descriptions are set up for all the different products. In this
report we provide descriptions for two products: Go Phone Smart and Go Phone
XS.

2.2.1 Go Phone Smart

1 System Type

Go Phone Smart

2 Information Source

Company experts 20.10.2001

3 Short Description

This smart phone is a mixture of a mobile phone and a PDA. It offers email func-
tionality, synchronization with MS Outlook and extended messaging capability.
The Go Smart is equipped with a large multimedia display.

4 Market Segment

Price-segment: high

User group: end-user with high demands, business users as well as ’entertain-
ment users’

Function segment: mobile phone/ PDA (Smart phone.

5 Differentiating features to other systems

• Plays sounds in messages
• MS Outlook synchronization mechanism
• ToDo list
• Address database with complete address
• HTML-Browser
• Animated Screensaver
• File attachments to messages, email functionality
• bluetooth and GPRS
• MS Word and Excel compatibility
• Video playback
• Java compliant

27

Product Line Scoping

Copyright  ViSEK 2004

6 Individual Systems

There are several versions for various countries. E.g a Go Smart GSM 900/1800
Dualband with English language.

7 System Customization

There are two dimensions of variability for the various countries: various net-
works (GSM, IS95, etc.) and various languages (English, Arabian, Chinese, etc.)

8 Release Plan

The product has to be released until end 2004.

9 Environmental Constraints

• Has to operate in all available networks of the country (e.g. in Germany GSM
900 and 1800)

• Has to offer synchronization with MS Outlook

10 Non-Functional Constraints

• Time for menu-switch < 1/10 sec., time for searching entries < 1 sec.
• MTBF for user-site: severe error: 1 year, slight error: 1 month
• number of packets to the network, inconsistent with the protocol: 1 out of

1.000.000

2.2.2 Go Phone XS

1 System Type

Go Phone XS

2 Information Source

Company experts 20.10.2001

3 System Status

non-existing

4 Short Description

The Go XS is a very basic mobile phone. It offers only basic mobile phone func-
tionality.

5 Major Functions

1. Basic messaging features incl. T9 text recognition

28

Product Line Scoping

Copyright  ViSEK 2004

2. Basic calendar functions

3. Basic call management with voice dialling

4. Addressbook (only name and phone number)

6 Market Segment

Price-segment: low

User group: end-user with low demands, no business or entertainment users

Function segment: basic mobile phone

7 Differentiating feature to other systems

• Composing ringing tones

8 Individual Systems

There are several versions for various countries. E.g a Go XS GSM 900/1800
Dualband with English language.

9 System Customization

There are two dimensions of variability for the various countries: various net-
works (GSM, IS95, etc.) and various languages (English, Arabian, Chinese, etc.)

10 Release Plan

The product has to be released until mid 2003.

11 Environmental Constraints

Has to operate in all available networks of the country (e.g. in Germany GSM
900 and 1800)

12 Non-Functional Constraints

• time for menu-switch < 1/10 sec., time for searching entries < 1/10 sec.
• MTBF for user-site: severe error: 6 months, slight error: 1 week
• number of packets to the network, inconsistent with the protocol: 1 out of

1.000.000

2.2.3 Product Genealogy and Characterization

After the product descriptions were developed, we develop overview descrip-
tions as proposed by the approach:

29

Product Line Scoping

Copyright  ViSEK 2004

Figure 6: Product Genealogy of the Go Phone Product Line

The product genealogy gives an overview of the development of the product
line over time. This chart shows the major commonalities and variabilities that
pertain to the product line and thus already makes it possible to give a first esti-
mate whether the commonalities may be sufficient to allow for platform devel-
opment. Note, that the chart does not show the exact features that will be part
of the products. Usually, in cases where two products are relevant to a single
branch, one product will contain a subset of the features of another. Also in this
case, there is usually no feature that is explicitly defined to distinguish between
the two, as in this case, there would be an alternative. On the other hand, alter-
natives define the (major) attributes of differentiation between the two paths.

At this point it is useful to develop a first version of a product map, using the
functionality identified as characteristics of the various products. The product
characterization gives an overview of the different products and their respective
main features. It identifies functionality that is relevant only to a single system.
This will hopefully lead to question whether this is really the case and whether
this can be handled as system specific.

The table describes the areas or domains and the features of all the planned sys-
tems in the product line.The column NT indicates, that the corresponding fea-
ture is expected not to be a typical feature of this (end-user) domain. Probably,
there will be more dependencies to other domains compared to the dependen-
cies a normal feature has. For demonstration purposes, the tables for the
addressbook functionality and for messaging are elaborated in more detail.

Go XS, S ??

Go Smart

Go Elegance

Go Car

Go XLGo M, L

Go Com

??

??

??

Reference
Platform

Basic
Phones

Advanced
Phones

Communi-
cators

Smart-
phones

6/2003 12/200512/20046/200412/2003

30

Product Line Scoping

Copyright  ViSEK 2004

Basic features for the other domains e.g. ‘display a calender entry’ or ‘search for
a calendar entry’ are left out of the product map.

Table 1: Product Characterization

area feature NT Go Phones

XS S M L XL Car Ele-
gance

Com Smart

Call manage-
ment

voice dialing X X X X X X X

filter: special tone for
specific numbers (caller
groups)

X X X X X X

filter: notification only
for specific numbers

X X X X

extended last number
Redial

X X X X X X X

automatic redial X X X X X X X X

list of missed calls X X X X X X X

list of received calls X X X X X X X

Ringing tones

profiles X X X X X X

receive tones X X X X X X X

compose tones X X

calendar

calendar functionality X X X X X X X X

reminder for calendar
entries

X X X X X X X X

alarm clock X X X X X X X X X

weekly/ monthly entries X X X X X X

MS Outlook-Synchroni-
zation

X X X

Organizer

notes functionality X X X X

ToDo list X X

calculator X X X X X X X

currency converter X X X X

Addressbook multiple numbers for a
name

X X X X X X

show list X X X X X X X X X

show entry X X X X X X X X X

add entry X X X X X X X X X

modify entry X X X X X X X X X

delete entry X X X X X X X X X

search for entry X X X X X X X X X

address database X X

31

Product Line Scoping

Copyright  ViSEK 2004

Browsing

WAP-Browser X X X X X

receive animated screen-
savers via WAP

X X

HTML-Browser X X

Messaging

show message X X X X X X X X

new message X X X X X X X X

save message X X X X X X X X

modify saved message X X X X X X X X

delete saved message X X X X X X X X

search for message X X X X X X X X

send message X X X X X X X X

drafted answers X X X X X X

drafted text-elements X X X

automatic text recogni-
tion (T9 or similar)

X X X X X X

insert picture in message X X X X X X X

attach sound to message X

attach file to message X

chat functionality X X X X X

extended SMS X X X X X X X

attach business card X X X X X X X X

attach calendar entries X X X X X X X X

e-mail X X

receive screensavers via
SMS

X X X X X X

receive WAP-settings via
SMS

X X X X X

Data transmis-
sion

IrDA X X X X X X

Bluetooth X

GPRS X X

integrated modem X X X X X X

Table 1: Product Characterization

area feature NT Go Phones

XS S M L XL Car Ele-
gance

Com Smart

32

Product Line Scoping

Copyright  ViSEK 2004

2.3 Describing the relevant domains

Based on the initial (external) description of the products we can now identify
(with the help of experts) also internal functionality that is important to the
products. As a result of this we identify some main domains (areas of functional-
ity) that are important to bring about the functionality of the product line. To do
so we capture these functionality areas together with the experts in terms of
domain descriptions. While in the previous step sufficient information was elic-
ited to characterize the individual products, here this step aims at adding to this
information and eliciting sufficient information in order to identify domains and
sufficiently characterize them. Usually, it will not be possible to identify this
information directly, by asking the customers for major areas of functionality.
Instead, it will be necessary to identify functionalities and to cluster them. Often,
it will be more comfortable for the expert to provide this information on a prod-
uct by product basis. Then this should be done. (For larger product lines, it may
be possible to discuss them on a per sub-system basis.)

The Product line mapping method provides a template for describing the rele-
vant domains. The template contains the following information:

Specialities

Games X X X X X X

dictaphone X X

multimedia display X X

MS Word and Excel com-
patibility

X

play back videoclips X

Java compliant X

Table 1: Product Characterization

area feature NT Go Phones

XS S M L XL Car Ele-
gance

Com Smart

Table 2: Domain Identity description

Domain Identity — give a coarse-grained description of the domain

Name

Primary Function

Boundary (In/Out Rules) - what functionality is in or out

Higher level domains - peer level domains

Lower level domains - domains that are lower

Sub-domains - embedded domains

Functions — what are the core services that the domain provides

Functions/Features provided by the domain

33

Product Line Scoping

Copyright  ViSEK 2004

In the following we give two example domain descriptions for our case study,
one for the messaging domain and one for the messaging controller domain.

2.3.1 Messaging

Domain Identity

1 Name

Messaging

2 Information Source

company experts, 25.10.01

3 Primary Function:

Provides functionality for handling messages of different kinds (SMS, email,
extended SMS) like compose new messages, editing messages deleting mes-
sages.

4 Boundary Rules

In:
Text parts of messages through UI, message commands like delete message or
insert picture.

Message Controller indicates the presence of new messages, screensavers,
hands-over the messages, message lists, business cards and screensavers if
requested.

Out:
Text parts of messages as well as indexes for pictures, files, etc. to the Message
Controller. Requests for message lists, messages to the Message Controller.

Messages to be displayed by the UI including references to pictures, sounds, etc.

5 Higher Level Domains

User Interface (UI)

Data/Objects handled and stored by the domain

System Characteristics — What is the relation between systems and the
domain?

In which (sub-)systems will implementations of the domain be deployed?

In which products will implementations of the domain be deployed?

Table 2: Domain Identity description

34

Product Line Scoping

Copyright  ViSEK 2004

6 Lower Level Domains

Message Controller

7 Sub-Domains (Embedded Domains)

--

Functions

8 Functions/Features provided by the domain

Important: a message can be a basic SMS, an extended SMS or an e-mail.

1. show new message flag: a flag indicates, that a new message has arrived

2. show message: first it shows the message list, after one message is chosen,
it shows the content of a message

2.1. show picture: shows a picture that is embedded in the text

2.2. play sound: plays a sound that is attached to the text

2.3. show and save attached object: an object can be a business card, a cal-
endar entry or a file, the object is displayed followed by a question if it
should be saved, and it is saved if it was requested.

2.4. show and save special message: a special message can be a screen-
saver or wap-settings. After a special message is received, the special
message is displayed followed by a question if it should be saved, and
it is saved if it was requested.

3. new message or modify saved message: starts the composition of a new
message or starts editing an already received/ saved message

3.1. insert object in message: a picture or a drafted text element can be an
object inserted in the message. First, it shows a list of the objects, after
one is chosen, an index of this object is inserted in the message

3.2. attach object to message: a sound, business card, calendar entry or file
can be an object attached to the message. First, it shows a list of the
objects, after one is chosen, the index of the object is attached to the
message.

4. save drafted text element: saves the current part of a message as drafted
text element

5. browse folders: let the user browse through the message folders

6. new folder: creates new folder within the current one

7. save message: saves the current message

8. delete saved message: deletes an already received/ saved message

9. search for message: searches for a text string in all messages

35

Product Line Scoping

Copyright  ViSEK 2004

10. send message: first, the recipient has to be chosen from the address book,
then the message is sent.

10.1. send chat message: special case of send message: the recipient is not
chosen, the phone number is fixed for the length of the chat.

11. choose drafted answer: first it shows a list of all drafted answers, after one
answer is chosen, it uses the text of the drafted answer for the message to
reply

12. turn on/off T9: switches the use of T9 on or off.

13. compare word with T9: If T9 is activated, after every character received from
the UI, the current word is compared to the T9 dictionary.

14. start/stop chat: first, the phone list is displayed from the address book, after
a phone number is chosen, a text can be composed and be sent to the recip-
ient. Afterwards, an sms can easily replied and the text-messages are dis-
played in a chat-like style.

9 Data/Objects handled and stored by the domain

• IN:

From UI:
Text (String), characters, indexes for pictures, business cards, files, sounds and
calendar entries

From Message Controller:
Messages, Text (String), NewMessageFlag, MessageList, PhoneList, EmailAd-
dressList, DraftedAnswerList, DraftedTextElementList, PictureList, SoundList,
FileList, BusinesscardList, CalendarEntryList

• OUT:

To UI:
Messages, Text (String), MessageList, PhoneList, EmailAddressList, DraftedAn-
swerList, DraftedTextElementList, PictureList, SoundList, FileList, Business-
cardList, CalendarEntryList, Indexes, NewMessageFlag

To Message Controller: Text (String), Messages

• STORED:

--

System Characteristics

1 Existing Assets

implementation non-existing

36

Product Line Scoping

Copyright  ViSEK 2004

2 (Sub-)System Relationship

--

3 Product Relationship

Functions 1, 2, 3, 5, 6, 7, 8, 9, 10 are present in every product except Go Car.
Functions 2.1, 2.3, 2.4, 3.1, 3.2 are present in Go S, M, L, XL, Elegance, Com
and Smart
Function 2.2 is present in Go Smart
Function 4 is present in Go Elegance, Com and Smart
Functions 10.1, 14 are present in Go M,L,XL, Elegance and Smart
Function 11 is present in Go S,M,XL, Elegance, Com and Smart
Functions 12 and 13 are present in Go XS, S,M,L,XL and Elegance

2.3.2 Message Controller

Domain Identity

1 Name

Message Controller

2 Information Source

company experts, 25.10.01

3 Primary Function

Distribution of objects (e.g. calendar entries, business cards) to the correspond-
ing domains (e.g. Addressbook, Calendar). Assembles and disassembles mes-
sages. I.e. completes messages by replacing indexes of objects (e.g. pictures,
files) by fetching the objects from the memory manager or the corresponding
domain and inserting them in the message. Disassembling means splitting
extended SMS to several basic SMS.

4 Boundary Rules

In:
Receives New Messages from Communication Handler
Receives New Messages from Messaging

Out: Indicates new messages to Messaging, sends composed messages to the
Communication Handler

5 Higher Level Domains

Messaging, Calender, Browsing, Addressbook, Organizer

37

Product Line Scoping

Copyright  ViSEK 2004

6 Lower Level Domains

Communication Handler, Memory Manager

7 Sub-Domains (Embedded Domains)

--

Functions

8 Functions/Features provided by the domain

1. SearchMessageByString: Searches for a message (via Memory Manager)
including a given string.

2. SplitExtMessage: Splits an extended message to several basic messages and
sends them via the Communication Handler.

3. ParseIncomingMessage: parses the newly received message and decom-
poses it into text fragments, pictures, sounds, business cards, etc. Then these
fragments are stored in the memory (via Memory Manager) and Messaging
is informed about the new message.

3.1. Parse for special message: Checks, if the message is a Screensaver or
Wap-setting.

3.2. Parse for inserted objects: an object can be a picture.

3.3. Parse for attached objects: an object can be a sound, business card,
file, or a calendar entry

4. AssembleOutgoingMessage: assembles a message when a message should
be sent. Composes the fragments of a message (e.g. pictures, sounds) to
one stream.

5. SendMessage: sends a message via the Communication Handler

6. FetchObjectList: an object can be a business card, picture, sound, file, e-mail
address, phone-number, CalendarEntry, drafted text element or a drafted
answer. It fetches the object list from the corresponding domain and sends it
to Messaging.

7. FetchMessage: Fetches a message from the Memory Manager and returns it
including all indexes for inserted or attached objects (e.g. pictures, sounds).

8. SaveObject: an object can be a message, business card, file, screensaver,
wap-setting, drafted text element. It saves the current object via the corre-
sponding domain or directly via the Memory Manager.

9. Fetch folders: returns the folder hierarchy.

10. New folder: adds a folder to the folder hierarchy

11. Compare word with T9: compares the word received with the T9 dictionary.

38

Product Line Scoping

Copyright  ViSEK 2004

12. DeleteMessage: deletes a message via the Memory Manager

Example functions for addressbook:

13. Delete addressbook entry: Deletes an entry of the addressbook.

14. Fetch addressbook entry: fetches an addressbook entry from the Memory
Manager and returns it to the addressbook.

15. SearchAddressbookEntryByString: Searches for an addressbookentry (via
Memory Manager) including a given string.

Example functions for calendar:

16. Fetch calendar entry: fetches an calendar entry from the Memory Manager
and returns it to the calendar.

17. Save calendar entry: Saves a modified calendar entry via the Memory Man-
ager.

9 Data/Objects handled and stored by the domain

• In:

From Communication Handler: Messages
From Messaging: new messages
From other domains: object lists

• Out:

To Communication Handler: Messages
To Messaging: object lists, messages (incl. indexes of pictures, sounds, etc.),
indication for new messages

• Stored:

Assignment of objects (e.g. messages, pictures) to entries in the Memory Man-
ager

System Characteristics

1 Existing Assets

implementation non-existing

2 (Sub-)System Relationship

unknown

3 Product Relationship

39

Product Line Scoping

Copyright  ViSEK 2004

Functions 1, 3, 5, 6, 7, 8, 9, 10, 12, 16, 17 are present in every product except
Go Car.
Functions 2,3.1, 3.2, 3.3, 4 are present in every product except Go Car and XS.
Function 11 is present in Go XS, S, M, L, XL and Elegance.
Functions 13, 14, 15 are present in all Go phones.

2.3.3 Domain Structure

From the individual domain descriptions we then compile an overview of the
relationship among the domains, the domain structure diagram. This domain
structure diagram gives a graphical representation of the domains, their higher-
and lower level domains and relationships.

The upper two rows describe end-user visible domains whereas the lower rows
describe domains for the internal realization.

Figure 7:Domain
Structure Diagram

.

2.3.4 Initial Product Map

Once the basic domain structure is determined, it is decided to use this also as a
basis for the future organizational structure. After product and domain descrip-
tions are sufficiently stable, we set up the initial product map. Table 3 compiles
the information about the main features (internal and external) that are relevant
to the product line. The features of the addressbook and the calendar are just

Communication
Handler

Messaging Calendar

User Interface

AddressbookBrowsing

Message
Controller

Organizer

Memory
Manager

Call Handler

Call lists

Communication
Handler

Messaging Calendar AddressbookBrowsing

Message
Controller

Organizer

Memory

Call Handler

Call lists

Browsing

Manager

40

Product Line Scoping

Copyright  ViSEK 2004

example functions. The message controller has more functions from these
domains and additional functions from other domains (like browsing).

Table 3: Initial Product Map

domain feature subfeature Go Phones

XS S M L XL Car Ele-
gance

Com Smart

M
es

sa
gi

ng

show new message
flag

X X X X X X X X

show message basic show mes-
sage

X X X X X X X X

show picture X X X X X X X

play sound X

show and save
attached objects

X X X X X X X

show and save
special message

X X X X X X X

new message or
modify saved mes-
sage

basic new mes-
sage or modify
saved message

X X X X X X X X

insert object in
message

X X X X X X X

attach object to
message

X X X X X X X

save drafted text
element

X X X

browse folders X X X X X X X X

new folder X X X X X X X X

save message X X X X X X X X

delete saved mes-
sage

X X X X X X X X

search for message X X X X X X X X

send message basic send mes-
sage

X X X X X X X X

send chat mes-
sage

X X X X X

choose drafted
answer

X X X X X X

turn on/off T9 X X X X X X

compare word with
T9

X X X X X X

start/ stop chat X X X X X

41

Product Line Scoping

Copyright  ViSEK 2004

M
es

sa
ge

 C
on

tr
ol

le
r:

fe
at

ur
es

 f
or

 m
es

sa
gi

ng

search message by
string

X X X X X X X X

split extended mes-
sage

X X X X X X X

parse incoming mes-
sage

basic parse
incoming mes-
sage

X X X X X X X X

parse for special
message

X X X X X X X

parse for inserted
objects

X X X X X X X

parse for attached
objects

X X X X X X X

assemble outgoing
message

X X X X X X X

send message X X X X X X X X

fetch object list X X X X X X X X

fetch message X X X X X X X X

save object X X X X X X X X

fetch folders X X X X X X X X

new folder X X X X X X X X

compare word with
T9

X X X X X X

delete message X X X X X X X X

...
.

M
es

sa
ge

 C
on

tr
ol

le
r:

fe
at

ur
es

 f
or

 a
dd

re
ss

bo
ok delete addressbook

entry
X X X X X X X X X

fetch addressbook
entry

X X X X X X X X X

search addressbook
entry by string

X X X X X X X X X

...

M
es

sa
ge

 C
on

tr
ol

le
r:

fe

at
ur

es
 f

or
 c

al
en

da
r fetch calendar entry X X X X X X X X

save calendar entry X X X X X X X X

...
.

Table 3: Initial Product Map

domain feature subfeature Go Phones

XS S M L XL Car Ele-
gance

Com Smart

42

Product Line Scoping

Copyright  ViSEK 2004

2.4 Analyzing benefits and risks of domains

After an overall description of the product line has been performed, an assess-
ment of the reuse potential and potential threats is performed. The approach is
based on the domain potential assessment approach [21]. The method is based
on an assessment approach where the evaluation framework was derived from
existing literature on product line reuse, reuse surveys, and Fraunhofer IESE
experience on product line reuse technology transfer. This evaluation framework
is organized and justified in a top-down, GQM-like manner.

As different domains exhibit different characteristics with respect to the various
dimensions relevant to reuse (e.g., maturity, number of systems they are rele-
vant to, etc.), the domains will differ with respect to their potential for reuse.
Consequently, each of these domains should be evaluated individually from a
cost-benefit point of view with respect to its potential for reuse.

The assessment consists of two main steps:

Product Line Mapping — This first step aims at analyzing which areas of func-
tionality (subsystems, domains) are relevant to the product line and which ones
are not and what are their major contributions to the overall system functional-
ity.The resulting domains can then be used as an input to detailed scoping for
identifying the particular functionality that should be supported in a reusable
manner by a reuse infrastructure

Reuse Potential — The second step aims at analyzing in more detail the identi-
fied domains (subsystems) in particular with respect to. the reuse potential they
embody.

The steps clearly build on top of each other. The first step provides a mapping of
the domains, establishing their rough boundaries and their principal relations.
Then, during the second step a coarse-grained analysis of the reuse potential is
performed, meaning, those domains particularly relevant or irrelevant to prod-
uct line reuse are determined. In more detail the approach provides the follow-
ing results:

• The various sub-domains that are relevant to the systems in the product
line are identified.

• The interactions among the sub-domains are determined.
• Sub-domains within which the systems show no variance are identified.

(Here, no detailed scoping is necessary, as the corresponding components
need to exist in all systems.)

• Sub-domains within which the systems show insufficient systematic varia-
tion as their requirements are too customer-specific have been identified.
(In cases where a detailed identification of the necessary variants is not
possible, a detailed evaluation of the importance of the variants is not
possible either.

43

Product Line Scoping

Copyright  ViSEK 2004

The assessment is performed by making interviews with various stakeholders
and evaluating the results. In the GoPhone Context the following stakeholders
have to be considered:

• Marketing Department of GoPhone
• Seasoned experts from TelCom
• Mobile phone technology experts
• Management of Go Phone (General Management and Project Management

The assessment process consists of three main phases: preparation, execution,
and analysis. During the preparation phase a clarification of the objectives and
the participating people is performed. This is followed by the detailed schedul-
ing of the point in time when the various meetings are to happen. The results
from Product line mapping are used to structure the interviews around the iden-
tified subdomains and to focus the interviews on the planned products.
An evaluation framework for the interviews in the form of questionnaires was
developed. These questionnaires aim at identifying specific benefit and risk situ-
ations for product line development. They were developed in a fashion based on
the GQM-paradigm [23] and were augmented with information from existing
domain assessment concepts and success factor studies. The different evalua-
tion criteria were organized in seven different dimensions:

• Resource Constraints - Introducing domain engineering or product line devel-
opment is usually linked to an additional overhead for developing the neces-
sary infrastructure in the beginning. Sufficient resources for covering this
start-up overhead need to be available in order for successfully starting a
product line.

• Organizational Constraints - In order to establish a reuse program and keep it
up and running, many organizational constraints need to be satisfied as oth-
erwise the reuse program will simply run into problems due to fights within
the organization and due to a lack of commitment and support from relevant
levels.

• Market Potential external — the potential of selling the product on a market
is central to any form of return on investment. Here, we focus on whether
customers will buy the products that these assets are linked to. This is pre-
condition so that sufficient products will be developed for amortization of
the reuse investment.

• Market Potential internal — even if sufficient products could be built from
the assets, the problem is whether sufficient internal demand from other
business units exists. This is strongly related to the organizational problem of
making the right units also take up the reusable assets.

• Maturity / Stability— how stable is the domain over time, do standards or
books exist that give a common body of knowledge in the domain

• Commonality / Variability — the presence of sufficient commonality is a key
requirement for reuse to happen, in particular the degree of commonality
influences the reuse potential.

44

Product Line Scoping

Copyright  ViSEK 2004

• Coupling / Cohesion — how strongly the domain is coupled with other
domains influences how well the functionality can be encapsulated to pro-
duce widely reusable assets.

• Existing Assets — the presence of existing assets can strongly help the perfor-
mance of a reuse program, as it can provide significant start-up leverage.
However, existing legacy systems may also be hindering as they need to be
migrated to the new system structure or otherwise dealt with.

Each of these dimensions may point towards risks for product line development.
However, not all dimensions will vary for all dimensions, e.g., organizational
constraints may sometimes be constant across a subset of the domains, as the
same organization is relevant for exploiting them. This is taken into account dur-
ing the adaptation of the questionnaires.

After this adaptation has been performed we proceed with the actual analysis.
This is based on interviews. Both the interviews themselves, as well as the latter
evaluation of the results is driven from the questionnaires.

Based on the gathered information an initial analysis is performed and discussed
with the interviewees in order to perform clarifications. Finally, the report with
the analysis results is developed and discussed with the domain stakeholders.

Within the Go Phone Case Study we came to the following Assessment results:
As we had no real development stuff we were just simulating the assessment
results for this case study. So these results are just guesses of what could be typ-
ical results in the situation of a development organization like GoPhone’s
planned product line.

As the whole software development will be part of a single organizational unit,
the corresponding factors
• available resources
• organizational constraints
• market potential (internal)
• market potential (external)
are determined only once for all dimensions. Performing interviews on the dif-
ferent domains of the product line lead to the following results:
(We give the results here with numbers ranging from 0–3, with 3 being the
most positive.)

45

Product Line Scoping

Copyright  ViSEK 2004

Figure 8:Potential
for the overall Prod-
uct Line

As one can see, the overall embedding of the product line is very positive. There
are basically no problems relating to the product line from this side.

When we turn to the evaluation of the individual domains, the picture is more
mixed, as reuse potential and threats are not distributed uniformly over the
product line.

Two domains that reached rather positive evaluations are messaging and mes-
sage controller. For this reason we will choose them as the basis for this exam-
ple. Their profiles are given below.

Figure 9:Potential of
the messaging
domain

2

3

2

3

0

1

2

3

Available
Resources

Organisational
Structure

Market Potential
(external)

Market Potential
(internal)

3

2 2

1

3

0

1

2

3

Maturity Stability Variance Coupling &
Cohesion

Existing
Assets

46

Product Line Scoping

Copyright  ViSEK 2004

Figure 10:Potential
of message control-
ler domain

An example of a rather problematic sub-domain is shown below. It relates to the
browsing domain.

Figure 11: potential
of the browsing
domain

The trouble with this sub-domain is, that the domain is rather immature, thus its
future development is hard to predict and therefore reusable components are
hard to build. At the same time there is hardly any knowledge on this sub-
domain available, as it has hardly any relation to the traditional business of Tel-
Com.

For these reasons the decision is made to develop for now a version that only
supports the current product that requires browsing functionality. Only with
ongoing development will the reusable assets be enhanced in a step-wise man-
ner, turning it only over time into a reusable asset (if required).

2

3

2
2

2

0

1

2

3

Maturity Stability Variance Coupling &

Cohesion

Existing

Assets

1
1 2 1

2

0

1

2

3

Maturity Stability Variance Coupling

&

Cohesion

Existing

Assets

47

Product Line Scoping

Copyright  ViSEK 2004

Identifying the most appropriate reusable assets

The domain potential assessment leads to a ranking of domains related to their
reuse potential. So, the goal is to find those domains of the product line where
reuse or generic implementation really pays.As the software development
approach for Go-Phone Inc. is not yet established an approximate solution for
determining reuse benefits is chosen. The approach is to use a model based on
experience from TelCom with some adaptations to the specific situation. These
adaptations are based on facts like: the software development team is smaller,
that the development is performed in functionality-oriented groups that do
development for different products (this should lower costs of development for
reuse and with reuse), etc.

This information together with specific estimates of the relevant factors by the
experts are the basis for the quantitative analysis.

As optimization goals for the reuse infrastructure the following goals are given:

Reduction of cost for development (weight:1)

Reduction of maintenance cost (weight:5)
(High maintenance effort would block resources for future product develop-
ment, leading to a delay in time-to-market)

Reduction of time-to-market for later products (weight 3.5)
(Once the company made it to the market, it is of outmost importance to move
fast and make a bold move for the market share of competitors.)

Recommendations from the analysis are given as usual on six levels:

A generic implementation of <feature> should be made available

A generic implementation of <feature> should be considered

In case of further products using <feature> a generic implementation of <fea-
ture> should be developed

A generic interface to <feature> is strongly needed

A generic interface to <feature> is needed

Generic support for <feature> is currently not useful

The following rules were used for differentiating the classes (they take care of
the fact that no probability information was available and that overall a certain

48

Product Line Scoping

Copyright  ViSEK 2004

strategic interest in and tendency towards product line development was
present).

The differentiation among the levels was done simply based on

The factor 9.5 derives from the sum of the weights for the different goals. Using
this approach we can differentiate the different reuse levels by the value of r
that needs to be achieved:

Note, that in this case we show only some arbitrary levels. In reality we would
use more complex rules to identify the right levels.

Using this approach we identify the chat-related features in messaging as level
3, while the others are all level 1. In the message controller the T9 handling is
level 2, while all other features are level 1. These results strongly reinforce the
impression of a high reuse potential as it was already derived from the assess-
ment.

With these results from scoping, we identified the domains with the highest
reuse potential so in our further analysis we can concentrate on messaging and
chat as their reuse will pay most.

Table 4: Relation between reuse level and reuse benefits

reuse level 1 2 3 4 5 6
r >1 >0,3 >-0,1 >-0,2 >-0.4 else

r total reuse benefits
9.5 cost of single system development×
--=

49

Domain Analysis

Copyright  ViSEK 2004

3 Domain Analysis

One of the main results of scoping is, that there is a high reuse potential in
many of the domains of the cell-phone software. Two domains with a very high
reuse potential are Messaging and Message Controller. Therefore, we will focus
on those two domains during domain modelling.

The following figure provides an overview of the PuLSE-CDA process.

Figure 12: PuLSE-CDA Process Overview

During Scope refinement the boundary of the product line is determined. Based
on the scope definition that is focused on the contents of the product line, the
boundary definition is created that focuses on the interface of the domains of

PuLSE-EM

PuLSE-CDA

elicit raw
domain knowledge

change
requests

produce/

control flow

product

process

Legend:
consume

model
domain knowledge

refine
scope definition

raw workproducts

PuLSE-DSSA

generic
workproducts

domain decision
model

PuLSE-BC baseline profile
library

PuLSE-Eco scope definitionproduct
char. info

tasks

tasks

50

Domain Analysis

Copyright  ViSEK 2004

the product line. The scope definition provides an initial structure for the
domain information and the boundary definition limits the area to be analyzed.

To elicit raw domain knowledge, information is gathered from various sources.
Sources may include books and other literature, human sources like domain
experts, expected system users and application engineers or existing systems
and their descriptions. At this point, the information is considered raw, because
it is not necessarily well structured. Information may describe single systems sep-
arately or it may be at an inadequate level of abstraction and detail, The raw
information is written down and captured explicitly in workproducts / compo-
nents. After modelling it might be necessary to go to this elicitation step again
and elicit knowledge that is still missing in the models. So, there is an iteration
between elicitation and modelling until the models are finalized and good
enough as input for architecture. Elicitation and modelling are tightly coupled
and there is no best way to combine them. Information may be directly elicited
and modelled at the same time if necessary.

In Section 3.2 we focus on the domain modelling activity. In this step the raw
elicited domain knowledge is restructured by introducing improved abstractions,
that is use-cases. Also, all systems in the domain are integrated into the model
through variabilities, which capture the differences among the systems within
the domain. After modelling the information is called generic instead of raw
because it covers the whole product line, as opposed to, single systems.

In order for the variabilities to be managed efficiently PuLSE-CDA uses decision
models (see Section 3.4). These describe the captured variabilities as decisions,
possible resolutions along with the actions following a resolution. There are two
types of decision models: the workproduct and the domain decision models.
Workproduct decision models structure variability within one workproduct hier-
archically. The domain decision model aggregates the different workproduct
decision models and adds higher level decisions that subsume top-level deci-
sions of workproduct decision models. The domain decision model contains a
set of domain decisions, which, when resolved, instantiate the complete domain
model to the specific requirements of one product line member.

3.1 Customization of PuLSE CDA

The PuLSE CDA Approach for domain modelling is a highly customizable
approach. Depending of the context and the constraints of the product line to
be built, modelling techniques are selected and workproducts to be built are
determined during the customization phase. Figure 13 shows the factors influ-
encing the customization. In the case of the cell phone Product Line of Go-
Phone Inc. especially of the messaging and message controller domain, the fol-
lowing customization factors are important:

51

Domain Analysis

Copyright  ViSEK 2004

• The domain maturity and domain stability are extremely low
• There are no existing systems
• Many different information sources are available, but no users and experi-

enced application engineers yet.
• There are enough resources but the project skills are not too high because it

is a new project
• Business objectives and enterprise skills are good

Figure 13:Customi-
zation of the PuLSE
CDA approach

This leads to the following decisions concerning the modelling method and the
workproducts:

• As there is no legacy information we have to integrate, we do not have to
use an old modelling paradigm, so we can use UML.

• As Mobile Phones are highly interactive, it is reasonable to model Use Cases
• To express Variability, feature modelling is used. The basic features can be

extracted from the product feature map and the use-cases. Those features
can be modeled with a FODA-like notation which is compatible to the Tool to
be used (Visio)

• Functional and non Functional requirements are integrated into the use-case,
so there are no explicit textual requirements.
In the remainder of this section we describe the artifacts we produced and
the formalisms and steps we took to produce them.

Level of

Detail

Domain

Maturity

Project Characteristics Enterprise

Application

Type

Existing

Systems

Domain

Experts
Personnel

Application

Engineers

Business

Objectives

Tool

Support

Enterprise

Skills

Time

Money

Resources

Domain Characteristics

Modelling

Process

Information

Gathering

Domain

Stability

Business
Area

Abstractions

Domain Attributes Domain Info.

Information SourcesIntegratable
SW Artifacts

Coverage

Domain

Size

Domain

Complexity
Papers Users

Books Standards

Project

Skills

Goal

Category

Information

Type
Paradigm

Workproduct

Types

Workproduct

Representation

52

Domain Analysis

Copyright  ViSEK 2004

3.2 Use Case Modelling

Use cases are used for single system requirements engineering to capture
requirements from an customer/user point of view. When utilizing use cases for
product line modelling they have to be extended with a variability mechanism.
Stereotypes can be used as this variability mechanism for use case diagrams and
textual use cases. This early and explicit variability in the product line lifecycle
supports the domain experts in establishing a variability mindset and supports
explicit instantiation during application analysis. A use case describes how the
system is used by a user. Use cases are used during the analysis phase to identify
and partition system functionality. A use case describes the actions of an actor
when following a certain task while interacting with the system to be described.
A use case diagram includes the actors, the system, and the use cases them-
selves. The set of functionality of a given system is determined through the
study of the functional requirements of each actor, expressed in the use cases in
the form of common interactions. So a use-case diagrams in UML 1.4 consists of
[24]:

• The system
• The use cases within the system
• The actors outside the system
• Relationships between actors and use-cases:
• associations, generalization, include, and extend

Associations denote the participation of an actor in a use case, a generalization
relation means that there is a specialization of one use case or actor to another.
An extend relationship indicates that an instance of a use case may be aug-
mented by the behavior specified by another use case and the include relation-
ship indicates that an instance of a use case will contain the behavior of another
use case.

In use case diagrams, any model element may potentially be variant in a prod-
uct-line context. An actor is variant, for example, if a certain user class is not
supported by a product. A use case is variant if it is not supported by some prod-
ucts in the family. Those variants can be alternatives, optional elements or value
ranges for certain elements. Whether it is an optional use case or whether it is
an alternative to another use case is captured outside of the use-case diagram in
a decision model. This is done simply because this information would overload
the use-case diagram, make it less readable, and thus less useful. During appli-
cation engineering, for each variant use case, it is decided whether the use case
is (or is not) supported by the product to be built. The instantiation is done then
with the help of the decision model. In a textual use case description any text
fragment may be variant. Variant text fragments are explicitly marked by pairs of
the XML-like tags <variant> and </variant>.

53

Domain Analysis

Copyright  ViSEK 2004

During the domain analysis phase we produced the Use Cases which are impor-
tant for the messaging domain. We refined the results from scoping, in this case
the domain description and the main features of the messaging domain by
building use cases around the main features. Concerning the Use Case level of
abstraction (see [18]), three Use Cases are on a user level, i.e. it is a level where
you can discuss the content of the Use Case with a potential user, it is not to
detailed and not to abstract.These Use Cases on user level are the Use Case to
send a newly composed message, the Use Case to show a message and the one
to start a chat. The Use Case to view and save a calendar entry is on subfunction
level which means it is more detailed than a Use Case on user level. This type of
Use Case was modelled in addition to the user level Use Cases to show how the
messaging component interacts with the message controller component. The
following UC-Diagram shall give an overview on the modelled Use Cases and
shows the dependencies between the actors and the various Use Cases as well
as the dependencies between the Use Cases.

54

Domain Analysis

Copyright  ViSEK 2004

Figure 14:Use Case
Diagram of the main
functionality of the
messaging domain

The Use Case start chat uses some functionality of the Use Case show message,
whereas the Use Case show message uses the complete Use Case view and save
calendar entry, which is on subfunction level.

Please note, that the calendar component distinguishes itself from other actors
by being an actor on subfunction level. The mobile user, partner user and the
network are actors that are outside the system, whereas the calendar compo-
nent can be seen as an actor for a subfunction.

System

«variant»
send message

«variant»
show message

«variant»
start chat

«variant»
view and save
calendar entry

mobile user

network

calendar component

«extends»

«uses»

partner user

System: Go Phones, Software Package

55

Domain Analysis

Copyright  ViSEK 2004

The Use Cases were modelled by using a template that uses tags for all elements
of the Use Case. The used template is a modification of the template suggested
by Alistair Cockburn (see [18]). In the following, a short description of the tags is
given:

Use Case name: The name of the Use Case. The stereotype ’<<variant>>’
before the UC name shows a special kind of variability: a variability that holds
for the complete UC. The semantics is the same as if an nil-alternative (∅)
would be added to each step of the main success scenario (and the extensions).

Primary actor: A stakeholder that calls on the system to deliver one of its ser-
vices. He has a goal with respect to the system which can be satisfied by suc-
cessful completion of the Use Case.

Scope: The scope defines the system under discussion. It sets the borders for
the range of the Use Case.

Level: Defines on which level the Use Case is written. A Use Case can be on a
high level, called summary level, on medium level called user level or on a quite
low level called subfunction level.

Stakeholders and interests: All stakeholders and their interests shall be
described in this section of a Use Case.

Precondition: States, what must be true before the Use Case starts.

Minimal Guarantee: States what will always be achieved after running the Use
Case, even if it was not successful.

Success Guarantee: States what will be achieved, if the Use Case was com-
pleted successfully.

Main Success Scenario: Describes a typical run of the Use Case where nothing
goes wrong.

Extensions: Describes what can happen differently during the scenario.

Non-functional requirements: States the non-functional requirements that
are valid for the Use Case.

The underlined questions in the Use Cases reflect a decision model for each Use
Case. It would have also been possible to extract this information and package it
in a stand-alone decision model on a Use Case level of abstraction. The reason,
why we decided to include the decision model (Use Case level) in the Use Case
was to support better readability and an all-in-one description.

In the following, the four Use Cases send message, show message, start chat
and view and save calendar entry, modelled with the explained template, are
described.

56

Domain Analysis

Copyright  ViSEK 2004

3.2.1 Use Case Send Message

1 Use Case name

<<VARIANT>> Send message
(all Go Phones except Go Car.Go Car has no messaging domain.)

2 Primary actor

mobile user

3 Scope

Software Package of Go Phones, Messaging domain

4 Level

user level

5 Stakeholders and interests

• mobile user (in the following ’user’): wants to send a newly composed
text-message

• network: wants to receive protocol conform messages from the mobile

6 Precondition

The system shows the main menu.

7 Minimal Guarantee

The mobile keeps operating.

8 Success Guarantee

The message, entered by the user is sent via the network, so that the message
reaches its destination in the same shape and content as the user typed it.

9 Main Success Scenario

1. The user chooses the menu-item to send a message.

2. The user chooses the menu-item to start a new message.

3. Are there various message types?

<OPT> The system asks the user which kind of message he wants to send.
(Go Phone S, M, L, XL, Elegance, Com, Smart)

4. The system switches to a text editor.

5. The user enters the text message.

6. Is T9 supported?

<ALT 1> If T9 is activated, the system compares the entered word with the
dictionary. (Go Phone XS, S, M, L, XL, Elegance)

57

Domain Analysis

Copyright  ViSEK 2004

7. Which kind of objects can be inserted into a message?

<ALT 1> The user can insert a picture into the message (Go Phone S, M, L,
XL)

<ALT 2> The user can insert a picture or a drafted text-element into the mes-
sage. (Go Phone Elegance, Com, Smart)

<ALT 3> ∅ (Go Phone XS)

8. Which kind of objects can be attached to a message?

<ALT 1> The user can attach files, business cards, calendar entries or sounds
to the message. (Go Phone Smart)

<ALT 2> The user can attach business cards or calendar entries to the mes-
sage.(Go Phone S, M, L, XL, Elegance, Com)

<ALT 3> ∅ (Go Phone XS)

9. The user chooses the menu-item to send the message.

10. The system asks the user for a recipient.

11. Which kind of message will be sent?

<ALT 1> The user types the phone number or chooses the recipient from the
addressbook.(Go Phone XS, S, M, L, XL, Elegance)

<ALT 2> In case of a basic or extended SMS, the user types the phone num-
ber or chooses the recipient from the addressbook. In case of an
email, the user types the email-address or chooses the recipient
from the addressbook. (Go Phone Com, Smart)

12. The system connects to the network and sends the message, then the sys-
tem waits for an acknowledgement.

13. The network sends an acknowledgement to the system.

14. The system shows an acknowledgement to the user that the message was
successfully sent.

15. Is a sent message directly saved in the sent-message folder?

<ALT 1> The system asks the user if the message should be saved. If it should
be saved, the system saves the message in the ‘sent-message’ folder
(Go Phone XS, S, M, L, XL, Elegance)

<ALT 2> The system saves the message in the ‘sent-message’ folder.
(Go Phone Com, Smart)

16. The system switches to the main menu.

10 Extensions:

2 a) The system does not have enough free memory for composing a new mes-
sage. The system states an error message.

58

Domain Analysis

Copyright  ViSEK 2004

5 a) The user enters a symbol the system does not understand. The system
shows the user that it does not understand the symbol (e.g. playing a beep
tone).

6 a) Is T9 supported?

<OPT> The user enters a letter. T9 does not find a match. The system
shows the user that it does not understand the word (e.g. playing a
beep tone). (The user has the possibility to switch T9 off now or
enter the word manually).

12 a) The system tries to connect to the network and gets no response. The sys-
tem tries again after a number of milliseconds (to be specified). If this try fails
again, the system states a message that the message was not sent and the mes-
sage is saved in the ‘outbox’ folder.

13 a) The network does not send an acknowledgement: The system tries again
after a number of milliseconds (to be specified). If this try fails again, the system
states a message that the message was not sent and the message is saved in the
‘outbox’ folder.

13 b) The network sends a message that the message can not be delivered/ is
invalid. The system states a message that the message was not sent and the
message is saved in the ‘outbox’ folder.

1-16)There is an incoming call during the Use Case: The current status is saved
and the call is displayed. After the call the saved state is reestablished.

The user can terminate the UC via a menu item after steps 1,2, 3,
4,5,6,7,8,9,10,11,14 and 15.

11 Non-functional requirements

• After the user chose send message the message has to be sent to the net-
work within 2 sec.

• The text editor must provide easy navigation functionality (high usability).
This usability is measured by the use of a customer questionnaire in which
more than 60% of the questioned customers rate the usability at least
‘good’ on a scale: very bad, bad, average, good, very good. Furthermore,
the time to edit one letter in a message with about 100 letters must be
lower than 3 sec.

• The error-rate for sending messages should be below 0.2%. This rate
does only cover errors caused by the mobile, e.g. messages that are not
conform to the network-protocol.

3.2.2 Use Case Show Message

1 Use Case name

59

Domain Analysis

Copyright  ViSEK 2004

<<VARIANT>> Show message
(All Go Phones except Go Car. Go Car has no messaging
domain.)

2 Primary actor

mobile user

3 Scope

Software Package of Go Phones, Messaging domain

4 Level

user level

5 Stakeholders and interests

• mobile user (in the following ’user’): wants to see the content of a mes-
sage

6 Precondition

The system shows the main menu.

7 Minimal Guarantee

The mobile keeps operating.

8 Success Guarantee

The message, chosen by the user, is displayed with all its components (e.g.
sound, picture, business cards).

9 Main Success Scenario

1. The user chooses the menu-item to show a message.

2. The system shows a list of all available folders.

3. The user browses the folders until he reaches his destination folder.

4. The system displays a list of all available messages.

5. The user chooses one message to be displayed.

6. Which components of a message are directly displayed when the message is
displayed?

<ALT 1> The system displays the text. If a sound is attached, the system plays
the sound. If the message contains an inserted picture, the system
displays the picture. (Go Phone Smart)

<ALT 2> The system displays the text. If the message contains an inserted
picture, the system displays the picture. (Go Phone S, M, L, XL, Ele-
gance, Com)

60

Domain Analysis

Copyright  ViSEK 2004

<ALT 3> The system displays the text. (Go Phone XS)

7. Is the phone capable of attachments?

<OPT> The system shows that the message has an attachment. (Go Phone
S, M, L, XL, Elegance, Com, Smart)

8. Is the phone capable of attachments?

<OPT> The user chooses the menu-item ‘view attachment’.
(Go Phone S, M, L, XL, Elegance, Com, Smart

9. Is the phone capable of attachments?

<OPT> The system displays a list of all attachments. (Go Phone S, M, L, XL,
Elegance, Com, Smart)

10. Is the phone capable of attachments?

<OPT> The user chooses an attachment. (Go Phone S, M, L, XL, Elegance,
Com, Smart)

11. Which kind of objects can be displayed by the phone?

<ALT 1> If the attachment is a file, the system asks the user where to save
the file. The user enters the destination and the system saves the file
to this destination.
If the attachment is a business card, the system shows the business
card and asks the user whether it should be saved. If the user wants
to save the business card, the system saves the business card in the
address book.
If the attachment is a calendar entry, the system shows the calendar
entry and asks the user whether it should be saved. If the user
wants to save the calendar entry, the system saves the calendar
entry in the calendar.
(Go Phone Smart)

<ALT 2> If the attachment is a business card, the system shows the business
card and asks the user whether it should be saved. If the user wants
to save the business card, the system saves the business card in the
address book.
If the attachment is a calendar entry, the system shows the calendar
entry and asks the user whether it should be saved. If the user
wants to save the calendar entry, the system saves the calendar
entry in the calendar.
(Go Phone S, M, L, XL, Elegance, Com)

<ALT 3> ∅. (Go Phone XS)

10 Extensions:

4 a) There are no messages. The following steps (5-11) can not be performed.
The user can browse to another folder or leave to the main menu.

61

Domain Analysis

Copyright  ViSEK 2004

 6 a) What kind of special messages is the phone capable of?

<ALT 1> If the message contains Wap-settings, the system shows the Wap-
settings and asks the user, whether the Wap-settings should be
saved. If the Wap-settings should be saved, it saves the Wap-set-
tings.
If the message is a screensaver, the system shows the screensaver
and asks, if it should be saved. If it should be saved, it saves the
screensaver.
If the message is a special message of an unknown type, the system
displays an error- message indicating that the message can not be
displayed.
(Go Phone M, L)

<ALT 2> If the message contains Wap-settings, the system shows the Wap-
settings and asks the user, whether the Wap-settings should be
saved. If the Wap-settings should be saved, it saves the Wap-set-
tings.
If the message is a special message of an unknown type, the system
displays an error- message indicating that the message can not be
displayed.
(Go Phone Com, Smart)

<ALT 3> If the message is a screensaver, the system shows the screensaver
and asks, if it should be saved. If it should be saved, it saves the
screensaver.
If the message is a special message of an unknown type, the system
displays an error- message indicating that the message can not be
displayed.
(Go Phone S, XL, Elegance)

<ALT 4> The system is not capable of special messages. Therefore, if the
message is a special message, the system displays an error-message,
indicating that the message can not be displayed.
 (Go Phone XS)

11 a) The attachment is of an unknown type. The system states an error-mes-
sage, indicating that the attachment can not be displayed.

1-11) There is an incoming call during the Use Case: The current status is saved
and the call is displayed. After the call the saved state is reestablished.

The user can terminate the UC via a menu item after steps 1,2, 3, 4,5,6,7,8,9,10
and 11.

11 Non-functional requirements

• The system shall always display ‘readable content’. If the system can not
understand some type of content, it must not be displayed.

62

Domain Analysis

Copyright  ViSEK 2004

3.2.3 Use Case Start Chat

1 Use Case name

<<VARIANT>> Start chat
(All Go Phones except Go Car, XS, S and Com. Go Car has no
messaging domain. Go XS, S and Com do not have a chat func-
tionality.)

2 Primary actor

mobile user

3 Scope

Software Package of Go Phones, Messaging domain

4 Level

user level

5 Stakeholders and interests

• mobile user (in the following ’user’): wants to chat with another user
(partner user) via sms

• network: wants to receive protocol conform messages from the mobile
• partner user: wants to chat with the mobile user

6 Precondition

The system shows the main-menu.

7 Minimal Guarantee

The mobile keeps operating.

8 Success Guarantee

The message, entered by the user, is sent via the network, so that the message
reaches the partner user in the same shape and content as the user typed it. The
user receives messages from the partner user.

9 Main Success Scenario

1. The user chooses the menu-item to start the chat.

2. The system asks the user to choose a partner for chat.

3. The user either enters a phone number or he chooses a partner via the
address book.

4. The system starts chat mode. The display in now divided into two parts: one
part displays the chat messages and is called ‘chat window’. Another part is

63

Domain Analysis

Copyright  ViSEK 2004

a special kind of text editor (smaller field for typing compared to the normal
text-editor) called ‘editor window’

5. The user enters the text message.

6. Is T9 supported?

<OPT> If T9 is activated, the system compares the entered word with the
dictionary. (Go Phone M, L, XL, Elegance)

7. Which kind of objects can be inserted into a message?

<ALT 1> The user can insert a picture into the message.
(Go Phone M, L, XL)

<ALT 2> The user can insert a picture or a drafted text-element into the mes-
sage. (Go Phone Elegance, Smart)

8. Which kind of objects can be attached to a message?

<ALT 1> The user can attach files, business cards, calendar entries or sounds
to the message.
(Go Phone Smart)

<ALT 2> The user can attach business cards or calendar entries to the mes-
sage.
(Go Phone M, L, XL, Elegance)

9. The user chooses the menu-item to send the chat message.

10. The system connects to the network and sends the message, then it waits
for an acknowledgement.

11. The network sends an acknowledgement to the system.

12. The system displays the content of the sent message in the chat window.

13. If the system receives a message from the partner user, it displays the mes-
sage according to the Use Case ‘show message’ steps 5 and the following,
but the messages are displayed in the chat window.

How many messages can be displayed in the chat window?

<ALT 1> The system can display up to 3 messages in the chat window.
(Go Phones M, L, XL))

<ALT 2> The system can display up to 5 messages in the chat window.
(Go Phones Elegance, Smart)

14. The user can now terminate the chat or he can repeat steps 5 to 13.

10 Extensions:

1 a) The system does not have enough free memory to start a chat. The system
states an error message.

64

Domain Analysis

Copyright  ViSEK 2004

5 a) The user enters a symbol the system does not understand. The system
shows the user that it does not understand the symbol (e.g. playing a beep
tone).

6 a) Is T9 supported?

<OPT> The user enters a letter. T9 does not find a match. The system
shows the user that it does not understand the word (e.g. playing a
beep tone). (The user has the possibility to switch T9 off now or
enter the word manually).

10 a) The system tries to connect to the network and gets no response. The sys-
tem tries again after a number of milliseconds (to be specified). If this try fails
again, the system states a message that the message was not sent and the mes-
sage is saved in the ‘outbox’ folder. The system asks the user if he wants to stop
the chat.

11 a) The network does not send an acknowledgement: The system tries again
after a number of milliseconds (to be specified). If this try fails again, the system
states a message that the message was not sent and the message is saved in the
‘outbox’ folder. The system asks the user if he wants to stop the chat.

11 b) The network sends a message that the message can not be delivered/ is
invalid. The system states a message that the message was not sent and the
message is saved in the ‘outbox’ folder. The system asks the user if he wants to
stop the chat.

13 a) The system receives an unknown message type. The system displays an
error message that the received message can not be displayed.

There is an incoming call during the Use Case: The current status is saved and
the call is displayed. After the call the saved state is reestablished.

The user can terminate the UC via a menu item after steps 1,2, 3, 4,5,6,7,8,9,12
and 13.

11 Non-functional requirements

• After the user chose send message the message has to be sent to the net-
work within 2 sec.

• The text editor must provide easy navigation functionality (high usability).
This usability is measured by the use of a customer questionnaire in which
more than 60% of the questioned customers rate the usability at least
‘good’ on a scale: very bad, bad, average, good, very good. Furthermore,
an easy switch to earlier chat messages of the same session must be possi-
ble.

• The error-rate for sending messages should be below 0.2%. This rate
does only cover errors caused by the mobile, not by the network.

65

Domain Analysis

Copyright  ViSEK 2004

• The user and the partner user shall have the feeling of a conversation.
Therefore, the time between transmission and reception should be shorter
than 5 sec. (Maybe higher priority for chat messages)

3.2.4 Use Case View and Save calendar entry

1 Use Case name

<<VARIANT>> View and save calendar entry
(All Go Phones except Go Car and XS. Go Car has no messaging
domain. Go XS has no possibility to attach calendar entries to a
message.)

2 Primary actor

mobile user

3 Scope

Software Package of Go Phones, Messaging domain

4 Level

subfunction level

5 Stakeholders and interests

• mobile user (in the following ’user’): wants to view and save a calendar
entry which is attached to a message he received.

• calendar component: wants to accept the new entry and maintain a con-
sistent state.

6 Precondition

The user chose the menu-item to view the attachments of a message.

7 Minimal Guarantee

The mobile keeps operating, the state of the calendar stays consistent.

8 Success Guarantee

The attached calendar entry is displayed and saved via the calendar domain.

9 Main Success Scenario

1. The messaging component displays a list of all attachments via the UI.

2. The user chooses a calendar entry attachment.

3. The messaging component sends a request to the message controller that
the attached calendar entry should be displayed.

66

Domain Analysis

Copyright  ViSEK 2004

4. The message controller sends a request to the calendar component to show
the calendar and highlight the newly received calendar entry.

5. The calendar component shows the calendar with the highlighted entry via
the UI and asks the user if he wants to save the new calendar entry.

6. The user confirms the saving of the calendar entry.

7. The calendar component sends a request to the message controller to save
the calendar entry.

8. The message controller saves the calendar entry.

9. The messaging component displays a list of all attachments via the UI. (com-
pare step 1)

10 Extensions:

5a) The calendar entry has a not-known or invalid format. The calendar domain
shows an error message via the UI. Step 9 is directly performed.
6a) The user does not want to save the calendar entry. Steps 7 and 8 are left out
and step 9 is directly performed.

The user can terminate the UC via a menu item after steps 1,2 and 5.

11 Non-functional requirements

• After the user chose a calendar entry to be viewed, the calendar with the
highlighted entry shall be displayed within 0.5 sec.

• The new calendar entry should be highlighted clearly. In a questionnaire
with new users, at least 95% must directly understand which entry is the
new entry.

• After the user confirmed the saving of the entry, the attachment list (step
9) shall be displayed within 0.3 sec.

• The rate of errors due to invalid calendar entry formats should be below
0.02%.

• There shall be always enough buffer in memory for saving calendar
entries.

3.3 Feature Modelling

According to the Use Cases on user level, a variability and feature model for
each Use Case was build. In the following, those variability models will be pre-
sented. The models are feature models according to the notation developed in
Foda (see [17]). The notation for these variability models consists of elements
that will be explained by the following examples:

67

Domain Analysis

Copyright  ViSEK 2004

Figure 15:Example
model for ’consist
of’

This example model describes that the feature send message consists of a
recipient and a network.

Figure 16:Example
model for ’optional’

This example model describes that the text editor consists of an obligatory text
and an optional insert object. A circle at the end of a link to an object always
symbolizes an optionality. This optionality refers to the fact that product A of
the product line has text and an insert object, whereas product B does only have
text.

send message

networkrecipient

text editor

insert objecttext

68

Domain Analysis

Copyright  ViSEK 2004

Figure 17:Example
model for ’XOR’

This example model describes that a message is either an email, a basic short
message or an extended short message. Furthermore, email and extended short
message are optional. E.g. a product A is capable of basic and extended short
messages. If a message is composed on this mobile, a message can either be a
basic or a short message.

This model comprises three kinds of variability:

• first, variability resulting from inheritance (email, basic and extended short
messages are all different kind of messages)

• second, variability resulting from the modelling process (optionality:
phone A is capable of emails, phone B not)

• third, runtime variability (XOR: the user decides during runtime if he wants
to send an email or a short message)

In the following, the variability models for each Use Case are presented.

message

email basic short message extended short message

{XOR} {XOR}

69

Domain Analysis

Copyright  ViSEK 2004

Figure 18:Variability
model for UC send
message

Besides other information, the model shows that a message is either a basic
short message, an email (if the phone is capable of emails) or an extended short
message (if the phone is capable of extended ones). Furthermore, a basic short
message can be a normal message, a Wap-setting, or a Screensaver (if the
phone is capable of Wap-settings and screensaver). Moreover, a text editor con-
sists of text and maybe of a T9 component, attachable objects and insertable
objects, depending on the phone.

send message

message

text editor

networkrecipient

email addressphone number

{XOR}

email basic short message extended short message

{XOR} {XOR}

normal ScreensaverW AP-setting

{XOR} {XOR}

T9insert objecttextattach object

picture drafted text elementsound business card calender entry file

70

Domain Analysis

Copyright  ViSEK 2004

Figure 19:Variability
model for UC show
message

Besides other information, the Use Case shows that a message can be a normal
or a special message (if the phone is capable of special messages). A normal
message consist of text and probably sound and picture. A special message may
be a screensaver or a Wap-setting.

show message

message folders

normal message special message

{XOR}

text Screensaver WAP-setting

attachment

picturesound

business card calender entry file

{XOR}

71

Domain Analysis

Copyright  ViSEK 2004

Figure 20:Variability
model for UC start
chat

In contrast to composing a normal short message, the chat additionally consists
of windows. E.g. the chat window consists of a message which can be an email,
a basic or an extended short message, similar to the variability model of the
send message Use Case.

start chat

message

text editor

networkrecipient

email addressphone number

{XOR}

email basic short message extended short message

{XOR} {XOR}

normal ScreensaverWAP-setting

{XOR} {XOR}

T9insert objecttextattach object

picture drafted text elementsound business card calender entry file

windows

chat window editor window

72

Domain Analysis

Copyright  ViSEK 2004

3.4 Decision Modelling

In order to instantiate the models, we need a decision model. The following
decision model in tabular form describes what effects decisions on features of
the products have. The table states questions one has to ask himself when
instantiating a product. The questions belong to a subject and the answer to the
questions (resolution) triggers effects that instantiate the Use Cases.

Table 5: Decision model

ID Question Subject Resolution Effect

1 Which kind
of attach-
ments is the
phone capa-
ble of?

Attach-
ments

files,
sounds,
business
cards and
calendar
entries

remove Alt 2 and 3 from step 8 in UC ’send
message’;
remove Alt 2 from step 8 in UC ’start chat’;
remove Alt 2 and 3 from step 11 in UC ’show
message’;
steps 7 to 10 of UC ’show message’ are obliga-
tory;
remove Alt 2 and 3 from step 6 in UC ’show
message’.

business
cards and
calendar
entries

remove Alt 1 and 3 from step 8 in UC ’send
message’;
remove Alt 1 from step 8 in UC ’start chat’;
remove Alt 1 and 3 from step 11 in UC ’show
message’;
steps 7 to 10 of UC ’show message’ are obliga-
tory;
remove Alt 1 from step 6 in UC ’show mes-
sage’.

no objects remove Alt 1 and 2 from step 8 in UC ’send
message’;
remove Alt 1 and 2 from step 11 in UC ’show
message’;
remove steps 7 to 10 from UC ’show message’;
remove Alt 1 from step 6 in UC ’show mes-
sage’.

73

Domain Analysis

Copyright  ViSEK 2004

The decision, to choose elements in a field of the type ’resolution’ is an xor deci-
sion, i.e., non of the elements can be combined.

2 Which kind
of insert-
able objects
is the phone
capable of?

Inserts pictures remove Alt 2 and 3 from step 7 in UC ’send
message’;
remove Alt 2 from step 7 in UC ’start chat’;
remove Alt 3 from step 6 in UC ’show mes-
sage’.

pictures and
drafted text-
elements

remove Alt 1 and 3 from step 7 in UC ’send
message’;
remove Alt 1 from step 7 in UC ’start chat’;
remove Alt 3 from step 6 in UC ’show mes-
sage’.

no items remove Alt 1 and 2 from step 7 in UC ’send
message’;
remove Alt 1 and 2 from step 6 in UC ’show
message’.

3 T9 support? T9 yes step 6 of UC ’send message’ is obligatory;
extension 6a of UC ’send message’ is obliga-
tory;
step 6 of UC ’start chat’ is obligatory;
extension 6a of UC ’start chat’ is obligatory.

no remove step 6 of UC ’send message’;
remove extension 6a of UC ’send message’;
remove step 6 of UC ’start chat’;
remove extension 6a of UC ’start chat’.

4 Which kinds
of messages
are sup-
ported?

mes-
sage
types

short mes-
sages and
email

step 3 of UC ’send message’ is obligatory;
remove Alt 1 from step 11 in UC ’send mes-
sage’.

only short
messages

remove step 3 of UC ’send message’;
remove Alt 2 from step 11 in UC ’send mes-
sage’.

Table 5: Decision model

ID Question Subject Resolution Effect

74

Product Line Architecture

Copyright  ViSEK 2004

4 Product Line Architecture

A software architecture is the mediating product between requirements from a
problem-domain perspective and the software solution for the specified prob-
lem with means out of the solution domain. Our understanding of software
architecture corresponds to the definitions given in [16].

This chapter provides an overview of the architecture defined for the mobile
phone domain and the requirements given in the previous chapters. Here, the
description of the architecture will be mainly technology- (or platform-) unspe-
cific.

The description of the architecture is structured as follows: Section 4.1 captures
the conceptual view on the architecture. It introduces the main conceptual enti-
ties and the roles they play in term of architectural styles and patterns. Section
4.2 refines the conceptual view and brings the conceptual entities into a logical
structure using the KobrA method. Section 4.3 gives an overview of mecha-
nisms used to deal with the variability in the architecture required to support all
expected and anticipated variations in mobile phone products of today and in
the future.

4.1 Architectural Styles & Patterns

During architectural design it is useful to take architectural styles and patterns
into account because they reflect best practices for dealing with known prob-
lems. In this work we are dealing with a software product line that has numer-
ous variabilities and therefore we consider flexibility as a main requirement on
the architecture.

Component orientation is the starting point for achieving flexibility in the
GoPhone product line. To this end we are making use of the KobrA method
described earlier. Furthermore we consider well know architectural patterns to
realize our component oriented design. These are presented in the following
paragraphs.

4.1.1 Mediator Pattern

The Mediator pattern (see [1]) is one of the most famous architectural styles for
achieving changeability and extensibility of components. The main goal of the
pattern is to avoid direct interactions between components by introducing a

75

Product Line Architecture

Copyright  ViSEK 2004

central component, i.e the Mediator, that handles all the communications
between them. The following picture shows the effect of introducing a Media-
tor into a web of interconnected components.

Figure 21:The Medi-
ator pattern

The Mediator pattern enhances the reusability of components since they only
need to know the interface to the mediator and not to any other components.
Moreover it facilitates incremental development as proposed by the PuLSE-DSSA
method because components can be added to the architecture without a great
impact as long as they adhere to the Mediator interface.

In the later and more detailed design phase we refine the Mediator towards a
Component Manager since it assumes additionally the responsibility of the life-
cycle management of components.

To separate graphical component management from the rest of the functional-
ity according to the MVC paradigm (see [1]) we introduce during refinement a
special Component Manager, namely a View Controller.

4.1.2 State pattern

Mobile phones have small displays that make it impossible to display at the same
time all information required for an operation. So in order to complete an oper-
ation the user has to go through a series of steps each one displayed in a sepa-
rate screen. For example the message sending scenario contains typically the fol-
lowing screens:

Desktop → Main Menu → Messaging Menu → Edit Text → Enter Recipient →
Options Menu → Confirm message sending

Web of interconnected
components

Without
a Mediator

Star configuration

With
a Mediator

Mediator

76

Product Line Architecture

Copyright  ViSEK 2004

Each step can be seen as a state with predefined entry and exit actions. This
leads us to the conclusion that state management is crucial for the mobile
phone operation. For this reason we decided to use the State Pattern (see [1]).

The idea of the State Pattern is that a component (i.e. Send Message Compo-
nent) contains a set of state components each one encapsulating a specific
functionality. Whenever the component needs to change state, it changes the
current state component and delegates control it.

The following picture shows how the above example of the Send Message sce-
nario can be realized with the State Pattern.

Figure 22:The State
Pattern

As shown in the picture the Main Menu State interacts directly with a Messag-
ing component. This brings up a mismatch with the Mediator pattern presented
before. Thus we decided to combine the Mediator and State patterns.

4.2 The KobrA process

Goal of this section is to give an overall idea of applying the KobrA process for
creating component-based systems. Covering the complete process goes
beyond the scope of this report. For that reason many details are left out from
the diagrams to follow.

4.2.1 Context Realization

The starting point for developing components according to the KobrA method
lies in the context description of the system under development. This includes
among other things an enterprise model (Figure 23) and a process hierarchy
(Figure 24). The former provides the basic roles and entities of the system under
development while the latter analyzes the different processes to be supported.

Main Menu Component

Main Menu State

Messaging
Menu State

Edit
Text

Enter
Recipient

Options
Menu

Confirm
Sending

Request

Delegation
to state

Messaging Component

77

Product Line Architecture

Copyright  ViSEK 2004

The goal of this activity is to provide an initial description of the system and to
enable the identification of the components that will be created in the following
steps.

The context realization of KobrA relates closely to the early steps of the PuLSE
method. Actually scoping and domain analysis can be seen as part of the con-
text realization activity [19]. However in this case study we restricted the use of
KobrA to the architectural design and in this case the context realization can be
seen as a follow-up activity of the domain analysis.

Figure 23:Enterprise
Model

As it can be seen in the following Figure 24 the sub-processes select message
type, insert Object, attach Object and select T9-Mode marked with the stereo-
type <<variant>>, meaning that these are optional processes according to the
Use Case 3.2.1.

Figure 24:Process
Hierarch (Excerpt)

Phone

<< role >>

Phone

<< role >>

Message

<< entity >>

Addressbook

<< role >>

Addressbook

<< role >>

Contact

<< entity >>

Contact

<< entity >>

Calendar

<< role >>

Calendar

<< role >>

Reminder

<< entity >>

Reminder

<< entity >>

Organizer

<< role >>

Organizer

<< role >>

Note

<< entity >>

Note

<< entity >>

Task

<< entity >>

Task

<< entity >>

Call

<< entity >>

Call

<< entity >>

78

Product Line Architecture

Copyright  ViSEK 2004

The Decision Model belonging to the Process Hierarchy is shown in Table 6.

What has to be done during instantiation is described in the column Effect. If a
Process is not part of the instantiated process hierarchy, the process has to be
removed from the model. Otherwise, if the process is part of the hierarchy, it is
unmarked by removing the stereotype <<variant>>.

4.2.2 PhoneComponent

Having the realization of the overall context we proceed with the specification
of the first Komponent (Figure 25). In our case this is the PhoneComponent
which is marked as Subject in the following diagram according to the principle
of locality. The PhoneComponent is an abstract component that will be refined
later. It reflects the basic operations that must be provided by each of the roles
in the enterprise model.

Although the specification reflects only the externally visible features of a com-
ponent we decided to include the ComponentManager and the UIController
because they will play a major role in the system in adherence to the Mediator
and MVC patterns.

As it can be seen in the diagrams to follow there are no entities (components,
classes, methods, fields) marked as variant because of the flexibility achieved
through component orientation along with the principle of locality enforced by
KobrA.

Table 6: Process Hierarchy Decision Model

ID Question Variation Point Resolution Effect

1 Process Select Message Type
supported?

Select Message Type Yes

No

remove stereotype <<variant>>

remove Process Select Message
Type

2 Process Attach Object sup-
ported

Attach Object Yes

No

remove stereotype <<variant>>

remove Process Attach Object

3 Process Attach Item supported Attach Item Yes

No

remove stereotype <<variant>>

remove Process Attach Item

4 Process Select T9-Mode sup-
ported

Select T9-Mode Yes

No

remove stereotype <<variant>>

remove Process Select T9-Mode

79

Product Line Architecture

Copyright  ViSEK 2004

Figure 25:PhoneCo
mponent Specifica-
tion Class Diagram

While the specification describes what features are provided by a component, its
realization describes how the features are developed thereby providing a more
detailed view and leading to the identification of additional components.

As it can be seen in the following picture two additional classes (StateMachine
and ScreenState) come into play showing how the management of the different
screen states can be accomplished.

It must be noted that the specification and realization normally contains a lot
more documentation and not only class diagrams.

80

Product Line Architecture

Copyright  ViSEK 2004

Figure 26:PhoneCo
mponent Realiza-
tion Class Diagram

4.2.3 ComponentManager

This section provides the specification and realization class diagrams for the
ComponentManager. As it can be seen in the following diagrams the specifica-
tion defines a configuration class that reflects the need of dealing with different
resources (component name, menu items etc.). However during the realization
of the ComponentManager it became apparent that this configuration class will
probably instantiated only once during program execution and will provide a
number of important features. Therefore it has been decided to create a new
component dedicated to these issues, namely the RessourceManager.

81

Product Line Architecture

Copyright  ViSEK 2004

Figure 27:Compo-
nentManager speci-
fication class
diagram

Figure 28:Compo-
nentManager Real-
ization class diagram

4.2.4 Component Tree

While the specification and realization provide localized views of components,
the component tree provides a generalized view. It shows relationships between
components as well as visibility rules.

The following diagram shows an excerpt of the GoPhone component tree. The
GoPhone component represents here the overall system and therefore contains
all other components. The PhoneComponent has become an abstract compo-
nent at this point providing only the structure of the different phone compo-
nents. Addressbook and Messaging are concrete components that inherit this
structure.

82

Product Line Architecture

Copyright  ViSEK 2004

Figure 29:GoPhone
component
tree(excerpt)

If during the scoping activity we would have defined products not needing all
technical domains, it would have been also possible to mark a Phone Compo-
nent as <<variant>>. We could realize variation points not only within Phone
Components but also at a larger level of granularity. For example, if we would
define a GoPhone XXS not providing any features from the Calendar domain,
we wouldn’t need any functionality provided by the corresponding Calendar
component. In this case we could completely omit the Calendar Phone Compo-
nent from the systems architecture. Again, this flexibility is a result of the
applied component-oriented style.

4.2.5 Implementation models

Up to now we have been dealing with platform-independent models. That
means that no commitment has been undertaken regarding the underlying
technology. This commitment is entered during the implementation phase of
the KobrA process. At this point the models are bound to a concrete technology
which in our case has been the Java Micro Edition (J2ME).

The following model depicts the UIController as it has been implemented with
J2ME. Since the UIController is responsible for changing and displaying screens,
it interacts with the according J2ME classes, namely Screen and Display. It also
uses a Java Stack as a temporary storage of opened Screens.

 <<Komponent>>
 GoPhone

<<Komponent>>
 UIController

<<Komponent>>
DisplayController

 <<Komponent>>
ComponentManager

 <<abstract>>

<<Komponent>>

PhoneComponent

 <<Komponent>>

DB

<<Komponent>>
 Addressbook

<<Komponent>>
 Messaging

83

Product Line Architecture

Copyright  ViSEK 2004

Figure 30:Implemen-
tation model

4.3 Variability Mechanisms

The product line architecture must support the intended product portfolio, that
is, the common characteristics of the product family, the commonalities, define
skeleton of architecture. The skeleton must in addition provide means for realiz-
ing (at least) the expected variability, which leads to flexible architectural struc-
tures.

For mobile phones the main challenges are

1 Languages: mobile phones are used all over the world and thus must support
a large set of languages. Therefore, the translation from an internal represen-
tation to the final language should be as late as possible to keep most of the
software independent of language-specific issues.

2 User interface styles: there is a wide variety of displays and input devices sup-
ported by concrete mobile phones. For instance, displays vary in size, resolu-
tion, color depth, etc. To be efficient, the user interface should be developed
once in a generic, style-independent way and then “only” specialized in the
context of a concrete product.

3 Hardware variations: different phones are delivered with different resource
characteristics, such as memory size, power consumption or processing

84

Product Line Architecture

Copyright  ViSEK 2004

speed. These differences must be considered within the product line infra-
structure. In the mobile phone case study, these constrains are not handled
due to its emulation-based realization. However, these issues have been suc-
cessfully solved in industrial contexts.

4 Feature configurations: As described in the scoping and the domain analysis
chapters, different phones support a different set of features. The resolution
of the variations should typically happen before the software is flashed to a
phone because the limited resources do not allow a resolve them as late as at
runtime.

In the context of this work (see [8]) we have identified three dimensions of prod-
uct line implementation technologies used for handling variability: Component
technologies, configuration management and generative features of program-
ming languages including generators.

Ideally a product line implementation approach would combine mechanisms of
this area in order to work around weaknesses and to bring together strengths of
each dimension.

In the following sections we describe the use of each dimension in the GoPhone
product line.

To achieve the flexibility required, the mobile phone case study makes use of
several mechanisms.

Component architecture: as architectural style, component orientation has been
selected. That is, software units communicate indirectly only via component
manager (mediator). Hence, the implementations of components do not contain
direct dependencies on other components but may resolve their context at runt-
ime. For example, it is only possible to take the telephone number an SMS
should be sent to from the addressbook if an addressbook exists. Whether the
messaging component provides this feature could be resolved at runtime by
checking with the component manager whether an addressbook component
has been registered. This enables an easy plug in or out of optional components.

Additionally, components can be replaced by an alternative with identical inter-
face without requiring any other changes.

UI Manager: we introduce an UI manager that keeps the rest of the software
independent of any UI-specific issues. In the one direction, all kinds of user
inputs are translated into internal user events; in the other direction, the dialogs
and masks are referenced within the functional components in a technology-
independent format. The UIManager resolves just before sending it to the dis-
play the technology-independent reference with a concrete implementation of
the UI elements.

85

Product Line Architecture

Copyright  ViSEK 2004

The meaning and number of soft keys is handled analogously. With this
approach, it is possible to use identical source code for significant portions of a
mobile phone software and a desktop application similar to Microsoft Outlook.

The approach can be labeled as separation of concerns because the UIManager
separates appearance from behavior, as well as program logic from concrete UI
technology.

Hardware abstraction: abstract commands and user events are used rather than
concrete buttons or menu structures. That is, if a menu entry is selected, its
name is read and translated into a user event. This is different to an approach
that interprets the third menu entry as a particular command or allows a specific
set of commands to be invoked from a particular menu.

Programming language concepts: there are several design patterns available
that create some kind of flexibility. The mobile phone architecture heavily uses
design patterns. The state pattern is used to implement the state machine
underlying a phone where menus represent states and the selection of menu
entries correspond to state transitions.

The UIManager is an instance of the model-view-controller pattern (MVC). The
state machine of a functional component is the controller, the data model
owned by this component is the model, and the UIManager corresponds to the
view.

Interfaces: In the architecture several interfaces are defined on which the imple-
mentation of components is based. The components using these interfaces can
be used independent of how and who (which component) implements these
interfaces.

Aspect oriented programming: variant features that spread across many compo-
nents have been implemented with Aspect-orientation. More on this can be
found in Section 4.3.1.

Code generation: the variations between phones have been analyzed systemati-
cally and thus the implementation of the phones will take this analysis into
account. This allows to generate product variants according to the resolution of
the variabilities in the context of a concrete product. In this case study we have
developed a special generator that handles the different states of the mobile
phone. See Section 5.5 for more details.

4.3.1 Aspect oriented programming

An optional feature can affect various core components. For example, if logging
is supposed to be offered as an optional feature, delivering a corresponding

86

Product Line Architecture

Copyright  ViSEK 2004

product means that many different operations must produce output for a log
file.

Aspect Oriented Programming (see [9]) enables the modularization of such
crosscutting features. This is done by the introduction of class-like constructs
called aspects. The latter are encapsulating the crosscutting features.

AOP and its most popular Java binding called AspectJ enables crosscutting at
the method level. This means that we can capture the methods that get affected
by an optional feature and accordingly introduce the optional code. The latter
happens at the bytecode level in a process called aspect weaving. AspectJ sup-
ports the whole process by extending Java with new language constructs and by
providing a special compiler that understands the aspect language and weaves
code as necessary.

In this work we used AspectJ to encapsulate the T9 text recognition functional-
ity (see Section 3.2.1). T9 was a good candidate to be implemented as an aspect
because it crosscuts with all components providing editing facilities (e.g. Mes-
saging, Address Book, Calendar). These components make use of text fields for
enabling the user to edit text. So our goal was to introduce a new kind of text
field namely one with text recognition capability.

To this end we firstly capture all operations that construct standard fields for
text editing. Afterwards we replace that constructor calls by new ones that
return objects of our T9 text field. This class extends the standard text field class.
Finally we capture all calls to the insert method that is automatically invoked
when a user types something and redirect these calls to our own implementa-
tion.

Another interesting variability that we managed to handle with Aspect Orienta-
tion was the interaction of two components. The Addressbook component sup-
ports the management of contacts but the interface to the Management com-
ponent for sending messages to these contacts is optional. We used AspectJ to
encapsulate the interaction of the Addressbook and Messaging components
into an aspect.

Figure 31 shows the aforementioned variability as a UML diagram that uses ste-
reotypes for denoting the variant parts. As it can be seen the variability spreads
across different components. The easiest way to handle this variation would be
to use preprocessor directives for including the optional parts at variation points
that are defined in the standard code.

87

Product Line Architecture

Copyright  ViSEK 2004

Figure 31:Send Mes-
sage To Contact
Variability

AOP on the other hand provides the possibility of encapsulating the code that
handles this variability in an aspect as it can be seen in Figure 32. Moreover the
definition of the variation points is handled in the aspect itself and thus the stan-
dard code does not to need to be changed at all. The aspect weaver assumes
the responsibility of merging the aspect with the standard code.

Figure 32:Solution
with AOP

The aspect SendMsgToContact contains a pointcut that picks up the handling of
user actions and an advice that introduces additional handling for the SendMsg-
ToContact action. The aspect also declares the realization of the IMessaging
interface by the Messaging class and followingly adds the according method
body (sendMsgToContact). Similarly it adds an additional method to the
Addressbook class that gets called when the SendMsgToContact action is
selected.

88

Infrastructure Usage

Copyright  ViSEK 2004

5 Infrastructure Usage

5.1 Product Derivation Process

The product derivation process is driven by the decision models (Table 5). In
order to create a product the decisions in the decision models have to be
resolved and the actions connected to each resolution have to be executed. So
each product configuration is maintained as a set of resolution models.

The requirements and architectural models of a product line member are
obtained by resolving the domain and architecture decision model respectively.
The product map (Table 3) can be used to validate the product requirements
against the preplanned features from the scoping step.

The activity that follows the instantiation of the product line decision models is
the product construction, which consists of the following:

1 Reuse of existing product line assets:

Assets that have been implemented during the development of previous
instances, and therefore are part of the product line code history, are reused
for the current product.

2 Implementation of non-existing product line assets:

Assets that are defined within the scope of the product line but have not
been implemented during the development of previous instance are created.

These assets must be evaluated not only to satisfy this instances require-
ments, but also for integration in the product line.

3 Implementation of product specifics:

Assets that lie outside the product line scope must be developed to fulfill spe-
cific requirements of the current product.

5.2 Domain Model Instantiation

For specifying a product line member we ideally can use the domain model pro-
duced in the course of the domain analysis process without doing major

89

Infrastructure Usage

Copyright  ViSEK 2004

changes to it. Followingly we provide an example how a domain model can be
instantiated towards a product-specific model.

For the example we assume that we want to build now the Go Phone XS which
according to the Product Map (Table 3) has no attachable or insertable objects,
no email or extended sms functionality, but T9 support. Therefore the decision
model in Table 5 is reduced to the following resolution model:

Figure 33:GoPhone
XS resolution model

The variability model for the Use Case send message is accordingly reduced to:

ID Question Subject Resolution Effect

1 Which kind
of attach-
ments is the
phone capa-
ble of?

Attach-
ments

no objects remove Alt 1 and 2 from step 8 in UC ’send
message’;
remove Alt 1 and 2 from step 11 in UC ’show
message’;
remove steps 7 to 10 from UC ’show message’;
remove Alt 1 from step 6 in UC ’show mes-
sage’.

2 Which kind
of insert-
able objects
is the phone
capable of?

Inserts no items remove Alt 1 and 2 from step 7 in UC ’send
message’;
remove Alt 1 and 2 from step 6 in UC ’show
message’.

3 T9 support? T9 yes step 6 of UC ’send message’ is obligatory;
extension 6a of UC ’send message’ is obliga-
tory;
step 6 of UC ’start chat’ is obligatory;
extension 6a of UC ’start chat’ is obligatory.

4 Which kinds
of messages
are sup-
ported?

mes-
sage
types

only short
messages

remove step 3 of UC ’send message’;
remove Alt 2 from step 11 in UC ’send mes-
sage’.

90

Infrastructure Usage

Copyright  ViSEK 2004

Figure 34:Instanti-
ated variability
model for UC send
message

The Use Case for this product is instantiated to:

1 Use Case name

Send message

2 Primary actor

mobile user

3 Scope

Software Package of Go Phones, Messaging domain

4 Limitation

This use-case is valid for all Go Phones except Go Car. Go Car has no messaging
domain.

5 Level

user level

6 Stakeholders and interests

• mobile user (in the following ’user’): wants to send a newly composed
text-message

• network: wants to receive protocol conform messages from the mobile

send message

message text editor networkrecipient

phone number

basic short message

normal

T9

91

Infrastructure Usage

Copyright  ViSEK 2004

7 Precondition

The system shows the main menu.

8 Minimal Guarantee

The mobile keeps operating.

9 Success Guarantee

The message, entered by the user is sent via the network, so that the message
reaches its destination in the same shape and content as the user typed it.

10 Main Success Scenario

1. The user chooses the menu-item to send a message.

2. The user chooses the menu-item to start a new message.

3. The system switches to a text editor.

4. The user enters the text message.

5. If T9 is activated, the system compares the entered word with the dictionary.

6. The user can not insert an item into the message.

7. The user can not attach any objects to the message.

8. The user chooses the menu-item to send the message.

9. The system asks the user for a recipient.

10. The user types the phonenumber or chooses the recipient from the address-
book.

11. The system connects to the network and sends the message, then it waits
for an acknowledgement.

12. The network sends an acknowledgement to the system.

13. The system shows an acknowledgement to the user that the message was
succesfully sent.

14. The system asks the user if the message should be saved. If it should be
saved, the system saves the message in the ‘sent-message’ folder

15. The system switches to the main menu.

11 Extensions:

2 a) The system does not have enough free memory for composing a new mes-
sage. The system states an error message.

4 a) The user enters a symbol the system does not understand. The system
shows the user that it does not understand the symbol (e.g. playing a beep
tone).

92

Infrastructure Usage

Copyright  ViSEK 2004

5 a) The user enters a letter. T9 does not find a match. The system shows the
user that it does not understand the word (e.g. playing a beep tone). (The user
has the possibility to switch T9 off now or enter the word manually).

11 a) The system tries to connect to the network and gets no response. The sys-
tem tries again after a number of milliseconds (to be specified). If this try fails
again, the system states a message that the message was not sent and the mes-
sage is saved in the ‘outbox’ folder.

12 a) The network does not send an acknowledgement: The system tries again
after a number of milliseconds (to be specified). If this try fails again, the system
states a message that the message was not sent and the message is saved in the
‘outbox’ folder.

12 b) The network sends a message that the message can not be delivered/ is
invalid. The system states a message that the message was not sent and the
message is saved in the ‘outbox’ folder.

There is an incoming call during the Use Case: The current status is saved and
the call is displayed. After the call the saved state is reestablished.

The user can terminate the UC via a menu item after steps 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 14 and 15.

12 Non-functional requirements

• After the user chose send message the message has to be sent to the net-
work within 2 sec.

• The text editor must provide easy navigation functionality (high usability).
This usability is measured by the use of a customer questionnaire in which
more than 60% of the questioned customers rate the usability at least
‘good’ on a scale: very bad, bad, average, good, very good. Furthermore,
the time to edit one letter in a message with about 100 letters must be
lower than 3 sec.

• The error-rate for sending messages should be below 0.2%. This rate
does only cover errors caused by the mobile, e.g. messages that are not
conform to the network-protocol.

With the help of the use cases, the feature and the decision model the require-
ments on the messaging domain are now clear. With these common and vari-
able requirements an architectural model con be built that covers all products of
the Go-Phone product line.

5.3 Process Hierarchy Instantiation

During Process Hierarchy Instantiation we resolve the Process Hierarchy Model
shown in Figure 24. The Resolution Model belonging to the mentioned process
Hierarchy Model is shown in the next table

93

Infrastructure Usage

Copyright  ViSEK 2004

Table 7: Process Hierarchy Resolution Model

Figure 35 depicts the result of applying the above resolution model to the Pro-
cess Hierarchy Model.

Figure 35:Instanti-
ated Process Model

According to the resolution model the processes Attach Object, Attach Item and
Select Message Type are left out, whereas Select 9-Mode remains in the model.

5.4 Architecture Instantiation

Chapter 4 dealt with the architecture of the Go Phone product line or -more
generally speaking- with domain design. During this activity the generic product
line architecture of the Go Phone was developed. We will now exemplary
instantiate the architecture for a concrete product, namely the Go Phone XS.
According to the Product Map the Go Phone XS Architecture will have the fol-
lowing components: Call Management, Ringing Tones, Calendar, Addressbook
and Messaging. During the Application implementation activity we remove the
genericity from the models of the components, which we've selected to be part
of the product- specific architecture by removing the genericity from the models
of their specification and realization. We choose the use case of Section 3.2.1,

ID Question Variation Point Resolution Effect

1 Process Select Message Type
supported?

Select Message Type No remove Process Select Message Type

2 Process Attach Object supported Attach Object No remove Process Attach Object

3 Process Attach Item supported Attach Item No remove Process Attach Item

4 Process Select T9-Mode sup-
ported

Select T9-Mode Yes remove stereotype <<variant>>

94

Infrastructure Usage

Copyright  ViSEK 2004

where the Send Message to Contact option (discussed in Section 4.3.1), will be
selected. Therefore the Figures 31 and 32 will be merged to the following fig-
ure:

Figure 36:SendMsg-
ToContact Resolved
Model

The difference between the above figure and figure 31 is the absence of the
<<variant>> stereotypes since the involved entities are selected in the derived
product.

5.5 Code Generation

As mentioned earlier, another way to support variability in a product line archi-
tecture is the use of code generators. The generation of code is usually parame-
terized by a declarative specification, so that the generated output can be con-
trolled in some way.

5.5.1 Increasing the efficiency of Component implementation

In the context of the GoPhone case study, we developed a XML/XSLT-technol-
ogy based generator. At the beginning, goal of the generator was not support-
ing the flexibility of the product line architecture. The generator was originally
designed to increase the efficiency when the architecture is extended with addi-
tional Phone Components. It is important to mention here, that the generator
doesn't produce the complete application code from the declarative specifica-
tion. The programmer still has to fill in code at dedicated places in the generated
code. Increasing efficiency in this context means the shortening of development
time for a new Phone Component, as a programmer is unburdened from fre-

95

Infrastructure Usage

Copyright  ViSEK 2004

quently reoccurring coding tasks. Even more important is the fact, that the gen-
erated code enforces a Phone Component's architecture, because a program-
mer has to fill gaps at preplanned locations in the generated code. Moreover the
generated code is tested and less error prone and coding guidelines are kept
automatically. So efficiency also means an improvement of quality.

A prerequisite to the development of the generator was the already mentioned
analysis of the technical domain of existing Phone Components. This included
the simple comparison of code in corresponding class files, the analysis of the
component structure and the analysis of the components behavior. The results
of this analysis entered into the design of the generator. The explored common-
alities between Phone Components are stored in code templates. Additional
information and parameterizations for the generator are provided through a
declarative XML-File. The generator uses this declaration to build class-files from
the templates as well as directory structures and configuration files, which make
up a Phone Component. A special case is the way the generator deals with visi-
ble component behavior. The implementation of a Phone Component's behav-
ior occurs in a very straightforward way using the GOF State Design Pattern as
described in 4.1.2. To allow the generation of an instance of the GOF state pat-
tern structure (i.e. an individual implementation of the pattern for the Phone
Component under construction) through a generator, the declarative XML com-
ponent specification is extended with the description of a finite state machine
representing the components visual behavior.

5.5.2 Graphical Modelling of a Phone Component

During further development iterations, the generator was extended with an
XMI-Interface. Using a simple UML-Profile with stereotypes, which constitutes a
lightweight extension of the UML-Metamodel for our case study's domain, the
Phone Component can be modelled with a UML-tool. The XMI output from the
UML-Tool serves as input for the generator. It has several advantages to model
the component graphically, especially in regard to the error proneness of a hand
coded textual description of a component. Moreover the visualization with UML
makes the specification more capable for human beings. The state machine part
of the component specification for instance, can now be modelled with a UML
state diagram. This approach conforms essentially to the ideas of the Model
Driven Architecture.

5.5.3 Supporting Variability

At this point we want to return to our actual question: In what way can a gener-
ator be used to support variability into the product line architecture. Until now
the generator does not offer the mechanisms necessary to provide flexibility at
generation-time for a component, but it would be no problem to add them. This

96

Infrastructure Usage

Copyright  ViSEK 2004

would include the necessity to allow conditional code processing, where a deci-
sion could serve as input.

One approach would be, to use different code templates depending on parame-
ters passed to the generator. This could result in different implementation of
methods, different class files, configuration files or directory structures. A more
sophisticated idea, which is currently under development, is the flexible realiza-
tion of component structure and component behavior even before code genera-
tion time. Starting with a generic platform independent model (PIM), e.g. a
KobrA UML model, we could instantiate models from it for special products.
This could be done manually or ideally, with tool support. These instantiated
models would also be platform-independent and after the instantiation, we can
continue with an MDA approach and generate component code from these
models. The tool has a built-in decision model, so it can produce the model for a
component from the according generic model in dependence of the parameters
passed to the tool. These parameters basically constitute the decision resolution
model.

Figure 37:Compo-
nent Instantiation
Process

5.5.4 The technical realization

In this section, we will shortly discuss, how such a tool, consisting of a model
transformer and a code generator, could look like.

97

Infrastructure Usage

Copyright  ViSEK 2004

For the instantiation of generic models, we need, as mentioned above, another
generator tool. Speaking in terms of a pipes and filters pattern, this tool is
mainly serving as a model transformer and would be located in front of the
existing code generator. The transformer tool is providing the code generator’s
input in the form of the instantiated model. It does not generate application
code - it just removes information from the generic model. If we decide to use
an XMI-based solution, we could export the generic UML-Model to XMI and
pass the decision-resolution-model to the transformer. It is then the task of the
transformer to resolve the decisions and transform the XMI-File with the generic
information to another XMI-File, only containing the model information for the
specified component. Now a code generator tool can continue and produce for
instance Java-Application Code. The code generator we need here would not
profoundly differ from the generator, which was introduced at the beginning of
this section.

Figure 38:Generic
Calendar state dia-
gram

Generally the code generator could be extended, so that in future it may be pos-
sible to generate even method implementations from activity diagrams, but this
discussion is out of the paper’s scope at the moment. More important at this
point is the input provided to the generator, so we will take a look at a concrete
example of a generic finite state machine model, showing a part of the behavior
of a calendar component. We don’t use the aforementioned lightweight UML-
Profile here, because it has no influence on the discussion. This model is shown
in picture Figure 38 and there are several decisions that can be taken:

1 Is it possible to add an alert (e.g. a audible signal, when the entered time for
an appointment is reached) to an appointment? The corresponding feature,
setAlert, is shown in the state named EditEntryScreenState and is tagged
with the stereotype variant.

98

Infrastructure Usage

Copyright  ViSEK 2004

2 Is it possible to add send an Appointment to a recipient? This feature is repre-
sented through the SendAppointmentToContactScreenState, which is also
tagged with the stereotype variant.

3 And finally, dependent on the existence of the former feature, the decision:
Is it possible to choose a recipients address from the address book?

This generic model could now be exported to XMI.We assume that our resolu-
tion for the generic model would look like this:

It is possible to add an alert to an appointment, but it is not possible to send an
appointment to a contact (consequently there’s no possibility to choose an
recipients address from the address book). The resulting instantiated state
model looks like the one shown in picture Figure 39.

Figure 39:Instanti-
ated Calendar state
diagram

This is exactly the step, that has to be done by the transformer tool. A prerequi-
site to this is of course, that we have a more tool-comprehensible form of the
resolution model so that the tool can remove the unused variant-tagged model
elements from the XMI-File. Normally the representation of the instantiated
model would just exist as XMI, but it should be no problem to visualize the
transformed XMI, if the graphical information for the still existing elements is
not removed from the XMI by the transformer tool.

Now we have the possibility to feed this instantiated model to the generator and
can produce the code of the corresponding state machine using the state design
pattern.

99

Infrastructure Usage

Copyright  ViSEK 2004

5.5.5 Conclusion

There are a lot of open questions concerning the realization of such a tool. The
existing code generator tool was designed to produce a code framework for a
programmer and a lot of features are missing. The possibility to realize the com-
ponents state machine from a state diagram is the most sophisticated part, but
there should be further extensions to the code generator. It should be possible
for instance, to preserve manually implemented code parts if the generator
reruns. On the other hand, these manual implementations should also be avail-
able for the code generator tool, if they can be reused in other variants of the
component. Concerning a tool that can transform a generic model into a con-
crete one, there has to be done further work, especially the resolution of depen-
dencies within the generator will be most challenging. Perhaps it should be pos-
sible to configure the generator with different decision models from outside.

All in all this approach appears promising, because it combines the ideas of the
MDA with that of software product lines and so can fulfill the demands for flex-
ibility at a very early stage in the implementation of the product line architec-
ture.

100

Analysis and Future Work

Copyright  ViSEK 2004

6 Analysis and Future Work

In this report we have shown how a software product line approach enables
meeting one important challenge to software development, that is fulfilling dif-
ferent customer and market needs. This is accomplished through the planning
and creation of an infrastructure that manages the commonalities and variabili-
ties of a family of software products and allows the efficient tailoring of cus-
tomer-specific products.

By reading this report it becomes apparent that the creation of the aforemen-
tioned infrastructure involves some initial effort, which is not found in singe-sys-
tems development. However this effort pays off as more requirements are posed
to the product line and more systems need to be delivered. The reason for that
lies in the systematic planning being done in the early phases of product line
engineering. This planning activity defines the scope where software reuse is
expected to pay off. Reuse is the foundation of a product line approach and it is
carried through all phases of product line development.

Reuse and component-based development are knowingly related and in this
report we demonstrated how the PuLSEtm approach for product line engineer-
ing can be combined with the KobrA method that supports component-based,
model-driven development. Combining the concepts of product-line and model-
driven architectures promises to address some of the key shortcoming of the
former and to make the benefits of the latter available in the context of a family
of products. As well as making product line engineering more attractive for
industrial projects, therefore, it also provides a systematic way of leveraging the
benefits of a product line viewpoint in tandem with the component and middle-
ware technologies commonly associated with the MDA, such as CORBA, EJB,
XML, SOAP, and .NET.

In our future work we intend to enrich our experiences with the combination of
product-line and component-based development through additional case stud-
ies especially from the embedded systems world where additional challenges
come into play. Moreover we plan to refine our work in the area of software
generators in order to automate to a sensible degree the management and der-
ivation of products.

101

Glossary

Copyright  ViSEK 2004

7 Glossary

In the following glossary, terms that are used for modelling are explained:

Attachment/ attachable object: An object that can be attached to a message as
known from emails. E.g. a business card or a calendar entry.

Business Card: A business card is an extract of the addressbook of the phone. It
contains all data of a user that is saved in the mobile (e.g. name, phone number,
mailing address, email address).

Call: A call is an event arriving at the mobile or sent by one mobile to another
with a request for voice communication between the two users.

Chat: A special application based on messages. Similar to the chat known from
PC applications two users can communicate in a fast and easy way.

Folder: The messages and other objects are sorted in a folder-hierarchy. One
folder can consist of several sub-folders. Folders like ’inbox’ or ’outbox’ are pre-
defined, whereas other folders can be user-defined.

Insertable object: An object that can be inserted into a message (e.g. a picture).
In contrast to an attached object, an inserted object is directly displayed when
the message is displayed.

Message: A textual message sent from one mobile to another. A message can
either be a basic short message, an extended short message or an email.

System: As we focus on software development, ’the system’ stays for the soft-
ware subsystem of the mobile phone. If we want to address the hardware, the
term ’the mobile’ is used.

User: This is the end-user of the mobile phone.

102

References

Copyright  ViSEK 2004

8 References

[1] E. Gamma et al., Design Patterns - Elements of Reusable object-oriented
software, Addison-Wesley, 1995

[2] Coleman, Derek et al., Object-Oriented Development, The Fusion Method,
Englewood Cliffs: Prentice Hall, 1994

[3] Jean Marc de Baud, Klaus Schmid, A Systematic Approach to Derive the
Scope of Software Product Lines, In Proceedings of the 21st international
conference on Software engineering, Los Angeles CA, USA, 1999

[4] Joachim Bayer, Dirk Muthig, Tanya Widen, Customizable Domain Analy-
sis, In Proceedings of the First International Symposium on Generative and
Component-Based Software Engineering, 1999

[5] Anastasopoulos, Michalis; Bayer, Joachim; Flege, Oliver; Gacek, Cristina, A
Process for Product Line Architecture Creation and Evaluation. PuLSE-
DSSA - Version 2.0, IESE-Report, 038.00/E, Kaiserslautern, 2000

[6] Christian Bunse, Pattern-Based Refinement and Translation of Object-Ori-
ented Models to Code, Stuttgart: Fraunhofer IRB Verlag, 2001

[7] Schmid, Klaus; Widen, Tanya, Customizing the PuLSE Product Line
Approach to the Demands of an Organization, Software Process Technol-
ogy EWSPT'2000, Berlin: Springer-Verlag, 2000

[8] PoLITe (Product Line Implementation Technologies) project home page,
http://www.polite-project.de

[9] Aspect-Oriented Programming. Communications of the ACM Vol.44
No.10, October 2001

[10] M. Bory, S. Hartkopf, K. Kohler, and D. Rombach. Germany: Combining
Software and Application Competencies, IEEE Software, July/August,
2001

[11] Frank van der Linden. Software Product Families in Europe: The Esaps and
Café Projects. IEEE Software, 19(4):41–49, July/August 2002.

[12] Garry Chastek, editor. Software Product Lines: Proceedings of the Second
Software Product Line Conference (SPLC2), LNCS 2379, San Diego, CA,

103

References

Copyright  ViSEK 2004

2002. Springer.

[13] Frank van der Linden, editor. Software Product-Family Engineering. 4th
International Workshop, PFE 2001, LNCS 2290, Bilbao, Spain, October
2001. Springer.

[14] E. Kamsties, K. Hörmann, and M. Schlich. Requirements Engineering in
Small and Medium Enterprises: State-of-the-Practice, Problems, Solutions,
and Technology Transfer, in Proceedings of the Conference on European
Industrial Requirements Engineering, 1998

[15] S. Sanderson and M. Uzumeri. The Innovation Imperative - Strategies for
Managing Product Models and Families, Chicago: Irwin, 1997

[16] Gacek, C.; Abd-Allah, A.; Clark, B.; & Boehm, B. “On the Definition of
Software System Architecture.” Invited talk, First International Workshop
on Architectures for Software Systems. Seattle, WA, April 1995.

[17] Kyo C. Kang et al., Feature-oriented Domain Analysis (FODA) Feasibility
Study, Technical Report, CMU/SEI-90-TR-21, ESD-90-TR-222, Software
Engineering Institute, Carnegie Mellon University, November 1990

[18] Alistair Cockburn, Writing Effective Use Cases, Boston: Addison-Wesley,
2001

[19] Atkinson et al., Component-Based Product Line Engineering with UML,
Addison Wesley, 2002

[20] Paul C. Clements and Linda Northrop. Software Product Lines: Practices
and Patterns. SEI Series in Software Engineering. Addison-Wesley, August
2001

[21] Klaus Schmid. An Assessment Approach to Analyzing Benefits and Risks
of Product Line. In Proceedings of the 25th Annual International Com-
puter Software and Applications Conference (COMPSAC 2001), pages
525--530, 2001

[22] Klaus Schmid. The Product Line Mapping Approach to Defining and Struc-
turing Product Portfolios. In International Workshop on Requirements
Engineering for Product Lines (REPL'02), Essen, Germany, September
2002

[23] Rini van Solingen, Egon Berghout The Goal/ Question/ Metric Method. A
Practical Guide for Quality Improvement of Software Development. Lon-
don: McGraw-Hill, 1999

104

References

Copyright  ViSEK 2004

[24] Object Management Group. OMG Unified Modelling Language Specifica-
tion, Version 1.4, September 2001.

Copyright 2004, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: GoPhone - A Software
Product Line in the
Mobile Phone Domain

Date: 5. March 2004
Report: IESE-025.04/E
Status: Final
Distribution: Public

