
�������

��	���������

	
������������
������������
��
������������
��
�������

����	�������
��� ��	���������
�
���	�����
����	����� 	����� ��	�������!����� 	�������

��	��������
�
��"�##
��
$
��
��	���������
�
���	�����

��������	�
�	���

��
�
���

�������
���

���!
��
���	�

��"
�����

#
��
�����

#

�����������	
�����	��
��������������
�	
���	
�
�������	

��������������� �����������������������

��������������� ���������������������� �
����������������!""� ��#���
������������������������

�������	
�����
������������������������

���������
��������������������
��
������� ����!
�����"����!�#
�!�����$
�� #$��%�����
���

����������
&������
���&����������'�
&���(
(��

)���������������*����(
�����������(�'��&
�����!
+�'���
���
�����(����&������������
�
�����
���+��!�������
��!��������
�+����!����'+�
�+�!
�����&�����&��!&�
��&
���
(����&�(+������&���������������,����,����������,������(�!�������������(�'������

�
�+������������
����������'+�!
���
&������
�����������������������������(����&���

��&�
�!��
����
�!
�-���.��/���
������������������
���������,�
����,
+���������
�!(�+����&��&���������
���������������������
�����������
��,����������&������������
�,�����������
�!
�-���

0�'+�����������������"$�����
 %$1�234�5�4526��5�7�8
��
������� ����!
�����"����!�#
�!�����$
�� #$
�����
&��4��862��3�7�8�%�����
��
1�'����
9�����3�762�%�����
��
.����� :82�3���2�3�����7���
.��
;� :82�3���2�3�����7��4
<��
��� ���
�=��
��������
�#>� ���(�??���
����
���������

Sustainable Evolution of
Product Line Infrastructure Code

Beim Fachbereich Informatik
der Technischen Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Ingenieurwissenschaften (Dr.-Ing.)

genehmigte Dissertation
von

Dipl.-Ing. Thomas Burkhard Patzke

Fraunhofer-Institut für Experimentelles Software Engineering
(Fraunhofer IESE)

Kaiserslautern

Berichterstatter: Prof. Dr. Dr. h.c. Dieter Rombach
 Prof. Dr. Arnd Poetzsch-Heffter
 Prof. Dr. Jürgen Nehmer

Dekan: Prof. Dr. Arnd Poetzsch-Heffter

Tag der Wissenschaftlichen Aussprache: 24.06.2011

D 386

�����������	
�����	��
��������������
�	
���	
�
�������	

��������������� �����������������������

��������������� ���������������������� �
����������������!""� ��#���
������������������������

�������	
�����
������������������������

���������
��������������������
��
������� ����!
�����"����!�#
�!�����$
�� #$��%�����
���

����������
&������
���&����������'�
&���(
(��

)���������������*����(
�����������(�'��&
�����!
+�'���
���
�����(����&������������
�
�����
���+��!�������
��!��������
�+����!����'+�
�+�!
�����&�����&��!&�
��&
���
(����&�(+������&���������������,����,����������,������(�!�������������(�'������

�
�+������������
����������'+�!
���
&������
�����������������������������(����&���

��&�
�!��
����
�!
�-���.��/���
������������������
���������,�
����,
+���������
�!(�+����&��&���������
���������������������
�����������
��,����������&������������
�,�����������
�!
�-���

0�'+�����������������"$�����
 %$1�234�5�4526��5�7�8
��
������� ����!
�����"����!�#
�!�����$
�� #$
�����
&��4��862��3�7�8�%�����
��
1�'����
9�����3�762�%�����
��
.����� :82�3���2�3�����7���
.��
;� :82�3���2�3�����7��4
<��
��� ���
�=��
��������
�#>� ���(�??���
����
���������

Summary

 i

Summary

A major goal in many software development organizations today is to
reduce development effort and cost, while improving their products’
quality and diversity by developing reusable software. An organization
takes advantage of its products’ similarities, exploits what they have in
common and manages what varies among them by building a product
line infrastructure [Bayer++99, Muthig02]. A product line infrastructure
is a reuse repository that contains exactly those common and variable
artifacts, such as requirements documents, architecture, or source code,
which are needed to produce all required products.

The life of successful software does not end after initial development.
Every real-world software system must continually evolve in order to
remain useful for its end-users [Lehman80]. Likewise, every real-world
product line must continually evolve in order to remain satisfactory for its
reusers. However, a problem we have often seen in various product line
engineering projects in practice is that the product line infrastructure,
and especially its code, the product line infrastructure code, becomes
increasingly difficult to evolve and reuse over time because it
degenerates.

Code decay has two causes [Parnas94]: lack of change and inappropriate
change. The focus of this thesis is to prevent inappropriate change. In
single-systems engineering, changes are made to improve functionality,
efficiency, or ease-of-change. Trade-offs must be made among these
goals. Those types of changes are also necessary in product line
engineering, but they are not sufficient because most work products
[Jalote05] of product line engineering are developed to be reused.
Additional types of changes in product line engineering are necessary to
improve variability, reuse efficiency, or ease-of-configuration. Trade-offs
must not just be made among these goals, but also between product
line goals and single-system goals. These issues make product line
development more complex than single-systems development. Within
the product line engineering life cycle, these issues arise in a process in
which artifacts are developed for reuse: family engineering [Muthig02].
The main contribution of this thesis is the development of a readily
applicable, reactive product line evolution method for family engineers in
practice. The method’s goal is to guide family engineers to keep product
line infrastructure code sustainable by reducing unnecessary complexities
in variability management [Bosch++02].

Benefits of the method are controlled complexity reduction of existing
product line infrastructure code, whole life cycle cost and effort

Summary

 ii

reduction, protection of investment, short-term increase of variability
management productivity, and customizability to specific organizational
contexts.

Product line infrastructure code evolution is still an unexplored topic in
product line research. This thesis investigates what makes code overly
complex that is developed in family engineering. It explores how this
code can be evolved as required under real-world constraints in family
engineering, with ‘just enough’ product line-specific complexity. Product
line infrastructures contain artifacts that capture the products’ required
variability. This is the key characteristic that differentiates these artifacts
from less efficiently reusable or single system artifacts. Family engineers
have various possibilities to realize variability in artifacts, and in particular
in code. If they apply them without consideration, as we and others have
often seen in practice [Krueger07], product line infrastructure code
becomes unnecessarily complex. As a remedy, I devise a set of tactics for
effective family engineering in this thesis. I present a pattern language
[Gamma++95] of plain and practically relevant types of variability
mechanisms that cover all relevant combinations of these tactics.

The variability mechanisms address the solution domain in which
variation is realized. They are one input to a product line realization
process I develop in this thesis. I identify product line evolution scenarios
as another input, concerned with the problem domain. They characterize
different basic types of changes in future product line requirements that
cause a product line infrastructure to evolve. The realization process itself
consists of three sub-processes for which I have identified variability-
related and non-variability-related sub-activities that are ordered in a
particular way as to optimize productivity. While I explain the first two
sub-processes, Selection and Modification, I identify a set of product
line-specific code defects, and I invent a larger set of refactorings for
removing these and other product line-specific defects, also beyond
code. As part of the third sub-process, Quality Assurance, this thesis
contributes to the unexplored discipline of product line measurement by
developing a goal-oriented measurement scheme which characterizes
complexity in the code of evolving product line infrastructures.

Using this measurement approach, I evaluate the impact of all discussed
variability mechanisms on complexity under typical product line evolution
scenarios in a case study, with three main results: First, contrary to
popular belief in product line engineering, code duplication does not
always over-complicate variability management. Second, the two factors
Late Binding and Programming Language-dependence significantly
increase the complexity of product line infrastructure code. Third, this
type of complexity is decreased if a variability mechanism supports
Defaults and both open and closed variation.

Table of Contents

 iii

Table of Contents

1 Introduction ..1
1.1 Evolution as a Product Line Engineering Challenge1
1.2 A Brief History of Product Line Realization4
1.3 Solution Idea: Complexity-Aware Family Realization8
1.4 Contributions and Benefits .. 11
1.5 Outline .. 13

2 Background .. 17
2.1 The Duality of Use and Reuse .. 17
2.2 The Reuse Hierarchy .. 28
2.3 Evolution in Product Line Engineering 32

3 Related Work ... 53
3.1 Reusable Code Artifacts .. 54
3.2 Product Line Engineering Processes ... 57
3.3 Usefulness of Cloning ... 65
3.4 Complexity and Evolution in Single Systems 72
3.5 Complexity and Evolution in Product Lines 78

4 Variability Mechanisms ... 83
4.1 Cloning ... 87
4.2 Conditional Execution ... 93
4.3 Polymorphism ... 99
4.4 Module Replacement .. 105
4.5 Conditional Compilation ... 111
4.6 Aspect-Orientation .. 119
4.7 Frame Technology ... 125

5 Product Line Evolution Method ... 133
5.1 Product Line Evolution Scenarios ... 134
5.2 Product Line Realization Process .. 144
5.3 Variability Complexity Measurement 166

6 Case Study ... 177
6.1 Hypotheses ... 177
6.2 Study Subject .. 180
6.3 Study Procedure .. 182
6.4 Results .. 188
6.5 Interpretation .. 208
6.6 Threats to Validity ... 215

7 Summary and Outlook .. 219

Table of Contents

 iv

References ... 225

Appendix A Glossary ... 241

Appendix B Scripts .. 247
B.1 Frame Processor (version 1.8.3) ... 247
B.2 Measurement Scripts (version 0.1.7) 252

Appendix C Code Excerpts from the Case Study 259

Appendix D Detailed Results .. 289

Appendix E Aggregated Results .. 297
E.1 Results for Hypotheses H1.1 and H1.2 297
E.2 Results for Hypothesis H2.1 ... 298
E.3 Results for Hypothesis H2.2 ... 299
E.4 Results for Hypothesis H3.1 ... 300
E.5 Results for Hypothesis H3.2 ... 301

List of Figures

 v

List of Figures

Figure 1: The problem of product line infrastructure code evolution 3
Figure 2: History of product line engineering ... 5
Figure 3: Focus of the product line evolution method 8
Figure 4: Product line evolution method .. 10
Figure 5: a) Complexity reduction in product line infrastructure code; b)

whole life cycle effort reduction ... 12
Figure 6: Use-specific transformation of executable modules into

machine code .. 20
Figure 7: Overview of binding times .. 21
Figure 8: Reuse-specific transformation of constructible modules into

executable modules ... 26
Figure 9: Reuse includes use: construction and execution of modules .. 27
Figure 10: Four possibilities for organizing two constructible modules A

and B [Bassett97, p.173] .. 31
Figure 11: Decision tree for organizing reuse hierarchies 31
Figure 12: Problem space and solution space in product line engineering35
Figure 13: Structural architectural model of a sensor node 36
Figure 14: Product line assets of a wireless sensor node product line 39
Figure 15: Metamodel for product line infrastructures 41
Figure 16: Product line engineering life cycle .. 42
Figure 17: Product line engineering life cycle details 43
Figure 18: Iterative Design Refinement [Bassett97] 60
Figure 19: The 3-tiered product line methodology [Krueger07] 62
Figure 20: Metamodel for product line infrastructures [Muthig02] 64
Figure 21: Incremental Product Line Modeling sub-process [Muthig02] 64
Figure 22: Temporal stability VBT and spatial stability VT in the evolution

of software artifacts [Kelly06] ... 78
Figure 23: Product line evolution in time and space [Krueger10] 82
Figure 24: Mass customization by variability mechanisms 84
Figure 25: Snapshots of realizing a new variability with Cloning 89
Figure 26: Snapshots of realizing a new alternative variability with

Conditional Execution .. 95
Figure 27: Snapshots of realizing a new alternative variability with

Polymorphism .. 101
Figure 28: Snapshots of realizing a new alternative variability with

Module Replacement ... 107

List of Figures

 vi

Figure 29: Snapshots of realizing a new alternative variability with
Conditional Compilation .. 113

Figure 30: Snapshots of realizing a new alternative variability with
Aspect-Orientation ... 121

Figure 31: Snapshots of realizing a new alternative variability with Frame
Technology .. 127

Figure 32: Product line evolution method ... 133
Figure 33: a) Elementary feature evolutions, b) corresponding

pseudocode ... 135
Figure 34: Basic product line evolution scenarios captured in Fig.33 ... 137
Figure 35: Optional Feature Creation sub-steps, starting with a)

commonalities, b) variabilities ... 139
Figure 36: Basic realization phases .. 144
Figure 37: Product line evolution method discussed so far 144
Figure 38: Details of the selection phase ... 146
Figure 39: Details of the modification phase 150
Figure 40: Commonality realization and variability realization over time152
Figure 41: Details of the quality assurance phase 162
Figure 42: Product line infrastructure code testing phase 164
Figure 43: Interrelationship between Construction Testing and Execution

Testing ... 165
Figure 44: Variability complexity measurement phase 167
Figure 45: Goal hierarchy of the product line infrastructure code quality

model .. 168
Figure 46: Two-dimensional cyclomatic complexity)(Gv� 173
Figure 47: Two types of baselines for product line infrastructure code E:

temporal (R(t0,s)) and spatial (R(tm,s0)) 175
Figure 48: Investigated Goal and Hypothesis Hierchies 178
Figure 49: Particle Computer wireless sensor node and sensor board .. 180
Figure 50: Sensor node problem frame ... 181
Figure 51: Feature diagram snapshots of the evolving sensor node

product line (cf. Table 19) .. 184
Figure 52: Evolution trace for product line infrastructure code 185
Figure 53: Evolution trace for product line infrastructure code, with

baselines (gray) .. 186
Figure 54: Trends for a) temporal, and b) spatial code size deltas 192
Figure 55: Trends for code churn in lines of code, compared to baselines

at t=t0 .. 193
Figure 56: Trends for number of module delta, compared to ideal

realization .. 194
Figure 57: Trends for width of reuse hierarchy delta, compared to ideal

realization .. 196

List of Figures

 vii

Figure 58: Trends for a) runtime, and b) construction time complexity
delta, compared to ideal code .. 198

Figure 59: Trends for a) closed, and b) open complexity delta, compared
to ideal code .. 198

Figure 60: Trends for adaptability, compared to ideal realization 199
Figure 61: Trends for a) externally visible, b) internally visible, and c)

ambiguous variant element deltas, compared to ideal code200
Figure 62: a) Trends for reuse ratio; b) comparison to spatial baseline 201
Figure 63: Trends for spatial code churn among variable siblings,

compared to ideal code ... 203
Figure 64: Trends for compression distance among variable siblings,

compared to ideal code ... 204
Figure 65: a) Kiviat diagram according to Table 40; b) excerpt for

automated approaches .. 206
Figure 66: a) Complexity trends according to Table 41; b) excerpt for

automated approaches .. 207
Figure 67: Complexity trends for variability emphasis 208
Figure 68: Complexity trends according to Tab.44 209
Figure 69: Complexity trends according to Tab.45 210
Figure 70: Complexity excess according to Tab.46 211
Figure 71: Complexity reduction according to Tab.47 212
Figure 72: Complexity reduction according to Tab.48 213

List of Figures

 viii

List of Tables

 ix

List of Tables

Table 1: Variability concepts in the problem and solution space 36
Table 2: Tactics for effective family realization 47
Table 3: Laws of software evolution [Lehman+06a] 73
Table 4: Laws of product line infrastructure evolution 73
Table 5: Characterization of least complex types of variability

mechanisms ... 84
Table 6: Variability mechanism pattern elements and their purpose 86
Table 7: Product line infrastructure code smells 147
Table 8: Variability refactorings .. 154
Table 9: Goal G1 and questions: Product line development cost

reduction ... 169
Table 10: Goal G2 and questions: Variability complexity reduction 169
Table 11: Goal G3 and questions: Product line infrastructure code size

reduction ... 170
Table 12: Goal G4 and questions: Product line infrastructure code shape

alignment .. 170
Table 13: Goal G5 and questions: Variability emphasis 170
Table 14: Goal G6 and questions: Variability management consistency170
Table 15: Goal G7 and questions: Reuse efficiency 170
Table 16: Metrics suite for sustainable product line infrastructure code

evolution .. 171
Table 17: Overview of investigated hypotheses.................................. 178
Table 18: Decision model for the sensor node product line specified in

Figure 49 ... 182
Table 19: Steps in the evolution of a sensor node product line 183
Table 20: Code size evolution in all realization sequences (cf. Fig.53) 191
Table 21: a) Temporal, and b) spatial code size deltas 191
Table 22: Temporal code churn �LOC,t for all sequences 193
Table 23: a) Evolution in number of modules; b) comparison to spatial

baseline ... 193
Table 24: Effort for realizing scenario 5, compared to Cloning 194
Table 25: Evolution in depth of reuse hierarchy 195
Table 26: a) Evolution in width of reuse hierarchy; b) comparison to

spatial baseline... 195
Table 27: Evolution of a) closed, and b) open runtime cyclomatic

complexity ... 196

List of Tables

 x

Table 28: Evolution of a) closed, and b) open construction time
cyclomatic complexity .. 196

Table 29: Evolution in a) runtime, and b) construction time cyclomatic
complexity ... 197

Table 30: Evolution in a) closed, and b) open cyclomatic complexity .. 197
Table 31: Evolution in a) LOC of adaptees, and b) adaptability,

compared to ideal realization ... 199
Table 32: Evolution in a) externally visible, b) internally visible, and c)

ambiguous variant elements... 200
Table 33: Deltas to baseline for a) externally visible, b) internally visible,

and c) ambiguous variant elements 200
Table 34: a) Evolution in reuse ratio; b) comparison to spatial baseline201
Table 35: Evolution in number of defaults ... 202
Table 36: a) Evolution in spatial code churn among variable siblings; b)

comparison to baseline .. 203
Table 37: a) Evolution in compression distance among variable siblings;

b) comparison to baseline .. 203
Table 38: Seventeen measured values for all mechanisms after evolution

step 6... 204
Table 39: Normalized metrics from Table 38 205
Table 40: Aggregated normalized complexities after evolution step 6 205
Table 41: Evolution in complexity, compared to ideal realization........ 206
Table 42: Evolution in size complexity, compared to ideal realization . 207
Table 43: Cloning complexity excess, compared to other mechanism

monocultures ... 208
Table 44: Cloning complexity excess, compared to other conventional

mechanisms ... 209
Table 45: Runtime mechanism complexity excess 210
Table 46: Complexity excess due to programming language-

dependence ... 210
Table 47: Complexity decrease due to defaults 212
Table 48: Complexity decrease due to both open and closed variation

support .. 212
Table 49: Validation summary ... 213
Table 50: Measurements for initial versions (directly measured values in

gray rows) .. 289
Table 51: Measurements after evolution step 1 290
Table 52: Measurements after evolution step 2 291
Table 53: Measurements after evolution step 3 292
Table 54: Measurements after evolution step 4 293
Table 55: Measurements after evolution step 5 294
Table 56: Measurements after evolution step 6 295
Table 57: Aggregated complexity per goal... 296

List of Tables

 xi

Table 58: Results for H1.1 and H1.2 (Cloning complexity) 297
Table 59: Results for H2.1 (Binding time complexity) 298
Table 60: Results for H2.2 (Programming language-dependence

complexity) .. 299
Table 61: Results for H3.1 (Lack of Default complexity) 300
Table 62: Results for H3.2 (Open/closed variant complexity) 301

List of Tables

 xii

List of Listings

 xiii

List of Listings

Listing 1: Simple Cloning: Sensor node realization without (left), and
with time transmission support .. 87

Listing 2: Sensor node realization with Templating 88
Listing 3: Sensor node realization with Conditional Execution 93
Listing 4: Sensor node realization with Polymorphism 100
Listing 5: Sensor node realization with Module Replacement 105
Listing 6: Sensor node realization with Conditional Compilation 111
Listing 7: Realizing defaults with Conditional Compilation 116
Listing 8: Sensor node realization with Aspect-Orientation 119
Listing 9: Sensor node realization with Frame Technology 125
Listing 10: Frame processor driver: fp.py ... 249
Listing 11: Logic for processing a single frame: frame.py 250
Listing 12: Logic for parsing a single line: frameparser.py 251
Listing 13: Logic for input and output of text lines: lineio.py 251
Listing 14: Calculation of edit and compression distance: dist.py 255
Listing 15: Calculation of code delta: delta.py 256
Listing 16: Calculation of code churn: churn.py................................... 257
Listing 17: Original tilt detector from product line (a6): tilt_detector.c,

Makefile ... 260
Listing 18: Conditional execution code after 6th evolution step (b6):

main.c, Makefile .. 263
Listing 19: Conditional compilation code after 6th evolution step (e6):

main.c, Makefile .. 266
Listing 20: Polymorphism code after 6th evolution step (c6): main.c,

tilt/drop/noise/movement/raw_detector.c, time_transmission.c,
voltage_check.c, clock_sync.c, Makefile 270

Listing 21: Module replacement code after 6th evolution step (d6):
main.c, tilt/drop/noise/movement/raw_detector.c,
no_/time_transmission.c,no_/ voltage_check.c,
no_/clock_sync.c, Makefile ... 274

Listing 22: AOP pseudocode after 6th evolution step (f6): main.c,
drop/noise/movement/raw_detector.acc,
time_transmission.acc, voltage_check.acc, clock_sync.acc .. 276

Listing 23: Frame technology code after 6th evolution step (g6): main,
drop/noise/movement/raw_detector, time_transmission,
voltage_check, clock_sync, Makefile 280

Listing 24: Ideal compilable code code after 6th evolution step (h6): main,
drop/noise/movement/raw_detector, Makefile 283

List of Listings

 xiv

Listing 25: Ideal pseudocode after 6th evolution step (i6): main,
drop/noise/movement/raw_detector 285

Listing 26: HAL interface realizations (init.h, sensors.h, actuators.h,
clock.h) .. 286

Listing 27: Construction test output in successive scenarios (g3 and g4)287

Introduction

 1

1 Introduction

Many software development organizations today aim at reducing their
development (Def.12) effort and cost, while improving the quality and
diversity of their software products by engineering (Def.41) reusable
software. A set of reusable artifacts (Def.44), for example a product line
infrastructure (Def.62), and ultimately its source code, is created, but it
decays over time unless it is evolved (Def.66) in a sustainable way. Thus,
the engineering goal is to keep the product line infrastructure reusable
over long periods of time. To support this goal with a focus on source
code, a method is developed in this thesis which guides product line
engineers in practice in the sustainable evolution of source code in a
product line infrastructure, or product line infrastructure code.

The remainder of this introduction is organized as follows: Section 1.1
introduces the problem of product line evolution and sketches a
solution. Section 1.2 presents a historical perspective of product lines
and especially how the state-of-the-art in coding for reuse has emerged.
Section 1.3 discusses the solution idea of minimizing complexity excess
through a well-defined product line evolution method in more detail.
Section 1.4 lists the benefits of the approach. Section 1.5 summarizes
the introduction and gives an outline of the remaining chapters.

1.1 Evolution as a Product Line Engineering Challenge

A goal in most software organizations is to develop high-quality
software in a timely and cost-effective manner, for example by large-
scale software reuse. Reusable software reduces development effort if
new applications can be constructed by using pre-existing elements
again, rather than always developing them anew. Software which has
successfully been reused in several products is also likely to contain fewer
defects than newly-developed software. This improves the quality of
each new product that reuses these elements.

An organization typically develops a set of similar software systems for
the same market segment, so that it makes sense to aim at the mass
production (Def.30) of software, tailored at individual customer needs
(Def.24), instead of always developing new similar systems from scratch.
Tailoring software to individual needs is only economically useful if the
systems are similar enough, contain enough commonality (Def.45), but
also provide sufficient means for required diversification.

Introduction

 2

In the past, reusable software has often been built independent, and
much earlier than software which reuses it. Reusable software meant
fixed blocks of small-scale artifacts, for example programming language
libraries or “third party” libraries. A problem with these approaches is
that they usually provide unbounded commonality, too much than
required for each specific product, and at the same time, they offer
insufficient means for product-specific variation (Def.47). Both problems
have arisen because development for reuse and development with reuse
[Karlsson95] have not been aligned with each other.

More recently, more and more reusable software of larger scale is
developed in a deliberate organization-specific engineering effort
alongside the software that reuses it. In these approaches, a set of
similar software systems is developed (conceived, designed, constructed,
and evolved) [Shaw05] as a product line [Withey96] (Def.23) by
capitalizing on the products’ required commonality and predicted
variation [Weiss+99]. All artifacts created for reuse during the
engineering sub-phases, such as requirements, architecture, or code, but
also methods and tools, constitute an organization’s product line
infrastructure [Bayer++99, Muthig02].

After building up a product line infrastructure, an organization is able to
rapidly instantiate the required individual products by consuming
elements of the product line infrastructure. However, successful products
in practice must be changed over time in order to remain satisfactory for
end-users [Lehman80], and likewise, the product line infrastructure must
accommodate changes in order to remain satisfactory in reuse. For
example, the product line may need to accommodate new products that
had initially not been planned, or existing product line characteristics
may need to be changed in ways that were not entirely foreseen.

Figure 1 shows how evolution problems propagate through the product
line engineering (Def.49) sub-processes, and which interaction is the
focus of this thesis. Product requirements for similar products are the
input to the product line engineering (PLE) process. The output is a set of
products. Within product line engineering, there are two sub-processes
that execute in parallel, interfaced by a reuse repository called the
product line infrastructure. As mentioned above, the product line
infrastructure contains different types of reusable artifacts. For the sake
of brevity, Fig.1 only highlights code artifacts. The family engineering
(Def.60) process is responsible for producing the product line
infrastructure, and the application engineering (Def.61) process
consumes the product line infrastructure during the production of
products.

Introduction

 3

Figure 1: The problem of product line infrastructure code evolution

A problem in practice we have observed in numerous industry projects is
that over time, it becomes progressively harder for application engineers
to reuse artifacts from the product line infrastructure, especially code.
Below a critical level of reusability the engineers prefer to rewrite code
from scratch, rather than to reuse it. For example, in a particular project,
application engineers struggled with adding new functionality to
software for digital entertainment systems because the product line
infrastructure code did not support these changes. In another project,
the effort to reconfigure existing automation system code became
excessive because the product line infrastructure provided too many
combinations of configuration options. In a product line engineering
context, this problem is caused by the product line infrastructure, and in
particular by its code artifacts, the product line infrastructure code.

For conventional single system software, this type of phenomenon has
been the topic of software evolution research since the late 60s
[Lehman02] and is known as software aging [Parnas94], software decay
[Mens+08], or code decay. As shown in Fig.1, two reasons for code
decay have been found [Parnas94]: The first reason is lack of change,
which means that there are new product requirements, but these are
not realized1 in the code, so that the code and the requirements
documents drift apart. This issue can be resolved by keeping the code in
sync with other product line infrastructure artifacts. While others have
treated this issue of creeping architectural mismatch in single systems
extensively [Garlan++95, Knodel10], it is not in the focus of this thesis.

1 In accordance with [Krueger92, Pohl++05], the term realization is used throughout

this thesis for the activity also known as implementation or coding.

Introduction

 4

The other reason is that the internal complexity (Def.43) of the code
increases [Lehman80], not due to omitted changes, but due to
committed changes which have been realized inappropriately. This
makes the product line infrastructure code harder to understand, evolve
and reuse than necessary. Fig.1 illustrates that product line infrastructure
code is developed and evolved in the family engineering process, and
this is where complexity arises and where it must be tamed. For that
reason, this thesis concentrates on the interface between family
engineering and product line infrastructures, investigating which factors
contribute to complexity excess in evolving product line infrastructure
code. The focus is not only on passively measuring complexity attributes
because analyzing alone does not make the code less complex. Instead,
the focus is on the entire process for actively counteracting the
degeneration process. The result is a practical guide, aimed at family
engineers, to evolve product line infrastructure code, balancing effort
and complexity in such a way that code decay is reduced or avoided.

What is the key difference between single system artifacts and artifacts
in a product line infrastructure, which makes its code more complex than
single system code? As will be shown in Section 2.3, it is variability
(Def.46). Product lines capture variability [Synthesis93, O’Connor++94],
a concept that is not significant in single systems. Variability is realized in
artifacts of the product line infrastructure, such as code, by variability
mechanisms [Jacobson++97] (Def.64). In this thesis, a set of orthogonal
family engineering tactics is developed which can be used to rank
variability mechanisms. The tactics concept is inspired by architectural
tactics [Bass++03], and the set of tactics extends a list of guidelines for
effective reuse, proposed in the reuse literature [Bassett97]. Based on
these tactics, a pattern language of plain and orthogonal types of
variability mechanisms is presented from a family engineer’s viewpoint.
In order to describe why variability arises, this thesis identifies evolution
scenarios which are types of changes in product line requirements that
may lead to over-complexities in future product line infrastructure code.
Both the variability mechanism patterns and the evolution scenarios are
inputs to the product line realization process developed in this thesis
whose goal is to systematically guide family engineers in practice in the
efficient and long-term evolution of product line infrastructure code, as
introduced in Section 1.3.

1.2 A Brief History of Product Line Realization

Today’s notion of software product lines has gradually evolved during
more than half a century of software development. This section presents
some larger milestones which illustrate how the current understanding
of software product line realization and variability mechanisms (Chapter
4) emerged. Chapter 2 will define the resulting concepts in more detail,
as used in the remainder of the thesis.

Introduction

 5

Software reuse is concerned with using software development artifacts
again. Reuse activities are performed because a reuser who solves a new
development problem is faced with a problem that has already been
solved by an existing artifact. In particular, the activities for creating the
reused artifact do not have to be repeated again. Typically, this saves
development effort and provides quality improvements.

Software development activities have always included realization
activities, and this is why source code reuse has always played a role in
software reuse. As Figure 2 shows, one of the earliest reuse concepts are
subroutines, collected in subroutine libraries, Their first introduction can
be traced back to at least 1951 [Wilkes++51]. Subroutines are useful in a
reuse context because they allow functionality-related solutions to be
reapplied if the identical development problem arises again.

Figure 2: History of product line engineering

By the end of the 50s, macros had been introduced [Greenwald+59] as
another code reuse concept which is still in use today. Like subroutines,
macros relieve a reuser from redeveloping code artifacts. Unlike
subroutines, the reused artifacts are typically not restricted to algorithms
only, but may consist of arbitrary text elements.

Two novel reuse ideas were addressed at the 1968 NATO Software
Engineering Conference [Naur+69]: organization of libraries and
software components. On the one hand, an extension of the subroutine
library idea by the layering concept was proposed which enables
interdependent libraries to be organized in hierarchies according to
function call relations [Dijkstra68]. These ideas were later generalized to
hierarchies organized according to other types of relations [Parnas74]. In
a reuse context, this idea is valuable because hierarchies make it possible
to organize elements according to various criteria, e.g. according to
reusability or change frequency.

On the other hand, the idea of generic function libraries as software
components was introduced [McIlroy68]. This paper first addressed that
reusable code must solve a family of similar problems. In other words,
this paper generalized the reuse concept which had formerly only been
concerned with sameness to one which is concerned with similarity. It

Introduction

 6

suggested that truly reusable components must be adaptable in order to
be used effectively. This means that they do not only require common,
but also variant elements, either as predefined options or as open-ended
extension possibilities. In a product line context, one major contribution
of that paper is that it highlighted the importance of variability for reuse.

In the following year, the concept of program families was first
presented [Dijkstra69] which was later refined [Parnas76]. Dijkstra
motivated the need for entire software systems to be viewed as similar
artifacts because they evolve over time, so that they form generations of
a single product. Different versions can then be seen as having a
common ancestor which is only partially complete because some
development decisions are still left open. This way, the concept of
generic function libraries was extended to entire software systems.
Parnas generalized this idea by not only considering the shape of
software code families as end-products, but by suggesting a process for
constructing them. This construction process happens in a well-defined
order in which decisions concerning the more common elements are
made earlier than decisions for more variant elements.

In 1972, information hiding had been proposed as a systematic
approach for module decomposition in a reuse context [Parnas72]. Using
this concept, the developer of a reusable artifact suppresses certain
realization details from a developer who reuses the artifact. This
simplifies reuse because information about a reused artifact is reduced in
such a way that the more common details about the artifact that only its
builder needs are suppressed, while those elements which are important
for the reuser are highlighted.

In the early 80s, problems in reusable subroutine libraries were identified
that arise when common, fixed software elements must evolve
[Bassett84]. A solution called frame technology was suggested in which
reusable modules of source code text are customized exactly as required
in each reuse situation. In a later publication [Bassett97], it was stressed
again that not only subroutines qualify as reusable source code artifacts,
but that any kind of source code text is reusable, independent of its
meaning in a programming language context.

The 90s started with an extensive survey of state-of-the-art and state-of-
the-practice reuse approaches [Krueger92]. These comprised, among
others, high-level languages, copy-and-paste programming, software
components and code generators. They were analyzed according to
different criteria, especially abstraction (information hiding, as used in
[Parnas72]) and specialization (genericity, envisioned in [McIlroy68]). By
the same time, domain engineering was proposed as an approach for
more productive development of similar software systems
[Campbell++90], and the feature concept was suggested to document
such systems [Kang++90].

Introduction

 7

The late 90s brought a consolidation of the idea of software reuse as ad
hoc development of small- to medium-sized code artifacts. Object-
oriented and component-based development focused on constructing
small-scale building blocks in the late software engineering life cycles
[Meyer97, Szyperski98]. Developing software from Lego block
components, analogous to engineering physical objects, was also
criticized as an insufficient strategy for efficient software reuse in
practice, preventing unpredicted changes [Bassett97] and neglecting
architectural issues [Ran99]. The concepts of patterns and pattern
languages, initially conceived in the context of building architecture
[Alexander++77], were adopted in various phases of the software
engineering life cycle [Gabriel96, pp.33], for example in realization
[Coplien91, Beck96], design [Gamma++95, Buschmann++96], or
architecture [Shaw+97], to systematically describe recurring solutions to
common problems that arise in software development contexts in
practice. It was suggested to analyze and represent similar systems by
considering their commonalities and differences [Synthesis93,
O’Connor++94], and the proposal was made to take advantage of these
concepts in domain engineering [Neighbors80, Withey96]. The variation
point concept was suggested for representing differences in reusable
software artifacts [Jacobson++97], which rediscovered and refined the
concepts of engineering change point [Bassett87] and hot-spot [Pree94].
Multi-paradigm design was suggested as a development approach for
common and variable code [Coplien99]. Generative programming
proposed new realization solutions [Czarnecki+00], for example as
provided by mixins [Smaragdakis+02] or Aspect-Orientation
[Kiczales++97]. The traditional concept of reuse, informally taking place
in an unplanned fashion, was renamed opportunistic reuse, as opposed
to planned reuse activities, called systematic reuse [IEEE1517]. As
envisioned in the mid-90s [Prieto94], the traditional notion of software
reuse disappeared in academia by the turn of the millennium.

Since the end of the 90s, the software family idea [Dijkstra69, Parnas76]
has been refined in several respects, leading to the concepts of software
product lines and product line engineering [Weiss+99, Bayer++99,
Bosch00, Atkinson++01, Clements+01, Gomaa04, Pohl++05,
Käkölä+06, Linden++07, Northrop+07, Kang++10]. As conceived in the
90s, reusable artifacts are now considered across the entire engineering
life cycle, beyond source code. Unlike in the domain engineering
approaches of the early 90s, reusable artifacts are now engineered based
on precisely defined system boundaries, due to additional scoping
activities in product line engineering. This leads to complexity reduction
by strategically avoiding development effort for artifacts that will not be
reused. Whereas traditional families were seen as single system artifacts
changing over time (now termed product populations [Ommering04]),
product lines comprise multiple similar artifacts existing simultaneously,
for example a standard and an extended application. Most recently
[Elsner++10], as in this thesis, both of these aspects, variation in time

Introduction

 8

and variation in space, are considered in product lines. This evolution
aspect of product lines is also becoming increasingly important as
product line engineering enters industrial practice, necessitating
lightweight processes that are customizable to individual development
contexts [Bayer++99, Krueger02a, Krueger02b, Muthig02, Kolb++06,
Krueger07, Hanssen+08, Bosch09, Codenie++10, Kolb+10, Krueger10,
McGregor++10, Mohan++10].

1.3 Solution Idea: Complexity-Aware Family Realization

As discussed in Section 1.1, the approach developed in this thesis is
keeping the product line infrastructure, and especially its code artifacts,
reusable (cf. Figure 1). At least two orthogonal dimensions of product
line realization exist [Muthig++02]: configuration management and
generative techniques within source code. While the former is addressed
by others [Anastasopoulos++09], the present thesis is concerned with
the latter. Figure 3 highlights again that this work focuses on the family
engineering activity, not on application engineering, within the classical
product line engineering life cycle [Bayer++99, Weiss+99, Clements+01,
Pohl++05]. The goal is to support the product line engineer, especially
the family engineer, in the long-term evolution of code contained in the
product line infrastructure.

Figure 3: Focus of the product line evolution method

As part of the product line infrastructure, the evolving code consists of
common and variant code elements (Def.55), configured (Def.28) by
configuration artifacts, for example configuration scripts or Makefiles.
An interdependency of code and configuration artifacts exists, but both
may be optimized independently for evolution. While consistent
configuration is also a problem in practice [Krueger07], this thesis
concentrates on the main realization artifacts which are common and
variant source code elements.

Introduction

 9

As will be shown in Section 3.4, a problem in practice is that evolving
systems in general and software artifacts in particular become complex.
This phenomenon has been observed both in academia and in practice.
Sometimes, concrete suggestions have been made on how to tame this
complexity, for example by software refactoring [Fowler99]. However,
extensive research does not yet exist on how software product line
realizations may be evolved in such a well-behaved way that they remain
evolvable and reusable. As indicated in Section 1.1 and explained in
Section 2.3, product line development adds a dimension of complexity
compared to single system development, the reuse dimension with its
co-evolving common and variant elements. This raises novel research
challenges which are addressed by this thesis, for example, what makes
product line infrastructure code complex and how can it be evolved in a
well-behaved manner in practice, with “just enough” effort.

As will be shown in Section 2.1, reuse (Def.21) extends use (Def.6), and
use is a single-system concept. For that reason, code which is just used
during product line reuse does not pose new evolution challenges
compared to single-systems practices. The new challenges of product
line infrastructure code evolution have to do with those properties that
become relevant in reuse, as opposed to unmodified use. These
challenges are variability, reuse efficiency, and ease-of-configuration. In
particular, variability mechanisms are responsible for a type of complexity
in product line infrastructure code which does not exist in single system
code [Bosch++02].

This type of complexity is unavoidable, essential. However, a large
proportion of software complexity is of another type, called arbitrary (or
accidental) complexity [Brooks95] (see Def.43 in Sec.2.3). Arbitrary
complexity exists in all artifacts and processes that are not essential to
solve the current software development task, but which unnecessarily
make the artifact more difficult to evolve. For example, arbitrary
complexity may be introduced during realization if clear software
requirements or consistent software architectures are missing. More
generally, complexity is propagated through the software engineering
life cycles, accumulating in the software realization phase.

In product line engineering, unnecessary complexity arises due to the
inclusion of unneeded commonality (which can be avoided by proper
scoping activities), and due to inadequate management of variation.
During all phases of family engineering, and especially during the
realization of product line infrastructures, the provided mechanisms
which allow variation to be included, contribute to product line-specific
over-complexity. Such complexities in the artifacts arise during the
process in which the artifacts are evolved, and this is why they are
reduced or avoided by complexity-aware engineering processes. Such a
process is developed in this thesis for family engineering, and in
particular for family realization (Fig.3). Figure 4 gives an overview of the

Introduction

 10

proposed approach whose details will be developed in Chapter 5.
Existing code of a product line infrastructure and new product line
requirements are the inputs of a product line realization process that
targets the product line engineer, in particular the family engineer. The
output of the process is new product line infrastructure code which has
undergone variation in time and whose complexity is well-managed, so
that the code is kept evolvable.

Figure 4: Product line evolution method

Product line infrastructure code complexity is determined and can be
controlled by variability mechanisms, and this is why another process
input is a collection of variability mechanisms, presented in form of a
pattern language, a format well-known in practice. The set of presented
mechanisms has deliberately been limited to least complex ones which
we have seen in projects in practice, and which possess disjoint reuse
characteristics, according to an extended set of criteria initially proposed
in the reuse literature [Bassett97]. The goal of setting up this pattern
language is to establish a conceptual toolset of product line realization
mechanisms that the family engineer may use and customize.

Another process input that augments the family engineer’s mental tool
set are product line evolution scenarios. They serve to describe the
possible next types of variability-related changes that result from
predicted or unpredicted changes in product line requirements. One
such requirement is, for example, to support a new product which
requires a new alternative variation, in addition to an existing set of
alternatives. The presented product line evolution scenarios are

Introduction

 11

elementary ways in which variabilities may evolve, based on a small set
of disjoint elementary scenarios.

The product line realization process consists of three iterative and
incremental processes. These processes and their sub-activities are
organized to optimize evolution efficiency, producing the most
important results as early as possible, while mistakes may be undone
with least effort. The goal of the first of these processes, selection, is for
the family engineer to understand the new requirements and to identify
variation candidates in the code, while possibly detecting variability
defects. In the second process, modification, the family engineer
performs the changes in a specific order, possibly removing identified
defects by variability refactorings. The final process, quality assurance,
serves to provide feedback that product line characteristics have not
suffered. It consists of product line testing and product line
measurement sub-processes. As part of product line testing, a novel
testing approach is proposed, based on Bassett’s idea of separating
reuse from use [Bassett97]. The testing approach ensures that all product
line members (Def.48) can be constructed and executed as required. For
the following sub-process of product line measurement, a nearly
unexplored discipline in product line engineering, an extensible variability
complexity measurement scheme is developed, based on the GQM
approach [Solingen++02]. The measurement scheme serves to ensure
that the resulting product line infrastructure code has remained simple
enough for sustainable evolution.

Using that measurement approach, a case study is performed that
evaluates the impact of all presented variability mechanisms on
evolvability, taking into account major classes of product line evolution
scenarios. The case study supports the hypothesis that there is no “silver
bullet” [Brooks95] of a single variability mechanism for keeping product
line infrastructure code reusable, but instead the key factor for
sustainable product line infrastructure code evolution lies in an
appropriate process for applying mechanisms, according to the
development context (Def.20) [Patzke10a].

1.4 Contributions and Benefits

This chapter introduced the novel problem of code aging in product line
infrastructures. It was shown that product line concepts have evolved
during more than half a century of software development. It was
discussed that there are particular complexities when product line
infrastructure code is evolved which may be mitigated by guiding the
family engineers in selecting appropriate variability mechanisms.

The primary contribution of this thesis is a reactive product line evolution
method which supports family engineers in practice to keep product line

Introduction

 12

infrastructure code evolvable throughout its life. Besides a presentation
of fundamental product line concepts (Ch.2), the following method
elements make the following contributions to product line engineering:
A customizable product line realization process is identified (Sec.5.2)
which consists of novel variability refactoring and quality assurance
activities. The process is deliberately subdivided into variability-related
and non-variability-related sub-activities which can be reused and whose
sequence has an impact on development productivity. As part of quality
assurance, a GQM-based variability complexity model with concrete
product line metrics is developed (Sec.5.3), as well as a novel product
line testing approach. Two types of artifacts are identified that support
the process (and which can also be described by reusable sequences):
variability mechanisms (Ch.4) and product line evolution scenarios
(Sec.5.1). Based on a set of product line realization tactics (Sec.2.3), a
pattern language of plain variability mechanism types is presented whose
goal is to guide family engineers in practice. The goal of the identified
product line evolution scenarios is to characterize future possibilities of
product line requirements changes. A case study (Sec.6) validates
important method elements under quasi real-world conditions in
embedded systems development. The results show that code duplication
can be beneficial in the short term, while it is most detrimental in long-
term evolution. It is also found that late binding and programming
language-dependence significantly increase the complexity of product
line infrastructure code, while Defaults and support for both open and
closed variation decrease it.

Several types of benefits can be expected by applying the product line
evolution method developed in the current thesis.

First, the method results in controlled complexity reduction of existing
product line infrastructure code, which not only leads to at least 30%
complexity reduction after the third iteration, compared to a non-
controlled approach, but also reduces overall complexity growth which
tends to become exponential in ad hoc approaches, to an acceptable
rate, as shown in Fig.5a.

Figure 5: a) Complexity reduction in product line infrastructure code; b) whole life cycle effort reduction

Introduction

 13

At the same time, the method provides whole life cycle cost and effort
reduction in product line engineering in practice because it actively
counteracts product line infrastructure degeneration and protects
existing investment by avoiding the premature retirement of product line
generations [Ganesan++06]. This is illustrated in Fig.5b.

Another benefit of the method is that it leads to an increase of variability
management productivity by supporting the practically important factor
of development speed [Kolb+10] without compromising other quality
attributes. The method is also customizable to the respective
development context of an organization, and it is future-proof because it
builds on 2nd generation product line methods.

1.5 Outline

The remainder of the thesis is structured as follows:

Chapter 2 explains the background of this thesis, presenting a novel
consistent taxonomy of 68 product line concepts. It is explained that
besides the classical concept of reuse as unmodified usage, a more
general dual concept of reuse with modification exists which is
important for efficiently realizing variability in product lines. As a result
of this duality, the concept of a reuse hierarchy is developed which
complements the classical architectural style of layering that is often
based on unmodified usage relations. Product line concepts are
explained with a focus on variability, artifacts and processes. When
discussing the variability mechanism concept, a classification scheme of
five criteria is developed for guiding variability mechanism selection. The
interrelation of complexity and evolution is shown in a product line
engineering context.

Chapter 3 presents related work on product line realization artifacts,
product line engineering processes, empirical studies questioning the
harmfulness of code duplication, complexity and evolution in single
systems, and complexity and evolution in product lines. It is shown that
most work that concentrates on product line realization artifacts has
neglected process issues which are important for engineering product
lines in practice. On the other hand, research on product line
engineering processes has often focused on introducing product lines in
a proactive way, neglecting incremental transition and evolution
strategies in the presence of existing artifacts, especially code. It is also
shown that, according to a growing number of empirical studies from
single systems software engineering in the last decade, code duplication
cannot generally by considered harmful in any software development
context. Work on complexity and evolution in single software systems
and single systems in general has resulted in guidelines for passively
characterizing and actively evolving them, aiming at long-term quality

Introduction

 14

improvement while possibly tolerating short-term degradation. It is also
shown that product line evolution has been recognized as variability in
time, but that synergies to classical complexity and evolution research
are missing.

Using the classification scheme from Chapter 2, Chapter 4 presents a
pattern language of seven basic variability mechanism types for source
code, primarily targeted at family engineers in practice using the C/C++
programming language, for example in embedded systems
development. As a novel contribution to product line engineering,
cloning, which has traditionally been considered harmful in all reuse
situations, is also included as a variability mechanism. This is also backed-
up by a growing number of recent studies in single systems engineering
that have started to reject the universal harmfulness of cloning. Each
mechanism is discussed using a slightly modified Design Pattern
[Gamma++95] template well-known in practice which includes
construction dynamics, variants, advantages, disadvantages and relations
to other mechanisms. As an extension to current view-based architecture
or design descriptions [Kruchten95] also found in traditional design
patterns, the structures of each discussed mechanisms is described in
terms of processes creating these structures. This is a novel approach for
describing the evolution trace of software artifacts, documented as
snapshots of the development process.

The same representation is also applied in Chapter 5 in order to
document the evolution trace of requirements artifacts. The presented
product evolution scenarios are a novel contribution to product line
engineering, as they allow a product line engineer to predict future
product line requirements that result in an increase of unavoidable
product line-specific complexity. A concise number of basic evolution
steps are identified that can be combined to yield more complex
evolution scenarios.

The main part of Chapter 5 presents the overall process for keeping
product line infrastructure code reusable by consistently using the
variability mechanisms introduced in Chapter 4. The process has been
developed by transferring a process for sustainable evolution of complex
systems to product line infrastructure code development. The process
sub-activities are ordered in such a way that backtracking is minimized
which optimizes the efficiency of the overall method. When presenting
the first two method phases, a contribution is made to the novel
discipline of variability refactoring by identifying a set of 23 product line
infrastructure code smells and 37 variability refactorings.

As part of the quality assurance phase of the product line realization
process, the thesis contributes to the unexplored discipline of product
line measurement by developing a customizable goal-oriented scheme
for variability complexity measurement. This thesis also uses a novel

Introduction

 15

complexity concept in which complexity is only seen as the absence of
simplicity (see Def.43). This complexity concept is further refined to the
product line-specific concept of variability complexity (Def.65). As a
result, novel metrics for measuring reuse, similarity, variability and
evolution are developed and applied. As another contribution to product
line quality assurance, the thesis develops a two-staged product line
testing approach, based on the two dual concepts of unmodified usage
vs. reuse with modification, introduced in Section 2.1. The first testing
phase, construction testing, is novel because, in contrast to all other
product line testing approaches [Pohl++05, Neto++11], it tests if all
members of the product line can be constructed as expected, whereas
previous testing approaches have only considered if all product line
members execute as expected. The testing approach has been applied in
the case study in Chapter 6.

The case study is performed on small resource-constrained embedded
systems product lines developed in the C programming language. The
goal of the case study is to analyze, by applying all variability
mechanisms from Chapter 4 and the measurement scheme from
Chapter 5, if the selection of variability mechanism types has a major
impact on product line infrastructure code evolvability. A set of factors is
validated that contributes to variability complexity. In the case study, a
combination of Conditional Compilation and Frame Technology led to
least variability complexity in the long term.

Chapter 7 gives a summary, identifies open issues and gives an outlook
at future challenges. The following section lists the references.

Appendix A contains a glossary of the discussed product line concepts.
Appendices B to E contain material used or produced in the case study.

Introduction

 16

Background

 17

2 Background

Section 1.2 has shown that the current understanding of product line
concepts emerged gradually during the history of software development.
Many concepts were defined and refined, partially in consistent ways,
but often inconsistently. This chapter presents a consistent terminology,
based on a survey of over 300 documents from the software engineering
literature that provided over 500 definitions of product line engineering
terms [Patzke10b]. Note that the terminology is not as important as the
underlying concepts, as observed in [Northrop+07].

Based on the reuse model from [Bassett97], Section 2.1 illustrates why
reuse is more than unmodified use, as traditionally understood in
framework development, object-oriented design patterns and
component-based development. The goal of the section is to show why
component-based techniques lead to unnecessary restrictions in family
engineering. Based on this understanding of reuse as a dual concept to
use, Section 2.2 shows why it makes sense to decompose reusable
artifacts according to their degree of reusability. The goal of the section
is to present criteria for family engineers to organize hierarchies of
reusable modules. The two sections focus on underlying reuse concepts
and postpone a more detailed discussion of product line engineering
concepts to Section 2.3. It explains why variability is the key issue that
differentiates product line engineering from conventional single systems
engineering. Variability-related concepts are defined, and an overview of
processes and artifacts in product line engineering is given. In particular,
the variability mechanism concept is discussed, and criteria are evaluated
for effective variability mechanism usage in family engineering. Product
line-specific issues of complexity, evolution and refactoring are presented
as well. As a whole, the goal of Chapter 2 is to motivate why the
product line evolution method developed in the remainder of this thesis
is relevant for efficient product line infrastructure evolution in practice.

2.1 The Duality of Use and Reuse

Artifacts developed for reuse in product lines have different shapes
[Pohl++05, Ch.4]. In order to prescribe or describe how to systematically
create such shapes in source code, a distinction must be made between
shape-related concepts of unmodified use vs. reuse [Bassett97]. In this
section, the following issues are first discussed in general, before
addressing them in a reuse context: What is the physical shape of source
code (modules), who creates them (interpreters), and why are they
created (in order to be executed).

Background

 18

The artifacts created and changed during the realization activity are
modules which contain source code, usually in textual form.

Definition 1: Module

A module is an artifact (44) containing a group of symbols “that can be
consistently referenced as a unit” (adapted from [Bassett97]).

In this and the following definitions, references to other defined terms
are written in italics, followed by the identifier of that term2. In this case,
the artifact concept is defined in detail later (Def.44). For now, it denotes
a tangible software item, e.g. a UML class diagram or a source code file.

Modules are created and changed, and the containing symbols are
understood by a software engineer or by an automated device such as a
compiler or code generator. These are collectively called interpreters.

Definition 2: Interpreter

An interpreter is “an agent capable of interacting with a module” (1)
[Bassett97]. Note that this concept has a more general meaning than
interpreters of programming languages such as the Python interpreter:
an interpreter may also be a compiler, a preprocessor, an aspect weaver,
a frame processor [Bassett97], or a human engineer.

Within software development, the final output of interpreters is machine
code that runs on computer hardware. As for interpreters, the traditional
concept of execution can also be generalized, so that it does not only
denote the running of machine code, but also the transformation of
source code into machine code.

Definition 3: Execution

Execution is the interpretation (2) a) of a binary module by computer
hardware, or b) of a module “by a compiler-linker-computer trio, or by
any functionally equivalent interpreter” (adapted from [Bassett97]).
Contrast with: Construction (27).

The input of the execution activity is called an executable module, and
the corresponding interpreter is an execution interpreter.

2 Also, as in [IEEE610], the terms Contast with, Synonym, and See are use, which
respectively refer to an opposite concept, the same concept, and a related concept.

Background

 19

Definition 4: Executable Module

An executable module [Bassett97] is a) a binary module that can run on
computer hardware, or b) a module that can be compiled and linked to
run on computer hardware. Contrast with: Constructible Module (26).

Definition 5: Execution Interpreter

An execution interpreter [Bassett97] is an interpreter (2) whose input
consists of executable modules (4). Contrast with: Construction
Interpreter (25).

This means that an execution interpreter is either computer hardware, or
a compiler/linker or an equivalent tool in addition, but it is not a
preprocessor or frame processor.

Once a source code element has been written, especially if it was written
manually, the software engineer does not want to repeat the same
activity again. This is why source code is made persistent, usually in a file.
This file is then used as input to the execution interpreter which treats
the source code contained in the file as if it had been issued directly.

The input of the execution interpreter usually does not consist of a single
file, but of several files. This facilitates parallel multi-person development.
When source code elements are stored in several files, they may also be
used again when similar systems are needed later. This saves the effort
of redevelopment. The activity of using again is called use, the
corresponding property is usability, and the agent is a user.

Definition 6: Use

Use is the process of reapplying an executable module (4) in unmodified
form. Syn.: Use-as-is [Bassett97], Unmodified Reuse. See also: Reuse
(21).

Definition 7: Usability

Usability is the capability of an executable module (4) to be used (6)
again. Usability depends on functionality, efficiency and ease-of-change
(see [Bassett97, IEEE1517]). See also: Reusability (19).

Definition 8: User

A user is an agent capable of using (6) an executable module (4) (see
[Bassett97]). Note that the same term also denotes a completely
different concept: an end-user, a person running the resulting machine
code [Synthesis93, Campbell07]. In this thesis, a user is a software
engineer exercising reuse without modification. See also: Reuser (22).

Background

 20

Fig.6 illustrates that the role of an execution interpreter is to create
machine code from executable modules. These are composed by a user,
in unmodified form, for example when he develops application logic and
glue code to connect them [Krueger10, p.42].

Figure 6: Use-specific transformation of executable modules into machine code

Definition 9: Composition

Composition is a) the activity (10) of a user (8) who combines executable
modules (4) without modifying them internally (see [Krueger10,
Northrop++06]), or b) the result of the activity in a). Contrast with:
Configuration (28).

The concepts of activity and the underlying concepts of process and
development are defined as follows:

Definition 10: Activity

An activity is “a set of cohesive tasks of a process” (11) [IEEE12207].

Definition 11: Process

Process defines, in a repeatable and consistent way, how “development
(12) is - or should be - performed, i.e. the specific activities (10) that
need to be conducted” (adapted from [Linden++07]).

Definition 12: Development

Development covers all the activities (10) associated with a software
product, from conception through client negotiation, design, realization,
validation, operation, and evolution (66) (adapted from [Shaw05]).
Synonym: Development Process.

Execution interpreters restrict their input modules to be spit according to
certain rules. Usually, executable modules must contain a set of
inseparable primitives that the execution interpreter understands, for
example functions, data or objects, in case of a programming language.

Background

 21

For that reason, users may only decompose executable modules into
primitives prescribed by the execution interpreter. These are usually
programming language primitives, and the executable modules become
subroutine libraries.

Substituting a function call by the function’s realization is an example of
a process called binding: Before binding a function, the option of how
that function is realized is still open (i.e., it may still vary), but after
binding, that decision is closed.

Definition 13: Binding

Binding is “the act of assigning a value to a variable in a module” (1)
[Bassett97].

Binding is carried out at a particular moment, the binding time.

Definition 14: Binding Time

Binding time is the moment when binding (13) happens.

Examples of binding time are development time (the earliest possible
binding time in the code development process, when values are bound
while the program text is written), compilation time (values are bound
during compilation) or runtime (the latest possible binding time, when
values are bound while the program runs) [Krueger04; Coplien99, p.73].
Figure 7 gives an overview of binding times in software development.

Figure 7: Overview of binding times

In contrast to [Bassett97], this thesis makes a distinction between
execution time and runtime in order to classify binding possibilities more
precisely.

Background

 22

Definition 15: Execution Time

Execution time is the binding time (14) during which an execution
interpreter (5) interprets (2) an executable module (4), emitting machine
code. Contrast with: Construction Time (31), Runtime (16).

Definition 16: Runtime

Runtime is the binding time (14) during which machine code runs on
computer hardware. Contrast with: Execution Time (15).

In traditional reuse approaches, reusable elements are collections of
executable modules, for example class libraries or function libraries.
These libraries typically contain more information than necessary for just
using (Def.6) them. In order to reduce the complexity of using these
artifacts, abstractions are created, for example provided interfaces
[Bosch00] which hide module internals and, e.g., only provide essential
function or class interfaces to users. More generally, an abstraction has
this meaning [Krueger92, Bassett97, Northrop++06]:

Definition 17: Abstraction

An abstraction of an artifact (44) is a succinct description which
suppresses details that are unimportant for the purpose at hand, while
emphasizing properties that are important to this purpose (adapted from
[Krueger92, Bassett97, Northrop++06]). See also: Specification (33),
Realization (34).

An abstraction of an executable module includes those details that the
developer of that module has regarded as relevant for later use.
According to the principle of parsimony [Atkinson++01], a well-designed
abstraction should be as simple as possible, which means that it should
not contain extra properties that a user will never need.

One possibility for making systems less complex to understand and use is
to organize them hierarchically. For example, if an executable module
abstraction does not offer enough functionality to a user, he may extend
it by creating another abstraction which uses and extends the first one.
The resulting layers isolate different sources of change, so that modules
in different layers become nearly decomposable: they become
independent in short-term evolution. The resulting abstraction hierarchy
is organized according to function call relations [Dijkstra68], where
unimportant details are suppressed by encapsulation.

Background

 23

Definition 18: Encapsulation

Encapsulation hides the elements of an executable (3) abstraction (17)
that its users (8) do not need to know (adapted from [Bassett97]).
Synonym: Information Hiding.

Encapsulation leads to total invisibility, a property which is stronger than,
but often confused with, simple access control provided by object-
orientation [Booch91, p.49]: While ‘private’ elements of an object are
inaccessible to a developer using an object, they are not invisible to him.
For example, he may still see the signature of private methods, or details
of private inner classes, so that he can see more information than he
requires. On the other hand, component-based approaches such as the
separation between specification and realization in the KobrA method
[Atkinson++01], the architectural style of Information Hiding Systems
[Shaw+97], or the design patterns Bridge [Gamma++95] or Whole-Part
[Buschmann++96] facilitate encapsulation and optimize usability (Def.7)
because they hide elements that their users should not know.

In many software development situations, the executable module does
not offer its user exactly what is required. For example, a function in a
function library might provide too much functionality, so that after
calling the function, a user must undo part of the functionality again. A
function might also offer not enough functionality, so that each user
must add the same missing elements. Or it might offer not quite the
required functionality, so that a potential user must rewrite the
executable module from scratch. A common problem in all these cases is
that a user needs to adapt the executable module exactly for his
particular use situation: the module must be more reusable.

Definition 19: Reusability

Reusability is the capability of a module (1) to be adapted in order to
become usable (7) in a specific context (20). Reusability depends on
usability, variability (46) and adaptability (adapted from [Bassett97,
IEEE1517]). See also: Usability.

The context concept used in Def.19 is defined as follows:

Definition 20: Context

Context is “the setting in which [software] engineering (41) is practiced.
Examples include the working styles of software developers, the values
held by a development team, the cultural background of the developers,
the paradigm of the code, and the kind of industry for which the
software is being developed. Context […] is a multi-dimensional space
with an infinite number of points, each point defining a particular
software project at a particular time” [Murphy++10].

Background

 24

More examples of different development contexts, for example single-
vs. multi-developer or open-source vs. commercial, are also given in the
empirical studies on Cloning in Section 3.3.

Like usability, reusability has two closely related concepts:

Definition 21: Reuse

“Reuse is the process (11) of adapting” a module (1) “in order to make
it usable” (7) (adapted from [Bassett97]). See also: Use (6).

Definition 22: Reuser

A reuser is an agent capable of reusing (21) a module (1). See also: User
(8).

These definitions imply that the most basic type of reuse is use, and
reuse is a superset of use. However, the two concepts are still frequently
confused. As will be clarified in Sec.2.3, the concept of commonality in
product lines is associated with use, while reuse is both concerned with
commonality (its use subset) and variability. Use and reuse also address
different development goals, and this is why they are duals [Bassett97,
pp.78ff.]. For each of the concepts introduced so far in a use context
(e.g. executable module or composition), a corresponding concept exists
in a reuse context, presented next, and this is most relevant for effective
product line realization, where a product line is defined as follows:

Definition 23: Product Line (PL)

A product line [Synthesis93] is a set of similar systems that “share a
common, managed set of features (63) satisfying the needs (24) of a
particular market segment […], and that are developed from a common
set of core assets (56) in a prescribed way” [Clements+01]. Note that
“product lines do not mean fortuitous, small-grained reuse, single-
system development with reuse, just component-based or service-based
development, just a reconfigurable architecture, releases and versions of
single products, or just a set of technical standards” [Northrop+07].

In this definition, features and needs are associated with early
engineering processes such as requirements engineering. The feature
concept will be defined in detail later; for now, it means an abstract
requirement, as suggested in [Pohl++05].

Definition 24: Needs

Needs are “the considerations that customers identify as desired
capabilities, perceived weaknesses, or desired improvements in a system
of interest” [Campbell07]. See also: Requirements (35).

Background

 25

In order to clarify the distinction between use and reuse, the same set of
issues that have been discussed at the start of this section for single-
systems engineering are now discussed in a product line context. What is
the physical shape of reusable code (constructible modules), who creates
them (a construction interpreter), and why are they created (in order to
be constructed).

As in a reuse-agnostic context, the artifacts developed during product
line realization contain source code text. They may be created manually
or automatically. However, in product line development their text is not
only concerned with the functionality of a single software system, but
simultaneously with the similarity of a set of systems. The primary goal of
developing this code is to transform it into product-specific code, and
only a secondary goal is to transform it into machine code. As in the case
of use, a reuser may also need to do this automatically. A corresponding
type of tool for transforming reused code into a product-specific form is
called a construction interpreter.

Definition 25: Construction Interpreter

A construction interpreter [Bassett97] is an interpreter (2) whose input
consists of constructible modules (26). Contrast with: Execution
Interpreter (5).

Construction interpreters are preprocessors, such as the C preprocessor
cpp, frame processors (Sec.4.7), or similar tools. The concepts of
constructible module and construction have these definitions:

Definition 26: Constructible Module

A constructible module is a module (1) that is interpreted (2) by a
construction interpreter (25). Synonyms: Component [Bassett97], Meta-
Component [Bassett02]. Contrast with: Executable Module (4).

Definition 27: Construction

Construction is the interpretation of a constructible module (26) by a
construction interpreter (25). Contrast with: Execution (3).

Fig.8 shows a setting dual to the use situation from Fig.6: A reuser
configures constructible modules which are then constructed into
executable modules by a construction interpreter.

Background

 26

Figure 8: Reuse-specific transformation of constructible modules into executable modules

Like executable modules, constructible modules can be organized
hierarchically in order to make it easier for reusers to understand and
reuse them (see Section 2.2). The activity is called configuration.

Definition 28: Configuration

Configuration is the activity (10) of a reuser (22) adapting constructible
modules (26) to modify them internally via manual techniques or auto-
mated mechanisms (see [Krueger10]). Contrast with: Composition (9).

Configuration is the dual activity to composition. Whereas composition is
applied by a user in order to change an executable module externally,
configuration is applied by a reuser in order to change a constructible
module internally. Both activities are instances of customization
[Krueger10, Codenie++10]. In product line development, mass
customization leads to the mass production of individualized products.

Definition 29: Mass Customization

Mass customization [Davis87, Pine93] focuses on the means of efficiently
producing (30) and evolving (66) multiple similar products, “exploiting
what they have in common and managing what varies among them”
(see [Krueger02a]). Synonym: Software Manufacturing [Bassett97].

Definition 30: Production

Production is “the process used for building all products in a product
line” (23) [Northrop+07]. Synonyms: Instantiation [Synthesis93], Product
Derivation [Deelstra++05], Production Process [Northrop+07]. Note that
“the production activity can be fully automated, completely manual, or
somewhere in between” [Krueger04].

As in the architectural style Pipes and Filters [Shaw+97], a construction
interpreter and an execution interpreter may be concatenated (Fig.9), so
that constructible module input is directly transformed into product-

Background

 27

specific machine code. Alternatively, the two tools may be combined in a
single tool, as in C/C++ preprocessor-compiler-linker trios.

Figure 9: Reuse includes use: construction and execution of modules

Once a code element has been written in order to be reused, its
developer usually makes it persistent, for example in a file. The
construction interpreter then accepts the file as a surrogate of its
contents, the code. Such code may be provided to a construction
interpreter in several files, so that work may be assigned to several
software engineers. Input files of a construction interpreter do not need
to be split according to programming language primitives, but only to
primitives of the construction interpreter’s language. A construction
interpreter can be totally independent of an execution interpreter. It may
process text of arbitrary programming languages or any type of textual
artifact. Constructible modules are bound at construction time which is
always earlier than execution time or runtime (Figs.7, 9).

Definition 31: Construction Time

Construction time is the binding time (14) during which a construction
interpreter (25) interprets (2) a constructible module (26), emitting
executable modules (4). Contrast with: Execution Time (15).

Abstraction (Def.17) is an important property for reuse [Krueger92]
because it allows a constructible module to highlight its essential
adaptation possibilities, while deemphasizing what always remains
common. This makes it easier to reuse the module because the reuser
can concentrate on the module’s configuration interface [Bosch00]
without paying attention to module details that do not vary among all
reuse situations. While encapsulation (Def.18) is important for effective
use because it separates the elements a user does not need to know
about from those he needs to know, it restricts reuse because it prevents
reusers from adapting modules in ways its developers have not foreseen.

Background

 28

2.2 The Reuse Hierarchy

As indicated in Section 2.1, layering makes it possible to organize
reusable elements according to their reusability. However, hierarchies are
meaningless if the relations among the layers are not specified exactly
[Parnas74]. This section shows that a more general type of hierarchy
exists for artifacts of a product line, which extends the hierarchy concept
known in traditional unmodified reuse.

In single-system evolution, it has been shown that hierarchies organized
according to the use relation are beneficial [Parnas76]. The use relation
has been defined as follows:

Definition 32: Use Relation

“We say of [two modules] A and B that A uses (6) B if correct execution
(3) of B may be necessary for A to complete the task described in its
specification (33). That is, A uses B if there exist situations in which the
correct functioning of A depends on the availability of a correct
realization (34) of B” (adapted from [Parnas79]). See also: Reuse Relation
(39).

The specification and realization concepts from Def.32 and their
associated concepts are defined as follows:

Definition 33: Specification

A specification serves to state requirements (35), and represents the
higher of the two levels [of an abstraction (17)] [Krueger92]. Contrast
with: Realization (34).

Definition 34: Realization

Realization is a) the lower, more detailed level [of an abstraction (17)]
[Krueger92], or b) the process of developing the artifact in a).

Definition 35: Requirements

Requirements are “the criteria, consistent with needs (24) and
constraints, that determine whether a product is acceptable as a solution
(37) to a problem” (36) [Campbell07].

Definition 36: Problem

A problem is “the gap between a system as it exists and the system as
would better enable a customer in achieving objectives” [Campbell07].
See also: Problem Space (50). Contrast with: Solution (37).

Background

 29

Definition 37: Solution

A solution is “a means of transforming a system to resolve an identified
problem” (36) [Campbell07]. See also: Solution Space (51). Contrast
with: Problem.

Section 2.1 has discussed that use alone is often insufficient to organize
common and variable artifacts of a product line. For a reuser, it is
important that the provided code is adaptable to his specific
development situation, which means that it must be reusable, not just
usable. This means that the resulting hierarchies must be organized
according to a different relation, the reuse relation. The artifacts realizing
a product line can then be divided into a set of constructible modules
that are configured to become a product line member, produced by a
construction interpreter. Each constructible module has a specification, a
production plan which describes precisely the steps of the production
process.

Definition 38: Production Plan

A production plan is a guide to show how products in the product line
will be composed (9) and constructed (27) from modules (1) (adapted
from [Clements+01, Krueger10]).

Transferring Parnas’ concept of use relations (Def.32), I define reuse
relation this way:

Definition 39: Reuse Relation

We say of two modules A and B that A reuses (21) B if correct
construction (27) of B may be necessary for A to complete the
production process (30) described in its specification (33). That is, A
reuses B if there exist situations in which the correct production of A
depends on the availability of a correct realization (34) of B. See also:
Use Relation (32).

For two modules A and B, reuse and use coincide when A does not need
to perform construction of B in order to meet its specifications. This is
either the case if B does not provide a configuration interface [Bosch00]
to A, or if A does not need to use B’s configuration interface because
appropriate defaults (Def.55) are provided for all configuration options.

The given reuse definition extends all reuse definitions suggested
previously because it includes two novel aspects: First, it explicitly
considers that product line modules require a production plan as part of
their specification. Second, it addresses correctness of reuse.

Background

 30

Reuse hierarchies are defined next, as an extension of Parnas’ use
hierarchy concept [Parnas74]. Compared to use hierarchies which only
consist of fixed modules, reuse hierarchies have the advantage that they
may also contain adaptable modules which are necessary to efficiently
realize product lines (see Sec.2.3). The graph of reuse relations is
directed and loop-free. The constructible modules which are linked by
reuse relations form a hierarchy. Consider a reuse relation R(A,B) among
the constructible modules A and B, where A reuses (Def.21) B. If a
hierarchical order exists, it forms a reuse hierarchy.

Definition 40: Reuse Hierarchy

In the reuse hierarchy which is formed when a constructible module (26)
A reuses (21) a constructible module B, there exist reuse levels with the
following properties:
1. Level 0 is the set of all constructible modules A such that there does

not exist a constructible module B for which R(A,B)
2. Level n is the set of all constructible modules A such that

a) there exists a constructible module B at level n-1 such that R(A,B),
and
b) if R(A,C) then C is at level n-1 or lower (adapted from [Parnas74]).

In other words, no constructible module at level 0 reuses another
constructible module, and a constructible module at level n>0 reuses at
least one constructible module at level n-1 and no constructible module
above level n-1.

I have identified the following consequences of reuse hierarchies:
� The constructible modules at level 0 have the highest reusability. They

realize commonalities or quasi-commonalities in a product line. They
do not need to know about any situation in which they are reused,
and so they are most context-free (i.e., most independent of the
context in which they are reused).

� Constructible modules at level 1 are less reusable because they need
to have knowledge about the constructible modules at level 0 which
they reuse. They cannot be reused by constructible modules at level 1
or level 0.

� Constructible modules at the highest level are completely context-
specific. They are completely dependent on a specific reuse situation
and thus determine each product line member (Def.48).

One benefit of a reuse hierarchy is that the artifacts realizing a product
line can be tested incrementally, starting with the most reusable ones at
level 0. Another advantage is that some artifacts realizing the product
line, those constructible modules at the same level of the hierarchy, can
be tested and evolved in isolation.

Background

 31

Another advantage of a reuse hierarchy is complexity reduction by
separating context-sensitive from context-free elements, highlighting
novelty and hiding sameness. In particular, when a system is divided into
two constructible modules A and B so that A reuses B, then A, the more
product-specific element, becomes simpler because it reuses B. B does
not become significantly more complex because it is not related to A.
There is a reusable subset which requires B but which does not need A.
There is no conceivably reusable subset which requires A, but not B.

These properties help to decide if two constructible modules should be
organized in a larger constructible module C (Fig.10a), if both should be
siblings (Fig.10b), or if one should reuse the other (Figs.10c,d).

Figure 10: Four possibilities for organizing two constructible modules A and B [Bassett97, p.173]

Figure 11: Decision tree for organizing reuse hierarchies

Fig.11 shows a decision tree I invented for guiding family engineers in
organizing reuse hierarchies. If every reuse of A is likely also a reuse of B
and conversely, they belong in the same larger constructible module C.
Otherwise they belong in separate constructible modules. In this case, if
A and B can be reused independently, they should remain in sibling
constructible modules. Else they form two levels of a reuse hierarchy. If
every reuse of A is a reuse of B but not conversely, the constructible
module A should reuse B. Otherwise, every reuse of B is a reuse of A, so
A should reuse B.

Background

 32

2.3 Evolution in Product Line Engineering

As indicated in Section 1.1, the goal of product line engineering is “to
provide customized products at reasonable costs” [Pohl++05, p.9]. This
is done by developing artifacts that are not more complex than necessary
because they offer only what must be reused. In this section, some single
systems concepts are defined first to clarify which activities are addressed
(engineering), whom they serve (stakeholders), what problems arise
(complexity), and which items are affected (artifacts). Based on these
concepts, product line concepts are then explained.

Definition 41: Engineering

Engineering is a process (11) “governing the total technical and
managerial effort required to transform a set of […] needs (24) [of
stakeholders (42)] into a solution (37) and to support that solution
throughout its life” [ISO24765]. The goal of engineering is to support
“practical, cost-effective solutions to problems (36) [in system
development (12)] in a timely and predictable manner, preferably by
applying scientific knowledge” [Shaw05]. Synonym: Systems Engineering
[ISO24765].

Definition 42: Stakeholder

A stakeholder is someone who has a vested interest in a system and who
is entitled to contribute to requirements (35) (adapted from [Jackson01,
Clements++03, Bayer04]). End users or customers are typical
stakeholders.

Definition 43: Complexity

Complexity is the absence of simplicity [Alexander02] in an artifact (44)
or process (11). This defect makes the artifact more difficult to develop
(12) than necessary. It arises when elements have been realized in
engineering (41) that are not immediately required by stakeholders (42).
Complexity reduction aims at making the artifact easier to understand
and change. Synonyms: Arbitrary Complexity [Brooks95], Excess
Complexity. See also: Variability Complexity (65). Contrast with:
Parsimony.

Definition 44: Artifact

An artifact is the output of an engineering (41) process. An artifact may
be a requirements specification, an architecture, a source code module,
a test case, or any other useful process result (see [Clements+01,
Pohl++05]). Synonyms: Development Artifact [Pohl++05], Development
Asset [Linden++07], Work Product [Jalote05].

Background

 33

Artifacts become overly complex if they contain more elements than they
need to have. Product lines need to have, and take advantage of, their
products’ commonality and predicted variation [Weiss+99]. This
distinguishes them from single systems [Muthig02, Krueger04]. Principles
of variability in product line engineering have been extensively discussed
in [Pohl++05, Ch.4]. In the current thesis, the concepts of commonality
and variability are defined as follows:

Definition 45: Commonality

Commonality [Synthesis93] of a product line (23) prescribes what needs
to be identical among a set of product line members (48). The goal of
commonality is to facilitate rapid, cost-effective development (12).
Contrast with: Variability (46).

Definition 46: Variability

Variability [Synthesis93] of a product line (23) prescribes what may differ
among a set of product line members (48). “The goal of variability […] is
to maximize return on investment [for developing (12) products] over a
specified period of time or number of products” [Bachmann+05].
Variability is concerned with a) differences in artifacts at the same time
(variability in space), b) different temporal versions of an artifact
(variability in time, evolution (66)), or c) a combination of a) and b)
(variability in time of variability in space). The major types of variability
are optional and alternative variability. Synonym: Variability Subject
[Pohl++05]. Contrast with: Commonality (45).

Commonality and variability have also been defined as follows:

Let P(Ri) = {p | � (r � p) : p satisfies R} be the set of all products
characterized by the product requirements R � D, where D is the
application domain, and let S be the product line scope, then

Com(S) = �
n

i
iRP

1

)(
�

,(Ri � So) contains all commonalities in S,

that is, all commonalities of the system family defined by S.

Let S be the product line scope, then Var(S) = S - Com(S) contains the
variabilities of S (adapted from [Muthig02, John10]).

A related concept to variability is variation.

Background

 34

Definition 47: Variation

Variation [Bachmann+05] of a product line (23) is a particular instance of
variability (46). The goal of variation is to define how product line
members (48) have to differ conceptually from each other. Synonyms:
Variability Object [Pohl++05], Parameter of Variation [Weiss+99].

Definitions 45 to 47 depend on the concept of product line members.

Definition 48: Product Line Member

A product line member [Withey96] is a “deployed software-intensive
system or software” [Northrop+07] “that has been defined [by
stakeholders (42)] to be built [from a product line infrastructure (62)]”
[Metzger++07]. Note: A software-intensive system is “a system in which
a significant degree of essential behavior is realized through software”
[Campbell07].

The product line infrastructure concept will be defined in detail soon; for
now, it means a set of reusable artifacts.

The concepts of commonality, variability and variation are now illustrated
in a running example of a wireless sensor node product line, an example
which will be used throughout this thesis. A wireless sensor node is a
small embedded systems device that detects environmental conditions
and transmits them to other sensor nodes. It is equipped with sensors
and a wireless transceiver. Stakeholders have defined that product line
members shall be developed whose commonality is reliable wireless
communication, whose variability is the particular monitored variable
[Parnas+95] of the physical environment, and whose variations are tilt
detection (has the sensor node been tilted), drop detection (has the
sensor node been dropped), and noise detection (what noise level exists
near the sensor node). The sensor nodes are developed using the
product line engineering paradigm.

Definition 49: Product Line Engineering (PLE)

“Product line engineering is an engineering (41) approach that subsumes
all processes (11) […] supporting the development (12) […] of a product
line (23)“ [Muthig09].

A related definition of product line engineering is:

Product Line Engineering PLE=(S, FE, AE, I) is a software engineering
approach that consists of a scope S � D of an application domain D, a
family engineering approach FE, an application engineering approach
AE, and a product line infrastructure I (adapted from [Muthig02]).

Background

 35

In product line engineering, variability and the corresponding variations
occur in the product line’s problem space. Later engineering activities are
called the solution space. Together, the problem and the solution space
are the development phases of product line engineering (Fig.12).

Definition 50: Problem Space

The problem space [Czarnecki+00] of a product line refers to early
activities in product line engineering (49) where product line members
(48) are specified (33). See also: Problem (36). Contrast with: Solution
Space (51).

Definition 51: Solution Space

The solution space [Czarnecki+00] of a product line refers to later
activities in product line engineering (49) where product line members
(48) are realized (34). See also: Solution (37). Contrast with: Problem
Space (50).

Figure 12: Problem space and solution space in product line engineering

Variability and variations are identified and specified in the problem
space, in early engineering activities of scoping and requirements
engineering, when stakeholders and engineers interact. In later
engineering activities of the solution space, such as architecting and
realization, a particular product line is realized. This is reflected in a dual
pair of concepts to variability and variation: variation point and variant,
as proposed in [Pohl++05].

Definition 52: Variation Point (VP)

A variation point [Jacobson++97] is a particular realization (34) of
variability (46) within product line assets (59). The main purpose of
variation points is to highlight where variability occurs within the realized
commonality (45), making the realized variations (47) easy to see and
control. Synonyms: Hot-Spot [Pree94], Engineering Change Point
[Bassett87]. Contrast with: Variability, Variant (53).

Background

 36

Definition 53: Variant

A variant [Jacobson++97] is a realization (34) of variation (47) within
product line assets (59), at a particular variation point (52). A variant
consists of one or more variant elements (54). The purpose of variants is
to realize how product line members (48) differ from each other.

Definition 54: Variant Element

A variant element is cohesive part of a variant (53).

The concept of product line assets used in Def.52 and Def.53 is
discussed in detail later; for now, it denotes artifacts that realize a
product line’s commonality and variability.

Table 1 summarizes how the four concepts of variability, variation,
variation point and variant are related. It combines the problem space
terminology used in [Bachmann+05] with the solution space terminology
used in [Jacobson++97] in a way proposed in [Pohl++05].

Concept that expresses

what varies
Concept that expresses

how it varies
Problem Space Variability Variation
Solution Space Variation Point Variant

Table 1: Variability concepts in the problem and solution space

Figure 13: Structural architectural model of a sensor node

To illustrate these concepts, consider Fig.13 of the running example. It
shows an excerpt of a structural architectural model of a sensor node
product line in form of a UML class diagram in KobrA notation
[Atkinson++01]. In this model, the detect method of the abstract
detector class serves as a variation point, realizing the detection
variability. The corresponding variants realize the variations of tilt, drop,

Background

 37

and noise detection as detect methods of the concrete subclasses tilt
detector, drop detector, and noise detector. The KobrA and PuLSE
[Bayer++99] methods developed at Fraunhofer IESE consistently use the
tag <<variant>>, or its abbreviation <<var>>, for tagging variants in all
types of artifacts (see Fig.13). The proposed terminology is consistent
with the terminology in these methods.

A special type of variant which serves to optimize variability
management [Patzke08, Savolainen++09] is called a default.

Definition 55: Default

A default [Bassett97] is a variant (53) that is automatically chosen if no
other variant is selected in its place (adapted from [Gomaa04]). The
purpose of defaults is to simplify production (30), decreasing the number
of configuration (28) options.

The concept of product line assets has been used in the definitions of
variation point (Def.52) and variant (Def.53). In order to define what a
product line asset is, two other concepts characterizing a product line
asset must be introduced first: core asset and variability asset.

Definition 56: Core Asset

A core asset [Bass++97] is a reusable (19) artifact (44) that is developed
for reuse in more than one product line member (48). Core assets
explicitly capture the product line’s commonality (45) and predicted
variability (46). The task of core assets is to support the efficient
production (30) of all product line members. Synonyms: Product Line
Artifact [Muthig02], Reuse Asset [IEEE1517], Software Asset [Withey96].
Contrast with: Variability Asset (57).

Core assets contain the same types of elements known in conventional
single-systems engineering. Core assets alone have turned out to be
insufficient for capturing variability, especially in a consistent, traceable
and unambiguous form [Muthig02, Bachmann++04, Berg++05,
Pohl++05, John++07]. Traceability of variability is achieved by a different
type of artifact that is developed independent of core assets, and that
only captures variability information. This type of artifact does not yet
have a general name; it is called variability asset in this thesis.

Background

 38

Definition 57: Variability Asset

A variability asset is an artifact (44), such as a Decision Model
[Synthesis93, Bayer++99], a Variability Diagram [Pohl++05], or a Product
Model [Krueger10], that captures the relationships, constraints and
resolutions of variability (46) in core assets (56) in an integrated form.
The task of variability assets is to facilitate traceability (58) of variability
throughout the engineering life cycle. Contrast with: Core Asset.

Traceability, as used in the definition of variability assets, is defined
according to definitions given in [IEEE610, Bayer+02, Berg++05]:

Definition 58: Traceability

Traceability is the ability to establish a relationship between two artifacts
(44) developed in different engineering (41) phases, for example
between a requirements specification and a design. The purpose of
traceability in product line engineering (49) is to efficiently identify
dependencies between core assets (56) that exist due to variability (46).

Core assets and variability assets together are called product line assets.

Definition 59: Product Line Asset

A product line asset [Brownsword+96] consists of a set of core assets
(56) and the corresponding variability assets (57). The task of product
line assets is to capture the output of family engineering (60) in an
integrated form. Synonym: Domain Artifact [Pohl++05].

The separation of product line assets into core assets and variability
assets leads to two model types, the core asset model (also called main
or basic system model [Linden++07]), and the variability model
(synonyms: Variation Model [Bachmann++04, Käkölä+06, Linden++07],
Conceptual Variability Model [Berg++05]). The Orthogonal Variability
Model [Pohl++05], the PuLSE Decision Model [Bayer++99, Muthig02] or
the CVV [Sinnema++04] are variability model instances. More details and
examples of orthogonal variability modeling are shown in
[Atkinson++01, Ch.15; Muthig02; Pohl++05; Bayer++06].

As an example, Fig.14 shows an excerpt of the wireless sensor node
product line assets, with the variability model in the upper part and the
core asset model in the lower part. The variability model consists of
variability assets and refers to the core asset model by means of variation
point references. In this example, variability assets are organized
hierarchically, realized by decision models. The high-level decision model
refers to all low-level decision models, and these reference variation
points and variants of the associated core assets, for example features in
the feature model, classes in the UML class diagram, or #ifdefs in the C

Background

 39

source code. Each colored element in the depicted core assets represents
a variant element. All same-color variant elements belong to the same
variant. Traceability of variability is achieved by the variability model, for
example, time transmission is traceable from the high-level decision
model to all core assets by following the corresponding references.

Figure 14: Product line assets of a wireless sensor node product line

Background

 40

Product line assets are the output of family engineering.

Definition 60: Family Engineering (FE)

Family engineering [Muthig02] is the process of product line engineering
(49) in which product line assets (59) are developed for a given scope,
i.e. according to sharp domain boundaries determined by stakeholders
(42). Domain Engineering [Campbell++90] consists of family engineering
and Scoping [Schmid03]. The aim of family engineering is to reduce
variability complexity (65) by developing just the required product line
assets. Synonym: Development for Reuse [Karlsson95]. Contrast with:
Application Engineering (61). Note: Family engineering and product
family engineering [Synthesis93, Gomaa04] (product line engineering
(49)) are different concepts.

An organization often requires more than family engineering and
product line assets to efficiently apply product line engineering.

Definition 61: Application Engineering (AE)

Application engineering [Campbell++90] is the process of product line
engineering (49) in which a particular product line member (48) is
produced (30) by consuming elements from the product line
infrastructure (62). The aim of application engineering is to efficiently
produce all required product line members. Synonym: Development with
Reuse [Karlsson95]. Contrast with: Family Engineering (60).

Family engineering and application engineering have also been defined
as follows:

“Family Engineering FE: D→I: is a set of activities that constructs and
evolves a product line infrastructure I, that is, a reuse infrastructure for
products in the application domain D. Thus, I contains artifacts that are
individually related to concepts in the application domain to guide the
definition, documentation, classification, and evolution of all artifacts in
I” [John10].

Application Engineering AE: D � I 	 P is an engineering approach that
constructs a concrete application p characterized by the product
requirements by using the product line infrastructure I. The product p is
valid if it satisfies R, the requirements of a particular customer or
customer group (adapted from [Muthig02]).

The artifact interconnecting the two processes of family engineering and
application engineering is called the product line infrastructure. Family
engineering produces the product line infrastructure, and application
engineering consumes it.

Background

 41

Definition 62: Product Line Infrastructure (PLI)

A product line infrastructure [Bayer++99] is a repository of all product
line assets (59) of an organization, including common methods
[Synthesis93] and tools for developing these assets in family engineering
(60), and for reusing them in application engineering (61). The main
tasks of a product line infrastructure are a) to capture all types of
elements relevant in the product line engineering life cycle, and b) to
provide an explicit interface between family engineering and application
engineering. Synonyms: Infrastructure [Synthesis93], Core Asset Base
[Bass++98], Product Line Asset Base [Brownsword+96], Reuse
Infrastructure [Bassett97], Platform [Meyer+97].

Fig.15 shows the metamodel for product line infrastructures used in this
thesis.

Figure 15: Metamodel for product line infrastructures

Product line infrastructures are a central concept in the PuLSE method
developed at Fraunhofer IESE which supports the different engineering
sub-processes Product Line Infrastructure Construction, Product Line
Infrastructure Evolution and Product Line Infrastructure Usage
[Bayer++99]. Fig.16 gives an overview of the product line engineering
life cycle in PuLSE (compare Fig.3). The scoping activity creates a well-
bounded domain for the product line by only considering immediate
product requirements. Family engineering develops a product line
infrastructure which is reused by application engineering.

Background

 42

Figure 16: Product line engineering life cycle

Fig.17 shows more details, as developed in this thesis, of the interaction
between family engineering and application engineering, facilitated by a
product line infrastructure. The shown life cycle model extends existing
state-of-the-art models [Muthig02, Pohl++05] by refining the processes
and core assets associated with quality assurance: Product line inspection
and in particular product line measurement are introduced as quality
assurance sub-activities where previous work only considered testing.
Quality assurance is also applied to all types of core assets (requirements,
architecture, and even variability assets), not just to code (to see the
extension, compare Fig.17 to [Pohl++05, Fig.2.1]).

Both product line engineering processes consist of the sub-processes of
requirements engineering, architecting, realization and quality assurance.
Family engineering produces the corresponding core assets, for example
requirements, architecture, code and test cases, plus variability assets,
such as decision models, within the variability model. Together with
common methods and tools for managing product line assets, for
example for adapting core assets or for tracing variability, these artifacts
constitute the product line infrastructure which is consumed by
application engineering in the production of product line members.

Background

 43

Figure 17: Product line engineering life cycle details

In the definition of product lines (Def.23), the feature concept has been
introduced denoting an abstract requirement. As features are also
depicted as part of the feature models in Fig.14, they will now be
defined in detail.

Purely requirements-related definitions of features, originally proposed
by Kang et al. [Kang++90], have been accepted in the product line
engineering literature. They characterize a feature or features as

� “a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems” [Kang++90],

� “a use case, part of a use case or a responsibility of a use case”
[Jacobson++97],

� “a logical unit of behavior that is specified by a set of functional and
quality requirements” [Bosch00],

� “a common language between many stakeholders. They
communicate the high-level functional requirements from the
marketing to the development” [Savolainen+01],

� “an aspect valuable to the customer” [Riebisch03],

� “a functional requirement; a reusable product line requirement or
characteristic. A requirement or characteristic that is provided by one
or more members of the software product line” [Gomaa04],

� “product capabilities and characteristics that are important to the
user” [Berg++05],

Background

 44

� “an abstract requirement. Features describe the functional as well as
the quality characteristics of the system under consideration”
[Pohl++05],

� “a triplet, f = (R, W, S), where R represents the requirements the
feature satisfies, W the assumptions the feature takes about its
environment and S its specification” [Classen++08],

� “any kind of system property or requirement that is considered
important enough to be part of a general product characterization”
[Muthig09],

� “a product requirement R � D that is visible to a user of the product
P [in the application domain D]” [John10].

In contrast, other work also partially or completely subsumes elements of
the solution space in their notion of features, for example as

� “an increment of functionality, usually with a coherent purpose”
[Zave99], cited in [Batory05, Batory++06, Trujillo07],

� “a product characteristic that is used in distinguishing programs
within a family of related programs” [Batory++04],

� “a property of a domain concept, which is relevant to some domain
stakeholder and is used to discriminate between concept instances”
[Czarnecki+00],

� “a prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems. An asset type that is
used to model functional aspects of a product” [Hotz++06],

� “a structure that extends and modifies the structure of a given
program in order to satisfy a stakeholder's requirement, to
implement and encapsulate a design decision, and to offer a
configuration option” [Apel++07],

� “a characteristic or trait in the broadest sense that an individual
product instance of a product line may or may not possess. A feature
only describes what is variable, not how this variability is realized.”
[Reiser08].

These definitions either correspond to the concept of software feature
which subsumes both problem and solution space, or to the concept of
technical feature [Savolainen+01] which only relates to the solution
space. The software engineering terminology standard defines software
feature as “(1) a distinguishing characteristic of a software item; (2) a
software characteristic specified or implied by requirements
documentation” [IEEE610]. In the same standard, the feature concept
only refers to the second, problem-oriented element. The first, solution-
oriented element is sometimes referred to as a technical feature, as
observed by Savolainen et al.: “Not all requirements can or should be
considered to be features. Since features are usually used as a method to
communicate between marketing and development, technically aligned
small pieces of system functionality should not be modeled as features.

Background

 45

Naturally, the functionality that cannot be observed externally or is not
important for the customer or the user of the system should be modeled
as functional requirements. In system-family context, the term technical
feature is often used for functional requirements and for lower level
features” [Savolainen+01]. The lack of a clear feature concept has also
been criticized elsewhere (“features – an overused and underdefined
term” [Parnas07]; “this notion [of a feature in the product line context]
appears to be confusing, mixing various aspects of problem and
solution” [Classen++08]).

As in the software engineering standard, the feature concept used in this
thesis is only related to requirements, as outputs of the problem space,
but not to the solution space. Feature models, as requirements artifacts,
could be regarded just as relevant for single systems engineering as for
product line engineering. However, there has not yet been a pressing
need for feature models in single systems engineering, where the notion
of variability is meaningless. Only in product line requirements
engineering, feature models and features found a wider acceptance, for
communicating to stakeholders what may differ among a set of product
line members: the variability of the product line. With this background,
the following feature definition is used in this thesis:

Definition 63: Feature

In product line engineering (49), a feature [Kang++90] is an end-user
visible functional or non-functional characteristic of a product line
member (48). The goals of features are associated with variability (46)
and the problem space (50): a) to communicate variable characteristics
between stakeholders (42) and software engineers, and b) to document
variability in the form of abstract requirements (35). In practice, product
line requirements are often captured in feature models. A feature model
is the feature profile of the products in a product line, hierarchically
organizing the products’ end-user visible characteristics. Its goal is to
document end-user requirements, not active variability management.
Active variability management is usually done through variability assets
(57). Note that the feature term is also used for describing artifacts in the
solution space (51), but that concept is not in the scope of the current
definition.

This definition is reflected in Fig.14, where features, as part of feature
models that represent requirements core assets, serve as inputs to the
architecting and realization phases shown in Fig.17. A more detailed
classification of features in product lines is presented in [Lee+04,
Lee+10]. The reasons why feature models are insufficient for managing
variability are discussed in detail in [Bühne++04, Berg++05, Pohl++05,
Metzger++07].

Background

 46

The variability that is specified, for example, in feature models, is realized
in product line infrastructure code, or more generally in core assets, by
variability mechanisms.

Definition 64: Variability Mechanism

A variability mechanism [Jacobson++97] is a particular way of
intentionally realizing variability (46) in core assets (56). The purpose of
variability mechanisms is to balance reuse (21) effort and evolution (66)
effort by efficiently organizing common elements and variants (53), as
appropriate in the particular context (20) of product line engineering
(49). Synonym: Variation Mechanism [Krueger04, Bachmann+05].

In contrast to older definitions [Jacobson++97, Muthig+03], variability
mechanisms are nowadays not seen as restricted to source code only
[Bachmann+05, Clements+06]. All variation points in core assets have a
variability mechanism-specific representation, for example as a tag, a
comment, an #ifdef statement, or a function call. Variability mechanisms
cover a wide spectrum of automation, they “can be as simple as an
empty block in source code that an application developer must fill in, or
as complex as a translation system that generates source code from
high-level requirement specifications” [Krueger04]. Note that in a
product line engineering context, the usage, not the structures, of a
technique qualifies it as a variability mechanism, so that primitive
techniques, applied predictively and intentionally, are regarded as
variability mechanisms, whereas advanced techniques, used without
consideration, are not seen as variability mechanisms (see also the
discussions on [Krueger04, Krueger07] in Sec.3.2).

In analogy to the development context definition (Def.20), the above
mentioned product line engineering context denotes the setting in which
product line engineering, and in particular family engineering, is
practiced. The goals of variability mechanisms in family engineering are
to balance reuse effort and evolution effort. Bassett identified three
prerequisites for effective reuse, from the perspective of development:

� “Effective reuse highlights novelty - makes exceptions easy to see and
control - while hiding what is routinely the same” [Bassett97, p.87].

� “Effective reuse involves components of all size scales, down to bits”
[Bassett97, p.77],

� “Effective reuse involves construction-time variability that is sensitive
to differing contexts of use” [Bassett97, p.78].

I have refined these points into realization tactics for product line
evolution, inspired by the concept of a tactic in software architecture,
which is “a design decision that influences the control of a quality
attribute response” [Bass++03]. Table 2 gives an overview of the tactics
used for classifying variability mechanisms (Ch.4) in the remainder of this

Background

 47

thesis. The set of tactics is not meant to be complete, but sufficiently
orthogonal. It is meant to be customized in a particular development
context, according to the most relevant quality attributes there.

Tactic Rationale Values
Increase VP
explicitness

Increasing the visibility of variation points makes
variants easier to detect and product line assets
easier to evolve.

explicit, implicit,
ambiguous

Allow appropriate
variant granularities

Associated variant elements of different sizes
should be realized by mechanisms that support a
corresponding spectrum.

wide range,
narrow range

Limit late binding Later binding times lead to less degree of
freedom for realizing variants.

constr. time, exec.
time, runtime

Isolate variants Separating common and variant modules allows
them to evolve independently.

open,
closed

Provide automated
production

Automation reduces application engineering
effort.

automatic, manual

Provide defaults Defaults reduce the number of variants default support, no
default support

Table 2: Tactics for effective family realization

The first tactic, Explicitness Increase, helps a family engineer detect all
relevant variation points in a core asset quickly and unambiguously,
possibly without the availability of variants or defaults. Many variability
mechanisms result in non-explicit or ambiguous variation points which
are harder to detect than necessary in this family engineering context.

A second tactic for a family engineer is to allow the variants to cover the
required size scales, but not more. Variants may be small, for example
realized by single characters or lines in a textual core asset, they may be
medium-sized, for example fragments of data structures or functions in a
syntax tree, or they may be large, such as subsystems which are realized
as entire sub-directories. The tactic is to allow appropriate granularity, so
that for example a small variant element can be managed together with
its associated large variant element, using the same wide-range
variability mechanism. On the other hand, a narrow-range mechanism
that only supports medium-sized variation would be inappropriate in this
context.

The third tactic, Limit Late Binding, allows a family engineer to vary
arbitrary core asset elements, especially code elements, regardless of the
meaning of these elements. As discussed in Section 2.1 and [Bassett97],
the family engineer has a higher degree of freedom in creating variants if
he may neglect programming language semantics (i.e., if he applies
reuse, and not just use) which is only possible in early binding. For
example, he may make part of an algorithm optional if he uses a
construction time mechanism such as an #ifdef statement, without
further refactoring effort. Conversely, an execution time or runtime
mechanism that enforces the variant to be a function will require

Background

 48

additional refactoring effort for the variant candidate. The corresponding
variability mechanisms are either construction time, execution time or
runtime mechanisms. Note that according to definitions 31, 15 and 16,
construction time is that binding time during which the properties of
executable modules that are invariant at execution time or runtime can
still be changed, whereas only the properties of runnable modules can
still be changed at execution time, “when a module can be interpreted
by a compiler-linker-computer trio, or by any functionally equivalent
interpreter” [Bassett97].

A fourth tactic, Isolate Variants, means to keep variants independent of
each other, and independent of common elements, so that they may
evolve in isolation. In particular, alternative variants should be
appropriately decoupled from each other to facilitate their co-evolution.
The tactic is associated with open or closed variation points [Gurp++01,
Svahnberg++05] whose set of variants may be increased without
changing existing artifacts. The corresponding variability mechanisms are
either open or closed. Independent of a particular engineering activity,
open and closed variability mechanisms have also been called selection
and substitution [Becker00], selection and new definition [Kim++05],
adaptation and replacement [Linden++07, pp.40ff.], or annotation and
composition [Apel++09].

The fifth tactic for balancing reuse effort and change effort, beyond
family engineering, is to automate production. The corresponding
variability mechanisms are either automatic or manual. The sixth tactic is
to provide defaults, in order to reduce the number of variants.

The given tactics were inspired, and subsume some of the architectural
tactics for achieving variability [Bass++04] which are
� Limit options,
� Isolate the expected changes,
� Raise the abstraction level,
� Maintain semantic coherence,
� Abstract common services,
� Hide information,
� Maintain existing interfaces,
� Separate the interface from the implementation,
� Use an intermediary, and
� Limit communication paths.

In my approach, the five tactics are meant to be applied in a particular
family engineering context, as to avoid complexity excess. As introduced
in the beginning of this section, complexity in general (Def.43) means to
have unneeded elements in artifacts, and in product line engineering
these artifacts form a product line infrastructure. In this thesis, variability-
related complexity is called variability complexity.

Background

 49

Definition 65: Variability Complexity

Variability complexity is the absence of variability (46)-related simplicity in
a product line infrastructure (62) or product line engineering process.
This defect makes the product line infrastructure more difficult to evolve
(66) than necessary. It arises when variability-related elements have been
realized in family engineering (60) that are not immediately required by
application engineering (61). Variability complexity reduction aims at
making the product line infrastructure easier to evolve, especially the
variants (53) within the core assets (56). See also: Complexity (43).

Variability complexity may occur for two reasons: On the one hand, it
arises due to over-complexities in previous family engineering sub-
phases, for example when architecting has defined unnecessary variation
points which are then realized (Variability Mismatch [Deelstra03]). On the
other hand, variability complexity arises because of improper use of
variability mechanisms [Bosch++02]. This is the focus of the current
thesis.

The evolution concept used in my variability complexity definition
(Def.65) has the same meaning as in Shaw’s definition of development
(Def.12). In contrast to maintenance which is concerned with the
elimination of defects, the purpose of evolution is the adaptation of
existing systems due to new requirements [Endres+03, p.160; Eden+06].
Maintenance as a separate concept, analogous to the repair of physical
systems, is increasingly considered obsolete [Neighbors80, Bassett97,
Lapham06, Godfrey+08], as well as the traditional distinction
[Rajlich+00] between initial development and evolution [Lehman02,
Sommerville04, p.82; Boehm10, Kirby++10]. More details on quality
models for evolution can be found in [Breivold++08, Brcina++09].

My definition of evolution subsumes the above mentioned ideas, and
other definitions proposed in the software engineering and product line
engineering literature, where evolution, or sustainment, is seen as

� “the repair, adaptation, and enhancement of a software system”
[Neighbors80],

� “the life of the software after its initial development cycle”
[Jacobson++97],

� “adding to and improving a product or product line over time”
[Svahnberg03],

� “the change of software artifacts over time” [Ommering04],

� “variability in time” [Pohl++05],

� “advancements to a product family” [Hotz++06],

� “the changes performed to any asset or a set of them with respect to
time, including expectations for future changes” [Käkölä+06],

Background

 50

� “the processes, procedures, people, materiel, and information
required to support, maintain, and operate the software aspects of a
system” [Lapham06],

� “a process of progressive, for example beneficial, change”
[Lehman+06b],

� “change that is guided and constrained by rules and policies that
allow local needs to be satisfied in local ways without destroying the
integrity and value of the overall system” [Northrop++06],

� “modifying or replacing a product due to changing needs or
technology” [Campbell07],

� “activities performed to ensure that a product or service remains
operational” [ISO24765].

In the current thesis, evolution is defined as follows:

Definition 66: Evolution

Evolution [Lehman80, Lehman02] is the sub-activity of development (12)
during which changes occur in the problem space (50) over an extended
period of time which lead to changes in real-world artifacts (44) in the
solution space (51). The goals of evolution are to explicitly address long-
term issues, such as unpredicted changes, but “it is also appropriate to
apply the term evolution when long-term change trends are beneficial
even though isolated sequences of changes may appear degenerative”
[Lehman+06b]. Synonyms: Sustainment, Variability in Time, Reuse across
Time [Bassett97]. Contrast with: Decay [Mens+08]. See also: Evolvability
[Breivold09, Mäntylä09], Sustainability [Wirfs-Brock09, Lutz++10],
Variability Evolution (67).

I call variability-specific evolution in product lines variability evolution.

Definition 67: Variability Evolution

Variability evolution is the sub-activity of product line engineering (49)
during which changes occur in the problem space (50) over an extended
period of time, for example changing needs (24) or technology, which
lead to changes in solution space (51) artifacts of the product line
infrastructure (62). The goals of variability evolution are to explicitly
address long-term issues, such as unpredicted changes in the variability
of the product line. See also: Evolution (66).

Efficient evolution is not achieved abruptly, but in incremental steps.
Eden and Mens defined the evolution step concept as follows:

“Let us represent the set of problems as P, the set of solutions as S. A
step in the process of system evolution can be represented as a mapping
of the combination of the old problem pold�P, the evolved problem

Background

 51

pnew�P, and the old solution sold�S into the evolved solution snew�S. This
mapping can thus be represented as the evolution function, a
mathematical function E which maps each tuple
pold,pnew,sold� to the
evolved solution snew. Evolution step is a pair �=

pold, pnew, sold�, E(pold,
pnew, sold)�” (adapted from [Eden+06]).

Evolution steps are defined for both types of evolution:

Definition 68: Evolution Step

An evolution step is a smaller sequence of changes during the larger
evolution (66) or variability evolution (67) of a system. The purpose of
evolution steps is to break down the evolution activity into more
manageable sub-activities that keep the evolving artifact maximally
stable. Synonym: Minimally Invasive Transition [Krueger10].

Consistent with my definition of evolution steps, the concept of
minimally invasive transitions has been characterized this way:

“The software product line development methodology of minimally
invasive transitions is distinguished by its focus minimizing the cost, time
and effort required for organizations to adopt software product line
practice. A key characteristic of this methodology is the minimal
disruption of ongoing production schedules during the transition from
conventional product-centric development practice. Minimally invasive
transitions take advantage of existing software assets and rely on
incremental adoption strategies” [Krueger10].

As this thesis focuses on evolution in product line engineering, and in
particular in family engineering, the investigated evolution steps are only
concerned with what primarily distinguishes family engineering from
single systems engineering: variability (“The primary distinction between
software product line engineering and conventional software
engineering is the presence of variation in some of the software
artifacts” [Krueger04]). As inputs to the architecting and realization sub-
processes (Fig.17), features represent differences in user requirements
(variability in space, Def.46) which evolve over time (variability in time,
Def.66) [Savolainen+01]. As will be discussed in more detail in Section
5.1, the three basic evolution steps are addition, removal and change.
Consequently, the considered evolution scenarios will only consist of
evolution steps that are caused by the need to add, remove, or change
features that vary in space. The same observation has been made by
Elsner et al.: “As requirements change over time, the product line must
evolve as well. For a product line this means adding, removing, or
changing features, as well as adding, removing, or changing variability
dependencies (e.g., mandatory, optional, alternative)” [Elsner++10,
p.132].

Background

 52

Evolution leads to changes in some system properties that are relevant to
stakeholders, users (Def.8), or reusers (Def.22) of the system, while
keeping other system properties invariant. For example, evolution may
affect the functionality or efficiency of the system, which are system
properties relevant to stakeholders. It may also make system artifacts
easier to understand and change, which are properties relevant to the
software engineers themselves or other users of the system. At the same
time, other properties are not changed, or their change is not relevant to
any of the above mentioned parties.

The presence of variability is the only property that distinguishes product
line infrastructures from single system artifacts, or from executable
modules (Def.4). Variability is relevant to both types of product line
engineers, but family engineers are the only engineers that change
variability properties in product line infrastructures during evolution
(which is why the current thesis focuses on family engineering). Two
types of such family engineering-specific changes can be distinguished:
those that alter variability properties, and those that preserve them,
while improving other properties of reuse, such as adaptability
[Bassett97]. The latter type of change is called a variability refactoring in
this thesis.

Definition 69: Variability Refactoring

Variability refactoring is a specific family engineering (60) activity by
which a product line infrastructure (62) is changed in order to evolve (66)
or reuse (21) it in a more cost-effective way. The distinction between
conventional and variability refactorings is that conventional refactorings
make existing artifacts (44) easier to use (6), preserving their
functionality, while variability refactorings make existing product line
assets (59) easier to reuse, preserving not only the functionalities of all
product line members (48), but preferably also keeping their executable
modules (4) invariant.

In other words, for a conventionally refactored system, if its executable
modules are passed through an execution interpreter twice (before and
after refactoring), the resulting machine code will be the same (see
Fig.6). For a variability refactored product line infrastructure, if its
constructible modules are passed through a construction interpreter
twice (before and after refactoring) the resulting executable modules will
be the same (see Fig.8). Note that the replacement of a construction
interpreter and a corresponding change of the constructible modules is
also a variability refactoring. Also note that both conventional and
variability refactorings may be performed together in family engineering.
Section 5.2 presents variability refactorings in more detail.

Related Work

 53

3 Related Work

The approach for sustainable evolution of product line infrastructure
developed in this thesis uses, combines and extends existing research
from five mostly orthogonal areas, discussed in this chapter:

� reusable code artifacts (Sec.3.1),

� product line engineering processes (Sec.3.2),

� usefulness of code duplication (Sec.3.3),

� complexity and evolution in single systems (Sec.3.4), and

� complexity and evolution in product lines (Sec.3.5).

Section 3.1 presents research which has focused on code artifacts that
may realize product lines. Some work in this area has listed various
collections of variability mechanisms, while other work has propagated a
single mechanism or a particular combination of two mechanisms as a
universal solution for realizing product lines. All of this work has focused
on the end-result only. The engineers creating or using these artifacts are
out of scope. Although this thesis also presents a set of variability
mechanisms, these are not just seen as isolated solutions, but they are
discussed in a deeper engineering context, as inputs to a product line
realization process. This is also why they are presented from the
perspective of a family engineer.

Section 3.2 shows research which is related to this thesis because it
considers the larger line engineering process which results in artifacts
such as product line infrastructure code. Much work in this area has
focused on the problem space and earlier solution space activities such
as architecting and designing, often under the assumption that the
product line is introduced proactively, i.e. in a context in which a new
product line is created from scratch. In that work, product line realization
and the resulting artifacts are usually out of scope. More reactive work in
this area exists that addresses incremental transition strategies. However,
that work does not consider in detail how family engineering could
employ existing mechanisms for “good enough” variability
management.

Section 3.3 presents recent studies that have challenged the software
engineering myth that code duplication, or cloning, is universally
harmful. A growing number of empirical studies are demonstrating that
cloning can be an effective engineering tool in some contexts, and this
thesis explores for the first time if there are contexts in product line

Related Work

 54

engineering, and particularly in family engineering, in which cloning can
be tolerated or used as a desirable evolution strategy.

Section 3.4 shows previous work concerned with describing and
controlling complexity in evolving system artifacts in general, and
software artifacts in particular. Empirical research in the evolution of
large industrial software has led to the formulation of rules for software
sustainment. It is described that a certain type of complexity, also found
in software artifacts, has been found to be a major cause for lack of
effective system evolution. This thesis explores the goal of keeping
artifacts simple for elements of a software product line infrastructure, in
particular its code.

Section 3.5 presents other work that has started to explore product line
evolution and measurement. In contrast to this thesis, that evolution
work is mainly concerned with earlier activities than realization in the
product line engineering life cycle. That work also does not consider the
connection to product line-specific complexity. Unlike this thesis, but
similar to the solution-oriented work describing reusable code artifacts
(Sec.3.1), existing work on product line measurement has not yet
investigated it in a goal-oriented context to actively support product line
infrastructure evolution in an organization-specific context.

3.1 Reusable Code Artifacts

In order to develop a sustainable product line infrastructure, as depicted
in Figure 1, an organization must acquire product line engineering
capabilities across all engineering life cycles which may not have existed
in the organization’s previous single system development. According to
the 3-tiered methodology for reactive product line adoption [Krueger07],
the base capability that provides most immediate benefits in this context
is the ability of software engineers to manage variation in the
organization’s existing artifacts, such as design or code. In previous
work, we have identified several dimensions of product line realization
technologies, especially configuration management and programming
language/generator techniques [Muthig+03]. While branching and
configuration management in a product line context has been covered
elsewhere [Parnas76, Krueger02a, Anastasopoulos++09], this thesis only
addresses the code dimension.

Previous work covering this dimension often focused on the solution
only, either presenting collections of reuse techniques or variability
mechanisms, or propagating a single or a hybrid mechanism only. For
reasons of space, the discussion in this section is restricted to collections
of variability mechanisms. The conclusions also apply to solution-oriented
work on a single mechanism or combinations (e.g. Aspect-Orientation
[Kiczales++97, Tarr++99], Frame Technology [Bassett87, Wong++01,

Related Work

 55

Sauer02], VSL [Becker04], Collaborations [Smaragdakis+02], Feature-
Orientation [Batory+04, Trujillo07], Aspect-Orientation and Frame
Technology [Loughran+04], Feature-Orientation and Aspect-Orientation
[Apel07], Change-Orientation [Ebraert09], Conditional Compilation
[Kästner10], Feature-Orientation and Frame Technology [Zhang+10]).

Krueger’s early work on software reuse [Krueger92] has compared seven
approaches for reusing software artifacts of different life cycle stages,
including code. The approaches include high-level languages, code
scavenging, source code components or application generators. Code
scavenging, source code components and application generators roughly
correspond to the three mechanisms of Cloning, Module Replacement
and Frame Technology presented in this thesis. However, variability
management was not yet in scope of Krueger’s mechanisms, and the
goal of discussing the mechanisms in this thesis is not to present reuse
techniques across all engineering life cycles, but to provide a language-
independent toolset for engineers during the family realization process.

The reuse book by Jacobsen et al. [Jacobson++97] was one of the first
publications that explicitly illustrated the concept of variability
mechanisms in reusable artifacts. Their list of mechanisms includes
Inheritance, Uses, Extension and Extension Points, Parameterization,
Configuration and Module-Interconnection Languages, Generation, and
Template Parameters. For each mechanism, a brief recommendation is
given. As the authors admit themselves, their list is incomplete and
unorganized. In contrast, the mechanisms presented in this thesis form a
complete and disjoint set, according to the criteria introduced in Section
2.3. Two of the mechanisms listed by Jacobson et al., Inheritance and
Template Parameters, are subsumed by a mechanism suggested in this
thesis (Polymorphism), the others are out of scope, as they mostly
address specific design issues.

In the context of Generative Programming, Czarnecki and Eisenecker
[Czarnecki+00] gave a detailed overview of various academic techniques
developed in the 90s that could be used for realizing solution space
artifacts, especially code. These include C++-specific template
techniques, different flavors of polymorphism, Aspect-Orientation,
collaboration-based approaches, and Intentional Programming. Although
Aspect-Orientation and Polymorphism are also included in the list of
mechanisms in this thesis, the goal of presenting these mechanisms is
fundamentally different: It is not to give a broad overview of coding
solutions using a variety of tools, or automatically map problem space
concepts to the solution space, but instead to provide a compact,
deliberately limited set of language-independent approaches that can
rapidly be applied by average software developers in real-world
development contexts for incrementally simplifying variability
management. For that reason, the focus is not on solution-space

Related Work

 56

artifacts, but instead on the holistic process of continually evolving the
entire product line infrastructure, as discussed in the next chapters.

Various other solution- and technology-focused publications have since
presented variability management solutions for source code. For
example, Anastasopoulos and Gacek [Anastasopoulos+01] have
suggested Aggregation, Aspect-Orientation, Conditional Compilation,
Dynamic Class Loading, Dynamic Link Libraries, Frames, Inheritance,
Overloading, Parameterization, Delphi Properties, and Static Libraries,
discussed their mapping to programming languages, and compared
them according to interface, realization, initialization, timing, and other
criteria. Especially the sub-criteria they call Scalability and Traceability will
also be evaluated in more detail in this thesis, as Granularity and
Explicitness (cf. Tab.2). Whereas that work only gives a 3-staged ranking
whether it is possible, difficult or impossible in general to satisfy a
particular criterion, this thesis evaluates if it is necessary to apply a
certain mechanism or class of mechanisms in a particular development
context, or if a simpler approach exists that would also suffice. These
considerations have not yet been completely in the scope of our early
work [Muthig+03] which ranked Conditional Compilation, Subtype
Polymorphism, Parametric Polymorphism, Ad-hoc Polymorphism,
Collaborations, Aspect-Orientation, and Frame Technology according to
their support for product line realization. However, that work was
already not completely solution-focused, but considered these
mechanisms as part of a larger product line adoption process (see related
work in Sec.3.2).

The variability management survey by Myllymäki [Myllymäki01] includes
the mechanisms Aggregation, Inheritance, Parameterization,
Overloading, Macros, Conditional Compilation, Configuration,
Generation, Static Libraries, Dynamic Class Loading, Dynamic Link
Libraries, Reflection, and Patterns, and gives some examples of their
usage. However, in contrast to this thesis, no criteria are given why each
mechanism has been included, and consequences of using them in real-
world software development are not discussed. Bachmann and Clements
published a similar collection of mechanisms [Bachmann+05] which
includes Inheritance, Component Substitution, Plug-ins, Templates,
Parameters, Generator, Aspects, Runtime conditionals, and Configurator,
and lists their cost and prerequisites both in family and application
engineering. Inheritance, Templates and Plug-ins map to Polymorphism
described in this thesis, Component Substitution is the same as Module
Replacement, Aspects correspond to Aspect-Orientation, and Runtime
conditionals denote Conditional Execution. This thesis focuses on family
engineering, for which Bachmann and Clements only make rather vague
observations.

Other work has also discussed programming language-specific
collections of variability mechanisms. For the Java language, Hunt

Related Work

 57

[Hunt06] has proposed Parameterization, Inheritance, Java Language
Interface, Aspects, and XVCL, while Alves [Alves07] has discussed
Frameworks, FOP, JPEL, AOP, JaTS, XVCL, and Conditional Compilation.
Again, these publications do not discuss if the presented solutions are
orthogonal, or if they scale. These and most other publications
mentioned in this section have in common that they just characterize,
and sometimes compare, what is possible as a solution, from a general,
purely technical perspective, such as binding time or separation of
concerns. They do not consider what is meaningful to limit reuse
complexity in a real-world development situation, especially when code
already exists that has to be integrated rapidly and seamlessly into a
product line by average developers, using rapidly available methods and
tools. For that reason, hardly any of the mentioned publications so far
has included two of the most frequently used mechanisms in practice,
Conditional Execution and Cloning (also see Section 3.3).

The product line engineering book of van der Linden et al. lists a set of
three product line architecture mechanisms, with six associated variation
mechanisms [Linden++07] which comprise Inheritance, Patching,
Configuration, Code Generation, Component Replacement, and Plug-
ins. Although concrete code details of these mechanisms are missing,
some of them can be mapped to the mechanisms shown in this thesis:
the Component Replacement mechanism corresponds to Module
Replacement in this thesis, and the Plug-in mechanism can be realized by
Polymorphism.

3.2 Product Line Engineering Processes

Unlike most work discussed in Section 2.1, the product line engineering
literature is not only concerned with describing product line artifacts, but
it also takes the corresponding processes into consideration which
produce and consume these artifacts. Domain engineering approaches
such as FODA and FORM [Kang++90, Kang++98], or Synthesis
[Campbell++90, Synthesis93] have had a strong process focus which
also heavily influenced their successors, product line engineering
methods such as PuLSE [Bayer++99], KobrA [Atkinson++01], and others
[Weiss+99, Pohl++05, Krueger07, Linden++07, Northrop++07].
However, none of these approaches provide detailed realization and
explicit evolution processes, such as those developed in this thesis. For
example, the Synthesis method describes the realization of reusable
assets mainly in terms of activities, sub-activities and interactions which
result in reusable artifacts, while presenting artifacts in less detail. All
mentioned product line engineering methods have usually been
concerned with both processes and artifacts. For example, PuLSE
[Bayer++99] both presents processes for developing a product line
infrastructure, and artifacts, such as product maps or decision models,
which are created in these processes. The Framework for Product Line

Related Work

 58

Practice [Northrop++07] gives an overview of product line concepts and
practice areas, but does not address realization and evolution. The
product line book by Pohl et al. is another example [Pohl++05]. It
describes both how variability is documented in the artifacts at different
life cycle stages (part 2 of the book), and the corresponding engineering
processes which produce them (part 3) and consume them (part 4).
Although that book gives a detailed overview of product line
engineering, code artifacts are not within the scope of that work (see
[Pohl++05, p.136] which refers to our early work [Muthig+03]
concerning realization technology). The current thesis sees all artifacts as
end-products of processes which develop or evolve them because this
mode of description has been identified as necessary for controlling
complexity during evolution [Alexander02; Pressman10, pp.60f.]. As
mentioned before, the current thesis also refines the quality-assurance
processes and artifacts discussed in [Pohl++05] by explicitly applying
quality assurance in all life cycle stages, by introducing product line
measurement, and by adding a construction testing phase (cf. Figs.17,
41, and 42).

As indicated in Section 3.1, our early work [Muthig+03] described
different types of product line artifacts, but already considered them as
part of a larger development process. Later work [Patzke+03] refined this
approach with a focus on Frame Technology, comparing different
scenarios for evolving existing single system code into product line
infrastructure code using conventional object-oriented mechanisms
versus Frame Technology. Whereas a conventional artifact description
was shown for the conventional solution, the Frame Technology solution
was described both by a list of ordered activities and the resulting
artifacts. We also used process descriptions when documenting
refactoring activities of industrial single systems code into product line
infrastructure code [Patzke+04, Kolb++06]. More recent work has
described an incremental approach to improve variability management
capability in practice by augmenting existing technology [Patzke07]. That
paper shows how liabilities of Conditional Compilation can be
counteracted by augmenting the C preprocessor, in that case study the
cpp preprocessor front-end of the GNU gcc compiler, with basic frame
technology capabilities. A technology-independent transition path is
presented which introduces reuse hierarchies and explicit variation points
into evolving artifacts, and an example of embedded systems code
written in C is given.

Svahnberg et al. [Svahnberg++05] have suggested a process for
introducing variability into product line artifacts. The process consists of
the four steps Identify Variability, Constrain Variability, Implement
Variability, and Manage Variability. The first process step corresponds to
the Selection activity proposed in this thesis, while the other three steps
are sub-steps of the Modification activity (see Sec.5.2). An important
element of my approach is the Quality Assurance step which is missing in

Related Work

 59

their approach. As inputs to the four activities, Svahnberg et al. present
thirteen variability realization techniques which cover different stages of
the software engineering life cycle. Three of these techniques are related
to realization: Condition on Constant, Condition on Variable and Code
Fragment Superimposition. These roughly correspond to the mechanisms
Conditional Execution, Conditional Compilation and Aspect-Orientation
in this thesis, while the two Binary Replacement design mechanisms are
subsumed by Module Replacement in this thesis.

The work of Weiss et al. [Weiss+99] and Coplien [Coplien99] also
includes both process and artifact descriptions. The proactive
development of a weather station product line is illustrated in
[Weiss++99, Ch.5]. That example shows the successive activities in the
requirements, architecting and realization life cycles, plus the resulting
artifacts, such as the code of a specific code generator for that product
line which is written in Perl and which produces Java code. In contrast,
this thesis focuses on the realization activity and its artifacts independent
of a particular programming language, and at the same time it
concentrates on evolution activities beyond initial development.

Multi-Paradigm Design [Coplien99] is a method for designing and
realizing common and variable code according to a certain process. In
this approach, the problem and solution areas are first analyzed
independently, and then both results are mapped. Each analysis is
performed separately on commonalities and variabilities. The problem
analysis is concerned with the design of the application domain. The
solution analysis covers the variability management possibilities of the
applied programming language. The solution domain analysis is
illustrated for the C++ language by presenting commonality and
variability analysis tables that recommend #ifdefs (Conditional
Compilation) for fine-grained algorithmic variation at compile time, and
virtual functions (Polymorphism) for algorithmic variation at runtime. The
approach developed in the current thesis is similar; it also suggests a
practical developer-oriented process that aims at context-specific
selection of solution mechanisms. However, this thesis takes a more
general view, with a problem space that consists of new product line
requirements, existing code and knowledge, a set of customizable
realization tactics, and a solution space of groups of plain and
programming language-independent types of variability mechanisms.
Other differences are the inclusion of quality assurance processes, the
focus on complexity reduction, and the restriction to family engineering
activities.

Iterative Design Refinement (IDR) [Bassett97] is a reuse method which
explicitly attacks the component-based software development model
which treats software artifacts like fixed hardware blocks. In the IDR
method (Fig.18), single-system requirements and software engineering
standards are inputs to a co-dependent pair of life cycle processes. The

Related Work

 60

Domain Analysis and Meta Component Design and Development pair
evolves core assets, while the pair Domain Analysis and System Design
and Development evolves the product line members. The process is
iterative and contains feedback loops. The development processes
produce and consume core assets, realized by frames using the Frame
Technology mechanism.

Figure 18: Iterative Design Refinement [Bassett97]

A stepwise process for creating and organizing these frames is presented
[Bassett97, pp.170ff.] which consists of the activities Match to Existing
Use-as-is Parts, Match to Existing Same-as-except Parts, Match to Other
Behavioral Archetypes’ Parts, Frame the Most Reusable Pieces First,
Normalize, and Frame Context-Related Deltas. The fourth process step
explicitly involves metrics for identifying most reusable assets, and similar
metrics (LOC, LOCad) are also used in the measurement process
developed in this thesis in order to reduce code size. An evolution
process is also suggested [Bassett97, p.212, pp.223ff.], covering the
change of reusable artifacts over time, which is reflected in the product
line evolution scenarios presented in this thesis. The IDR method is
similar to the method developed in this thesis because it is also
concerned with the incremental evolution of code artifacts. However, my
approach does not suggest frame technology as a solution in advance,
but delays the engineering decision for applying a particular mechanism
until an informed decision can be made. This is also the reason why
Cloning is accepted as a variability mechanism as long as the
development context permits it.

As observed by Krueger [Krueger10], traditional product line engineering
methods have often been proactive (waterfall-like), whereas new
product line methods predominantly needed in practice require more
reactive (agile) adoption strategies (discussions of the different product
line adoption models can be found in [Krueger02a, Krueger02b], and
case studies of reactive adoption approaches are presented in
[Buhrdorf++04, Kolb++06]). The above mentioned iterative approaches

Domain
Analysis

Meta Component
Design & Development

System Design
& Development

Single-System
Requirements

SW
Engineering

Production
Releases

Related Work

 61

by Bassett and Coplien [Bassett97, Coplien99] already contain some
reactive ingredients, for example by prioritizing which reusable elements
to extract [Bassett97, p.170], postponing this decision until a need is
proven, or by mostly focusing on the realization phase [Coplien99].
Explicitly non-reactive product line approaches that speed up
development are demanded by industry [Kolb+10]; their development
has already started [Krueger02a, Muthig02, Krueger04, Krueger07,
Patzke07, Codenie++10, Krueger10].

The need for simplified, non-proactive transition strategies for mass
customization is well-known issue in product line engineering research
[Krueger02a, Krueger02b]. It was shown that there is often an adoption
barrier to traditional product line engineering approaches, in which a
new product line infrastructure is proactively engineered from scratch,
requiring substantial transition time and effort. In many real-world
development contexts, however, these delays are unacceptable because
ongoing evolution of existing products cannot be delayed. Mass
customization technology is presented which may be used in both
proactive and non-proactive product line adoption. Non-proactive
approaches are either reactive or extractive. In a reactive approach, the
product line infrastructure is grown incrementally, as the need arises for
new products. In between the proactive and the reactive approach, the
extractive approach reuses one or more existing systems by extracting
their common and variable elements into a single product line
infrastructure. Likewise, the product line evolution method developed in
this thesis is customizable to each of the three adoption models.
However, as in [Buhrdorf++04], the focus is more on non-proactive
approaches in which existing artifacts must be evolved.

Krueger has also presented a product line taxonomy [Krueger04] which
describes different dimensions of product line concepts, solutions, and
processes, for example binding and binding times, variation across space
and time, production artifacts and sub-processes, product line evolution
sub-activities, and adoption approaches. Transition scenarios are
characterized by having an initial state which is void in the case of
proactive approaches, and a target state. The conclusion is “that if the
initial state has multiple products using even the most primitive, ad hoc,
conventional techniques such as clone-and-own or IFDEFs, it is still a
product line that can be characterized using the taxonomy” [Krueger04,
p.331]. This thesis builds on these ideas, as it considers any mechanism
as a variability mechanism if it results in multiple sufficiently similar
products that are evolved together, using a common process.

This idea is also supported by a publication that develops a 3-tiered
methodology for introducing software product lines in practice
[Krueger07] whose elements are depicted in Figure 19.

Related Work

 62

Figure 19: The 3-tiered product line methodology [Krueger07]

Each tier expresses capabilities and benefits of transitioning from
product-centric to product line development. The higher tiers depend on
capabilities of lower tiers, so that an incremental transition strategy starts
at the base tier which is called Variation Management and Automated
Production. It is concerned with the capabilities for setting up a product
line infrastructure in architecture, design and source code artifacts. The
base tier is concerned with software developers. As highlighted in Fig.19,
this tier is addressed by the current thesis. Base tier problems include
inconsistent variability management, for example large-scale duplication
and configuration management branches, or unsystematic usage of
multiple home-grown variability management techniques, such as
#ifdefs without clear naming conventions, controlled by non-localized
compiler flags, mixing of application and variation logic, controlled by
dispersed configuration options in configuration files, non-volatile
memory, and databases, or custom build and installer scripts, file or
configuration management conventions. This accidental usage of
mechanisms is addressed by the current thesis which aims at teaching
software engineers to incrementally improve their variability
management habits. Standard definitions of product lines from major
publications [Weiss+99, Pohl++05, Northrop++07] do not exclude any
mechanism, as long as it is used predictively and intentionally, in order to
capitalize on commonality and clearly managing the variation (cf. the
goal of variability in [Bachmann+05]). This is also reflected in Krueger’s
software asset definition (“any legacy source code or other software
asset [that] can serve as a core software asset […] so long as it
consolidates commonality, contains zero or more variation points, and
can be used […] to instantiate products” [Krueger07, p.101]) which is
consistent with the core asset definition (Def.56) used in this thesis.
The other two tiers are out of scope of this thesis. The middle tier, Core
Asset Focused Development, addresses engineering management,
focusing on the organization of assets and development teams around a
product line infrastructure. The top tier, Feature Based Portfolio
Evolution, is concerned with business-wide management of the entire
product line portfolio, addressing executive and business personnel.

Base Tier: Variation Management and Automated Production
 Focus: basic product line infrastructure
 Roles: software developer

Middle Tier: Core Asset Focused Development
 Focus: asset and development team organization
 Roles: engineering management

Top Tier: Feature Based Portfolio Evaluation
 Focus: business-wide management of product line portfolio
 Roles: executive and business

Related Work

 63

Three types of best practices have recently been presented that are
recurring in new product line initiatives in practice [Krueger10], and
which have also influenced this thesis: software mass customization,
minimally invasive transitions, and bounded combinatorics. The software
mass customization process (see Def.29), invented in the manufacturing
of physical systems, and later adopted as a software engineering process
supporting reuse in practice [Bassett97, Krueger02a], composes and
configures existing product line artifacts of a product line infrastructure
in different ways to yield the required products. As in this thesis, the
focus is on family engineering, not on application engineering. The
paper even aims at an integrated engineering approach, as application
engineering as a separate process is considered harmful. The new
integrated approach better supports evolution, taking into account both
variability in space and in time because real-world development does not
just require the latest products to be evolved together, but also to evolve
older product versions, sometimes by back-propagating newer changes,
and sometimes deliberately ignoring them. These evolution issues are
also in the scope of this thesis, for example as part of the development
context which sometimes leads to a deliberate short-term evolution step
that may appear degenerative (see Def.66 or Commonality Realization in
Sec.5.2). Minimally invasive transitions denote that evolution proceeds as
smoothly as possible, not altering more than necessary. In other words, it
aims at simple steps that lead to complexity reduction which is a major
concern of this thesis (see also the related work in Sec.3.4 and 3.5).
Bounded combinatorics has a similar intention, especially in a product
line engineering context, because it deliberately aims at developing a
product line infrastructure that only supports the required products. This
means that the goal of a good product line is not to support the
maximum combinations of features, but to limit the combinations to the
required ones only. This is one example of product line-specific
complexity reduction, a major topic addressed by this thesis.

Another non-proactive product line engineering method which heavily
influenced this thesis is the lightweight product line transition method
developed by Muthig [Muthig02]. It covers all stages of the product line
engineering life cycle, but focuses in particular on the architecture and
design processes and the associated artifacts of the product line
infrastructure. The method explicitly works out the difference between
single-system and product line development by focusing on variability-
related activities and their differences to single-system activities, as in the
current thesis. Like this thesis, the lightweight method distinguishes
between artifact descriptions and process descriptions, but unlike this
thesis, it does not consider to exclusively use process descriptions for
documenting the evolution trace of artifacts. The lightweight method
presents a metamodel for product line infrastructures (Fig.20), whose
concepts are refined in this thesis with regard to the use-reuse duality
(Sec.2.1), reuse hierarchies (Sec.2.2), and complexity and evolution
considerations (Sec.2.3). It mainly consists of a metamodel for core

Related Work

 64

assets (called product line assets in [Muthig02]) and a metamodel for
decision models. The product line infrastructure metamodel developed in
the current thesis (Fig.15) is based on that metamodel, but extends it by
engineering processes and variability assets.

Figure 20: Metamodel for product line infrastructures [Muthig02]

The second main element of the lightweight product line method is a
description of the method’s process activities which cover the four sub-
processes Initialization, Incremental Product Line Modeling (Incremental
Family Engineering), Evolution and Management, and Application
Engineering. Figure 21 gives an overview of the Incremental Product Line
Modeling process which consists of the sub-activities Commonality
Modeling, followed by Variability Identification and Variability Modeling.

Figure 21: Incremental Product Line Modeling sub-process [Muthig02]

Related Work

 65

Similar to the separation of the two variability-related processes in that
work, this thesis develops a product line realization process that consists
of successive Selection and Modification sub-activities (Fig.36). Another
similarity is that the Modification sub-activity consists of successive
commonality- and variability-related sub-processes (Commonality
Realization and Variability Realization). The same order of process steps
(first a commonality-related step, and then a variability-related one) has
also been suggested in the original family paper (“we consider a set of
programs to constitute a family, whenever it is worthwhile to study
programs from the set by first studying the common properties of the
set and then determining the special properties of individual family
members”) [Parnas76]. In this thesis, I have identified the reason why it is
economical to these sub-steps in the given order: because only in that
order, they result in backtrack-avoiding sequences which provide
incremental evolution possibilities (see also Sec.3.4).

3.3 Usefulness of Cloning

The practice of code duplication (Cloning) has traditionally been
regarded as universally harmful, in software engineering in general, in
software reuse, and in product line engineering. For example, Cloning
has been ranked as the top “code smell” indicating the need to refactor
software [Fowler99], and it motivates the need for automated clone
detection tools [Demeyer++02]. Due to the presence of Cloning, “a
software developer spends more time locating, understanding,
modifying, and debugging a [cloned] code fragment than the time
required to develop the equivalent software from scratch” [Krueger92].
Cloning “creates gratuitous complexity” and makes software engineers
“drown in a sea of look-alikes” [Bassett97]. Despite these
considerations, Cloning is used as one of the most popular approaches
for realizing variation in practice [Bassett97, Krueger07]. In our early
paper on variability mechanisms, we explicitly excluded Cloning by
stating that “goals of variability mechanisms are to minimize code
duplication, reuse effort, and maintenance effort” [Muthig+02].
Nowadays, I would rephrase the first goal to “reduce redundant
development activities as required” (see also Def.65).

Many investigations on Cloning and clone prevention have been
performed by the software evolution and software reengineering
communities, addressing single systems [Demeyer++02, Mens+08,
Roy++09]. For single systems, a growing number of empirical
investigations have found that the conventional assumption of the
universal harmfulness of Cloning cannot be supported anymore and that
there are development contexts in which Cloning is not a disadvantage
or where it is even beneficial. These ideas have not yet been investigated
in product line engineering. A contribution of the current thesis is to
include Cloning as a variability mechanism and an integrated target of

Related Work

 66

certain evolution sub-processes, and to show its usefulness in some
product line evolution contexts.

In the remainder of this section, a number of independent studies and
surveys from the past decade are presented which give convincing
evidence that Cloning is not detrimental, or even beneficial, for some
software qualities, such as evolvability (variability in time), in certain real-
world development contexts.

In an early empirical study on this subject, Monden et al. investigated the
relation between code clones and software reliability and maintainability
of a 20 year old software system written in a COBOL dialect, consisting
of 2000 modules and one million lines of code. They found that on
average, cloned modules were 1.7 times as reliable as non-cloned
modules, but that modules containing large clones were less reliable.
They also found that cloned modules were less maintainable than non-
cloned modules, and that modules containing larger clones were less
maintainable than those with smaller clones.

In an investigation that explored the industrial resistance to adoption of
software maintenance automation, such as clone detection and
refactoring tools, Cordy summarizes the realities he observed in 6 years
of automation services in financial software, involving more than 4.5
GLOC of code [Cordy03]. A surprising result was that clone removal is
risky. As the data processing programs across an organization were very
similar, it was practice to create new applications by cloning an existing
custom clone. It was also found that discovered errors in a clone were
not a problem because the common practice was only to remove them
in the respective product, and deliberately leave the others unaltered,
tolerating the error there because the risk was too high that removing
the error led to new errors (I have made the same observations in several
larger embedded systems projects from the automotive domain, where
refactoring clones would need re-certification of systems, which was
infeasible due to time constraints). Only on rare occasions, when a
fundamental change was necessary for a central element, automated
clone detection and removal was essential. As one conclusion, the
author recommends to “emphasize agile, lightweight techniques that
provide timely answers as needed”.

In a study of usage patterns of Cloning, Kim et al. observed the Cloning
practices of expert software developers [Kim++04]. Partially by direct
observation, and partially by an instrumented Eclipse development
environment, the nine subjects, mainly developing Java software, were
observed over a period of 60 hours. It was found that Cloning saved
typing effort, captured important design decisions made by
programmers, were useful for program understanding, and in the short
term were useful for deciding when to refactor. Some specific insights
were gained, for example that certain programming language limitations

Related Work

 67

result in unavoidable clones, that programmers sometimes deliberately
do not refactor clones because the result would not match their
conceptual code organization, that refactoring clones is often postponed
until Cloning has been practiced several times, and that copied text is
often used as a template that is customized in the pasted context. The
case study in this thesis also shows that cloning does not lead to
significant complexity increase in the short term, making it useful in that
context.

A follow-up empirical study investigated code clone genealogies, the
history of how each element in a group of clones has changed with
respect to other elements in the same group [Kim++05b]. The goal was
to show if Cloning is inherently bad and if refactoring is a solution. A
model of clone genealogies was presented which describes how groups
of clones change over time, consisting of the relationships Same (no
cloned elements have changed), Add (one or more elements have been
added to the clone), Subtract (one or more elements have been removed
from the clone), Consistent Change (all cloned elements have been
changed consistently), Inconsistent Change (at least one element has
been has been changed inconsistently), and Shift (one or more cloned
elements partially overlap). Supported by tool automation, these
evolution patterns were detected in a source code repository of two
open-source Java projects (37-224 versions). It was found that
aggressive, immediate refactoring is unnecessary for many volatile clones
(48-72% of the clones in the study disappeared within 8 versions), and
that conventional refactoring techniques cannot easily remove many
long-lived clones (49-64% of the clones in the study could not easily be
removed). It was concluded that Cloning can be useful in the short term,
and that “refactoring may not always improve software with respect to
clones” [Kim++05b, p.187]. These insights have been considered when
developing the product line evolution method in this thesis.

The two above mentioned studies are summarized in [Kim08].

Another set of studies on the harmfulness of cloning practices were
conducted by Kapser et al. The first study [Kapser+06] investigated
cloning in the Apache web server C code, and identified over 13000
clones. It was found that “platform-specific code often had a high
degree of cloning” and that this design strategy “can be an advantage
in the initial stages of development when appropriate abstraction levels
and degrees of commonality between subsystems are unclear”. Cloning
was also found reasonable in case of experimental additions to the
system. During early iterations of the Variability Realization sub-process
presented later in this thesis (Fig.39), the family engineer is exactly in this
development context. This makes Cloning a viable variability
management strategy.

Related Work

 68

The following publication [Kapser+08], one of the most frequently cited
publication on the subject, evaluated the harmfulness of Cloning and
found significant evidence that cloning is often a “principled engineering
tool”. The paper describes four classes of patterns of cloning with eleven
sub-patterns, discusses their advantages and disadvantages, and
evaluates their frequencies in two larger open-source systems, the
Apache web server and the Gnumeric spreadsheet. The four classes of
patterns are Forking (cloning larger portions of code in order to evolve
them independently), Templating (cloning an existing solution in order to
parameterize it in simple ways), Customization (realizing a very similar
problem for which a solution already exists, but which requires more
involved additions, removals and modifications than in Templating), and
Exact Matches (cloning without modification). As suggested in the
paper, explicit links may be used to manage Boilerplating, a sub-pattern
of Templating. These explicit links may be code annotations, for example
specific comments which explain how to modify a neighboring code
element. In other words, they make variation points explicit. They may
also facilitate automation, by means of custom code generators as
mentioned above [Weiss+99, Ch.5], or by Frame Technology which is
indicated in the paper [Kapser+08, p.654]. In the current thesis, this
technique is also considered for Replicate and Specialize, a
Customization sub-pattern which has been identified most frequently in
Kapser’s case studies. The different types of Cloning were identified in
the two case studies, and were ranked either as good, incidental
harmless, or harmful. It was found that on average there were more
useful instances of Cloning (33-71%) than harmful ones (14-57%). Two
particular Cloning patterns, Boilerplating (100%) and Replicate and
Specialize (56-94%), were predominantly beneficial. This is important in
the current thesis because exactly these two patterns solve typical
product line development problems.

Two summaries of these observations were published in [Kapser09,
Godfrey+10].

Another set of empirical studies first investigated how clones evolve
[Aversano++07]. Using a refined version of the classification scheme by
Kim et al. [Kim++05b], the code evolution in two open-source projects,
ArgoUML and DNSJava, was observed over more than 5 years. It was
found that 45-74% of the clones were changed consistently, and an
additional 13-16% underwent late propagation, i.e., consistent change
did not happen immediately, but in the long term. The method
developed in this thesis does not assume refactoring activities to happen
immediately after a potential Cloning activity in Commonality Realization
(Fig.39), but that both may happen independently of each other, with a
possible delayed refactoring. The authors conclude that with regard to
consistency, cloning was not harmful in these projects. Follow-up work
[Thummalapenta++10] extended that paper by developing an automatic
approach for classifying the clone evolution patterns of Consistent

Related Work

 69

Evolution, Late Propagation, and Independent Evolution, and analyzing
the code of four open-source systems (ArgoUML, JBoss, OpenSSH, and
PostgreSQL). It was found that clones are often propagated immediately
in these systems, which makes clone refactoring unnecessary. Another
observation was that Templating has been commonly used in all systems,
leading to co-evolution. It was also found that clone characteristics, such
as programming language, clone radius or clone detector, do not
influence the evolution pattern, and that high proportions of defect
removals occur for Late Propagation clones, which indicates that this
type of clone tends to be more defect-prone. For the approach
presented in the current thesis this means that the engineer must be
educated that such types of clones require more caution.

Using similarity measures, an empirical study investigated how certain
types of “clone smells” evolved in the source code of the Mozilla Firefox
web browser [Bakota++07]. The investigated evolution scenarios are
Vanished Clone Instance (the clone disappeared in subsequent versions),
Occurring Clone Instance (a new instance of the clone emerged), Moving
Clone Instance (the original clone broke apart), and Migrating Clone
Instance (a clone was later consolidated again). This work is related to
the current thesis because it investigates variation across space, realized
by the Cloning mechanism in a real-world software system.

Another investigation [Krinke07] analyzed to what extent consistent and
inconsistent clones have propagated in source code of five successful
open-source projects (ArgoUML, CAROL, jdt.core, Emacs, and FileZilla).
The results show that about 50% of the clones were inconsistent, but
that these were not problematic because they usually remained
unaltered in later versions. A follow-up study [Krinke08] used most of
the same systems to analyze if cloned code is more stable as non-cloned
code. This hypothesis was confirmed. There have also been quantitative
approaches to stability in software evolution ([Kelly06], see Sec.3.4), but
the novelty of the current thesis is that it investigates these issues for
product lines, in order to arrive at stable processes.

In two other publications on the topic, Lozano et al. evaluated the
harmfulness of cloning, with a focus on changeability. In an initial study
[Lozano++07], a custom tool was used to analyze the evolution of an
open-source Java application (DnsJava) over 99 months by analyzing its
CVS repository. It was found that methods changed more, and more
frequently, when they contained cloned code. A follow-up study
[Lozano++08] compared maintenance effort of cloned methods vs. non-
cloned methods by testing the hypothesis that if a method has clones,
the effort spent in changing it increases. In an empirical study of the 3-6
year evolution of four open-source Java projects (ganttProj, jEdit, freecol,
and a jboss subsystem), measurements were performed on the
likelihood, impact, and effort of changes. It was found that Cloning did
not affect the likelihood of changes, but increased the number of

Related Work

 70

changes, and that in at least 50% of the cases, being cloned did not
increase changeability measures, but when it increased the changes
were significant. More details can be found in [Lozano09]. The current
thesis also investigates evolution qualities by measuring code
characteristics, but not at method granularity and not just for variability
across time, but also for variability across space.

Other empirical work investigated clone refactoring possibilities in 17
real-world web applications [Rajapakse+07]. Although clone refactoring
was technically feasible most of the time and resulted in code size
reductions up to 78%, it also caused many trade-offs that would be
unacceptable in real-world development contexts, such as rapid
evolution, a topic explored in this thesis. In a following position paper
[Jarzabek+10], it was mentioned that there is no definite answer if
cloning is harmful because this depends on the context, balancing
various software qualities or engineering goals. Clones may be created
deliberately to improve reliability or performance, to avoid complicating
the code, or because of programming language limits, and there may
not be a clone-free alternative. In another survey paper [Hordijk++09], a
quality model for Cloning was developed which was applied to
categorize literature on the subject. No definite answers in favor or
against Cloning were found, which led to the conclusion that more
research is needed.

Another recent empirical study analyzed the impact of inconsistent
changes on software quality, as perceived by the end user
[Bettenburg++10]. The evolution history of three open-source systems
(Apache Mina, jEdit, ArgoUML) was observed over 7-50 releases, using
different types of clone detection tools. It was found that only 1-4% of
the clone genealogies caused an end-user-visible defect. Again, it was
found that the majority of long-lived clones (44-68%) were of the
Replicate and Specialize type (cf. [Kapser+08]) and were deliberately
introduced. The conclusion is that for the studied systems, clones do not
have a large impact on post-release defects. For the current thesis, this
means that quality assurance must be an integral part of the product line
evolution method, whereas the selection of a particular variability
mechanism tends to be less important for product quality, from an end-
user perspective.

A similar study analyzed the source code of 17 open-source systems
written in C, C++, C#, and Java [Saha++10]. Using a custom clone
genealogy extractor, four types of genealogies were extracted: alive
genealogy (containing at least one clone group in the latest release),
dead genealogy (the opposite), syntactically similar genealogy (in which
only identifiers were changed, but no lines were added or deleted), and
consistently changed genealogy (in which all clone groups were at least
changed consistently once). It was found that the proportion of live and
dead genealogies was similar for all systems, independent of the

Related Work

 71

programming language, and that clones appeared to be more
manageable in smaller systems than in larger ones. For the current
thesis, this means that Cloning as a variability mechanism may be more
effective for product lines for smaller systems, such as many embedded
systems. It was also found that a large proportion of genealogies were
alive and long-lived, that most of the clone groups that do not change
syntactically are unlikely to be removed during evolution, and that many
volatile clones disappeared quickly.

A further empirical study on clone evolution dynamics investigated if
clones have a higher change frequency than non-clones [Hotta++10],
which would be detrimental for software evolution. 15 different open-
source systems written in C, C++, and Java, from different application
domains and of different sizes were analyzed for modification frequency
of clones. It was also found that in short periods, cloned code was
modified more frequently than non-cloned code, whereas in the long
term cloned code was modified less frequently than non-cloned code,
for all analyzed systems. The conclusion is that Cloning did not have a
serious impact on the evolution of the studied systems. The results apply
to variation in time. If the same results also apply to variation in space, as
found in product lines and investigated in this thesis, then Cloning could
also be a viable long-term realization strategy.

A recent empirical study in the presence of four commercial systems
written in C# and COBOL showed frequent inconsistent changes to
code, resulting in a significant number of defects [Jürgens++09]. This
means that code clones mattered for software correctness in these
systems. However, as the authors admit, they did not investigate the
impact on evolution, a major topic addressed by the current thesis. In a
follow-up publication [Jürgens+10], an analytical cost model was
developed for quantifying the cost of cloning on maintenance. Eleven
industrial systems were analyzed, with mixed results. Whereas some
subjects could benefit from clone detection and removal, it is not cost-
effective for others.

In contrast, another recent empirical study analyzing the impact of
Cloning on defect-proneness [Rahman++10] came to the opposite
conclusion. The study analyzed four major open-source projects (Apache,
Evolution, Gimp and Nautilus) over 116-155 versions. Three research
questions were addressed: To what extent does cloned code contribute
to defects? Do clones occur more often in defective code than
elsewhere? Are prolific clone groups (clones with many copies) more
defective than non-prolific clone groups? It was found that most of the
defects in both liberal and conservative clone detector settings contained
hardly any cloned code. This means that only a small number of defects
were caused by Cloning. Using statistical methods, it was also found that
across all analyzed projects the overall clone ratio was significantly lower
than clone ratio in defective code. This indicates that clones are not a

Related Work

 72

major defect source in these projects. Prolific clone groups also had
lower defect density (defects per lines of code) than non-prolific clone
groups. This means that making more copies of a clone did not
introduce more defects.

Yet another empirical study analyzed in more detail which clone
characteristics have a particularly high impact on defects [Selim++10].
The code history of two large open-source projects (Apache Ant and
ArgoUML) was analyzed using two clone detectors. Two research
questions were addressed: Can we model the impact of clones on
defects with high accuracy? What are the most important predictors of
defects in cloned code? It was found that cloned code is not always
more risky than non-cloned code, but that the risk is system dependent.
This supports the approach taken in the current thesis of selecting
variability mechanisms, or removing initially introduced clones, based on
the development context.

In another investigation, Olbrich et al. have recently analyzed if code
smells in general, not just clones, are harmful [Olbrich++10]. They
analyzed the history of 3 open-source projects (Lucene, Xerces, Log4j)
with regard to God Classes and Brain Classes and found, after
normalization with respect to size, that these were more stable and
contained fewer defects than other classes. This is another indicator
supporting the strategy proposed in this thesis of deliberately using plain
mechanisms, but in a well-defined and well-understood manner (cf. the
discussion in the context of Fig.19). A survey on this topic has also been
presented in [Zhang++11].

3.4 Complexity and Evolution in Single Systems

Successful software products evolve [Parnas94]. While much research
has been done on observing how source code is organized at a particular
moment in time, research has rarely investigated how code
characteristics change over time, and even fewer suggestions have been
made how to systematically counteract long-term code degradation.

According to [Sommerville04], the majority of work on software
evolution has been carried out by Lehman and Belady. Lehman et al.
proposed a classification of software systems according to their evolution
dynamics [Lehman80]. E- (Evolution-) type systems are the most common
form developed and evolved in practice. A software system is an E-type
system if it is actively and regularly used to solve a problem in a real-
world domain. Other types are S- (Specified-) type systems whose only
criterion is correctness, and P- (Problem-) type systems which share some
properties of both E-type and S-type systems. This thesis only addresses
product lines of E-type systems because of their predominance in
practice.

Related Work

 73

Evolution is intrinsic for E-type systems. Based on long-term observations
of E-type systems, eight hypotheses on their evolution characteristics
have been proposed which are known as the laws of software evolution.
These are summarized in Table 3.

Name Meaning
Continuing
Change

An E-type system must be continually adapted or else it
becomes progressively less satisfactory in use.

Increasing
Complexity

As an E-type system is changed its complexity increases
and becomes more difficult to evolve unless work is done
to maintain or reduce the complexity.

Self-Regulation Global E-type system evolution is feedback regulated.
Conservation of
Organizational
Stability

The work rate of an organization evolving an E-type
software system tends to be constant over the operational
lifetime of that system or phases of that lifetime.

Conservation of
Familiarity

In general, the incremental growth (growth rate trend) of
E-type systems is constrained by the need to maintain
familiarity.

Continuing
Growth

The functional capability of E-type systems must be
continually enhanced to maintain user satisfaction over
system lifetime.

Declining Quality Unless rigorously adapted and evolved to take into account
changes in the operational environment, the quality of an
E-type system will appear to be declining.

Feedback System E-type evolution processes are multi-level, multi-loop,
multi-agent feedback systems.

Table 3: Laws of software evolution [Lehman+06a]

Although these laws were formulated for single systems only, they may
be translated to product lines. Table 4 lists the corresponding rules, as
relevant for this thesis.

Name Meaning
Continuing
Change

An E-type product line infrastructure must be continually
changed or else it becomes progressively less satisfactory in
reuse.

Increasing
Complexity

As an E-type product line infrastructure is changed its
complexity increases and it becomes more difficult to
evolve unless work is done to maintain or reduce the
complexity.

Continuing
Growth

The adaptation capability of E-type product line
infrastructures must be continually enhanced to maintain
reuser satisfaction over product line lifetime.

Declining Quality Unless rigorously changed and evolved to take into
account changes in the operational environment and
product line engineering context, the quality of an E-type
product line infrastructure will appear to be declining.

Table 4: Laws of product line infrastructure evolution

Related Work

 74

The first law in Table 4 has been translated from single systems (Tab.3)
to product lines by taking into account the duality of use and reuse
(Sec.2.1).

The complexity phenomenon addressed in Lehman’s second law has also
been discussed by Brooks [Brooks95, pp.182ff.] who observes that not
all complexity is inevitable [Brooks95, p.211]. For this reason, he explicitly
distinguishes between the two types of essential and arbitrary
complexity. Whereas essential complexity cannot be reduced in the code
without violating the requirements, arbitrary complexity is reducible, and
this excess complexity is what I mean when speaking of complexity in
general, as defined in Section 2.3 (Def.43). The corresponding law for
product lines refers to variability complexity (Def.65).

Lehman’s sixth law is mapped to the third law for product lines by
replacing the actors causing the change (Lehman’s users can denote
both end-users and application engineers that exercise unmodified reuse
(Def.6) by reusers who are application engineers in product line
engineering. Whereas Lehman addresses functionality in this law, it is
mapped to adaptability, the corresponding reuse property [Bassett97], in
Tab.4.

The software aging phenomenon mentioned in the discussion of
Lehman’s law was coined in the paper by Parnas mentioned at the start
of this section [Parnas94]. In that paper, it is claimed that the two
reasons for software aging are lack of movement (the system is not
evolved enough) and ignorant surgery (the system is changed by
incompetent developers), and I used the same two reasons to motivate
the need for a product line evolution method (see Fig.1). The paper
suggests a number of countermeasures, for example stopping the
deterioration, retroactive documentation, retroactive incremental
modularization, amputation or restructuring. These techniques have
become popular as refactorings [Opdyke92, Roberts99, Fowler99,
Kolb++06]. The goal of conventional refactorings is to reduce the
complexity of how the artifact (e.g. code) is composed (Def.9), keeping
the runtime behavior of the resulting code invariant. Besides these
refactorings, the evolution of a product line infrastructure (e.g. its code)
requires additional variability refactorings (see Def.69), of which
examples will be shown in Section 5.2. The corresponding rule of
declining quality in product line infrastructures (Table 4) adds the
product line engineering context to the factors that cause the change.
The product line engineering context does not just mean application
engineering needs, but also changes in the tools and methods in the
product line infrastructure.

Three possibilities for measuring code complexity in an evolving single
system were suggested in [Hall+00]. Some of these metrics have
independently been used for defect prediction in practice [Munson96,

Related Work

 75

Nagrappan+05], and have also been suggested for product line
measurement [Ajila+07]. The first metric, code delta, “indicates how the
system as a whole has increased or decreased in terms of the chosen
measure” [Hall+00], for example in terms of lines of code per module.
Code delta is defined thus:

 � ���
���

�� �����
bac Mb

b
Ma

a
Mc

t
c

t
c

tt
ABC mmmm 11, ,

where ABC denotes a chosen metric (e.g. LOC), t and t+1 characterize
two consecutive points in time, m is the metric value, MA is the set of
modules removed between t and t+1, MB were added in this period, and
MC were changed. A limitation of code delta is that it does not indicate
how much has changed because if an equal number has been added
and removed, the delta is zero. One can measure the change, however,
if only the absolute values are taken. The resulting measure is called
code churn, and it measures the sum of the added, changed or deleted
items, for example lines of code. The definition of code churn is

� � �
� � �

�� �����
c a bMc Ma Mb

ba
t
c

t
c

tt
ABC mmmm 11, .

The third measure describes how to compare average values against a
baseline, so that these values can be compared. This is achieved by
standardizing the measured value x against the mean μ and standard
deviation σ of the reference, using the standard score z:

�
��

�
xz .

The z value is a dimensionless quantity which indicates to what extent
the new value has changed, in standard deviations of the old values. If
there has been no change, z is 0. In the paper [Hall+00], the reference
values for μ and σ are obtained for the first version of the system, at
t=t0. The values in later evolution steps are compared against these,
using the standard score. In cases when there is only a single sample for
the baseline value, σ is set to 1. In Section 5.3, this metric will be
extended for product line measurement, so that it does not only
compare against a base version in time, but also against reference
product line infrastructure code in space.

Numerous other definitions and models of complexity have been
proposed in the software engineering literature. For example, three types
of complexity have been distinguished in [Laird+06]: structural,
conceptional, and algorithmic complexity. Complexity has also been
classified as a sub-characteristic of the internal product attribute size,

Related Work

 76

alongside the other sub-characteristics length and functionality
[Fenton96]. That work identified four complexity dimensions: problem
complexity, algorithmic complexity, structural complexity, and cognitive
complexity. The first two dimensions address issues such as efficiency in
space and time (space and time complexity: resources used by the
running machine code), or Big-O complexity (constant, logarithmic,
linear complexity, quadratic or exponential complexity: scalability of
function calls). Structural complexity is concerned with issues of control
flow (e.g. McCabe complexity), data flow (coupling, cohesion, fan-in,
fan-out), or data structure (morphology: size, depth, width). Some of the
metrics invented in the current thesis were inspired by those metrics.
Cognitive complexity denotes how easy software can be understood (it
remains unclear from which perspective, from that of a developer or an
end-user). The author concludes that complexity is a combination of
different attributes, and that a single measure for these sometimes
conflicting goals is dangerous. I share this view in the current thesis, but
use a different overall complexity concept, more alongside that
suggested by Brooks ([Brooks95], see the remarks above and Def.43),
where complexity is a relative measure associated with excess of artifact
elements.

According to Sneed et al. [Sneed++10, pp.54-56], a different complexity
concept has been suggested in the software measurement community
by Kokol et al. [Kokol++99]. That concept is similar to the complexity
concept used in this thesis. They reject usual complexity metrics such as
those mentioned above because they only measure complexity of the
representation but not the complexity of the system itself. The measure
is called Alpha Complexity Metric. Their complexity concept is based on
entropy, a measure for lost energy in physical systems which does not
directly serve its purpose. Applied to software systems, these are all
system elements which do not directly contribute to the desired result.
Likewise, the current thesis investigates those elements in product line
infrastructures which do not directly contribute to the production of
products, and so make the infrastructures complex. A widespread
measure of entropy or complexity in different disciplines is Long Range
Power Law Correlation (LRC) which refers to anything that leads to
unnecessary bloat. For conventional code this could be unnecessary
algorithms or temporary variables (these also appear among the code
smells for conventional refactorings [Fowler99]). The approach was
validated for source code of successive versions of Microsoft Windows
which showed increasing Alpha Complexity, indicating a growing
amount of unneeded code. The challenge in measuring Alpha
Complexity Metric is to distinguish between essential and non-essential
elements. In the current thesis, I have invented two-dimensional
baselining for describing limits for variation in space and time.

Other research has not only investigated how complexity can be
passively observed in systems, but proposed concrete processes to

Related Work

 77

counteract complexity growth [Alexander02]. That work is concerned
with general types of systems and their environment. Transferred to
product lines, this corresponds to the product line infrastructure and its
environment (engineers, customers, money, etc.), which are also known
as the product line ecosystem [Bosch09, McGregor+10]. A number of
orthogonal properties are identified that occur when non-complex
systems are built. The development process is incremental and
development decisions are consciously taken as to avoid backtracking
effort in case of errors. The process basically exists of the three steps of
observation, modification and quality assurance, which inspired the
family engineering process developed in this thesis. In [Alexander02], a
precise complexity concept is also suggested as elements that
unnecessarily complicate an artifact. This matches the ideas mentioned
above and influenced complexity considerations in the current thesis. An
important observation, transferred to product line engineering is that the
simplest realization of core assets is one in which the degree of
commonality and variation exactly matches the needed degree of
commonality and variability.

An approach to measure single-system evolution characteristics of
software artifacts over time was given in [Kelly06]. The aim of that work
was to detect artifacts which remain stable during long-term evolution.
A software artifact is regarded as stable if, when observed over two or
more versions, the differences in a metric associated with the artifact are
small. As a difference metric, the distance function D(x,y) is proposed,
where D(x,x)=0 (its value is 0 if two artifacts are identical), and D(x,y)>0
if x≠y. Figure 22 shows that a reference version of an artifact at time
t=T0 evolves into three artifacts at T1, T2 and T3. Two possibilities for
variation (V) or stability emerge: First, there is temporal stability which is
defined by the maximum distance VBT between the initial version T0 and
one of its successors T1, T2 and T3 (solid arrows). Second, there is a
spatial stability, defined as the maximum distance VT among the
successors T1, T2 and T3 (dashed arrows).

The current thesis extends this approach by not just considering a
baseline for variability in time, as suggested by the artifact T0 in Fig.22,
but also proposing a baseline for variability in space (see Fig.47).

Related Work

 78

Figure 22: Temporal stability VBT and spatial stability VT in the evolution of software artifacts [Kelly06]

3.5 Complexity and Evolution in Product Lines

Publications on product line-specific complexity are rare. In an early
publication on the topic, Bosch et al. have identified and classified core
issues of variability management [Bosch++02]. The classification lists
general issues, family engineering issues in the architecting, design, and
realization phases, application engineering issues, and issues in the
evolution of variability. The current thesis focuses in particular on family
engineering issues and related issues in the evolution of variability.

Complexity of software variability has been declared as a topic in
[Deelstra+08], with nearly exclusive focus on application engineering.
However, the complexity concept remains undefined, and it is not made
clear how it differs from single-system complexity. The number of
variation points and variants are identified as main issues of complexity,
and two other briefly mentioned factors are obsolete variation points
and non-optimal realization of variability. It is not made clear why only
these factors were chosen and how they may be detected and removed
in a systematic process. In contrast, the current thesis focuses on product
line-specific complexity from a family engineering perspective. This is
why I can clarify how variability complexity differs from single-systems
complexity. Product line-specific complexity issues such as variability,
reuse efficiency and ease-of-configuration are driven by family
engineering, not by application engineering. Application engineering
only consumes the product line infrastructure, so that particular novel
complexity issues do not arise there, compared to single systems
engineering.

Another publication on the topic [Lopez+08] observes that variation
points distinguish product line assets from conventional assets, and
proposes to use Cyclomatic Complexity as a variability complexity metric.

Related Work

 79

In contrast to [Deelstra+08], process issues are out of scope. In contrast
to the current thesis, the complexity concept is not discussed at all, only
one solution for a particular type of realization is presented, and an
underlying quality model is missing. Although I also use Cyclomatic
Complexity as a product line metric, I have extended it to four different
metrics that cover the two dimensions of binding times and variant
isolation.

With regard to product line measurement, a case study investigating
product line evolution [Ajila+07] applied the classical evolution metrics of
code churn, code delta and change rate (see Sec.3.4) to core assets and
non-core asset code of a commercial product line. It was found that
code size increased continually, although developer productivity varied. It
was also found that the majority of changes resulted in increased code
complexity, and that code churn and number of modules was low.
Product line-specific results were not discussed.

In another publication on the topic [Berger++10], the following metrics
were suggested: size of commonality, impact of commonality, product-
related reusability, impact of product-related reusability, reusability
benefit, relationship ratio, and individualization ratio. These were applied
to a feature model of a small product line. The results were used for
recommending which products should first be supported by the product
line. In contrast to the current thesis, variability, the main characteristic
which distinguishes a product line from single systems, was not
discussed.

A publication which considered variability in product line measurement
[Zhang++08] suggested four dimensions of metrics: commonality
metrics, variability metrics, reusability metrics, and complexity metrics.
The following basic metrics were identified: number of common
components, number of variable components, number of variation
points, number of independent variation points, number of weak
coupling variation points, and number of product line members. A
number of aggregate metrics and complexity metrics were suggested.
Unlike in the current thesis, the usage of these metrics in order to
achieve a certain goal was out of scope.

Few publications have been concerned with removing product line-
specific complexity by means of variability refactorings. Two of our
earlier mentioned publications have presented case studies of product
line development in practice where code smell detection and refactoring
support were issues [Patzke+04, Kolb++06], for example to improve
support for Conditional Compilation.

Alves et al. [Alves++05] have suggested a number of activities for
converting conventionally written code for mobile games written in Java
into an aspect-oriented realization. The listed activities are Extract

Related Work

 80

Method to Aspect, Extract Resource to Aspect, Extract Context, Extract
Before Block, Extract After Block, Extract Argument Function, Change
Class Hierarchy, and Extract Aspect Commonality. They call these
activities refactorings, although they do not motivate what specific goals
their refactorings have in a product line engineering context, except for
converting code to Aspect-Orientation, and which quality attributes are
improved. In a later publication, some of the same authors define
software product line refactoring as “a change made to the structure of
a SPL in order to improve (maintain or increase) its configurability, make
it easier to understand, and cheaper to modify without changing the
observable behavior of its original products” [Alves++06]. This end-
result-focused definition lacks product line engineering process elements
and does not reveal the difference to conventional refactorings. A
number of feature model change operations are presented which do not
make clear which quality attributes, if any at all, are improved. The list of
refactorings consists of Convert Alternative to Or, Collapse Optional an
Or, Collapse Optional and Alternative to Or, Add Or Between
Mandatory, Add New Alternative, Convert Or to Optional, Convert
Mandatory to Optional, Convert Alternative to Optional, Pull Up Node,
Push Down Node, Remove Formula, and Add Optional Node. The two
publications are summarized in [Alves07].

Another publication [Lösch+07] addresses the problem of obsolete
variants in product lines. Based on Concept Analysis, three different
refactoring strategies for removing unused variants are shown (Merge
Variants, Remove Variants, Mark as Alternative. The paper only
addresses complexity due to lack of change, which is not the focus of
the current thesis. Moreover, only an extremely limited set of
refactorings for a particular realization technique based on composition
is seen, and process issues with regard to product line engineering are
not addressed at all.

Many publications have been concerned with product line evolution
[Svahnberg+99, Savolainen+01, Bosch02, Pussinen02, Deelstra03,
McGregor03, Knauber04, Patzke+04, Kolb++06, Ajila+08,
Anastasopoulos++09, Elsner++10, Estublier++10, Lutz++10, Guo+10,
Krueger10, Ramasubbu+10].

Product line evolution categories and their interdependencies in different
product line engineering phases have been studied in [Svahnberg+99].
The identified requirements evolution categories are New Product Family,
New Product, Improvement of functionality, Extend Standard support,
New version of infrastructure, and Improved quality attribute. The
mentioned types of architecture evolution are Split of software product
line, Derivation of product line architecture, New component, Changed
component, Replacement of component, Split of component, New
relation between components, and Changed relation between
components. Evolution categories for product line realization are New

Related Work

 81

framework implementation, Changed framework implementation,
Decreased framework functionality, and Solving in external component.
Many of these scenarios are not specific to product lines, and in
particular are not specific to variability. In contrast, the set of product
line evolution scenarios suggested in Sec.5.1 of this thesis focuses on
product line-specific evolution scenarios which are related to variability in
time of variability in space.

Another paper on the subject [McGregor03] claims that the difference
between evolution of single systems and evolution of products in
(proactive) product lines is that for single systems, anticipated evolution
is possible and unanticipated evolution is very likely, whereas for product
lines, anticipated evolution is very likely and unanticipated evolution is
less likely. In the current thesis, a distinction between anticipated and
unanticipated evolution is not made, that is, all evolution is seen as
unanticipated. Anticipated evolution is deliberately not considered
because it leads to speculative design decisions and extra complexity
which is not needed in the respective product line infrastructure version.
This view is consistent with non-proactive product line methods
[Krueger10].

The distinction between proactive and reactive product line evolution has
been discussed in [Knauber04]. Two main differences between single-
systems evolution and product line evolution are identified: First, single
systems are evolved in situations when not all requirements have been
known before, whereas product line evolution happens in situations
when a stable product line infrastructure exists. Second, incremental
development of single systems extends functionality, whereas
incremental product line development is concerned with improving the
product line infrastructure, when the complete functionality of some
products already exists, possibly redundant. The same distinction is made
in the problem statement of the current thesis (Summary and Sec.1.1),
considering more affected properties than just functionality. The paper
also recommends strategies for proactive vs. reactive evolution: Whereas
the former should be concerned with product line infrastructure
development first, followed by product development, the latter should
proceed in the opposite order. Whereas these recommendations address
product line adoption in situations when a product line infrastructure
does not yet exist, the current thesis starts with the assumption that a
product line infrastructure already exists and concentrates on how this
infrastructure is going to be changed during evolution. A recent case
study about evolution of long-lived, sustainable systems [Lutz++10]
illustrates how anticipated and unanticipated changes to the Voyager
spacecraft can be handled with product line engineering methods.

Another publication on the subject [Elsner++10] investigated the
different notions of evolution, or variability in time, in product line
engineering. Three different categories of variability in time are found

Related Work

 82

(variability of linear change over time, multiple versions at a point in
time, and binding time over time), all of which are also addressed in this
thesis. The first two categories are of particular importance to this thesis:
The first characterizes situations in which either artifact versions change
over time or their variability dependencies change over time. It applies to
situations when each version invalidates the previous one, so that only
the current version is regarded as valid.

The second more general characteristic is exactly what the current thesis
defines as variability evolution (Def.67). It is concerned with multiple
valid product line versions at the current moment in time, a situation I
have often seen in practice: Due to legal or other organizational issues it
is often not desired to evolve a certain set of products produced from a
product line infrastructure. Companies tolerate that these products lack
certain features or contain defects because immediate countermeasures
are too expensive. In that case, both an older and the current version of
a product line infrastructure are valid at the current moment. This
situation is both supported by configuration management
[Anastasopoulos++09] which is out of scope of this thesis, or by
variability techniques such as the versioning idiom mentioned in the
Details sub-section of Conditional Compilation (Sec.4.5). The same issue
has also been shown in [Krueger10], as illustrated in Fig.23.

Figure 23: Product line evolution in time and space [Krueger10]

As illustrated in the figure, both the core assets and the products evolve
in time and in space. Product line members may have different evolution
rates in time, so that at a particular moment in time (e.g., at baseline x)
the product line members have different maturity (product 1 is in the
beta release phase, product 2 in public release, and product z in alpha
release. This means that if all public releases must be supported at this
time, versions of the core assets for baseline 3 and 4 must also be
available, which lead to the production of public releases of product 1
and product z.

Variability Mechanisms

 83

4 Variability Mechanisms

As shown in Section 2.3, variability mechanisms (Def.64) are used in
product line engineering to realize variability in core assets with the
intention of balancing reuse effort and evolution effort. They are
adopted in family engineering for efficiently packaging common
elements and variants, reducing product line-specific complexity.

The problem with variability mechanisms in product line infrastructure
code in practice is that there are too many ways to realize variability in
space and time. As criteria for their strategic application have not yet
been given in product line literature, the code of each product line
infrastructure is often realized with various inconsistent flavors and
incompatible combinations of variability mechanisms [Krueger07]. This
unnecessarily increases product line-specific complexity, makes the
product line infrastructure code less sustainable and leads to avoidable
whole life cycle effort and cost in family and application engineering.

To overcome these difficulties, I have developed an extensible list of
tactics for effective family engineering (Section 2.3, Tab.2) which consists
of the tactics
� Increase variation point explicitness,

� Allow appropriate variant granularities,

� Limit late binding,

� Isolate variants, and

� Provide automation.

All types of variability mechanisms may be classified according to these
dimensions, allowing a family engineer to select them in his specific
engineering context. For example, if a variant must be realized that
consists of both small and large variant elements, the tactic would be to
allow variant granularities of wide range, as opposed to those of narrow
range. I have identified seven plain types of variability mechanisms that
cover different combinations of these tactics:
� Cloning,

� Conditional Execution,

� Polymorphism,

� Module Replacement,

� Conditional Compilation,

� Aspect-Orientation, and

� Frame Technology.

Variability Mechanisms

 84

Table 5 shows the mapping between tactics and variability mechanisms,
and that each mechanism is assigned to a characteristic combination of
tactics, which represents its profile of strengths and weaknesses. In the
evolution process described in Section 5.2, this table helps the family
engineer to select appropriate variability mechanisms or to refactor
existing ones so that the product line infrastructure code becomes less
complex. For example, if binding time restrictions do not exist and a new
optional variability has to be realized, the relevant family engineering
tactics (Tab.2 in Sec.2.3) could be to increase variation point explicitness,
to limit late binding, and not to isolate variants (as only a single variant
exists for optional variabilities, so that variant isolation would lead to
unnecessary complexity). According to Tab.5, this combination of tactics
is best matched by Conditional Compilation.

Property
Mechanism

VP
explicitness

Granul.
Earliest
binding

Variant
isolation

Production
Default
support

Cloning implicit
(explicit for
Templating)

wide constr. time yes (open) manual no

Conditional
execution

ambiguous narrow runtime no (closed) automated no

Polymorphism ambiguous narrow mostly
runtime

yes (open) automated no

Module
replacement

ambiguous narrow exec. time yes (open) automated no

Conditional
compilation

explicit wide constr. time no (closed) automated yes

Aspect-
orientation

ambiguous narrow exec. time
(+runtime)

yes (open) automated yes

Frame
technology

explicit wide constr. time yes (open,
& often closed)

automated yes

Table 5: Characterization of least complex types of variability mechanisms

Figure 24 illustrates in which module types and at which binding times
each variability mechanism is typically employed (comp. Fig.9).

Figure 24: Mass customization by variability mechanisms

Variability Mechanisms

 85

In the following sub-sections, each mechanism is discussed in more
detail. Details on advantages and disadvantages of each individual
mechanism can be found in the respective “applicability” and
“consequences” sub-sections, and more detailed pros and cons
compared to other mechanisms are shown in the respective “related
patterns” section (the reason why I organize the sections in such a way is
mentioned below).

Each of the mentioned types of variability mechanisms comprises a
family of closely related particular variability mechanisms, so that the
given list actually covers more than just seven mechanisms. Each of the
mechanism types has been included in the list because

� it satisfies the tactic combinations in a plain (potentially the simplest)
manner,

� it is known and frequently used in practice, eliminating the adoption
barrier and avoiding disruption of ongoing development, or

� it has empirically shown new and unique variability management
possibilities in practice or practical research.

The mechanisms are described independent of a particular programming
language. As indicated in Fig.4, they are one of the input elements of
the product line evolution method developed in this thesis. The
mechanisms are presented in form of a pattern language
[Alexander++77, Gamma++95] addressing family engineers in practice.
For didactic purposes, the mechanisms are presented in a form shared by
many software pattern catalogs used in practice, the GoF format
[Gamma++95], using a wording that closely resembles that style. The
format helps the family engineer to rapidly familiarize with the given
pattern language and helps him to identify relevant pattern sub-topics,
such as example realizations and pattern variants. The format also
ensures that none of the essential software pattern characteristics
[Vlissides98] have been omitted, which are problem, context, solution,
recurrence, teaching, and naming.

Each pattern description consists of the eight items listed in Table 6. As a
slight variation of the original GoF style, the items Structure, Participants,
and Collaborations found in that style have been replaced by a more
compact section explaining the development process of each variability
mechanism, from the perspective of a family engineer.

Variability Mechanisms

 86

Name: Point of reference to the pattern. Fosters communication among
software engineers. Becomes part of the pattern language vocabulary.

Intent: Concise description of the pattern's purpose, formulated as an
imperative, showing the software engineer if the pattern could be relevant
for his problem.

Motivation: Example scenario which shows the software engineer how the
pattern is typically applied. Exemplifies the Intent.

Applicability: Situations in which the pattern helps most.
Process: Construction process dynamics of applying the pattern, involved

artifacts, tools and stakeholders. Guides the software engineer in which order
to apply the pattern.

Consequences: Focal point of the pattern. Shows the software engineer the
positive and negative effects of applying the pattern, so that he can use or
reject the pattern based on informed decisions. Enumerates which system
qualities and complexities are affected.

Details: Pattern-specific technical details, variants, tool support and known uses.
Related Patterns: Discussion of similar patterns from the current pattern

language. Helps the software engineer to find alternatives.

Table 6: Variability mechanism pattern elements and their purpose

Variability Mechanisms

 87

4.1 Cloning

Cloning is the most basic and by far most common form of reuse
[Bssett97, p.86; Thörn10]. The mechanism is also known as Code
Scavenging [Krueger92], Copy and Modify [Bassett97], Copy-Paste
[Bosch00] or Clone and Own [Clements+01]. It is simple to introduce,
which makes it popular for development in practice: Trusted code can
readily be introduced, rather than rewriting it, custom modifications are
easy, and there is no danger of breaking existing code which uses the
unmodified clone reference. These short-term benefits are soon reversed
as all cloned copies co-evolve independently.

Intent

Given a source code element which has proven its usability in existing
software systems, adapt it to suit the changing needs of a new system.
Cloning allows you to rapidly evolve common code without affecting its
existing users.

Motivation

Consider the running example of a wireless sensor node product line
(Sec.2.3, Fig.14). The left part of Listing 1 shows a real-world realization
of one product line member, with variant elements color-coded as in
Fig.14, and arrows denote variation points.

Listing 1: Simple Cloning: Sensor node realization without (left), and with time transmission support

Variability Mechanisms

 88

The time transmission feature has not yet been realized (yellow area). A
second product shall be realized with this feature (optional variability).
The simplest way to realize this, as shown in the right-hand code
fragment in Listing 1, is to duplicate the code and to add the respective
variant. Similarly, the other products may also be realized by cloning the
original (Listing 1, left) and replacing the colored parts by alternatives
(they correspond to alternative variabilities). This will probably be more
difficult for the sensor (blue sections), as this variant consists of several
variant elements, whereas the other variants only consist of a single
variant element.

As the code changed by the family engineer does not have the shown
colors and arrows, it is complicated for him to see the variation points
and variants in Simple Cloning because the variation points are implicit
(see Tab.5). However, the engineer can make variation points more
explicit by annotating the variants, as shown in Listing 2 (gray sections),
and then cloning the annotated sections. This more advanced type of
Cloning is known as Templating [Kapser+08] which can also be
automated for efficient production in product lines, as shown in
[Weiss+99, Ch.5]. This shows that Cloning has several variants, some of
which have been and are being used in product line development, which
is another reason why I have included Cloning as a variability mechanism
(also see the discussions on [Krueger04, Krueger07] in Sec.3.2).

Listing 2: Sensor node realization with Templating

Variability Mechanisms

 89

Applicability

Use Cloning
– when it is easier or faster to slightly adapt mature existing code in a

new context than to realize it anew or to thoroughly refactor it,
– to avoid the risk of damaging existing products when modifying

reused code, or
– to explore short-term evolution possibilities.

Process

Figure 25: Snapshots of realizing a new variability with Cloning

As shown in Figure 25, a software engineer who needs to evolve an
executable module according to his context accesses it through an editor
(step 1). The executable module may represent an entire product or a
sub-component. The module is also accessed by a previously existing
user. In step 2, the evolving agent duplicates the executable module and
now refers to it as his local copy. Note that in Figure 25 and the
following figures depicting snapshots, elements are highlighted in gray if
they have predominantly been changed in the previous step. The module
still has considerable similarity to its reference module (shown as a
symmetry axis in Fig.25b), but it has gained a new difference (variability)
to the original because it now has its own identity, for example a
different file name. In step 3, the evolver changes the executable

Evolver Editor Executable
Module

Step 1:

Step 2:

Evolver Editor

Executable
Module

User

User

Executable
Module

symmetry

User Executable
Module

Editor Evolver

Step 3:

Executable
Module
Variant

User Executable
Module

User

Step 4:

Executable
Module
Variant

a)

b)

c)

d)

Variability Mechanisms

 90

module, so that a variant builds up. The changes may involve additions,
deletions or alterations in the text of the variant. The similarity to the
reference module decreases, shown in Fig.25 by the disappearing
symmetry axis, and asymmetry increases. In step 4, a new user who
might be the evolver himself, accesses the new executable module, while
the old user still accesses his copy. There is no explicit coupling between
the two copies: they are now seen as if they had no commonalities.

Consequences

Cloning has two main advantages [Kapser+08]: First, working source
code can be easily and quickly obtained for a similar context than the
required one. This can be particularly useful in situations when new
prototype code is created, or when it is hard or uneconomical to refactor
the code. Larger mistakes in an evolving cloned module can quickly be
undone by deleting the module and cloning the original again. The
second advantage is that existing systems are protected from being
modified.

One cloning aspect is both advantageous and disadvantageous: The
working source code must not be entirely understood in order to make
use of it. This is an advantage for a developer because of less cognitive
load, but a disadvantage because he gives up control.

Cloning also has clear disadvantages: First, evolution costs, especially in
the long run, often increase significantly, as the cloned elements must
co-evolve consistently. Synchronization errors are hard to avoid.
Common and variant elements are maximally coupled: they become
indistinguishable. The original clone group [Kim++05b] becomes
untraceable. Second, there is the danger that cloned code which was
initially meant to be removed soon is not discarded and persists in the
code base. Third, the code will become larger than necessary, and there
are risks that obsolete code is propagated.

Details

Evolution. Cloning is frequently conceived to be beneficial for rapid and
short-term evolution, as it immediately splits a stable code artifact into
two identities (see Section 3.3). However, as these evolve in parallel,
Cloning has the long-term risks of inconsistent co-evolution. As new
clones emerge, it will become increasingly harder to consolidate them all
later. Cloning in code development corresponds to branching in
configuration management.

Cloning classifications. Kapser and Godfrey proposed three categories
of Cloning [Kapser+08]: Forking, Templating and Customization (see
Sec.3.3). Forking (branching) often involves large-scale cloning as in the

Variability Mechanisms

 91

motivating example of removing the time transmission variant.
Templating examples are boiler-plating due to programming language
constraints, API/library protocols which demand functions to be called in
a certain order, and language idioms which are used again and again by
cloning. Customization includes bug workarounds, and replication and
specialization. The latter can be useful in code evolution for preparing
code for deprecation.

Kim et al. [Kim++05b] identified, formally characterized and empirically
investigated the following evolution patterns associated with Cloning:
Same, Add, Subtract, Shift, Consistent and Inconsistent Change. A
recent survey on clone detection research is given in [Roy++09].

Symmetries. Cloning is often easily visible in symmetries of source code
elements at all levels of granularity, for example similar directory
structures and names, similar file names, similar functions, similar
algorithms, or similar variable names. This is because Cloning leads to
emphasizing common elements. However, as common and variant
elements become indistinguishable, it is hard to decide if and where
differences exist, and which clone group contains the original, trusted
code.

Tools. Several groups of tools have been developed to mitigate the
negative long-term effects of Cloning: The Unix tools diff and patch help
in detecting and consolidating inter-module and inter-directory clone
pairs and triples. Given two modules, diff computes their differences
with adjustable graininess, producing compact output in alternative
human-readable forms (diff may also produce conditional compilation
statements as output, which is an automated refactoring possibility, see
Sec.4.5). Using this difference report and one of the compared modules
as input, patch can reproduce the other. A patch can even be
successfully applied if there have been slight changes in the input
module, such as the addition or removal of single lines. As mentioned in
Sec.3.1, Patching has been classified as a variability mechanism
[Linden++07]. As an automated variant of Cloning, it is frequently
applied in short-term evolution of open-source software, either for
suggesting bug-fixes or for contributing improvements.

Other tools for managing clones are clone detectors which differ in their
clone detection algorithms, and which present clones in various ways.
One clone detector is DupLoc [Ducasse++99] which presents lines of
textual clones as dots in a two-dimensional plane, so that lines are
produced for successive cloned lines, and both intra- and inter-module
clone groups can be detected. Several clone detection approaches have
been developed: text-based, token-based, abstract syntax tree (AST)
based, program dependence graph (PDG) based, and metrics-based
approaches [Bruntink++04, Roy++09].

Variability Mechanisms

 92

Related Patterns

Cloning can be considered the archetype of all variability mechanisms.
This is because at the very moment cloning is performed, the end result
is exactly what the developer wants to achieve by variability
management: to tailor existing code exactly to the new development
situation, without compromising other code. However, due to the
evolution difficulties caused by Cloning, other mechanisms are often
required especially in the long run which achieve the same or a similar
result than Cloning, while consolidating common elements with
moderate extra development effort:

Using Conditional Compilation (Sec.4.5) or Frame Technology
(Sec.4.7), you can customize existing code in such a way that the
compiler input becomes indistinguishable from manually cloned code,
while variants remain visible in the manually written code. Whereas you
cannot store common and variant elements in separate modules if you
use Conditional Compilation alone, you can do this when you use Frame
Technology or Module Replacement (Sec.4.4). However, Module
Replacement usually requires each variant element to be extracted into
functions, which causes additional refactoring effort. This also leads to
compiler input which is no longer identical to cloned code. The same is
true when you use Aspect-Orientation (Sec.4.6) as a variability
mechanism. Like Frame Technology, it requires additional tool support
that is not provided by the programming language alone. However, the
tool support of Aspect-Orientation is always bound to the programming
language, which makes variability management impossible if you use
language dialects (e.g. for interrupt service routines in embedded
systems C code) or multi- language development (e.g. in C and
assembler code). If you use Conditional Execution (Sec.4.2) or
Polymorphism (Sec.4.3), you will even get less similar end results
compared to Cloning (e.g. notable resource penalties), although both
are applied in similar ways as shown for Conditional Compilation or
Module Replacement.

Variability Mechanisms

 93

4.2 Conditional Execution

In order to avoid Cloning, you may identify cohesive variants associated
with functionality and activate them by conditional programming
language statements such as if statements. The approach is called
Conditional Execution. It is often relatively simple to use, as existing
common and variant code elements may remain in their original
executable modules. However, the approach is costly to evolve and
particularly leads to one single monolithic product realizing all variants,
but not to a product line infrastructure that supports mass customization
(Def.29) of individualized product line members.

Intent

Separate common from variant algorithmic elements by extracting
variant elements into cohesive procedural elements which are
conditionally invoked by the common elements, depending on runtime
parameter states. Conditional Execution allows you to manage predicted
optional or alternative variants, without introducing new modules.

Motivation

Continuing the running example, consider that the realizations of the
wireless sensor nodes (Listing 1) are consolidated by Conditional
Execution. Listing 3 shows the end result.

Listing 3: Sensor node realization with Conditional Execution

Variability Mechanisms

 94

Again, variant elements are color-coded according to Fig.14. The green,
brown and red elements are alternative variants of Detector, and the
yellow elements are optional variants of Wireless Transmission. The
alternative variants of Sensor (bright and dark blue sections) consist of
several variant elements, like in the code used for Cloning (Listings 1 and
2). Again, multiple variant elements will likely require more evolution
effort than simple variants realized with the same mechanism, but
compared to other mechanisms that have realized the respective
variation with the same number of variant elements, there is no
difference in variability complexity.

Arrows in Listing 3 denote variation points, realized by conditional if
statements. The orange-colored sections highlight numerous other
conditional statements in the code that realize application logic, not
product line variation logic. Because the same programming language
constructs (if statements) have been used for two different purposes,
variation points become ambiguous (Tab.5), and it is likely that they may
be mixed even more when if statements are consolidated (as in the
classical refactoring Consolidate Conditional Expression [Fowler99]).
Other problems are that not all variants, such as the variables and
forward declarations highlighted in light blue in Listing 1 and 2, can be
expressed as variant elements in Conditional Execution, leading to larger
common elements than necessary, and that variant elements may
become nested and redundant (yellow sections in Listing 3).

Although variation points are ambiguous, they can be seen in the code
(see the arrows in Listing 3). Conditional Execution is also a particular
way of intentionally realizing variability, which qualifies it as a variability
mechanism (Def.64). Note that binding time has never been part of any
variability/variation mechanism definition [Jacobson++97, Muthig+02b,
Krueger04, Wijnstra04, Bachmann+05, Clements06, Clements+06], and
that Conditional Compilation (Sec.4.5), the dual mechanism of
Conditional Execution with only an earlier binding time (see Tab.5), is
definitively one of the most applied variability mechanisms. The product
line literature also agrees in this respect (Conditional Execution has been
mentioned as a variability mechanism for example in [Bachmann+05,
Svahnberg++05, Krueger07], as discussed in Sec.3.1 and Sec.3.2).

Applicability

Use Conditional Execution
– to consolidate common and variant code, especially when a new

optional procedural variant needs to be added, without requiring
larger refactorings in advance,

– if an integrated software system is needed with several fixed modes
of operation which must be configured after the software
development phase, or

– if no element of the source code shall be visible, not even APIs.

Variability Mechanisms

 95

Process

Figure 26: Snapshots of realizing a new alternative variability with Conditional Execution

As Figure 26 illustrates, the first development step is the same as for
Cloning (Figure 25a): a software engineer whose role is to evolve the
executable module accesses it through an editor tool, while a previous
user accesses the module in the existing context. In step 2, the evolver
refactors the executable module. This is shown in more detail in the
magnified part. The existing variant is extracted as a variant algorithm.
This algorithm is enclosed by a condition whose predicate is configured
by a new parameter configuration. Taken together, an asymmetry is built
up inside the executable module. In step 3, the evolver extends the
condition by a new algorithm, activated by a similar predicate. This
nearly identical developer activity as in step 2 creates a similar variant

Evolver Editor Executable
Module

Step 1:

Step 2: Evolver Executable
Module

User

User

Common Code
if(param==OLD)
exist. variant algorithm

Parameter Configuration

Step 3:

Evolver

User
Common Code

if(param==OLD)
exist. variant algorithm

Parameter Configuration

if(param==NEW)
new variant algorithm

Executable Module

Executable Module

Step 4: Executable
Module

User User

Runtime
User

symmetry

a)

b)

c)

d)

Variability Mechanisms

 96

(shown as a symmetry axis as in Fig.25b). In step 4, both the previous
and the new developers become users (Def.8) of the executable module,
and the variant behavior is configured by a runtime user. Depending on
the realized type of parameter configuration, configuration may happen
at startup-time, for example by retrieving configuration settings from
persistent store (non-volatile RAM, configuration files, or a database), or
at runtime. Thereafter, when the consolidated system is executed, the
values of these parameters are used to decide which of the variant
algorithms to execute.

Consequences

Conditional Execution has two advantages for product line realization:
First, some common elements may be used again, rather than
duplicating them entirely as in Cloning. Second, Conditional Execution is
easy to realize if the variant elements already exist as consolidated
algorithms, or if they can easily be consolidated.

With regard to variation points, Conditional Execution has both
advantages and disadvantages: The advantage is that, in contrast to
Simple Cloning, Conditional Execution realizes non-implicit variation
points, so that common and variant elements are somewhat separated.
However, variation is closed, so that all evolutionary changes still happen
in only one module.

Conditional Execution has four main weaknesses: First, it enforces a
realization which contains the subset of all variants, even if they are
never used in the specific product. This maximally decreases compilation
speed and leads to maximal runtime efficiency penalties. The resulting
system only realizes one fixed product instance, not separate products.
Second, configuration logic becomes indistinguishable from application-
specific functionality because the same language mechanisms are used.
It is even possible that the same language conditional contains both
code sections for configuration and for application-specific functionality.
Cyclomatic complexity increases with each new variant. Unused code
remains undetected. Individual products become extremely hard to
evolve and test. Third, variants are limited to procedural ones because
Conditional Execution depends on conventional programming language
semantics. This means that a variant must always contain self-contained
algorithms, which often requires additional refactoring effort, for
example by applying the classical refactorings Extract Method or Move
Method [Fowler99]. Fourth, Conditional Execution does not decouple
product line infrastructure code with lower change frequencies from
code with higher change frequencies. All code undergoes the same
change rates, and no code elements are protected against corruption
when others are modified.

Variability Mechanisms

 97

Details

Configuration Modules. As mentioned in the process subsection,
parameter definitions reside in persistent store. Whereas in IT systems
this type of persistence is often realized with configuration files,
embedded systems often use non-volatile memory for making
configurations persistent. To realize multiple coexisting possibilities in
embedded systems, configuration parameters are often realized as bit
fields. Frequently, these parameters are not set during software
development, but at a later stage in product development (for example
when embedding the device in its environment and calibrating it), which
is done by re-flashing parts of non-volatile memory. At startup-time, the
appropriate behavior is set by using these values. One main disadvantage
of this approach is that both memory and runtime resources are wasted,
when variables which never change during program execution are
treated as if they were conventional variables (see [Bassett97]).

Naming. Naming conventions are often applied to differentiate between
conventional variables and configuration variables. For example, the
same naming conventions are used as for macros in Conditional
Compilation (uppercase, with underscore separation), as illustrated in
Listing 3 (HAS_XPOS_SENSOR etc.). As for all naming conventions,
ensuring consistency is important, but difficult to enforce. Tools which
automate naming consistency checks, such as splint3, can help you here.

Optimizations. If the number of alternatives exceeds two, if-
statements should be refactored to switch-statements. The number of
similar conditional statements may be reduced by nesting conditionals.

Related Patterns

You may use Conditional Compilation (Sec.4.5) as an alternative to
Conditional Execution in order to conditionally include or exclude
algorithms. In addition, Conditional Compilation helps you to manage
random variant code elements because it does not rely on programming
language semantics. While Conditional Execution enforces runtime
binding, Conditional Compilation has construction time binding. Both
mechanisms have the disadvantage that they do not help you to extract
variants into separate modules, as they only support closed variation.
Subtype Polymorphism (Sec.4.3) is an alternative runtime binding
mechanism to Conditional Execution which allows you to realize open
variants. If you require rapid results, you may also consider Cloning
(Sec.4.1), but then you have to produce the products manually.

3 www.splint.org (retrieved August 2009)

Variability Mechanisms

 98

Variability Mechanisms

 99

4.3 Polymorphism

Another possibility to avoid Cloning larger identical elements when you
need to realize a new procedural variant is to extract the variant
algorithm into functions, to store these in one or more separate variant
modules, and to call the variant elements from the common ones
indirectly, for example via function pointers in C, or via virtual functions
or template parameters in C++. This approach is called Polymorphism
[Booch91, Bassett97, Czarnecki+00, p.177]. It is more complicated to
realize than Cloning or Conditional Execution because it requires
additional refactoring steps and more advanced programming language
capabilities. Although it helps you to separate common and variant code
elements, it still increases variability complexity to a similar degree than
Conditional Execution.

Intent

Decouple common from variant algorithmic elements of product line
infrastructure code by extracting variant elements into functions, stored
in one or more separate modules, and by calling them indirectly from
common code through Template Methods [Gamma++95] or function
pointers. Subtype Polymorphism allows you to consolidate common code
and add new variants, for example a new alternative, without changing
existing common elements.

Motivation

Listing 4 shows a how the running example of a wireless sensor node
(Fig.14) can be realized in C by means of the Polymorphism mechanism.
For reasons of space, two alternative variants (brown and red elements)
have been omitted, but the listing already indicates that all variants are
cohesively stored in separate modules.

As before, variant elements have been emphasized by color-coding as in
Fig.14, arrows denote variation points, and gray code sections
correspond to non-implicit variation point realizations. As in Conditional
Execution, the Sensor variation is realized at two variation points (red
arrows in Listing 4), which makes it more complex to evolve within the
core asset main.c than the Detection variant, realized at a single variation
point (blue arrow in Listing 4) within the same core asset using the same
mechanism. But again, evolution complexity among variability
mechanisms is independent of variation point multiplicity. What really
makes a difference is variation point explicitness.

Variability Mechanisms

 100

Listing 4: Sensor node realization with Polymorphism

In contrast to Conditional Execution (Listing 3), Polymorphism allows all
variants to be stored in separate modules, but the variants must be
complete algorithms again. The realization of optional variation (yellow
section) requires a second module (send.c in Listing 4) for the “empty”
variant. Variation points are realized by invoking function pointers which
have been initialized at startup time (not completely shown here).
Function pointers may also realize application functionality, in which case
the realized variation points become ambiguous, but to a smaller degree
compared to Conditional Execution.

As mentioned in Sec.3.1 and 3.2, product line engineering literature has
often classified Polymorphism as a variability mechanism, often in the
form of plug-ins [Jacobson++97; Bachmann+05; Pohl++05, p.253;
Linden++07].

Applicability

Use Polymorphism
– as an alternative to Conditional Execution, in order to separate

common and variant code in distinct modules,
– to obtain a software system whose existing variants can be replaced

by similar ones without changing common and existing variant
elements, or

– to facilitate the parallel evolution of alternative variant modules.

Variability Mechanisms

 101

Process

Figure 27: Snapshots of realizing a new alternative variability with Polymorphism

As shown in Figure 27, the first development step is the same as for
Conditional Execution (cf. Figure 26a). The second step is similar, in that
an existing variant algorithm is extracted from the common code, and a
configuration is established. However, in contrast to Conditional
Execution, the variant element is referenced indirectly, which is indicated
by the arrow from the common to the variant element in Figure 27. In
the third step, a variant module is created, and the variant algorithm is

Variant Module

Evolver Editor Executable
Module

Step 1:

Step 2: Evolver Executable
Module

User

User

Common Code

exist. variant algorithm

Parameter Configuration

Executable Module

Step 3:

Evolver User
exist. variant algorithm

Common Module

Step 4:

Evolver
User

symmetry

Exist. Variant Module
exist. variant algorithm

Common Module

Step 5: Executable
Module

User User

(Runtime
User)

a)

b)

c)

d)

e)

New Variant Module
new variant algorithm

Variability Mechanisms

 102

moved there. This corresponds to a split of the executable module from
step 2 into a common and a variant module. In step 4, a new variant
module is created that is similar to the existing one, as indicated by the
symmetry axis (Fig. 27d), as was the case for the two variant elements in
the third step of Conditional Execution (Figure 26c). The fifth step for
both mechanisms is identical.

Consequences

Polymorphism has three main advantages: First, some common elements
may be used again, rather than duplicating them entirely, as in Cloning.
Second, common elements are partially decoupled from variant ones, so
that both can evolve in isolation, as long as their interface does not
change. Common elements and variants always form a clearly visible
contrast because they reside in different modules. Third, alternative
variants may be isolated from each other, so that they can evolve in
parallel (see Fig.10b).

Polymorphism has the following advantageous and disadvantageous
property: Like Conditional Execution, it has the advantage of non-implicit
variation points, but due to the additional level of indirection in
Polymorphism, using these variation points tends to be harder.

Polymorphism has five main types of disadvantages: First, it does not
support variants of arbitrary granularity, but enforces variant elements to
be medium-sized, forming functions. As in the case of Conditional
Execution, this requires additional refactoring effort in many cases.
Second, optional variabilities are harder to realize with Polymorphism
because additional empty functions must be provided to support the
missing variant elements. Third, Polymorphism usually has efficiency
penalties, which in the case of Subtype Polymorphism are even more
severe than for Conditional Execution. Fourth, the distinction between
configuration logic and application logic is blurred when the same
language mechanisms are used for both. Fifth, when polymorphism is
realized with function pointers, it increases the risk of software defects
because errors due to illegal pointer references cannot be ruled out. This
is why some industrial embedded systems standards such as MISRA4
disallow the usage of function pointers.

Details

Binding Time. As a variation mechanism for embedded systems, three
different types of Polymorphism are in wider use: Subtype
Polymorphism, Parametric Polymorphism and Overloading. With the
more frequently applied mechanism of Subtype Polymorphism,

4 www.misra.org.uk (retrieved August 2009)

Variability Mechanisms

 103

configuration happens at runtime (see Figure 27e), whereas Parametric
Polymorphism binds at compile time. Subtype Polymorphism is either
realized with function pointers, as shown above, or Template Methods
[Gamma++95]. For mainstream development, the C and C++
programming languages both support the former, whereas the latter is
only available in C++. Parametric Polymorphism is realized with C++
templates [Czarnecki+00]. In programming languages such as C that do
not support Overloading, this mechanism is often realized by naming the
functions in a similar way. An example is the group of printf functions in
the C standard library (printf, sprint, vprintf, fprintf).

Evolution. Polymorphism facilitates adding new alternative variants
because of its open variation. However, removing unwanted common
elements is often more difficult than adding new variants. This is
because adhering to the Open-Closed-Principle [Martin02] or the Liskov
Substitution Principle [Liskov+94] may be enforced by the programming
language (e.g. in Java or Python, but not in C++).

Defaults. The Null Object pattern [Woolf98] discusses various
possibilities to realize defaults by means of Polymorphism.

Design Patterns. Several of the behavioral design patterns mentioned
in [Gamma++95] rely on Polymorphism in their realization, most notably
Strategy and Template Method. They are usually realized with Subtype
Polymorphism, but can also be realized with Parametric Polymorphism,
as shown in [Czarnecki+00, pp.229ff., p.234, p.287; Duret++01,
Alexandrescu01].

Known Uses. Many schedulers in embedded systems operating systems
use Subtype Polymorphism to decouple the scheduler realization from
user (Def.8) code. For example, [Pont01] shows how a cooperative
scheduler for an embedded operating system for the 8051 processor can
be realized with function pointers. Similarly, the real-time operating
system μC/OS-II [Labrosse02] executes tasks in its scheduler, which are
referenced via function pointers. Another typical use of Polymorphism is
the realization of the Model-View-Controller pattern [Buschmann++96]
in order to decouple user interfaces from application logic, as both may
have different evolution rates.

Related Patterns

Both Module Replacement (Sec.4.4) and Polymorphism require you to
use syntax elements of the programming language to decouple common
code from variant elements. However, the two mechanisms often differ
in binding time. Module Replacement usually has earlier binding than
Polymorphism and should be preferred if binding at runtime or startup
time is not required. However, if such binding is required, you may

Variability Mechanisms

 104

consider using Conditional Execution (Sec.4.2) as a simpler alternative,
but this will result in stronger coupling of common and variant elements
because of the missing polymorphic interface. If you require open
variation, Frame Technology (Sec.4.7) may be an alternative, as unlike
Polymorphism it also supports variant optimization possibilities due to
Default support. As a construction-time mechanism it does not suffer
from efficiency penalties, and it allows you to realize variants that do not
have to be self-contained programming language elements.

Variability Mechanisms

 105

4.4 Module Replacement

As an alternative to Polymorphism, when common and procedural
variant elements are stored in separate modules, you may also call the
variant elements from the common ones directly, and let the
preprocessor, compiler or linker bind them. Variation is then achieved by
replacing one variant module with an alternative one, which is why this
variability mechanism is called Module Replacement.

Intent

Decouple common from variant algorithmic elements of product line
infrastructure code by extracting variant elements into functions, stored
in one or more separate modules, and by calling them directly in
common code. Module replacement allows you to consolidate common
code and add new variants without runtime penalties and without
changing existing common elements.

Motivation

The running example of a wireless sensor node product line, realized
with Module Replacement, is shown in Listing 5. For reasons of space,
two alternative variants (brown and red elements) have been omitted,
and variants are cohesively stored in separate modules.

Listing 5: Sensor node realization with Module Replacement

Variability Mechanisms

 106

Variant elements are color-coded as in Fig.14, arrows correspond to
variation points, gray code sections highlight non-implicit variation
points, and orange-colored sections highlight other elements in the code
that could be mistaken for variation points. In contrast to Polymorphism
(Listing 4), no function pointer definitions, initializations and usages are
necessary. If function pointers are exclusively used for variability
management as in Listing 4, no ambiguities with regard to variation
points can arise, which is easy to achieve. However, if direct calls are
used for variability management, such ambiguities are hard to avoid, as
any function call seen by the family engineer may potentially be related
to variability management (the orange colored sections in Listing 5),
which results in a similar degree of ambiguity as in Conditional Execution
(Listing 3 also contains various orange colored elements).

Again, one optional and one alternative variability is realized with
cohesive variants (yellow and green elements), referring to a single
variation point each (green and blue arrow), while another alternative
variant refers to two variation points (red arrows). Again, the variability
complexity in core asset code compared to other variability mechanisms
is independent of variation point cardinality.

Module Replacement represents the traditional composition mechanism
and has been ranked as a variability mechanism in the reuse and product
line architecture literature [Krueger92, Bosch00, Bachmann+05,
Svahnberg++05, Linden++07], as mentioned in Sec.3.1 and 3.2. In
[Bachmann+05], the mechanism is called Component Substitution,
whereas in [Linden++07] it is called Component Replacement. The
concept of a component denotes a constructible module in this thesis
(see Def.26), which is different to the component concept used in
[Bachmann+05, Linden++07], where it is an executable module (Def.4).
In order to avoid confusion, I use the more general term ‘module’, not
‘component’, in the name of this pattern.

Applicability

Use Module Replacement
– as an alternative to Polymorphism, also in order to separate common

and variant code in distinct modules, but with less effort,
– to obtain a software system whose existing variants can be replaced

by similar ones without changing common and existing variant
elements,

– to realize larger behavioral variations without affecting runtime
performance or memory size,

– to decouple common modules under the developer's ownership
from other common and variant modules which are not under his
ownership, for example in preparation to replace 3rd-party code, or

– to facilitate the parallel evolution of alternative variant modules.

Variability Mechanisms

 107

Process

Figure 28: Snapshots of realizing a new alternative variability with Module Replacement

As Figure 28 illustrates, the initial evolution step is indistinguishable from
the first step for Polymorphism (Figure 27a). In step 2, the existing
variant algorithm is extracted which may be an empty function in the
case of a newly introduced optional variability. The existing executable
module is split. The common module only refers indirectly to variant
elements: as a realization of a software product, it is only partially
complete. The missing element is configured by selecting the variant
module for compilation. In contrast to Polymorphism, the connection of
common and variant elements is more implicit because no direct
programming language capabilities such as function pointers are used to
couple the two. This step is similar to the combined second and third
step in the introduction of Polymorphism (Figure 27b and c). A
difference is that configuration tends to be easier because it is not done
in the code but in the build process.

In a third step, the evolver realizes the newly required feature as a
function in a new variant module. This module is similar to the existing
variant module, indicated by the symmetry axis in Fig.28c. In fact, the

Variant Module

Evolver Editor Executable
Module

Step 1:

Step 2: Evolver Executable
Modules

User

User

exist. variant algorithm

Common Module

Step 4: Executable
Module

User User

a)

b)

d)

Variant Module

Step 3:

Evolver

User
exist. variant algorithm

Common Module
c)

New Variant Module
new variant algorithm

symmetry

Variability Mechanisms

 108

new module may be created by cloning. The final step results in the
desired setting, in which different users (Def.8) access the same
executable module as part of the product line infrastructure, rather than
accessing separate copies (compare Fig.28d to Fig.25d).

Consequences

Module Replacement has four main advantages: First, like Conditional
Execution, it is a well-known mechanism that is easy to realize if the
variant elements can be refactored into functions. Second, it
consolidates common elements and decouples them from variants.
Third, it decouples variants from each other, so that they may evolve in
isolation, as long as the interface of the respective common elements
does not change. Fourth, source code realizing alternative functionality
becomes easy to exchange, without runtime efficiency penalties.

Two consequences of Module Replacement are both positive and
negative: First, it supports open variation, but only at a mid-sized level of
granularity. Although the variant elements tend to be easier to use and
evolve than those of Polymorphism, they must all be in separate modules
in case of Module Replacement, while Polymorphism also allows them to
share a single module. Second, variant elements are mostly restricted to
functions because Module Replacement depends on compile-time
semantics. For example, a variant module usually cannot contain partial
functions.

Module Replacement has the following main disadvantages: First and
foremost, defaults cannot be realized by Module Replacement alone
because it requires a strict separation of common and variant elements,
with no intermediate gradients, as offered by reuse hierarchies. For the
same reason, negative variabilities are also unsupported. Second, as in
Polymorphism, an extra empty function must be provided in order to
support optional variability. However, unlike in Polymorphism, this empty
function cannot reside together with its sibling because both must share
the identical function signature in Module Replacement. Third, variation
points are not entirely visible in the core assets because they are
represented by normal function calls.

Details

Binding Time. Module Replacement can be realized at preprocessing-,
compile- or link-time. In C and C++, for example, a common module
may specify (via an #include statement) which variant module realizes
a missing functionality. Alternative variants of that module may exist in
different directories, and only during preprocessing the required
alternative is selected by specifying the include path through the

Variability Mechanisms

 109

compiler’s –I option. Similarly, link paths to precompiled variant
modules are specified through the –L option.

However, the later the binding, the less adaptation possibilities exist for
the involved modules. For example, at preprocessing time, the common
code may still be altered at arbitrary variation point locations using
Conditional Compilation or include path adjustments, while at
compilation-time only alternative source code modules are selectable
whose source code, however, is still visible. At link-time, this is often not
the case anymore, so that the participating object code modules are
totally closed against modification.

Alternative Selection Options. There are several alternatives to
adjusting include or link paths. The most common ones in C and C++, as
described above, are the -I and -L compiler options. Instead of
selecting include or link paths by compiler options, they may also be
adjusted through symbolic links, if supported by the operating system of
the development machine. Variant modules may also be distinguished by
their name alone, rather than by the directory they reside in. In case of
linking, the module name is specified by the –l option (rather than the
–L option for the directory). A corresponding dual option to –I does not
exist. However, at least the GNU cpp preprocessor offers a
corresponding capability called computed inclusion: instead of specifying
the file name to include, a macro may be provided, as in #include
MACRO_H. Alternative modules may be included this way by redefining
the macro name.

Known Uses. Module Replacement is often used for selecting among
larger subsystems. In C, these subsystems are realized as identically-
named .c and .h files which are stored in sibling directories. An entire
subsystem is selected for compilation by providing the respective
directory, as shown above. For example, Module Replacement is used
internally by the SDCC compiler which targets a large number of
different microprocessor types, such as Zilog Z80 or Microchip PIC.
Hardware-specific functionalities are offered in several executable
modules in sibling directories, for example in z80 for the Z80 processor
or in pic16 for the PIC16 processor. By providing the option “-I pic16”,
the preprocessor includes the header files for the PIC16 processor, not
for the Z80. Similarly, the respective libraries are selected through the “-L
pic16” option.

Related Patterns

Only if runtime binding is a must, while open variants are desired, use
Polymorphism (Sec.4.3) instead of Module Replacement. Because both
of these mechanisms lead to similar variants (compare the colored
elements in Listing 4 with those in Listing 5), refactoring effort among

Variability Mechanisms

 110

these mechanisms can be low. However, Polymorphism results in extra
core asset complexity due to its runtime configuration and indirect calls.
As mentioned in the Process section, you may use Cloning (Sec.4.1) as a
sub-mechanism of Module Replacement if you have to realize a new
alternative variant. Instead of using the preprocessor flavor of Module
Replacement, you may opt for Conditional Compilation (Sec.4.5),
especially if open variation is not necessarily required, as in the case of
optional variabilities. Aspect-Orientation (Sec.4.6) offers similar
variability management possibilities than Module Replacement. It may be
a viable alternative in cases when the same variations in functionality
must augment or replace multiple different common functionalities. You
may apply Frame Technology (Sec.4.7) instead of Module Replacement
if you require more explicit variation points, wide variation granularity,
Default support, or programming language independence.

Variability Mechanisms

 111

4.5 Conditional Compilation

In order to avoid Cloning, especially when you use a programming
language such as C or C++ which has a built-in preprocessor, you may
embed variant product line infrastructure code elements of arbitrary
meaning, such as (partial) modules, data structures, or algorithms, in
conditional preprocessor statements, such as #ifdefs or #ifs. You can
optionally activate or deactivate the variants at construction time by
providing appropriate preprocessor macros. This mechanism is called
Conditional Compilation. It is simple to use, as existing code may usually
remain in its original position in the module, and it is more versatile than
its dual conditional mechanism, Conditional Execution. In particular,
efficiency penalties do not exist for the resulting product line members.

Intent

Separate common from variant code in a product line infrastructure by
extracting variant textual elements into cohesive elements which are
conditionally enabled or removed at construction time, depending on
preprocessor settings. Conditional Compilation allows you to manage
predicted optional or alternative textual variants, without introducing
new modules.

Motivation

Listing 6 shows how the wireless sensor node product line from the
running example is realized using Conditional Compilation.

Listing 6: Sensor node realization with Conditional Compilation

Variability Mechanisms

 112

The variant elements are shown in the same colors as in the
requirements and architecture documents from Fig.14. The optional
variation for extra wireless transmission is realized by the code marked in
the cohesive yellow block, the alternative variation for the three different
modes of detection is realized in the three cohesive green, brown and
red blocks, and the two alternatives for realizing different sensors are
shown in four non-cohesive bright and dark blue sections. Compared
with each other, the optional variant is least complex because it only
consists of a single cohesive section of code at one variation point
(marked by the green arrow), and the alternative variant consisting of
three cohesive variants at one variation point (blue arrow) is slightly more
complex. The realization of the two alternatives is most complex, as it
results in two pairs of variant elements at four variation points (red
arrows). Assuming that the same number of variants is realized in each
variability mechanism, there is no difference in complexity between the
realization of the four Sensor variants (bright blue) in Conditional
Compilation and, for example, Cloning (Fig.1): each time, there are four
variation points (red arrows), and changing (e.g. adding) a variant
requires changes at these four places. What is different, however, is the
explicitness of these positions. So it would as well have been sufficient to
discuss just the situation of a single variation point in order to clarify
complexity issues among variability mechanisms.

Conditional Compilation leads to explicit variation points, as indicated by
the gray code sections. If this mechanism is exclusively used for variability
management purposes, as mostly seen in practice, variation points are
also non-ambiguous.

Applicability

Use Conditional Compilation
– to consolidate common and variant code, especially if the end result

must be a new optional variant and if refactorings of existing
product line infrastructure code shall be minimized,

– in cases when extraction of functions as variant elements is
infeasible or requires too much refactoring effort,

– if efficiency penalties due to variability management must be
avoided,

– if variant elements of large and small sizes must be managed
together, or

– if variation points shall be visible in core asset code.

Variability Mechanisms

 113

Process

Figure 29: Snapshots of realizing a new alternative variability with Conditional Compilation

As shown in Figure 29, the development steps are very similar to those
of Conditional Execution (Figure 26), and so is their result. First, the
developer in the evolver role accesses the executable module, while the
existing user (Def.8) also accesses it. In step 2, the executable module is
changed most minimally, by embedding the existing variant elements in
#ifdef statements, so that the module becomes a constructible
module. A parameter configuration is also created. But in contrast to
Conditional Execution, the module does not need to be coupled to this
parameter configuration (comp. Fig.29b to Fig.26b). In step 3, a new
variant element is created alongside the existing one. While the previous
reuser is still free to modify his variant element, the evolver realizes the
new element. In step 4, both developers act as reusers because they may
adapt the constructible module to their needs.

Evolver Editor Executable
Module

Step 1:

Step 2: Evolver Constructible
Module

User

Reuser

Common Code
#if HAS_OLD_FTR
exist. variant code

Parameter Configuration

Step 3:

Evolver

Reuser
Common Code

#if HAS_OLD_FTR
exist. variant code

Parameter Configuration

#if HAS_NEW_FTR
new variant code

Constructible Module

Constructible Module

Step 4: Construction
Module

Reuser Reuser

symmetry

a)

b)

c)

d)

Variability Mechanisms

 114

Consequences

Conditional Compilation has the following main advantages: First,
common elements are consolidated in one place, rather than duplicated,
as in Cloning. Second, common code is somewhat decoupled from
variant code, which is emphasized by the condition. Third, the
mechanism is easy to introduce because it is only concerned with textual
elements, independent of programming language semantics. In
particular, variant code does not have to form a cohesive procedural
element, which has been necessary in all variability mechanisms
mentioned so far, except for Cloning. The fourth advantage is that
Conditional Compilation does not lead to efficiency penalties in the
resulting machine code. In fact, its code becomes indistinguishable from
cloned code after construction time.

Conditional Compilation has one slightly negative characteristic. It can
be used to express defaults, but these can only be overridden once, and
not multiple times, as in Frame Technology (see the following Details
section and the discussion on Default Addition in Sec.5.1).

Conditional Compilation has three drawbacks: First, it leads to core
assets that contain both common and variant code elements, so the two
cannot evolve independently. Common code details cannot be hidden
from application engineers who shall not see them. Second, as a closed
variability mechanism, Conditional Compilation does not support
unpredicted changes that leave the existing module unchanged. Third, it
becomes harder to ensure that the entire code – all common and variant
(possibly nested) elements in meaningful combinations – is always
compilable.

Details

Macro Definition. Conditional Compilation is realized in the C
preprocessor by using macro parameters in the code, which are defined
elsewhere. There are multiple ways to define or use conditional macros,
which may lead to inconsistencies. Each preprocessor macro is realized
as a key/value mapping. A macro can either be defined by specifying its
name only, which sets the key to the macro name and the value to 1, or
both the key and value may be set explicitly. Moreover, macros may
either be set when invoking the preprocessor/compiler (-D option),
either manually of from build scripts, such as a Makefile, or the macros
may be defined within source code files using the #define statement.
This results in four possibilities to set a macro, which already endangers
consistency. Conversely, one can also specify a macro to be undefined
(all but the built-in macros are undefined by default). This may be
meaningful to override a previous macro definition. Again, undefining a
macro can either be done as a command-line compiler option (-U), or in

Variability Mechanisms

 115

a source code file (#undef). However, as opposed to defining a macro,
undefining does not set the macro value to 0 (this must be done by
defining it with the explicit 0 value), but it removes the key/value pair.
This inconsistency is sometimes the reason for realization errors. Another
problem arises when macros are defined in configuration header files
rather than in a Makefile: All source code files tend to depend on the
configuration header, and when that header is changed, the entire
software system must be recompiled, which may drastically decrease
compilation speed. A third problem with macro definitions is that feature
interactions are often realized as explicit macro dependencies, nested
configuration headers or nested Makefiles. In order to keep Conditional
Compilation macro definitions simple, as few different possibilities for
defining macros shall be used, and they must always be used
consistently. For very simple products, it can make sense to omit the
configuration module completely, so that configuration is manually done
on direct compiler invocation.

Macro Usage. Conditional Compilation depends on macro definition
and macro usage. As for macro definition, there are also various
possibilities for conditional macro usage: Optional variabilities are either
realized by #ifdefs or #ifs, #ifndefs, nesting these clauses, or by
combining several conditions using Boolean logic. Again, as few of these
possibilities shall be used in the same product line infrastructure code in
order to keep it simple. The #ifdef clause (or alternatively, #if
defined), checks whether the macro has been defined, a Boolean
choice. This may also be expressed explicitly with #if
MACRO_NAME==1. Conversely, macro absence may be checked with
#ifndef or #if !defined, but not with #if MACRO_NAME==0.
Sometimes, the aliases YES or NO are defined for the values 1 and 0.

Alternative variabilities are realized by #else or #elif clauses, or by
successive #if MACRO_NAME==n statements. The extreme options of
unconditionally excluding source code elements (with #if 0) or
including it (with #if 1) must be avoided, even for temporary code
elimination or activation. Version management systems are a better
choice to keep such code elements available.

Default Overriding. The goal of defaults (Def.55) is to simplify
variability management. Frame Technology has good Default support,
but it can also be realized with Conditional Compilation, as illustrated in
Listing 7.

Variability Mechanisms

 116

1 #ifndef HAS_ACKNOWLEDGE
 #define HAS_ACKNOWLEDGE 1
 #endif

 ...
5 void send(char* message) {
 initialize transmission
 #if HAS_ACKNOWLEDGE==1
 acknowledged=false;
 #endif
10 ...
 }
 }

 #undef HAS_ACKNOWLEDGE

Listing 7: Realizing defaults with Conditional Compilation

An optional variant has been realized in lines 7-9, so that line 8 is
activated if the macro HAS_ACKNOWLEDGE is set. The macro is set in
line 2, activating line 8 by default. The important point is that, as
mentioned in Def.55, the configuration option, realized by the macro
HAS_ACKNOWLEDGE, may be ignored in the default case, but if it is
reset to 0, the default is overridden and line 8 vanishes. Note that this
language-specific pattern I invented circumvents the C preprocessor
inconsistency mentioned in the Macro Definition section above. Also
note that, as opposed to Default Overriding in Frame Technology
(Sec.4.7), Default Overriding in Conditional Compilation can only be
applied once: overriding for a second time is not possible.

Evolution. Besides evolution in space, as supported by Default
Overriding, short-term evolution in time can also be realized with
Conditional Compilation, in a similar manner as in the versioning idiom
known in Frame Technology [Bassett97, pp.182f.].

Tools. Besides the C preprocessor, several popular open-source tools
support Conditional Compilation, for example ifnames, diff, m4, or
javapp.

Ifnames scans all of the source code files named on the command line
and emits a sorted list of all macro usages. It can either be used to detect
which macros are used in a given set of source code modules, or to
detect which modules are affected by a particular crosscutting feature.
Ifnames is part of GNU autotools5.

Diff is a program to compare file and directory contents and to output
the differences in various ways. The output is usually a list of annotated
differences. GNU diff6 offers an option (-D) which results in an output

5 www.gnu.org/software/autoconf (retrieved August 2009)
6 www.gnu.org/software/diffutils (retrieved August 2009)

Variability Mechanisms

 117

format in which differences are surrounded by #ifdef statements. This
capability results in a simple automated refactoring possibility from
Cloning to Conditional Compilation.

M47 is an advanced preprocessor which implements the traditional UNIX
macro preprocessor, and which also realizes the autotools scripts. It
shares many C preprocessor capabilities, such as file inclusion, defining
macros and evaluating conditions on macros, so that M4 can be also be
used for Conditional Compilation. In addition, M4 also supports shell
command execution, string handling, integer arithmetic and iteration.
The iteration capability is valuable for realizing variants of the range type,
for example, when a variant source code element, possibly with minor
sub-variations, has to be reused repeatedly, and the number of
repetitions is known at construction-time.

Javapp8 is a preprocessor for Java that supports Conditional
Compilation.

Language-specific Alternatives. Some programming languages
without a built-in preprocessor have alternative possibilities for realizing
a restricted form of Conditional Compilation. For example, if- conditions
on final boolean values in the Java programming language are optimized
during compilation, as if they had been #ifdef statements in C. The same
possibility is also offered by the static if statement in the D programming
language9.

Known Uses. Conditional Compilation is frequently used to manage
optional variabilities in conventional reusable code. For example, the
real-time operating system μC/OS-II [Labrosse02] makes extensive use of
Conditional Compilation for various purposes. It uses a consistent
naming convention for macros that enable optional code elements:
these macros end with _EN (for enable; this is similar to our convention
using the HAS_ prefix). For example, the macro OS_DEBUG_EN enables
debugging code, and OS_EVENT_EN enables event code.

An idiom in many open-source C realizations, such as Emacs, GCC, glibc
or uClibc, is to have an optional configuration header config.h which is
used when the macro HAVE_CONFIG_H is defined. A large Japanese
manufacturer uses Conditional Compilation for realizing optional
features in their digital camera code, for example to provide anti-shake
or GPS support.

7 www.gnu.org/software/m4 (retrieved August 2009)
8 www.slashdev.ca/javapp (retrieved August 2009)
9 www.digitalmars.com/d (retrieved August 2009)

Variability Mechanisms

 118

Related Patterns

You may use Conditional Execution (Sec.4.2), the dual runtime
mechanism to Conditional Compilation, if runtime binding is required.
However, this results in efficiency penalties and makes the code less
comprehensible, as application logic and portfolio variation logic are
mixed. In order to realize larger alternative variants, consider using
Module Replacement (Sec.4.4), especially in cases when some
alternative variants already exist and new ones are likely to be required
soon. However, Module Replacement usually restricts variants to be
functions. If you also need to have more granularity and programming
language-independence, while also supporting open variation, consider
using Frame Technology (Sec.4.7). Like Conditional Compilation, it has
construction time binding, which avoids efficiency penalties, but in
addition it has built-in Default and reuse hierarchy support.

Variability Mechanisms

 119

4.6 Aspect-Orientation

As an alternative to Polymorphism or Module Replacement, when
common and procedural variant elements are stored in separate
modules, you may also organize common procedural elements in such a
way that they may be augmented or overridden by variants. This
approach is called Aspect-Orientation because the variants are stored in
modules called Aspects.

Intent

Decouple common from variant algorithmic elements of product line
infrastructure code by organizing the common elements in such a way
that their functions become variation points at which behavior may be
augmented or replaced, by extracting variant elements into one or more
separate modules, and by letting the variant elements refer to their
variation points. Aspect-Orientation allows you to consolidate common
code and add new variants without changing existing common
elements, potentially even for new unforeseen variants.

Motivation

Listing 8 shows a realization of the wireless sensor node from the
running example using Aspect-Orientation.

Listing 8: Sensor node realization with Aspect-Orientation

Variability Mechanisms

 120

Again, variant elements are color-coded as in Fig.14, arrows correspond
to variation points, and gray code sections highlight non-explicit
variation points. Orange-colored sections highlight other code elements
that cannot be distinguished from variation points if one only sees the
respective module, so that they may be mistaken for variation points. As
in Module Replacement, these correspond to function calls (comp.
Listing 5). In contrast to Module Replacement, variation optimization by
Defaults (Def.55) is supported by Aspect-Orientation, which is why one
of the alternative Detector variants (green code block in Listing 8) resides
in the common module main.c as a default. Variants are cohesively
stored in separate modules.

Again, there is one optional (yellow section) and three alternative
variants (blue, brown, and red section) that refer to single variation
points (green and blue arrows), plus another alternative variant that
refers to several variation points (red arrows). With respect to variation
point multiplicity, the same conclusion applies as mentioned above.

Applicability

Use Aspect-Orientation
– as an alternative to Polymorphism or Module Replacement, also in

order to separate common and variant code in distinct modules, but
possibly with defaults,

– to obtain a software system whose existing variants can be replaced
by similar ones without changing common and existing variant
elements,

– in order to be able to switch between execution time and runtime
binding (depending on Aspect Weaver capability), or

– to facilitate the parallel evolution of alternative variant modules.

Process

Figure 30 illustrates how a new alternative variability is realized with
Aspect-Orientation. The initial step is the same as in the other
mechanisms: an executable module that is currently used by some users
(Def.8) is selected for product line evolution by an evolver. The following
steps are similar as in Module Replacement (compare to Figure 28). In
step 2, variation points (Join Points in Aspect-oriented terminology) in
the common module are made available (not shown in Figure 30b), and
a new variant module is created. This module, called an aspect, refers to
the common module and provides the existing variant algorithm.
Alternatively, the existing variant element may also remain in the
common module, as a default (Def.55), meant to be overridden. In step
3, a new variant module is created, potentially by cloning the existing
one, and the new variant algorithm is introduced by the evolver. Finally,

Variability Mechanisms

 121

different users access the same executable module, extending it by
weaving in their individual aspect variants (Figure 30d).

Figure 30: Snapshots of realizing a new alternative variability with Aspect-Orientation

Consequences

Aspect-Orientation has the following main advantages for product line
realization: First, it consolidates common elements and decouples them
from variants. Second, it decouples variants from each other, so that
they may evolve in isolation, as long as the interface of the respective
common elements does not change. Third, source code realizing
alternative functionality becomes easy to exchange.

Four consequences of Aspect-Orientation are partially positive and
negative: First, unlike the similar Module Replacement mechanism, it
supports defaults as an optimization possibility for variability
management. However, default elements are not clearly distinguishable
from common ones because only function calls are available for
distinction. Second, it sometimes supports unpredicted changes by its
obliviousness characteristic [Filman+00], but only if appropriate variation
points have already been realized in the common code. Otherwise,

Variant Module

Evolver Editor Executable
Module

Step 1:

Step 2: Evolver Executable
Modules

User

User

exist. variant algorithm

Common Module

Step 4: Executable
Module

User User

a)

b)

d)

Variant Module

Step 3:

Evolver

User
exist. variant algorithm

Common Module
c)

New Variant Module
new variant algorithm

symmetry

Variability Mechanisms

 122

common code must first be refactored accordingly, for example by
classical refactorings such as Extract Method, Rename Method or Move
Method [Fowler99], or by aspect-oriented refactorings [Monteiro05,
Laddad08], with the risk of accidentally corrupting existing variation
points. Third, Aspect-Orientation supports open variation at a similar
quality than Module Replacement but with more effort (extra tooling,
less explicit variation points). Fourth, there is the danger that, when
Aspect-Orientation is used, common code is not cleanly decomposed
according to its architecture, so that traceability suffers and the code
becomes overly complex to evolve [Ali++10, Eaddy++08, Mens+07,
Steimann06, Tourwe++03].

The following properties of Aspect-Orientation are disadvantageous for
evolving product line infrastructure code: First, Aspect-Orientation is
always dependent on a particular programming language and type of
compiler, which is why it cannot be rapidly applied on special C
compilers, as often needed in embedded systems development in
practice. When performing the case study (Ch.6), we also encountered
this problem that none of the available compilers for the given hardware
was supported by any aspect-weaver. Third, it is only applicable at
function call granularity, so that code may first have to be refactored
before the mechanism can be applied. Fourth, depending on the aspect
weaver, it may result in resource penalties when, for example, code of
overridden defaults remains in the machine code, even though it is never
executed in the particular product. Fifth, there is no standard aspect
syntax, which increases learning effort and leads to inconsistent
realizations.

Details

Data structure. Aspect-oriented mechanisms are usually concerned
with variation in functionality, which is why we only discussed
algorithmic code elements above. However, variation in state, for
example in data structure, is sometimes supported as well.

Symmetries. Many dialects of Aspect-Orientation are asymmetric, that
means, they distinguish between conventional code and Aspects. This
means that only two-level reuse hierarchies (Def.40) are supported. In
symmetric dialects of Aspect-Orientation however, Aspects may realize
variation points (join points) and so may be adapted by other Aspects, so
that n-level reuse hierarchies can be realized.

Tools. AspectJ10 has become the reference tool for Aspect-Orientation.
However, it depends on the Java programming language which is not
commonly used for embedded systems development. AspectC, a subset

10 eclipse.org/aspectj (retrieved August 2009)

Variability Mechanisms

 123

of AspectJ for the C language, has been used for separating prefetching
in operating systems code [Coady++01], but did not become publicly
available. AspectC++11 only supports the C++ programming language
and requires a specific compiler. XWeaver12 supports C++, but in a
compiler-independent way. ACC13 supports Standard C and is compiler
independent, and thus is the only choice for general embedded systems
development at the moment, but it is still in a research stage of
development. A survey of Aspect-Orientation support for the C language
is given in [Adams06]. In general, mature aspect weavers for industry-
strength embedded systems development are still missing.

Known Uses. The literature on Aspect-Orientation [Elrad++01,
Filman++05] often claims that certain tasks in software and product line
development have been waiting for aspect-oriented solutions, for
example to consolidate development tasks such as tracing. However,
besides ongoing discussions of an aspect-oriented replacement for the
Observer pattern [Hannemann+02] or toy examples of Java applications
for mobile phones [Anastasopoulos+04, Alves07], not many real-world
examples have been published with a single-systems embedded systems
context [Coady++01, Lohmann++06]. Success stories in embedded
systems product line development are missing, as recent reviews have
shown [Rashid++10, Amin++10].

Related Patterns

If open variants are required, but AOP tool support is unavailable, use
one of the conventional mechanisms Polymorphism (Sec.4.3) or
Module Replacement (Sec.4.4). Like Aspect-Orientation, these depend
on programming language syntax and allow you to consolidate common
modules and separate them from variant modules (Tab.5). However,
their variation points tend to be more visible than those of Aspect-
Orientation. With the two conventional mechanisms, variation points
may be automatically detected by the compiler. This is done by
compiling common modules with variant modules missing, which results
in compilation or link errors that hint at variation points. However, this
approach does not work if Aspect-Orientation is used because it requires
common modules that can be compiled although Aspects are missing.
You may consider using Frame Technology (Sec.4.7) instead of Aspect-
Orientation as another open-variant mechanism with Default support.
Both mechanisms require additional tooling, but Frame Technology has
deliberately been designed as a construction-time only mechanism,
which guarantees that efficiency is not impacted, and which is
programming language-independent. Frame Technology supports

11 www.aspectc.org (retrieved August 2009)
12 www.xweaver.org (retrieved August 2009)
13 research.msrg.utoronto.ca/ACC (retrieved August 2009)

Variability Mechanisms

 124

variability management at arbitrary levels of scale, from single textual
tokens to entire subsystems. Frame Technology, with its more general
mechanisms [Bassett07], covers a broader spectrum of variability than
Aspect-Orientation. Defaults and Default Overriding are the primary
mechanisms of Frame-Technology; this mechanism has been designed to
offer them. On the other hand, they only appear as by-products in
Aspect-Orientation; that mechanism has not deliberately designed
around these properties.

Variability Mechanisms

 125

4.7 Frame Technology

The mechanisms discussed in Sections 4.2 to 4.6 are used for one main
reason: to avoid Cloning too much common code when evolving a
product line infrastructure. In most of these cases, you are concerned
with variant algorithms only, either in open or closed variation. Of these
mechanisms, only Conditional Compilation allows you to always bind
variation at construction time (see Fig.5), with the mentioned benefits,
but with one major disadvantage: closed variation. If closed variation is
enforced, the code becomes overly complex. Frame Technology,
however, supports both open (and sometimes also closed) variation and
construction time binding, combines the advantages of Conditional
Compilation and Module Replacement without sharing their
disadvantages. The mechanism is called Frame Technology because core
assets are stored in modules called frames.

Intent

Decouple common from variant code in a product line infrastructure by
extracting variant text elements of similar change rates into separate
modules, while consolidating common modules. Frame Technology
allows you to keep textual artifacts together that have a similar degree
of variation in space and in time, without efficiency penalties.

Motivation

A Frame Technology realization of the running example of a wireless
sensor node is shown in Listing 9.

Listing 9: Sensor node realization with Frame Technology

Variability Mechanisms

 126

As before, the variant elements are marked in the same color as their
requirements and architecture equivalents in Fig.14. Variation points are
emphasized by colored arrows, and the corresponding textual elements
are highlighted in gray. They can explicitly and non-ambiguously be
identified in the core asset because Frame Technology has a dedicated
syntactic for expressing variation points. Two variation points (blue and
green arrows) are used by cohesive variants (green, brown and red
sections), while four more variation points (red arrows) are used by
variants that consist of more than a single variant element. Compared
with each other, variation point referred by cohesive variants lead to less
complexity in Frame Technology product line infrastructure code than
several variation points referred to by multiple variant elements. But for
the purpose of comparing mechanism complexity, variation point
multiplicity is not the relevant factor, but variation point explicitness, as
discussed above.

As Defaults are fundamental elements of Frame Technology, the code in
Listing 9 makes use of this property by realizing one of the alternative
Detector variants (green element) as a Default, as mirrored in the
example of Aspect-Orientation (Listing 8). One of the benefits of the
Default approach is that fewer variants are required. Another advantage
of both Frame Technology and Aspect-Orientation is that each realized
variation point in a core asset is a compact representation of actually
three variation points because variants may refer to it in three ways
(before, after, at), as indicated in Listing 8 and Listing 9 by the final red
arrow and the blue arrow.

Applicability

Use Frame Technology
– as an alternative to Conditional Compilation, in order to physically

separate common from variant code, and especially if the end result
is a new alternative variant,

– in cases when extraction of functions as variant elements is
infeasible or requires too much refactoring effort,

– if efficiency penalties due to variability management must be
avoided,

– if variant elements of large and small sizes must be managed
together,

– if variation points shall be visible in core asset code, or
– if it makes sense not only to have two levels of modules (two-level

tree [Parnas08]), common and variable ones, but a deeper hierarchy
of partially common and partially variant modules (multi-level tree or
multiple partitioning [Parnas08]).

Variability Mechanisms

 127

Process

Figure 31: Snapshots of realizing a new alternative variability with Frame Technology

As shown in Figure 31, the development steps are similar to those of
Aspect-Orientation (Figure 30), while the development artifacts resemble
those of Conditional Compilation (Figure 29). First, the evolver-developer
accesses the executable module, while the existing user (Def.8) also
accesses it. In step 2, the module is split into a common and a variant
module. The common module contains most of the existing code,
enriched by Frame Technology annotations which make variation points
explicit and look similar to those markers used in Templating, the
Cloning variant (compare Listing 9 with Listing 2). The variant module
contains the existing variant text, to be inserted at the variation points.
As in Aspect-Orientation, the variant text element may alternatively
reside in the common module as a Default if it is shared by most product
line members, but not all. The modules become constructible modules
because they are processed by a construction interpreter to produce the
desired product line member. Frame commands represent actions that
can be replayed to produce product line members from a product line
infrastructure. In step 3, a new variant module is created that contains

Variant Module

Evolver Editor Executable
Module

Step 1:

Step 2: Evolver Constructible
Modules

User

Reuser

exist. variant text

Common Module

Step 4: Constructible
Modules

Reuser Reuser

a)

b)

d)

Variant Module

Step 3:

Evolver

Reuser
exist. variant text

Common Module
c)

New Variant Module
new variant text

symmetry

Variability Mechanisms

 128

new variant text. It resembles the existing variant module because their
references to the common module are similar, usually indistinguishable
(symmetry), while their variant text differs. In the last step, the
constructible modules are reused by reusers to evolve them or produce
product line members. The process is identical to the final process in
Conditional Compilation (Figure 29d); only the Constructible Module
details differ.

Consequences

Frame Technology has the following advantages as a variability
mechanism in product line infrastructure code evolution: First, it
decouples common from variant elements, either explicitly visible (if both
are extracted into different modules), or less visible (if the variant text, as
a Default, resides in the common module). Due to open variation, the
mechanism supports unpredicted changes. Second, Frame Technology is
programming language-independent because it is only concerned with
textual elements, independent of programming language semantics. In
particular, variant code does not have to form a cohesive procedural
element. Due to this property, an additional degree of freedom is gained
in realizing core assets, compared to language-dependent mechanisms.
This makes it easier to extract variant elements, without extra refactoring
effort. Third, Frame Technology does not lead to efficiency penalties in
the resulting machine code. The code becomes indistinguishable from
manually cloned code at execution time. Fourth, it facilitates variability
management in space and time by organizing modules in reuse
hierarchies according to their stability. Frame Technology provides
Bounded Combinatorics [Krueger10] because adding a variant to an
existing set of variants in a realization of an alternative variability only
leads to a linear growth in modules. Fifth, it uses Defaults as first-class
elements, instead of variants in most other variability mechanisms. Each
Default leads to less complexity in variability management because the
number of variant modules is reduced by one.

Frame Technology has these disadvantages: First, the mechanism is
relatively unknown in practice, there is no standard frame syntax, and
tool support is limited (see Details/Tools section). Second, some
implementations of Frame Technology only offer open variation, which
makes the mechanism less easy to introduce than its closed counter-
mechanism, Conditional Compilation.

Variability Mechanisms

 129

Details

Tools. Several commercial or academic tools with Frame Technology
support (frame processors) exist. Their common characteristic is that
common and Default elements can be distinguished in textual assets,
that Defaults may be overridden and that reuse hierarchies can be set
up. However, all tools differ in their syntax, and many add specific
features, such as iteration or closed variation, which is either not needed
in many situations, or which is already well-supported through other
variability mechanisms.

Netron Fusion14 is a commercial tool, containing the original frame
processor and support tools. It has been used in a number of different IT
development projects, especially in COBOL, for more than two decades
[Bassett97]. Its COBOL-like syntax can be an obstacle if it is going to be
introduced in non-COBOL projects. XVCL [Zhang++01, Bassett07] and its
offsets FPL [Sauer02] and LFP [Loughran+04] are academic frame
processors which use XML as their underlying text representation. XVCL
is reported to have been used in different application domains, such as
CAD systems [Zhang+03], C++ libraries [Basit++05], or cash desks
[Schäfer++09]. I have developed FP15 as a frame processor with
deliberately limited features, and whose syntax is deliberately kept as
human-readable and as compact as possible, which is why XML was not
chosen. FP has been used in a number of projects, especially in the
embedded systems domain, but it has also been used for variability
management in non-source code artifacts, such as TeX files producing
slide show documents. Its usage has been explained in [Patzke+03,
Patzke08], and the FP source code used in the case study of this thesis is
listed in Appendix B.1.

Evolution. Frame hierarchies [Bassett97] realize reuse hierarchies
(Def.40) and thus explicitly separate modules with different evolution
rates from each other. If a frame processor provides both open and
closed variation, closed variation can be used for variation in time by
marking default versions or deprecated code elements [Bassett97,
pp.182f.]. Existing source code modules can easily be refactored into
frames without changing source code by adding frame annotations (the
source code must not contain annotation syntax). Adapting these
modules facilitates parallel evolution without inconsistent co-evolution of
common modules. If it turns out during evolution that certain temporal
variants have higher or lower change rates than initially conceived,
simple refactorings may be used to move them into their respective
position in the frame hierarchy.

14 www.netron.com/products (retrieved August 2009)
15 frameprocessor.sf.net (retrieved August 2009)

Variability Mechanisms

 130

Organization of Elements. The following rules help to decide where to
place a code element within a frame hierarchy (also see Fig.11): When
two elements have the same evolution rate, they are placed at the same
level of the frame hierarchy. In addition, when these elements are always
reused together, they are placed in the same frame. When the elements
can be reused independently, e.g. as alternative variants, they belong
into sibling frames. When they do not have the same change rate, i.e.,
one element implies a reuse of the other, but the other can be reused
alone, then they belong into different levels.

Selection of Defaults. Frame Technology makes extensive use of
default text. When a common element is framed, and variation points
are defined, a meaningful default may also be provided in many cases,
rather than leaving the default empty. The advantage is that the
template provided by the frame becomes more comprehensible when it
is adapted because the default serves as an integrated “best example”,
as in the Templating variant of Cloning (Sec.4.1). It can also make the
ancestor frames smaller, which is always desirable because it minimizes
product-specific code. Another observation concerning Defaults is that
the set union of all defaults in a frame does not always need to result in
a meaningful product line member: the frame may be reused more
efficiently if each default alone does not require extensive overriding.

Variation Point Naming. Variation points must be named in such a
way that the frame's context-freedom [Bassett97] is maintained. In other
words, the variation point name shall not contain variant information, so
that the core asset remains independent of particular variants. This
means for example in the above case, that when a new variability is
realized, the respective variation point shall have a name such as
more_init instead of init_sound_sensor.

Optimizations. As mentioned above, frame technology reduces the
number of variant modules through Defaults (each common module
may contain some slightly variant code in the form of defaults, so that
less variant modules are required). Also as mentioned above, the number
of variation points is reduced because each variation point can be
referred to in three different ways (e.g., for a variation point called “vp”,
two implicit ones called “before vp” and “after vp” exist). The number
of required modules can drastically be reduced because a single frame
may lead to the production of more than one file.

Known Uses. As mentioned in the Tools section above, three different
frame processors have been reported to be used in several software
development projects: Netron Fusion [Netron], XVCL [Zhang++01], and
FP [Patzke+03]. XVCL has been used to eliminate redundancies in parts
of the Standard Template Library of the C++ programming language
[Basit++05]. FP has been used for framing product line realizations of

Variability Mechanisms

 131

resource-constrained embedded systems in the automotive and
consumer electronics application domain. In the context of the case
study (Ch.6), I use it to realize a software product line of wireless sensor
node applications and PC-based transceivers, where related variabilities
are realized in two programming languages (C code for software
running on the embedded devices, and Java code for the processing the
received information in a PC).

Related Patterns

Although Frame Technology has been developed in order to fight the
numerous liabilities of Cloning (Sec.4.1) [Bassett97, p.86], Cloning often
provides quicker short-term results. As an intermediary between Frame
Technology and Cloning, the manual Templating mechanism already
provides explicit variation points, similar to those in Frame Technology.
You may also consider using Conditional Compilation (Sec.4.5), as it is
a more well-known programming language-independent variability
mechanism. However, Conditional Compilation does not explicitly use
Defaults and Default Overriding (although idioms may be used for that
purpose). As opposed to Frame Technology, it employs closed variation,
and for that reason it does not support unpredicted evolution. Although
Conditional Compilation slightly decouples common from variant
elements, they are still strongly coupled because they reside in the same
module. A transition path from Conditional Compilation to Frame
Technology has been shown in [Patzke07].

Variability Mechanisms

 132

Product Line Evolution Method

 133

5 Product Line Evolution Method

The variability mechanisms presented in Chapter 4 are used by family
engineers or automated agents to evolve existing product line
infrastructure code into new product line infrastructure code, according
to a new specification. Figure 32 shows the overall approach (cf. Fig.4)
whose remaining elements will be presented in this chapter.

Figure 32: Product line evolution method

A first element that will be taken into account is which product line
evolution possibilities, types of possible future next steps in product line-
relevant evolution, are most likely to occur. These product line evolution
scenarios generalize predominant types of new variability-related
requirements that the family engineer must realize in the existing
product line infrastructure code. For example, one type of product line
evolution scenario is that a new optional feature is needed in the
product line. This means that existing product line infrastructure code
which has been ignorant of that variability will have to be changed so
that it provides more variability. A classification of product line evolution
scenarios is developed in Section 5.1. The goal is to capture types of
future requirements changes (to predict unforeseen changes) that have
an impact on variability in a product line infrastructure. The evolution
scenarios consist of atomic generic and non-generic sub-processes which
are instantiated and combined in a certain order so that evolution effort
is kept as low as necessary.

Product Line Evolution Method

 134

The process phases, described in Section 5.2, are the third building block
of the product line evolution method developed in the current thesis. In
contrast to the evolution scenarios, the process phases are larger types
of activities within the realization life cycle. They are applied iteratively
and incrementally. The basic phases are Selection, Modification and
Quality Assurance, all focused on variability management. Selection and
Modification are associated with specific variability refactorings.

The fourth building block of the product line evolution method is
variability complexity measurement, discussed in Section 5.3. It is applied
as the second element of the Quality Assurance phase, besides Product
Line Testing. Using the GQM approach, a customizable metrics suite is
developed which describes to which degree the resulting product line
infrastructure code becomes unnecessarily complex in variability
management.

All method elements have been applied in the case study in Chapter 6
which evaluates the impact of variability mechanisms on evolvability. An
existing set of single products is evolved into product lines using
different types of evolution scenarios in different orders. Each evolution
step (Def.68) is realized using all variability mechanisms mentioned in
Chapter 4. Evolution traces of the involved code assets are presented.
Variability complexity is measured and compared for product line
infrastructure code in all stages.

5.1 Product Line Evolution Scenarios

Successful software systems evolve [Parnas94]. A software system
evolves due to new requirements which are then realized in the code by
a software engineer. When a product line evolves, the interplay of its
commonalities and variabilities must typically change, which requires a
family engineer to use variability mechanisms, as those presented in
Chapter 4. However, the usage of mechanisms is often not disciplined in
practice, which causes unnecessary complexities. The remedy suggested
in this thesis is to capture development steps which result in well-
behaved evolution, and to reapply them later if a similar development
situation arises. For product line infrastructure evolution, this means to
capture variability-related scenarios, as the presence of variability is the
main distinction between product lines and single systems. In particular,
product line evolution scenarios are concerned with (foreseen or
unforeseen) changes in requirements. These changes have an impact on
the interplay of existing common and variant elements in the product
line infrastructure.

In this section, a set of basic product line evolution scenarios will be
developed that covers the major types of variability. It will be shown that
these scenarios consist of more atomic scenarios which can be mapped

Product Line Evolution Method

 135

to elementary realization activities. Moreover, it will be shown that it
makes sense to apply them in a specific sequence most of the time.
Suggestions will be given how to aggregate the scenarios into larger
scenarios.

Figure 33: a) Elementary feature evolutions, b) corresponding pseudocode

Figure 33 summarizes the most atomic evolution possibilities that a
product line asset can undergo. Figure 33a shows evolution steps in
product line requirements (changes in features (Def.63)) as snapshots of
annotated feature diagrams, Figure 33b depicts the corresponding

F1 F1

F2

F1

F2 F3

F1

F2

P1 P1

if p:

P2

P1

P2

P1

P2

P3

F1

F2 F3

p

p

1 0

F1

F2 F3

p

x y

P1

if p=x:

P2

if p=y:

P3

P2
if p:

F3

P3

x y

=x:

if p=y:

F1

F2 F3

p

x y z

F4

P1

if p=x:

P2

if p=y:

P3

if p=z:

P4
if p=z:

P4

a)

b)

1 2

3

5 6 7

9

1 2

3

5 6 7

9

P1

if x in p:

P2

if y in p:

P3

if x in p:

p p

if y in p:

F1

F2 F3
x y

F1

F2 F3

p=1
1 0

8

p=1

P1

if p:

P2

else:

P3

p=1

8

=1

P1
VP

x

P2
y

P3
z

P4

10

F1

x

F2
y

F3

VP

z

F4
z

10

x y z

F2 F3 4

F1

P2

P3

4

P1

11

11

Legend

 Module

Evolution step

VP

Configuration

Open VP

P1

if p:

P2

else:

P3

Legend

 Feature

Optional var.

Alternative var.

Evolution step

Product Line Evolution Method

 136

changes in snapshots of pseudocode artifacts. The pseudocode
represents the family engineer’s mental model on how to realize the
new requirements. The goal of the split in Fig.33 is not to propose a
certain mapping between requirements and code. It is assumed that
family engineers in practice are capable of doing this. The goal is to
illustrate that similar evolution sequences in requirements artifacts result
in similar evolution sequences in code artifacts. Each step, shown as a
dashed arrow, adds some primary common or variable element of
interest. As in the process snapshots throughout Chapter 4, elements
that have varied in time are shown in gray. In concatenation, all
scenarios lead to end results in which variability in space has changed.

In all discussed product line evolution scenarios, the interplay of common
and variant elements changes across time. Moreover, because I focus on
reducing new complexity, only those scenarios are covered here that
make core assets more complex with regard to variability. Scenarios
which make them less complex (due to removal of variability) are not
covered. They can be regarded as complexity-increasing scenarios in the
backwards-time direction. For example, sub-step 2 in Fig.33 creates a
variation point for an optional variant, whereas in the opposite time
direction, the variation point is removed, which leads to less variability.

A product line evolution scenario may start in any of the shown states,
comprising one or more of the basic evolution steps. In one starting
state, the artifact does not realize any variability, or it realizes only
variability that is irrelevant for the upcoming task. This corresponds to
the first snapshot in Figure 33a, where only a single common feature F1
exists, realized as a single code artifact P1 that represents a construction-
time constant. One new product line-specific requirement is to realize a
new feature which shall optionally be available in the next version of the
product line. This requires evolution steps 1 and 2 in Figure 33. The
product line evolution scenario is called Optional Feature Creation.
Figure 34 shows which aggregate product line evolution scenarios exist
and how they can be obtained from Figure 33 by (re-)using atomic
scenarios.

The following sub-sections present details of all listed product line
evolution scenarios, with a consistent naming scheme: Creation
describes a situation when a variability-related element is newly built
which did not exist before. Addition means that an element is created
where a similar element already existed before. Extraction happens if an
element is made more visible within the larger system, and Inlining
means the opposite. The names are predominantly chosen according to
problem space (Def.50) artifacts because the scenarios are triggered by
changes in requirements, although realizing them also depends on
existing solution space artifacts.

Product Line Evolution Method

 137

Figure 34: Basic product line evolution scenarios captured in Fig.33

a)

b)

c)

d)

e)

f)

g)

h)

i)

Optional feature
creation

Optional variation
point creation

Alternative feature
creation

Alternative variation
point creation

Common feature
extraction

Alternative feature
addition

Default addition

Addition of multiple
coexisting possibilities

Variable feature
extraction / inlining

(6), 7

Name feature evolution elementary steps (Figure 33)

1, 2

2

3, 5

5

p

x y

VP VP

x y

10 / 11

9

x y

8

p

1

p=1

1

=1

4, 5

Product Line Evolution Method

 138

Optional Feature Creation (Figure 34a)

This scenario means that a new feature needs to be realized which
depends on an existing common (or quasi-common) feature, so that
afterwards either a product can be produced that only realizes the pre-
existing feature, or one that realizes the existing plus the new feature. In
the first case, the resulting product is indistinguishable from the product
that existed before the evolution step was taken. In the second case, the
product offers the new characteristics in addition to the existing ones.
The goal of the realization activity is to incrementally realize the new
feature with minimal effort, adding just enough variability complexity as
necessary to the product line infrastructure code.

Whichever approach is used, an unavoidable complexity is that the new
feature must be realized, for example as new functionality. This
complexity is unrelated to variability issues and is also encountered in
single-systems development. The simplest realization is to clone the
existing element, to modify the cloned element so that it realizes the
new feature, and to select among the two when producing the
respective product. However, as seen in Section 4.1, Cloning is least
sustainable because it leads to a duplication of all common elements.

The simplest approach that keeps the common element consolidated is
to augment the existing product line infrastructure code by new code in
a least obtrusive way. This has three consequences. First, the new code is
added as close to the existing code as possible, which means in the same
modules that contain the existing code. This only requires realization by
closed variation. Open variation is not necessary and would lead to
unnecessary complexity. A second consequence of least obtrusiveness is
that the existing product line infrastructure code is not changed more
than necessary to offer variation points (it is assumed that in the general
case of unpredicted change, appropriate variation points do not yet
exist). This means that a possibility for enabling the new variant must be
added. For variability management of text-based artifacts such as
conventional source code, it is sufficient that this possibility is text-based.
It is not necessary (and would lead to excess complexity) that the
variation point is also related to the semantics of the source code
[Bassett97, p.79]. This makes programming language agnostic
mechanisms, such as Conditional Compilation, most appropriate in the
given context (Def.20). A third consequence of least obtrusiveness is that
only those added elements become variability managed that must be
variability managed. In other words, at least one variation point must be
realized, but not more variation points than necessary should be realized.
More variation points make the variant less cohesive, but it should not
become less cohesive than necessary. This does not mean that the
variant must always consist of only a single variant element (complexity
excess also means that fewer variant elements are realized than required

Product Line Evolution Method

 139

by the architecture). It only means that not more variation points should
be realized than necessary.

As shown in Figure 35, Optional Feature Creation can be realized in two
ways, depending on the order of its two sub-steps. This simplest
example with only two steps already shows that complexity and
productivity are influenced by the order in which process steps are
executed, that this order can be planned according to certain criteria,
and that random approaches which neglect such an order lead to
unnecessary complexity. In a similar way, it also applies to all multi-step
scenarios which follow.

Figure 35: Optional Feature Creation sub-steps, starting with a) commonalities, b) variabilities

In the first approach, a new feature is first realized and added to the
existing product line infrastructure code as if it were common, a
construction-time constant (Figure 35a, step 1). Thereafter, this new
construction-time constant is first converted into an equivalent
construction-time variable with two indistinguishable values, and then
one of these values is made void (step 2). The latter sub-step amounts to
adding an optional variation point. In the second approach (Figure 35b),
an optional variant without executable code (a null feature, illustrated by
the symbol {}) is first realized next to the existing common element. This
means that the variation point is realized first, and after that, executable
code is written for the new variant.

Both approaches have the same end result, the realization of a common
and an optional feature. However, a claim made in this thesis is that the
order of performing the sub-scenarios should not be arbitrary because it
results in excess complexity and decreases productivity. In the majority of
cases, the first approach leads to a more evolvable product line
infrastructure code, for at least two reasons: First, if an empty variant is
added first, the family engineer must speculate where exactly to realize
the variation point because its proper position can only be determined
with certainty when both the common and the variant code exist. On
the other hand, if new code is first added as if it were common code,

F1 F1

F2

F1

F2

P1 P1

if p:

P2

P1

P2

p

P2
if p:

a) b)

1 2

1 2

F1 F1

{}

F1

F2

p

1 2

p

P1 P1

if p:

P2

P1

if p:

{}
if p:

{} P2

1 2

F2

Product Line Evolution Method

 140

the family engineer can afterwards see the position of the newly
required variation point, exactly at the necessary granularity, by
comparing the old and new realizations. Second, if the family engineer
first realizes an empty variant and his decision with regard to variation
point position turns out to be overly complex, he will only notice this
after the second development step has been completed. This will cause
him to undo two previous steps, leading to productivity loss. Especially
under time pressure, the introduced ‘small’ defect in the code tends to
be neglected, which leads to code that is more complex than necessary.
The first approach is more efficient because each step builds up on
previous results. After completing the first sub-step, ignoring variability
issues, the family engineer may already run and test the new product, as
early as possible. If the family engineer makes an error at this stage, so
that the new product does not execute as expected, only one step has to
be undone. In contrast, if the same error is made in the alternative
scenario, two steps will likely have to be undone, or the variation point
remains overly complex.

The two approaches make a difference in productivity for another
reason. In the first case (Figure 35a), the new feature F2 is realized by
performing a large number of small steps first (line by line addition of
new code, until the new product runs), and then the variation points are
added by taking a small number of large steps (adding one or more
variation points for the different variant elements). In the second case
(Figure 35b), the large-step activities are performed first, followed by
small-step activities. The first approach is favorable because a large-step
activity (adding or re-adjusting variation points) is only performed once,
whereas it may need to be performed several times in the second case.

Optional Variation Point Creation (Figure 34b)

The variability-related sub-scenario of Optional Feature Creation is called
Optional Variation Point Creation. It is discussed as a separate product
line evolution scenario because its precondition is different. Both
scenarios share the precondition that the code has not realized an
interesting variation that would influence the upcoming variability
management task. In Optional Feature Creation, the feature to be
realized as an optional variant has not existed before, whereas in
Optional Variation Point Creation it exists already as an element of the
common code. Detecting the common code elements tends to be easier
in Optional Variation Point Creation because the feature has already
been realized in the existing product line infrastructure code. In Optional
Feature Creation, however, there is a higher probability to misjudge the
common elements, as shown above.

In the general case, it cannot be assumed that all common code
elements that shall be made optional variant elements in Optional
Variation Point Creation form syntactically cohesive programming

Product Line Evolution Method

 141

language elements, such as subroutines. This means that generally,
programming language-dependent variability mechanisms are not first
choice because they require additional refactoring effort beforehand.
Language-agnostic variability mechanisms tend to be the best choice for
realizing this scenario in the simplest manner. Also, as discussed above, if
there is no need for making the optional variant particularly visible,
isolation is unnecessary, so that the simplest approach is to add the new
variation point inline.

Alternative Feature Creation (Figure 34c)

This scenario denotes that an alternative feature is required as a
substitute for an existing common feature element. This may happen, for
example, when an existing element in a new product generation
[Muthig02] shall become deprecated, but must yet be readily available.

As shown in Figure 34c, the precondition in this scenario is the same as
in Optional Variation Point Creation: A common (or quasi-common)
feature consists of two elements, one of which is invariant with regard
to the upcoming evolution scenario, whereas the other becomes a
variant. In Alternative Feature Creation, the family engineer’s task is to
introduce a new variant alongside existing code in the most productive
way. The new variant must share variation points with its sibling, but
must provide a different behavior in the resulting product line member.

If cloning is avoided, the simplest approach is a two-step process, similar
as in Optional Feature Creation. First, a common element is created, and
second, this element is made a variant. In the first step (step 3 in Figure
33), the reference common element is identified for which an alternative
is to be provided. This happens as described in Optional Variation Point
Creation. This step is applied first for the same reasons discussed in
Optional Feature Creation. The resulting executable module should be
compilable into machine code, but it might not provide the required
functionality because it realizes two features, only one of which is valid
in each product line member. Thus, in a second sub-step, an alternative
variation point is introduced (step 5 in Figure 33). Similar as in Optional
Variation Point Creation, variation may be closed, and a variant may be
selected as result of a Boolean decision. Again, a programming
language-agnostic variability mechanism, such as Conditional
Compilation, is most appropriate in the majority of cases.

Alternative Variation Point Creation (Figure 34d)

Like Optional Variation Point Creation, this scenario corresponds to the
variability-related sub-step of a Feature Creation scenario, but it is also a
self-contained product line evolution scenario. Again, the artifacts in the
initial state do not realize relevant variability. They can be considered
common, but with latent elements that shall be made alternatives. In the

Product Line Evolution Method

 142

simplest case, only two of these elements exist. They are made more
explicit by detecting their common variation point position and by
realizing one or possibly few closed variation points there.

Common Feature Extraction (Figure 34e)

As in the scenarios mentioned before, the precondition of this scenario is
that code exists which can be regarded common. In contrast to the
aforementioned scenarios however, Common Feature Extraction starts
with two realizations of similar independent features, possibly created by
Cloning. The task is to consolidate the common elements so that they
exist only once, converting the differing elements into alternatives. Thus,
this scenario captures the important activity of clone removal and is a
more general case of Consolidate Clones (Tab.8).

As shown in Figure 34e, the scenario consists of the two elementary sub-
steps 4 and 5 from Figure 33. Again, the first sub-step is not concerned
with variability, and the second sub-step is a variability-related scenario
that is also used in other basic product line evolution scenarios:
Alternative Variation Point Creation. As mentioned in the Details section
of Conditional Compilation (Section 4.5), the diff tool may not only be
used to visualize the differences of similar elements, but it can also
automate the task of Common Feature Extraction by consolidating
modules with the help of Conditional Compilation.

Alternative Feature Addition (Figure 34f)

In this scenario, the existing code realizes a common and two or more
alternative features. Another alternative feature is to be realized
alongside the existing ones. If the existing alternatives have been realized
in a single module, as indicated in Figure 33b (following step 6), another
element which realizes the new alternative is created by extending the
module (Fig.33, step 7). This means that the existing variation point is
extended to support a new value. On the other hand, if the existing
alternatives have been realized in separate modules, the new alternative
is also realized in a new sibling module.

Default Addition (Figure 34g)

Default Addition is an optimizing basic product line evolution scenario
which also starts with code that realizes variability. Figure 34g illustrates
the case of alternative features, but other types of variability will apply as
well. As explained in Section 4.7, if one of variable feature dominates its
siblings, it may be represented as a Default (Def.55), reducing the
number of variant modules. This can be realized by deactivating the
variation point in the default case, as shown in Fig.33, step 8, and by
providing a mechanism to override that deactivation. Default Addition is
orthogonal to the other mentioned product line evolution scenarios

Product Line Evolution Method

 143

because it may appear independently in all constellations in which
variability has been realized.

Addition of Multiple Coexisting Possibilities (Figure 34h)

Sometimes, it becomes necessary in a new product that several features
must be simultaneously available which have been alternatives in
previous products. The realization in Figure 33 (before step 9) shows that
the value for selecting variants can be seen as a scalar in case of
alternative variations. By Addition of Multiple Coexisting Possibilities, this
value is converted into a vector, often realized as a bit-field in embedded
systems code.

Variable Feature Extraction / Variable Feature Inlining (Figure 34i)

These two complementary scenarios are usually applied to alternative or
coexisting features.

Variable Feature Extraction decouples alternative variants that have
previously existed in the same module. This usually becomes necessary if
a growing number of alternative features are required. For example, in
the realization of alternatives in Figure 33 (after step 7), the number of
alternative features which are realized in the same module is three. It
may now become necessary to extract them in order to evolve them in
isolation. This requires converting them from closed variation to open
variation.

Conversely, variability management in product line infrastructure code
can be simplified by Variable Feature Inlining in the following cases: if
the number of alternatives drops, if the code size of alternative variant
elements becomes small, if alternatives realized in separate modules shall
be evolved together, or if the number of alternatives is low and is not
likely to increase. Existing open variation is converted into closed
variation.

Variable Feature Extraction and Variable Feature Inlining are another set
of scenarios that, like Default Addition, crosscut the other product line
evolution scenarios. They are concerned with the variants’ coupling.

Product Line Evolution Method

 144

5.2 Product Line Realization Process

All product line evolution scenarios discussed in Section 5.1 have in
common that they proceed in a certain order. This iterative process,
illustrated in Figure 36, consists of the three main phases Selection,
Modification and Quality Assurance. As indicated in Figure 37, these
phases represent the dynamic aspect of the product line evolution
method developed in this thesis.

Figure 36: Basic realization phases

Figure 37: Product line evolution method discussed so far

As depicted in Figure 37, the family engineer first identifies and selects a
specific detail of interest in the existing product line infrastructure code.
This detail may or may not currently be concerned with variability issues,
but it must be related to the current product line requirement which has
to be realized in the code. The family engineer performs the first activity
analytically: the goal is to comprehend and observe the code, not to
change it. During this phase, excessive variability complexity (Def.65)
may be observed that should be documented. This phase is called
Selection.

Selection

Modifi-
cation

Quality
Assurance

Product Line Evolution Method

 145

In a second phase, the family engineer alters the selected product line
infrastructure code elements, according to the type of product line
evolution scenario, and according to the variability mechanisms that exist
already in the code. Within the larger product line infrastructure code,
this non-passive activity changes the selected elements to some degree,
while the unselected elements remain completely invariant. Relevant
variability complexity is removed by specific refactorings. This phase is
called Modification.

The third phase, quality assurance, has not yet been discussed in the
product line evolution scenarios. Through this phase, the family engineer
tries to avoid mistakes that may have occurred in the previous steps, so
that defects are detected and corrected as soon as possible. After this
phase has been finished successfully, a new iteration starts by entering
the selection phase again.

Similar phases of (software) evolution activities have partially been
suggested elsewhere in the software engineering literature. For example,
Jalote describes realization processes which contain the phases coding,
refactoring and testing [Jalote05, pp.409ff.]. Somerville discusses an
initial program understanding phase in software evolution processes
during realization, followed by the phase of source code modification
[Sommerville04, pp.499f.]. In classical refactorings, the common phases
are to detect “code smells”, perform the refactoring, and unit-test the
results [Fowler99]. As mentioned in Sec.3.2, an incremental product line
modeling approach exists which consists of the phases identification,
modeling and quality assurance for common and variable artifacts and
their relationships [Muthig02, pp.105ff.].

Selection

In Selection, the first phase of the product line realization process, the
family engineer’s immediate goal is to identify those elements in the
existing product line infrastructure code which are most likely to be
affected by the current product line requirement. For example, in a
requirement to create a new optional feature the main goal is to detect
which code elements in which modules will have to be altered in order
to realize the newly required variation points. More generally, the goal is
to focus on those few elements where evolution is going to happen,
while suppressing the numerous other details that will remain
unchanged. This allows the family engineer to concentrate on those
areas in the code in which new code will later be created, areas where
variation in time will occur, rather than being overwhelmed by the bulk
of code which will remain invariant. This sub-phase is called the
identification phase.

At the same time, the family engineer evaluates globally if variations of a
similar type (e.g. optional variabilities) have already been realized in other

Product Line Evolution Method

 146

areas of the product line infrastructure code. If they exist, he verifies that
these existing variability-related elements have been realized consistently.
They will become reference elements whose construction process will be
reused when the new elements are created later. If inconsistencies or
defects in variability management are detected, these should be
documented at this stage. However, correction shall be postponed until
the primary goal, realizing the new variability, has been reached. This
ensures that the main goal is reached as rapidly as possible, while
detected defects are not neglected. This sub-phase is called
comprehension.

In all selection activities, the family engineer only acts as a passive
observer on the existing product line infrastructure code, so that the
code represents a read-only artifact. Figure 38 summarizes the selection
phase, its sub-activities, inputs and outputs. The figure shows another
input element of the selection phase, which is used in the
comprehension activity, called “product line infrastructure code smells”.
This element, named according to the “code smells” concept in
conventional refactoring literature [Fowler99, Kerevinsky04, Wake04],
describes particular types of defects in product line infrastructure code.

Figure 38: Details of the selection phase

Table 7 lists typical, mostly disjoint product line infrastructure code smells
which I have frequently observed in reusable code in practice (and
sometimes in other types of reusable artifacts) and which have
repeatedly contributed to variability complexity excess.

Product Line Evolution Method

 147

No. Name
1 Duplicated Code
2 Runtime Variation
3 Coupling of Application and Variation Logic
4 Startup Initialization
5 Ambiguous Variation Points
6 Nested Variation Points
7 Variation Point Excess
8 Crosscutting Excess
9 Coupling of Common Elements and Variants
10 Coupling of Alternative Variants
11 Excess of Variant Modules
12 Null Module
13 Non-Cohesive Configuration
14 Excess of Configuration Mechanisms
15 Explicit Product References
16 Unbounded Combinatorics
17 Lack of Variability
18 Lack of Defaults
19 Composition Excess
20 Restricted Variant Granularity
21 Speculative Variation Points
22 Excess of Variant Similarity
23 Excess of Variant Size

Table 7: Product line infrastructure code smells

Duplicated Code [Fowler99] denotes that existing larger common
elements have not been consolidated at a single position, but that they
have been cloned. As mentioned in Section 4.1, tools such as DupLoc
[Ducasse++99] and diff can be used to get an overview of the cloning
situation (also see [Demeyer++02, pp.173ff.]). Runtime Variation
describes a situation when runtime binding has been used although
execution or construction time binding would suffice. This leads to an
unnecessary reduction of reusability (Def.19) and increases variability
complexity (Def.65). As a consequence, there may be a Coupling of
Application and Variation Logic, e.g. when a single conditional
statement mixes two predicates, one for controlling application
functionality and the other for distinguishing between product line
members. Runtime Variation depends on setting runtime variables which
are often initialized only once at startup time, but in the later execution
always remain unchanged. Unless the production process demands it,
this is a code smell I call Startup Initialization, as initialization could have
been done earlier (see also [Bassett97, p.78]). Variability mechanisms
such as Conditional Execution also make variation points less explicitly
visible, because an ‘if’ statement could either act as a variation point, or
it may control some functionality, or both. This code smell is called
Ambiguous Variation Points.

Product Line Evolution Method

 148

The code smell Nested Variation Points means that dependencies among
variants have been hard-coded, for example in long #ifdef statements
with many AND/OR combinations of macros. Carelessly mapping every
variant element from the architecture one-to-one to code may lead to
Variation Point Excess in the code. For example, in many embedded
systems it can be tolerated to initialize all available resources, although
only particular subsets are used in any individual product line member,
which makes variation of initialization unnecessary. Many variants are
realized less cohesively than necessary, which leads to Crosscutting
Excess. When variants are carelessly realized as closed variants, common
and variant elements are forced to remain together in the same module,
which results in Coupling of Common Elements and Variants. Coupling
of Alternative Variants describes the situation when a module contains
various large alternative variants that could have been kept separate. In
the opposite case, too many individual modules may exist that realize
alternatives with little code, which is an instance of Excess of Variant
Modules. Null Module denotes that in case of an optional variability, the
missing feature has been realized as a separate module without much
executable code (similar to a Null Object [Woolf98]), which increases the
number of small modules.

When the configuration settings for product line infrastructure code, for
example macro #defines in C header files, are not located together for
the entire product line infrastructure, but spread among several
modules, a Non-Cohesive Configuration exists. Configuration Excess
means that multiple configuration possibilities exist in the code of a
single product line infrastructure, for example macro definitions and
settings in non-volatile RAM, where a single configuration possibility
would suffice. Explicit Product References, another frequently observed
code smell in core assets [Krueger10], denotes that variant directories,
source code file names, #ifdef macro names, or other variation point
identifiers refer to specific products, rather than hiding product-specifics
by only revealing product features16.

Unbounded Combinatorics, the absence of Bounded Combinatorics
[Krueger10], denotes that too many combinations exist for configuring
the product line infrastructure code, so that more products can be
produced than required. If core assets have Lack of Variability, they can
typically not be configured enough internally, but must be composed
externally, for example by abusing the Pipes and Filters style [Shaw+97]
for reuse purposes, which leads to Composition Excess. Lack of Defaults
arises if variability optimization possibilities (converting variants to
Defaults) have not been used. Neither the common nor the variant
elements in core asset code need to be syntactically complete for the
programming language used. If, however, a mechanism needlessly

16 We have repeatedly used the ifnames tool (Sec.4.5) to detect such inconsistencies

in macro names [Patzke+04, Kolb++06]

Product Line Evolution Method

 149

enforces more syntactic completeness than necessary, this is a code smell
I call Restricted Variant Granularity.

When variation points, for example as procedural interfaces, are only
introduced because of a possible, but not yet required variability, they
are called Speculative Variation Points. Excess of Variant Similarity means
that variants belonging to the same variability have been realized with
too many common elements and are thus too similar. Excess of Variant
Size is related to the previous code smell and describes a situation when
variant elements are needlessly large.

A common trait of all above-mentioned defects is that they make
product line infrastructure code evolution more difficult by causing
unnecessary complexities in variability management. Thus, they add to
evolution difficulties that also exist in single system code – caused by
conventional code smells. Not all product line infrastructure code smells
are equally detrimental: sometimes, it may even be useful to deliberately
commit them. Depending on the product line engineering context
(Def.20), they may also be prioritized for successive removal during the
following Modification activity (see below).

It is also unproductive if the family engineer tries to detect all kinds of
product line infrastructure code smells, independent of their severity, in a
single pass. A practical aim is to attack variability management defects
incrementally, for example by time-boxing [Bassett97] each Selection
step. Another tactic for incrementally reducing variability complexity in
product line infrastructure code is to detect (and later remove) at least
one larger product line infrastructure code smell per newly realized
feature, so that the product line infrastructure code becomes less
complex with each iteration.

The outputs of the Selection phase (Fig.38) are 1) a collection of
variation areas (source code modules and areas within the source code
where modification will occur, Fig.40), 2) potential reference elements
that illustrate how a similar variability management task has already
been performed in the existing code, and 3) variability management
defects that have been detected in the current version of the product
line infrastructure code. If variants are to be created, the variation areas
will contain latent variation points where variation will newly occur, but
which have not been distinguished from the existing code yet. If variants
are to be added, similar reference elements will already exist that can
serve as templates for realizing the new variabilities if these references
do not have severe variation defects.

Product Line Evolution Method

 150

Modification

In the second phase of the product line realization process, the family
engineer actively modifies those elements that he has passively focused
on in the preceding selection phase. By including new variability-related
elements, the current modification activity makes the resulting product
line infrastructure code more asymmetric. In other words, common
elements can be seen as symmetries in the product line infrastructure
code (they do not change the product line member under the
production transformation), variant elements add asymmetries (they
change the product line member), and variation points represent
symmetry axes.

The family engineer’s main goal in this phase is to rapidly change the
product line infrastructure code so that it satisfies the new product line
requirement. At the same time, the goal is to improve variability-related
code quality, so that the resulting code does not become more complex
than necessary. In order to achieve the first goal in such a way that the
existing system of commonalities and variabilities is least disturbed, the
family engineer modifies the code in two successive orthogonal activities,
as shown in Figure 39: commonality realization and variability realization.

Figure 39: Details of the modification phase

As in the identification phase, the separation into two activities again
serves to reduce the family engineer’s work load. The separation of use
and reuse activities also facilitates independent measurement, testing
and optimization of the dual properties of use and reuse, as introduced
in Section 2.1. Separating development activities into commonality-

Product Line Evolution Method

 151

related and successive variability-related ones has also been proposed in
[Parnas76], and for the modeling phase in [Muthig02] (cf. Sec.3.2).

In the Commonality Realization phase, the new product line specification
is realized within the variation areas of the existing code, as if it were
completely common code, developed as part of a single system. I already
gave some examples of Commonality Realization during the discussions
of product line evolution scenarios in Section 5.1, in particular for
Optional Feature Creation and Alternative Feature Creation (also cf.
Figure 33). Even if the family engineer is aware of upcoming variability
issues, he deliberately ignores them in this step and first focuses
exclusively on realizing the new feature. This leads to the production of
valuable functionality for the evolving product line as early as possible
within the modification phase, which allows the new code to be
evaluated for a maximal period. For example, if unit tests are created at
the start17 or at the end of the commonality realization phase, the
execution behavior of the new feature can be tested early, so that
functionality-related defects and complexities are less likely to propagate
into later development phases. Another advantage of ignoring
variability-related issues first is that these have yet been kept invariant
throughout the product line realization process, analogous to keeping
execution behavior invariant during classical refactorings in single system
code.

During the Variability Realization phase, the realization of product line
requirements is continued by introducing the missing required
configuration possibilities in the newly added common code, in
accordance with potential reference elements (Figure 39) that have
previously been detected in other areas of the current product line
infrastructure code. Whereas in Commonality Realization the family
engineer has focused on executable properties only, he now places them
in the background, mainly concentrating on reuse issues (a similar setup
exists in test-driven development when the developer focuses on the
testing and development activity in alternation). For example, he may
now add an explicit variation point and the corresponding configuration
facilities. Because he previously ignored variability issues, he might need
to consult the previous version of the product line infrastructure code,
available under configuration management, in order to identify code
that realized previous features which have been eliminated during
Commonality Realization. Note that not all newly introduced common
code is likely to become a variant now: some new elements may remain
common, while others in their neighborhood become variable. This is
also the reason why I distinguish between “variation areas” and
“variation points”. In terms of symmetry considerations, the code
outside the variation areas remains invariant, indistinguishable from the

17 In case of test-driven development [Beck02, Meszaros07], tests are created first.

Product Line Evolution Method

 152

state before. Inside the variation areas, some code may have been
created that becomes a common element of the product line
infrastructure, indistinguishable among individual systems, while other
new code is variable, asymmetric, both across space and time. But at the
time the variation areas are realized, variation points are not completely
determined. This is illustrated in Figure 40.

Figure 40: Commonality realization and variability realization over time

Other inputs to the Variability Realization phase are variability
mechanisms and product line evolution scenarios, as shown in Figure 39.
Variability mechanisms represent possibilities for realizing the variability
management task at hand, which is an instance of a product line
evolution scenario. Variability mechanisms are used and configured
according to the reference elements, but also in the most easily
applicable way, to keep complexity low. Variability optimization
possibilities, for example likely defaults or variation points that need
consolidation, may be documented in this step, but performing the
optimization shall be deferred to a later process step.

In terms of mistake avoidance, another advantage of organizing
commonality and variability realization in two separate steps besides the
above mentioned avoidance of propagating behavioral errors is that
possible errors in the variability realization phase only lead to
backtracking within this phase (cf. the discussion on the sequence of
steps in Fig.35). In other words, if an error is made during variability
realization, at most the activities in this phase must be undone and
repeated, but not those in the commonality realization phase. This leads
to a mistake avoiding and more productive overall process, compared to
a situation in which the two activities are intermixed. Performing
commonality realization and variability realization in two successive steps
is an example of a nearly backtrack-free sequence, one that is relatively
stable across different development contexts: a reusable sequence.

A third Modification sub-activity is called variability refactoring (Figure
39). In this parallel activity to Commonality and Variability Realization,
the family engineer repairs defects in the existing code which he has

existing
 code

variation areas

commonality
realization

variability
realization new common code

new variant elements

variation
points

t

Product Line Evolution Method

 153

detected during the Comprehension sub-activity in the previous
Selection phase (Figure 38). As in the other sub-activities, the family
engineer focuses only on a particular aspect, in this case on variability-
related defects in the existing code. For example, he changes variability-
related elements such as macro names to make them more consistent.
Because this activity is performed in parallel to the other modification
activities, the two may be distributed to several family engineers.
However, it is important that the variability refactoring activity is only
concerned with the previous code, not the newly developed one. This
consolidation of the entire new product line infrastructure code will
happen in the following larger quality assurance phase (Figure 36).

Variability refactorings have been defined in Section 2.3 (Def.69). They
are transformations of the product line infrastructure code which serve
to make the evolving artifacts less complex while the artifacts are
evolved locally. They are similar to conventional refactorings [Fowler99]
for single system code because both improve code quality while
preserving an aspect of it, leaving it invariant, indistinguishable,
symmetric. Conventional refactorings are concerned with properties of
use (Def.6), for example by making the code easier to use for a
developer, or by increasing its efficiency in time or space while
maintaining its functionality. On the contrary, variability refactorings aim
at making the product line infrastructure code more evolvable while it is
growing, serving both the product line engineer as a user and reuser.
Variability refactorings preserve those elements of the existing product
line infrastructure code that lead to the formation of the existing
products, which often means that not only the code’s executable
behavior appears to be unchanged to an end-user, but also that its
structures remain invariant, as seen by an application engineer using the
single product. However, the product line infrastructure code is
enhanced while new features are added. The goal of variability
refactorings is to counteract product line infrastructure code smells
(Table 7).

Table 8 lists 37 variability refactorings, with increasing detail, which I
have identified as different Modification sub-activities that let a family
engineer change a product line infrastructure, especially its code, in
order to make it cheaper to evolve or reuse (see Def.69), without
changing the functionality of any product line member. This is one
common invariant in all mentioned refactorings.

Replace Variant Element with Commonality (1) is used to decrease
variability complexity when there is a particular variant element in the
product line infrastructure code, such as an initialization algorithm for
some embedded system sub-device which may be present in all product
line members, without affecting the functionality of those product line
members that do not need it. If this is the case, the sub-refactoring
Remove Variation Point (24) may be applied for the particular variant

Product Line Evolution Method

 154

element. If the variant only consists of a single variant element (i.e., if the
variant is a simple variant), the corresponding configuration option can
also be removed from the respective variability assets (Def.57), so that
the variant vanishes. In case of an optional variant, this amounts to
removing the respective variability alltogether. The product line
infrastructure code is less complex after this refactoring because one
unneeded variation point has been eliminated, counteracting the
product line infrastructure code smell Variation Point Excess.

No. Name
1 Replace Variant Element with Commonality
2 Replace Commonality with Variant Element
3 Separate Variant from Commonality
4 Inline Commonality and Variant
5 Separate Variants from Each Other
6 Inline Variants
7 Replace Closed with Open Variant
8 Replace Open with Closed Variant
9 Extract Reuse Hierarchy

10 Flatten Reuse Hierarchy
11 Replace Product Reference with Feature Reference
12 Fork Core Asset
13 Consolidate Clones
14 Replace Variant Element with Default
15 Replace Default with Variant Element
16 Replace Commonality with Default
17 Limit Combinations
18 Decrease Variant Dependencies
19 Split Variant
20 Consolidate Variant Elements
21 Decrease Variant Element Size
22 Increase Variant Element Size
23 Create Variation Point
24 Remove Variation Point
25 Increase Variation Point Visibility
26 Make Variation Point Programming Language-Independent
27 Make Variation Point Programming Language-Dependent
28 Rename Variation Point
29 Replace Runtime Binding with Execution Time Binding
30 Replace Execution Time Binding with Runtime Binding
31 Replace Execution Time Binding with Construction Time Binding
32 Replace Construction Time Binding with Execution Time Binding
33 Replace Manual with Automated Binding
34 Replace Automated with Manual Binding
35 Separate Application from Variation Logic
36 Extract Variability Asset
37 Consolidate Configuration

Table 8: Variability refactorings

Product Line Evolution Method

 155

The opposite refactoring, Replace Commonality with Variant Element (2),
is used if a common element in the product line infrastructure code
contains elements such as a data structure or an algorithm that are not
needed in all product line members, but only in a particular variant. In
this case, the sub-refactoring Create Variation Point (23) is applied, and
the respective variability assets are updated. The affected product line
members become less complex, at the expense of a slight complexity
increase in the product line infrastructure, caused by the code smell Lack
of Variability.

Separate Variant from Commonality (3) is used if a core asset realizes
both commonality and variability, but both of these have different
change rates. For example, the code history may indicate that the
common elements have been stable, while the variant elements in the
same core asset have frequently changed during product line evolution,
and this is expected to continue. Another example is that older and
current core assets need to be evolved together, variant elements
change, and these changes must be back-propagated more easily. In
these cases, the sub-refactorings Replace Closed with Open Variant (7),
Extract Reuse Hierarchy (9), or Increase Variation Point Visibility (25) are
applied to consolidate common and variant elements according to their
change frequency (see Fig.9c), which makes them easier and cheaper to
evolve in the future and reduces the code smell Coupling of Common
Elements and Variants.

The opposite refactoring, Inline Commonality and Variant (4), serves to
reduce the number of modules, especially if there are small variant
modules or if common and variant modules have been co-evolving in the
past and are expected to co-evolve in the future. By applying the sub-
refactorings Replace Open with Closed Variant (8) or Flatten Reuse
Hierarchy (10), common and variant elements are grouped closer
together (see Fig.10a). This trades off ease-of-change with decreased
visibility of variants.

Separate Variants from Each Other (5) and Inline Variants (6) are a similar
pair of refactorings. Separate Variants from Each Other is used if a core
asset only contains related variants, such as all alternatives realizing an
alternative variability, but if some of these variants have had a different
change frequency than the others. The sub-refactorings Replace Closed
with Open Variant (8) or Increase Variation Point Visibility (25) help to
consolidate related variant elements (see Fig.10b). This makes them less
complex to evolve, counteracting the code smell Coupling of Alternative
Variants. As in Inline Commonality and Variant (4), the goal of Inline
Variants is to reduce the number of modules, and another goal is to
keep related variants closer together, especially if they are small (see
Fig.9a). This reduces the code smell Excess of Alternative Modules.

Product Line Evolution Method

 156

The goals of Replace Closed with Open Variant (7) are to make variants
easier to detect, and to isolate variants from each other (see Tab.2). The
precondition of this refactoring is that variants have been realized with a
closed variability mechanism such as Conditional Execution or
Conditional Compilation, so that they form a fixed set, and a change to
any variant may lead to a corruption of others because they share the
same module. The postcondition is that all variants are separated from
each other, so that any change to one of the variants is guaranteed not
to affect others. The resulting variability mechanism is an open one, such
as Polymorphism or Frame Technology, and it may prepare the code for
a successive Extract Reuse Hierarchy (9) refactoring. Replace Closed with
Open Variant typically leads to a variability mechanism change because
most mechanisms are either closed or open (the general form of Frame
Technology is an exception, supporting both open and closed variation).
The code smells Coupling of Common Elements and Variants and
Coupling of Alternative Variants are reduced by this refactoring.

Replace Open with Closed Variant (8) is the opposite refactoring, with
reversed pre- and postconditions, serving to reduce the number of
variant modules. The refactoring makes variants harder to detect
because after refactoring they reside in the same module. On the other
hand, this may be beneficial if the variants evolve together. This
refactoring trades off coupling between common/variant elements with
module quantity. It is associated with the Flatten Reuse Hierarchy (10)
refactoring.

Extract Reuse Hierarchy serves to establish a hierarchy based on the
reuse relation (Sec.2.2), which is beneficial because it may capture
intermediate levels of reuse. The precondition of this refactoring is that
the variants are closed, or if they are open no explicit attempt has been
made to establish a deeper reuse hierarchy. In Frame Technology, and in
symmetrical Aspect-Orientation, deeper reuse hierarchies can be
established by reorganizing core assets according to the decisions
presented in Fig.11. The postcondition is that the reuse hierarchy has
become at least one level deeper. This refactoring counteracts the code
smell Nested Variation Points. The opposite refactoring, Flatten Reuse
Hierarchy (10), serves to reduce unnecessary reusability gradients.

As mentioned above, a typical code smell in practice is Explicit Product
References. This means that core assets are not ignorant of specific
product line members, but contain variation points, visible as macro
names or module names that refer to particular products. In the
variability refactoring Replace Product Reference with Feature Reference
(11), these core assets are refactored in such a way that they only refer
to features, which makes the product line easier to evolve as new
products are added or old products are removed or change their name.
There is no opposite refactoring for this one because having explicit
product references is always undesirable.

Product Line Evolution Method

 157

Fork Core Asset (12) denotes that some elements of the product line
infrastructure are deliberately cloned during evolution, in order to
improve evolution speed for that element while simultaneously avoiding
the risk to introduce defects into any existing product line member. The
family engineer may use this refactoring in early realization phases of
new larger features, in order to evaluate the consequences, and with the
intention to perform the opposite refactoring, Consolidate Clones (13),
soon after the necessary changes have been made. The precondition is
that an appropriately small set of core assets to clone has been located,
and that it is sufficiently uncertain how the required changes will affect
the existing core assets. On the other hand, if the type and location of
the variation point is clear in advance, there is less reason to use this
refactoring. The main benefits of Fork Core Asset are short-term: the
longer Consolidate Clones is postponed, the more effort tends to be
required. However, as discussed in Section 3.3, consolidation may not be
needed in any case, for example if the necessary deviation between the
clone origin and the clone has become large, or if the clone origin has
become obsolete. See also Section 4.1.

Besides deep reuse hierarchies, defaults serve to optimize reuse by
providing a third element in between a common element and a variant.
The refactoring Replace Variant Element with Default (14) can be used as
a sub-refactoring of Replace Variant Element with Commonality (1), or
as an alternative to Extract Reuse Hierarchy (9), in cases when a
particular variant element is common for most product line members,
but not for all. As in Replace Variant Element with Commonality, the
corresponding configuration option can be removed from the
corresponding variability assets if the variant is simple. Unlike in Replace
Variant Element with Commonality, however, the variant does not
vanish completely, which can be an advantage if this refactoring needs
to be reverted later by the opposite refactoring Replace Default with
Variant Element (15). The product line infrastructure becomes less
complex because most of the time the respective variation point of the
Default can be ignored when configuring products. Note that many
variability mechanisms, such as Conditional Execution or Polymorphism,
only have weak support for defaults, and Module Replacement is
conceptually incapable of expressing defaults. The best support for
defaults is provided by Frame Technology, but also Conditional
Compilation and Aspect-Orientation provide it.

Replace Commonality with Default (16) is a useful refactoring in cases
when the product line infrastructure code contains elements such as a
data structure or an algorithm that are not needed in most product line
members, but a minority requires them. Similar as in Replace
Commonality with Variant Element (2), the sub-refactoring Create
Variation Point (23) is applied, but the variation point remains
deactivated by default.

Product Line Evolution Method

 158

Limit Combinations (17) is a product line-specific refactoring for reducing
the Unbounded Combinatorics smell in many types of core assets, not
just code. A recent publication explains how this refactoring is
performed in a commercial product line tool [Krueger10].

A similar refactoring is Decrease Variant Dependencies (18) which
counteracts the code smell Nested Variation Points. Many core assets in
practice, especially those without explicit variability assets, contain hard-
coded variant dependencies. The goal of this refactoring is to extract
these dependencies into variability assets in the sub-refactoring Extract
Variability Assets (36). The variability assets are then used to configure
the core assets.

Split Variant (19) is used in situations when a core asset contains a large
simple variant (i.e., a variant consisting of only one variant element) that
consists of considerable commonality. In this case, the variant may be
split into two or more variant elements, using the sub-refactoring Create
Variation Point (23), in order to increase commonality, tolerating an
increase of variation points. The opposite refactoring is called
Consolidate Variant Elements (20).

In case a Restricted Variant Granularity code smell exists, a variant
element may also cover more “space” than necessary in product line
infrastructure code because the existing programming language-
dependent variability mechanism enforces this. For example, Module
Replacement may enforce a variant element to be realized as an entire
function, even though only a partial algorithm varies among the
products. The Decrease Variant Element Size (21) refactoring would
change the code in such a way that the variant only uses as much
“space” as necessary. Like the Replace Closed with Open Variant (7) and
Replace Open with Closed Variant (8) refactorings, Decrease Variant
Element Size usually leads to a variability mechanism change. The
opposite refactoring, Increase Variant Element Size (22), may be
appropriate in cases when this improves code comprehensibility, even if
this leads to the code smell of Duplicated Code.

Create Variation Point (23) is an elementary refactoring used in many of
the above mentioned refactorings, such as Replace Commonality with
Variant Element (2), Consolidate Clones (13), or Replace Commonality
with Default (16). The precondition is that in a core asset, a common
element exists, and that new variant elements are due to evolve near
that common element (see Fig.40). The postcondition is that a new
variation point exists, both in the core asset and in related variability
assets, such as configuration files. As a variability refactoring, Create
Variation Point does not just preserve the functionality of all produced
products (because functionality is not changed), but it also preserves the
construction semantics of the product line assets. This means that the
output of the construction interpreter (Def.25) before the refactoring

Product Line Evolution Method

 159

(and the input to the execution interpreter (Def.5)) is indistinguishable
from the output of the construction interpreter after the refactoring. The
opposite refactoring is Remove Variation Point (24). Both refactorings are
not specific to source code, but may be applied to other types of product
line assets as well.

An important refactoring is Increase Variation Point Visibility (25),
counteracting the code smell Ambiguous Variation Points. In its
precondition, the core asset contains variation points which the family
engineer cannot easily see, for example due to a clone. In this very
situation, the variation point is made more visible by providing tags in
the cloned code, converting it to Templating (Sec.4.1), or by providing
references in variability assets (Def.57). The refactoring may also lead to
a variability mechanism change, for example to Conditional Compilation
which provides clearly visible variation points, realized by #ifdefs. It
may also just lead to semi-visible (ambiguous) variation points, as
provided by Aspect-Orientation. But the postcondition in all cases is that
variation point visibility increased. As in Replace Product Reference with
Feature Reference (11), an opposite refactoring is not given, as a
decrease in variation point visibility is not desirable.

The two elementary refactorings Make Variation Point Programming
Language-Independent (26) and Make Variation Point Programming
Language-Dependent (27) are sub-refactorings of Decrease/Increase
Variant Size (21/22). Make Variation Point Programming Language-
Independent gives the family engineer more degrees of freedom in
realizing variants because after the refactoring has been performed, the
variation point may still or may not be at boundaries imposed by the
programming language, for example at procedural boundaries. On the
contrary, Make Variation Point Programming Language-Dependent
removes this degree of freedom.

Another elementary and code-independent refactoring of product line
assets is Rename Variation Point (28). It is used, for example, as a sub-
refactoring of Replace Product Reference with Feature Reference (11),
and serves to make all variation points more consistent. It is
simultaneously applied to core assets and related variability assets. It is a
harmless refactoring that never alters construction semantics. As in
similar conventional refactorings such as Rename Class [Fowler99], the
postcondition is that renaming has taken place and the new name has
not existed before.

A set of variability refactorings is concerned with changing the binding
time, trading off usability (Def.7) with reusability (Def.19) because, as
mentioned in the refactorings on programming language-dependence
above, the later the binding happens, the less degrees of freedom exist
for a family engineer to make product line infrastructure code reusable

Product Line Evolution Method

 160

(see also [Bassett97, p.13]). For an overview of binding issues in product
line engineering, see Fig.7 and Fig.9.

The goal of Replace Runtime Binding with Execution Time Binding (29),
from a family engineering perspective, is to be able to customize
(Def.29) product line infrastructure code at all, in this case at least
through composition (Def.9). As a precondition, the variant has been
bound at runtime (including startup time), for example through
Conditional Execution. While some development processes require such
late binding, typically for example because of fine-grained calibration of
range variations in embedded systems software after deployment in a
physical environment, it makes the software overly rigid, as discussed for
the code smells of Runtime Variation and Startup Initialization. In most
cases, except for specific types of Aspect-Orientation that provide both
runtime and execution time binding, this refactoring requires a variability
mechanism change, for example towards Module Replacement. The
postcondition of Replace Runtime Binding with Execution Time Binding is
that composable variants exist which can be used (Def.6) by the product
line engineer to customize product line infrastructure code. The opposite
refactoring, Replace Execution Time Binding with Runtime Binding (30),
is detrimental for a product line as a set of similar systems (Def.23)
because it leads to a single, fixed and overly complex system realizing the
union of all features, rather than providing just the required ones. This
refactoring only makes sense if the development context changes in such
a way that late binding becomes a must.

Replace Execution Time Binding with Construction Time Binding (31)
serves to improve mass customization of product line infrastructure code
because it replaces large-grained composition (Def.9) with fine-grained
configuration (Def.28). In other words, this refactoring improves
reusability by converting from use (Def.6) to reuse (Def.21). As a
precondition, the respective variants are realized in fixed modules, as
artifacts without variability. Besides counteracting this Lack of Variability
code smell, the current refactoring also avoids Composition Excess and
Ambiguous Variation Points. In many cases, this refactoring leads to a
variability mechanism change. The postcondition is that the product line
infrastructure code is easier to configure. Note that the two refactorings
Replace Runtime Binding with Execution Time Binding and Replace
Execution Time Binding with Construction Time Binding may be
executed in succession, for example when replacing Conditional
Execution with Conditional Compilation. The opposite refactoring,
Replace Construction Time Binding with Execution Time Binding (32),
leads to more variability complexity because it makes variation points
dependent on programming language semantics. However, that
refactoring may be required in a changing development context when
source code access becomes restricted, for example when only binary
modules shall be exchanged between providers and suppliers of COTS

Product Line Evolution Method

 161

(commercial-of-the-shelf) components, due to intellectual property rights
issues.

Another pair of refactorings is also related to binding issues. Replace
Manual with Automated Binding (33) aims at automatic production,
reducing application engineering effort and avoiding the Duplicated
Code smell, while Replace Automated with Manual Binding (34) may
become useful as part of the Fork Core Asset (12) refactoring.

Separate Application from Variation Logic (35) counteracts the code
smell Coupling of Application and Variation Logic, which may be present
in a precondition where Runtime Variation exists. As a consequence of
applying this refactoring, Nested Variation points may appear.
Nonetheless, the refactoring is useful because it improves code
comprehensibility.

Extract Variability Asset (36), another code-independent refactoring,
describes a situation in which core assets (Def.56) have existed within a
product line infrastructure (Def.62), and in particular in its product line
assets (Def.59), but an explicit, consolidated variability asset (Def.57) has
been missing for these core assets. For example, variability information
may not have been captured outside the core asset, impeding
traceability of variability, or multiple separate configuration possibilities
may have obscured how to configure the asset. As a postcondition, this
information has been captured in an orthogonal asset, consistent with
other variability assets. As a special case, the variability asset serves as a
configurator, which results in the refactoring Consolidate Configuration
(37) which counteracts the code smell Excess of Configuration
Mechanisms and leads to a clean configuration interface, reducing
variability complexity.

As shown in Figure 39, the outputs of the modification phase are the
new product line infrastructure code, created during commonality and
variability realization, and refactored elements of the existing code in
which variability management was simplified. These artifacts become
inputs to the final phase of the product line realization process, quality
assurance.

Quality Assurance

In the third phase of the product line realization process, the family
engineer makes sure that the product line infrastructure code at hand
that has been selected and modified in the previous steps is easy to
understand, evolve, use, and reuse. For example, he evaluates if the
newly introduced variability mechanisms are consistent with the
previously existing ones, or he tests if all required product instances can
be configured. The family engineer also performs code measurements to
document how code reuse complexity is changing over time.

Product Line Evolution Method

 162

A standard definition of quality assurance is “a planned and systematic
pattern of all actions necessary to provide adequate confidence that an
item or product conforms to established technical requirements”
[IEEE610]. Typical software quality assurance activities comprise testing,
inspections, and measurement of an artifact’s internal quality
characteristics. In the context of the product line evolution method,
novel quality assurance issues arise because the code artifacts realize
variability, which make them generic and reusable, adaptable to multiple
contexts of use. The overall goal is keeping the code reusable and
sustainable as it evolves. Thus, quality assurance activities are concerned
with testing that the code is reusable as required, and measuring that
the code’s reuse complexity remains manageable. A precondition of the
measurement activity is that the code is as reusable as required, which is
why the testing activity precedes measurement.

Some sub-activities in previous process phases have already been
concerned with quality assurance. Within the selection phase, the
comprehension activity (Figure 38) identifies variability-related defects in
existing code, which do not prevent each product to be configured at all,
but which unnecessarily complicate this activity. Likewise, as part of the
modification activity, the variability refactoring phase (Figure 39) serves
to improve the existing product line infrastructure code by eliminating
obvious “code smells”. However, both activities exclusively focus on the
previously existing code, in order to concentrate on one issue at a time.
The present separate quality assurance phase is concerned with both the
new and the refactored product line infrastructure code together, as
illustrated in Figure 41. The product line testing sub-activity is discussed
in this section, while Section 5.3 will elaborate on variability complexity
measurement.

Figure 41: Details of the quality assurance phase

Besides the output artifacts of the modification phase, there are two
more input elements to the quality assurance phase (Fig.41). The new

Product Line Evolution Method

 163

product line specifications are used in the testing sub-step to ensure that
all required product line instances can be configured. The existing
product line infrastructure code is used in the measurement sub-activity
in order to capture to what extent variability complexity has changed in
product line infrastructure code during the previous modification activity.
The output of the quality assurance activity is the resulting code of the
product line evolution method, which will become the existing code in
the next iteration of the overall process (Figure 37).

Software testing has been defined as “1) the process of operating a
system or component under specified conditions, observing or recording
their results, and 2) the process of analyzing a software item to detect
the differences between existing and required conditions, and to
evaluate the features of the software items” [IEEE610]. Testing has two
main goals [Northrop+07]: 1) helping to identify faults that lead to
failures so they can be repaired and 2) determining whether the
software under test can perform as specified by its requirements. Testing
the required variability in the developed product line infrastructure code
is the aspect of testing that is peculiar to product lines.

This means that the family engineer’s main goals in product line testing
are 1) to identify faults in managing the variant elements of a product
line infrastructure, so that they can be repaired, and 2) to determine
whether the product line infrastructure code under test can be
composed and configured as required. Besides these construction issues,
execution properties such as functionality or efficiency become
secondary issues. Where conventional unit tests, such as those created in
Test-Driven Development [Beck02, Meszaros07], execute the code under
test, recording its conformance to expected behavior and measuring its
execution time, product line infrastructure code tests must primarily
construct, configure and compose individual systems from product line
infrastructure code, recording if the product construction process
succeeds as expected, and measuring which construction resources are
needed. Another example of the different testing goals is that
conventional single system testing often tries to cover all combinations
of execution paths, whereas product line testing aims to cover all
combinations of construction paths that result in the required product
line members, irrespective of their execution behavior.

In order to account for both the construction and execution properties,
product line infrastructure code testing consists of two separate
orthogonal testing activities, called construction testing and execution
testing. As Figure 42 illustrates, the inputs to the testing phase are the
new and the refactored product line infrastructure code obtained in the
previous modification phase (Figure 39).

Product Line Evolution Method

 164

Figure 42: Product line infrastructure code testing phase

For a construction test to pass, its construction test oracle – the
mechanism which determines if the test has passed or failed – needs to
specify if the construction outputs are structurally identical (if irrelevant
details are omitted) to the expected executable modules of the
constructed product line instance. For example, it may suffice that the
resulting code can be compiled or linked without errors for the
construction test to pass. Other times, a construction test may compare
the sizes of the constructed modules against expected values. Or it may
compare the constructed modules against reference modules that have
been obtained by Cloning, ensuring that all specified common and
variant elements have been included, and that no undesired elements
have been built. Construction testing is a novel concept that has not yet
been considered in the product line testing community [Pohl++05,
Geppert++04, Geppert++05, Knauber++06, Knauber++08, Neto++11].
Construction testing has been applied throughout the following case
study, as documented by construction test results (for example, see
Listing 27 in Appendix C).

The following execution test will ensure that the product instance
behaves as expected at execution time using conventional execution test
oracles. The execution of common elements can be tested with
corresponding common tests, while the functionality of variant elements
is tested by variant tests which are instantiated alongside their testees in
the previous construction testing phase. If the code is organized in a
reuse hierarchy, and if test code evolves at the same rate than the code
of its testee, they should be organized together in the same constructible

Product Line Evolution Method

 165

module (cf. Figure 10a). This also supports traceability (Def.58) between
the test code to the code being tested [Northrop+07].

Both testing activities may be automated, running in succession or
interleaved. By separating the product line testing activities into two
phases, the family engineer may evaluate and improve the construction
and execution qualities of the code in isolation, as long as the applied
variability mechanisms do not blur the distinction, which always happens
when runtime mechanisms such as Conditional Execution have been
used. More details of the interaction between Construction Testing and
Execution Texting are shown in Fig.43 (comp. [Jalote05, Fig.10.1]).

Figure 43: Interrelationship between Construction Testing and Execution Testing

The outputs of product line testing (Fig.42) are construction test results,
focusing on the product line infrastructure code, execution test results
dealing with individual product instances, and the tested product line
infrastructure code. As part of the iterative product line realization
process, the test results capture the quality trend of the evolving product
line infrastructure code, both in space and in time. Depending on the
severity of the detected defects, the product line infrastructure code is
either repaired immediately, for example when a required variation is
missing, or during the next larger iteration. Less serious defects may also
be ignored. In this case the quality is regarded “good enough”.

The ongoing simplification process is completed by a final quality
assurance phase – complexity measurement.

Product Line Evolution Method

 166

5.3 Variability Complexity Measurement

The variability complexity measurement activity complements the
sustainable product line evolution method (Figure 37), as summarized in
Figure 32. This final quality assurance sub-activity is concerned with
measurement in the resulting product line infrastructure code (Figure
41), more precisely with complexity measurement. In general, a quality
metric is 1) a quantitative measure of the degree to which an item
possesses a given quality attribute, and 2) a function whose inputs are
software data and whose output is a single numerical value that can be
interpreted as the degree to which the software possesses a given
quality attribute [IEEE610]. Until recently, product line research in this
area did not exist [Knauber04, p.8]. Meanwhile, there are a few
exceptions [Ajila+07, Lopez+08] which do not address the measurement
goal (see Sec.3.5). This also applies to other metrics work discussed in
Section 3.4 [Hall+00, Kelly06] which only addresses the evolution of
conventional single system code over time, but not evolution in time and
space.

In the variability complexity measurement phase under discussion the
family engineer’s main goal is to assess if the product line infrastructure
code is simple enough for sustainable variability management, with
regard to the current requirements, or if it is becoming significantly more
complex than necessary. Two points are notable here: First, the goal is to
make the code as simple as necessary, not to make it as simple as
possible. The latter could result in excessive effort and would make the
product line evolution method non-applicable for E-type software
product lines in practice. Second, the goal is concerned with the
currently existing requirements, excluding speculative future
requirements. This makes the step sharply reactive: it fights all
unnecessary speculative elements in the code that may have been
caused by the family engineer being proactive, for example by adding
variation points that are not needed yet.

The main goal is also not to measure product line-related properties free
of context, for example the number of variation points or the percent of
reuse. Instead, the purpose is to collect only those measures that make
the product line simpler to use, evolve and reuse for the average
developer. A similar point was addressed in the SEI’s current Framework
for Software Product Line Practice: “A higher level of software reuse is
not, in itself, an end goal of a product line effort but merely a strategy
for achieving goals such as shorter time to market” [Northrop+07]. This
also means that it is not sufficient to perform the measurements once,
but continually and in iterations (as in Continual Integration
[Duvall++07]), in order to become aware of complexity trends. Figure 44
summarizes the details of the variability complexity measurement phase,
its inputs, sub-activities and outputs.

Product Line Evolution Method

 167

Figure 44: Variability complexity measurement phase

There are three input elements to this phase: the tested code obtained
from the previous product line infrastructure code testing phase (Figure
42), a quality model for evolving product line infrastructure code, and
the product line requirements for the current iteration, stating the
quality goals. Three output artifacts result from the variability complexity
measurement phase: the resulting code of the overall product line
evolution method, plus baseline code and complexity metrics of the
current iteration. The measurement activity is composed of two
consecutive sub-activities. In the first, called Baselining, the family
engineer identifies or sets up baseline product line infrastructure code
which serves as a reference for evaluating the existing code. For
example, a particular version of the code may be defined as a temporal
reference for all following measurement activities in the evolving code,
as indicated in Section 3.4 (Figure 22). The second sub-activity,
Measurement and Adjustment, is concerned with executing the
measurements and possibly adjusting the existing product line
infrastructure code so that it becomes easier to evolve and reuse. For
example, as a result of measurements that detect the code smell
Runtime Variation (Tab.7), the respective refactoring Replace Runtime
Binding with Execution Time Binding (Tab.8) may be applied. Both
measurement sub-activities depend on a product line quality model and
corresponding product line measurement goals which are provided as
part of the product line specifications.

Product Line Quality Model

The quality model for evolving product line infrastructure code motivates
which product line-specific quality attributes must be addressed in the

Product Line Evolution Method

 168

measurement phase. A reference quality model is presented next which
is customizable to an organization’s product line development needs.
The quality model has been developed using the Goal-Question-Metric
(GQM) approach [Solingen++02], the most popular mechanism for goal-
oriented software measurement. GQM depends on the formulation of
the following elements: Goals, questions and metrics. First, goals are
formulated which define what shall be achieved. The goals are often
decomposed using a goal hierarchy of main goals and corresponding
sub-goals. Each goal is refined by questions whose answers indicate to
what extent the goal has been reached. Finally, metrics are given for
each question, which makes the questions quantifiable. Figure 45 shows
the goals and sub-goals needed in the complexity-aware product line
evolution method.

Figure 45: Goal hierarchy of the product line infrastructure code quality model

The overall goal is cost-effective product line development (G1). This
goal ultimately aims at reducing unnecessary development costs and
increasing development productivity from product line inception to
retirement. It is related to the top tier of the product line methodology
presented in Section 3.5 (Fig.19). In order to achieve the main goal,
variability complexity reduction is proposed as a sub-goal (G2), related to
the base tier in Fig.19. Complexity reduction means balanced reduction
of variability complexity in product line infrastructure code, but only as
far as necessary in the particular development context (Def.20). As the
current thesis focuses on family engineering and variability complexity is
produced there, application engineering issues are not further discussed.
Software evolution research is aware of the fact that complexity results
in development effort (“In the maintenance phase complexity
determines […] how much effort will be required to modify program
modules to incorporate specific changes [Curtis79]” [Eden+06]). As will
be seen in a moment, this has been addressed in the current thesis by
refining the Complexity Reduction goal accordingly (Q3 in Tab.10). This
is also investigated in the case study (see the Effort Reduction sub-
section of Sec.6.4).

Product Line Evolution Method

 169

There are five mostly orthogonal sub-goals for achieving complexity
reduction. The first sub-goal is size reduction (G3), which means that the
product line infrastructure code is constrained in size, as required for the
in the current variability management context. The second sub-goal is
code shape alignment (G4), which denotes that the storage and
distribution of common and variant code elements sufficiently realize the
required variability management tasks (see also [Pohl++05, Ch.4]). For
example, different groups of variability mechanisms are sufficient for
expressing optional variabilities than alternative variabilities. Or,
depending on the evolution rates of common and variant code elements,
it may be advisable to separate them into different modules, or to keep
them together. The third sub-goal is concerned with emphasizing variant
elements (G5). This means that family engineers can easily see and
control those elements of product line infrastructure code which are
different across space or time, while at the same time the common
elements which always remain the same for all products are more
suppressed [Bassett97, p.87]. The fourth sub-goal of complexity
reduction addresses variability management consistency18 (G6) because
inconsistent realizations of variability are harder to evolve than necessary.
The fifth sub-goal is reuse efficiency (G7), which means, for example,
that an excess of reusable modules may become as harmful for long-
term reuse as a shortage of reusable modules.

According to the GQM method, each goal is refined by questions whose
answers indicate to what extent the goal has been reached. The
questions are then refined by concrete metrics. Tables 9 to 15 refine the
goals from Figure 45 into corresponding questions.

Analyze the product line realization process
for the purpose of reducing
with respect to whole life cycle cost
from the viewpoint of the product line engineering manager

 Q1: What is the cost of creating a product line?
 Q2: What is the cost of sustaining a product line infrastructure?

Table 9: Goal G1 and questions: Product line development cost reduction

Analyze the code of software product lines
for the purpose of reducing
with respect to variability complexity
from the viewpoint of the product line engineer

 Q3: What is the effort of adding, removing or changing a feature realization?
 Q4: Are variation points harder to detect than necessary?
 Q5: Are variant elements harder to add than necessary?
 Q6: Are common elements harder to change than necessary?

Table 10: Goal G2 and questions: Variability complexity reduction

18 Consistency is also known as Conceptual Integrity [Brooks10, p.70]

Product Line Evolution Method

 170

Analyze the code of software product lines
for the purpose of reducing
with respect to size
from the viewpoint of the family engineer

Q7: How large is the code? (Which code size is necessary?)
Q8: How much product line infr.code has changed over time? (How much was necessary?)
Q9: How many modules have been used? (How many are necessary?)
Q10: How many variation points are used in the code? (How many are necessary?)

Table 11: Goal G3 and questions: Product line infrastructure code size reduction

Analyze the code of software product lines
for the purpose of balancing
with respect to shape
from the viewpoint of the family engineer

 Q11: How deep and wide is the code reuse hierarchy?
 Q12: What is the runtime cyclomatic complexity? (What value is necessary?)
 Q13: What is the construction time cyclomatic complexity? (What value is necessary?)

Table 12: Goal G4 and questions: Product line infrastructure code shape alignment

Analyze the code of software product lines
for the purpose of emphasizing
with respect to variant elements
from the viewpoint of the family engineer

 Q14: How many variant elements are visible at the module level? (How many must be?)
 Q15: How many variant elements are visible module-internally? (How many must be?)
 Q16: How many variant elements are indistinguishable from common code?

Table 13: Goal G5 and questions: Variability emphasis

Analyze the code of software product lines
for the purpose of keeping
with respect to variability management consistency
from the viewpoint of the family engineer

 Q17: How consistently is each variability mechanism used? (What is the trend?)
 Q18: How consistently are all variability mechanisms used? (What is the trend?)
 Q19: How consistent is the configuration? (What is the trend?)

Table 14: Goal G6 and questions: Variability management consistency

Analyze the code of software product lines
for the purpose of improving
with respect to reuse efficiency
from the viewpoint of the product line engineer

 Q20: To which degree have reusable modules been reused?
 Q21: How many defaults exist in the code? (How many must exist?)
 Q22: How similar are variant “siblings”? (How similar must they be at least?)

Table 15: Goal G7 and questions: Reuse efficiency

Product Line Evolution Method

 171

In the next step of the GQM method, metrics are assigned to each
question. Goals G1 and G2 are not further refined here, as they
represent super-goals partially made by management which are fulfilled
if their sub-goals are fulfilled. Table 16 lists the five most concrete sub-
goals G3 to G7 from the bottom of the goal hierarchy (Figure 45), their
questions and metrics. For some metrics, there is a second comparison
value which captures the necessary metric. The distance between the
actual and the necessary metric is an indicator of complexity (see
Sec.3.4). The necessary kinds of metrics are estimated by using baselines
or reference code, which will be explained in the following Baselining
subsection. Each metric is explained next.

G Q Metric name Description
3 Size reduction

7 LOC Lines of code for entire product line infrastr. code
8 �LOC,t Temporal code churn in lines of code
9 NOM Number of modules

10 NVP Number of variation points
4 Shape alignment

11 DRH Depth of reuse hierarchy
WRH Width of reuse hierarchy

12 v(G)rt,closed Cyclomatic complexity of closed runtime conditions
v(G)rt,open Cyclomatic complexity of open runtime conditions

13 v(G)ct,closed Cycl. compl. of closed construction time conditions
v(G)ct,open Cycl. compl. of open construction time conditions

14 LOCad Lines of code of adaptees
5 Variability emphasis

14 NVe Number of externally visible variant elements
15 NVi Number of internally visible variant elements
16 NVa Number of ambiguous variant elements

6 Variability management consistency
17 NIncVM-usage Number of inconsistent usages of a variability mech.
18 NIncVM Number of inconsistent variability mechanisms
19 NInccfg Number of configuration inconsistencies

7 Reuse efficiency
20 RR Reuse ratio
21 NOD Number of defaults
22 �LOC,s Spatial code churn among variant siblings

Kvar Compression distance of variant siblings
Table 16: Metrics suite for sustainable product line infrastructure code evolution

The code size can be measured at different levels of scale, for example in
lines of code (LOC) or in number of modules (NOM). Some variability
mechanisms cause additional code or modules to be added, so that the
numbers become larger than necessary, causing unnecessary
construction complexity. As introduced in Sec.3.4, code churn [Hall+00]
measures the amount of change in evolving source code. If the code
churn over time (�LOC,t) for the entire product line infrastructure code
exceeds its necessary value, then the code has become overly complex.

Product Line Evolution Method

 172

Variability management requires variation points, and ideally, there
should be only one variation point per variability instance because in this
case, the variant element is most consolidated. However, if the number
of variation points (NVP) exceeds its necessary optimum, the module is
crosscut more than necessary, another unnecessary complexity.

In Section 2.2 I have shown that reused code elements can be organized
in a hierarchy based on their reuse relationships. The morphology of a
hierarchy of modules can then be characterized by the depth of the
reuse hierarchy (DRH) and by its width (WRH). If a reuse hierarchy is
flatter or wider than necessary, less reuse opportunities have been taken
than necessary, causing unnecessary complexities.

The shape of product line infrastructure code can also be measured by
counting the number of conditional statements which are used in the
product line infrastructure code to control all variants. For example,
product-specific code may be selected by if statements in Conditional
Execution, or by #if statements in Conditional Compilation. These
conditions are anchored in the common code, so that their count
characterizes the coupling of common and variant elements. A
conventional metric which measures the shape of code depending on
the number of conditions is Cyclomatic Complexity v(G) [McCabe76]. In
a weighted sum of code size, cyclomatic complexity and other metrics,
the maintainability index MI has been used to measure evolution effort
in single system code [Coleman++94]. For product line infrastructure
code measurement I propose to extend cyclomatic complexity into a
two-dimensional metric)(Gv� , for two reasons. The first reason is that
the conventional metric only measures in terms of closed conditions, so
that a module containing a single if or case statement has a
cyclomatic complexity of two (the number of binary branches plus one).
If the code is refactored by replacing the closed condition by an open
one, which means applying the classical refactoring Replace Conditional
with Polymorphism [Fowler99], the conventional cyclomatic complexity
decreases [Tegarden++92], although the conditional situation has not
changed. In order to express that conditional complexities still exist, I
propose another type of metric for open conditions, v(G)open, as a
compensator. In other words, v(G)open corresponds to conventional
cyclomatic complexity v(G)closed, with closed conditions refactored to
open ones, so that their sum will be invariant under that refactoring. The
second reason for having a two-dimensional cyclomatic complexity is
that the conventional metric usually covers conditions with runtime
binding only. Similar as in the case above, refactoring product line
infrastructure code that contains Conditional Execution into equivalent
code with Conditional Compilation again leads to a decrease in
conventional cyclomatic complexity, although the overall conditional
situation is invariant. A cyclomatic complexity for construction time
conditions v(G)ct is proposed as a dual of the conventional metric v(G)rt

Product Line Evolution Method

 173

for runtime conditions. Because openness and binding time are
orthogonal concepts, this results in four cyclomatic complexity measures,
as depicted in Figure 46: v(G)rt,closed is the conventional cyclomatic
complexity, v(G)rt,open is its open dual, v(G)ct,closed measures closed
construction time conditions, and v(G)ct,open their open duals.

Figure 46: Two-dimensional cyclomatic complexity)(Gv�

It has been suggested that the adaptability of a reusable module is
inversely proportional to the amount of information needed to adapt it
[Bassett97, p.128]. I propose a technology-independent metric to
capture this, called LOCad, which measures the amount of code in all
adaptees of a reusable module. If this number is larger than its required
value, the common module is not adaptable enough, causing
unnecessary adaptation complexities.

The visibility of variant elements also plays an important role in the
evolution of reusable code (“Effective reuse highlights novelty – makes
exceptions easy to see and control – while hiding what is routinely the
same” [Bassett97, p.87]). This is why product line infrastructure code
becomes less easy to evolve when variant elements are less visible than
necessary, either externally (NVe), that is, at module granularity, or
internally within modules (NVi). This is also true when a number of
variant elements are ambiguous (NVa), unnecessarily hard to distinguish
from common elements.

Inconsistencies in variability management also cause unnecessary
evolution difficulties. In this context, the number of inconsistent usages
within a single mechanism NIncVM-usage is increased, for example, when
Conditional Compilation uses both #if and #ifdef in the same
product line infrastructure code. NIncVM, the number of inconsistent
variability mechanisms, is increased if the same type of variability
problem is solved with different mechanisms, for example if two optional
variabilities are realized with Conditional Execution and Conditional
Compilation. There can also be inconsistencies in the way the code is
configured, for example using a mixture of preprocessor flags and non-

Binding time

Condition openness

open

closed

construc-
tion time

runtime

v(G)ct,closed

v(G)ct,open

v(G)rt,closed

v(G)rt,open

Product Line Evolution Method

 174

volatile memory, as mentioned in [Krueger07], increasing NInccfg. The
three aforementioned inconsistency measures may change over time, so
that measuring their temporal delta ΔInc can hint at growing evolution
problems.

A common metric for capturing reuse efficiency is reuse ratio [Poulin96,
Bassett97], which is the size of reusable code in relation to total code
size. When code size is measured in lines of code, the reuse ratio
becomes RR=1-LOCad/LOC, with LOC and LOCad as described above. As
shown in Sec.4.7, defaults also optimize reuse, so that the ratio between
the number of defaults NOD and its optimal value indicates to what
extent the family engineer has taken advantage of defaults in variability
management.

Code churn has been used for measuring evolution across time [Hall+00,
even in product line infrastructure code [Ajila+07]. However, to the best
of my knowledge, it has not yet been explicitly used for measuring code
distance across space at a fixed point in time. This measure, spatial code
churn �LOC,s, can be applied to identify commonalities in sibling variant
elements in a reuse hierarchy, for example in two realizations of different
alternatives. If this measure becomes larger than required, for example
when variants become too similar, the product line infrastructure code is
too complex. Spatial code churn resembles edit distance (Levenshtein
distance [Levenshtein66, Damerau64]). Edit distance has been applied to
measure the similarity of character strings, for example in clone
detection [Roy++09], error detection [Navarro01], or in data compression
[Crochemore+96]. Edit distance measures the amount of difference
between two sequences by considering the number of primitive
evolution operations (addition, removal, change) that are required to
transform one sequence to the other. As source code is usually
represented in character string form, this metric can also be used to
measure the (dis-)similarity of evolving product line realizations. In this
case, edit distance denotes the number of additions, removals or
changes of source code elements, for example lines of code, which
corresponds to code churn. Across time, the metric characterizes how
many code changes have been applied during each evolution step.
Across space, edit distance (or spatial code churn) is the minimal number
of code line additions, removals or changes to convert one realized
product line member into another.

Another similarity metric is compression distance or Kolmogorov
complexity K [Kolmogorov68, Cilibrasi+05] whose use in software
development has been suggested as generative software complexity
[Heering03]. In product line realization, the different variability
mechanisms can be regarded as software generators. Compression
distance is the length of the shortest of a set of generation possibilities
to produce all product line members. It compares the compactness of
the generators, the compression they achieve. As an alternative to spatial

Product Line Evolution Method

 175

code churn, compression distance Kvar can be used to detect unnecessary
similarities of variant elements, optimizing reuse. When two variant
modules x and y are to be compared and C(x) and C(y) are the lengths of
the compressed versions of x and y, and C(xy) is the length of the
compressed version of the concatenated text of x and y, then Kvar is their
normalized compression distance [Cilibrasi+05]:

)}(),(max{
)}(),(min{),(),(),(var yCxC
yCxCyxCyxNCDyxK �

�� .

Baselining

As shown in Figure 44, the family engineer sets up baseline product line
infrastructure code in the Baselining phase. The need of this activity
when measuring software evolution has already been motivated in
[Hall+00]: to establish a fixed point against which all others can be
compared. A fixed baseline reduces measurement effort, as shown in
[Kelly06]. For a single system, this fixed point means a reference version
of the code at some point in time, as the artifact at time t=T0 from
Figure 22 against which temporal stability has been measured. For
variability complexity measurement, I suggest a novel baselining concept,
in which not only one baseline is built up for product line infrastructure
code, but two. The first is a temporal reference system as in the single
system case. The second is a spatial reference, an “ideal” product line
realization which exists at the same time as the existing code. Figure 47
illustrates the idea.

Figure 47: Two types of baselines for product line infrastructure code E: temporal (R(t0,s)) and spatial (R(tm,s0))

Product Line Evolution Method

 176

At some time tm the existing product line infrastructure code E is to be
measured for complexity. As one baseline, a reference system R(t0,s) is
used, a code version from an earlier stage of the evolution at time t0<tm.
The temporal evolution score zt can be calculated for this dimension, as
explained for the conventional standard score z in Section 3.4.

The second reference system is R(tm,s0) which exists at the same time tm
as the existing system E, but has an “ideal” realization s0 with regard to
variability management. The engineer can then evaluate a realization
alternative E’ against the same two reference systems in order to decide
if E or E’ is less complex. The advantage of this approach over a single-
reference approach, as shown in Figure 22, is that not all conceived
variants E, E’, E’’, … at time tm need to be compared against each other,
but only against a single spatial reference. If the distance sm-s0 to the
reference system is close, the product line infrastructure code has
sufficient variability management quality. The distance corresponds to a
spatial score zs which can be used to evaluate different evolution
alternatives. This approach will be demonstrated in the case study in
Section 6.4.

After the variability complexity measurement phase has been finished,
the next iteration of the product line realization process starts again in
the selection phase, as shown in Figure 37.

Case Study

 177

6 Case Study

A case study has been conducted in order to compare the quality of
sustainable product line infrastructure code evolution in various product
line development contexts. The case study has monitored and evaluated
the evolution of software product line generations of small and highly
resource-constrained embedded systems. The product line realizations
have been co-evolved by using each of the mechanisms presented in
Chapter 4, and by applying the techniques suggested in Chapter 5.
According to the classification in Section 5.1, different representative
types of product line evolution scenarios have been realized as described
in Section 5.2. The product line infrastructure code has been tested and
its quality has been measured and compared using the approaches
discussed in Section 5.3.

The results support the hypotheses that after a few initial iterations,
Cloning leads to product line infrastructure code which takes more effort
to evolve, with lower quality, than the other mechanisms whose
complexity trend is more linear. Another observation is that there are
groups of mechanisms that have some complexity characteristics in
common, whereas others diverge. In these cases, the simplest variability
mechanism is usually programming language-agnostic. A third result is
that no variability mechanism is best in all contexts (no silver bullet
[Brooks95]), so that applying a monoculture of variability mechanisms, as
often seen in practice, leads to unnecessarily complex product line
infrastructure code.

The following sections are organized as follows: Section 6.1 presents the
background and objectives of the case study in more detail, and Section
6.2 introduces the technical context in which the case study was
performed. In Section 6.3, the setup of the case study is shown, and
Section 6.4 shows the results. Section 6.5 interprets the results per
investigated hypothesis, and Section 6.6 discusses threats to validity.

6.1 Hypotheses

In order to evaluate the effects of variability mechanism characteristics
on variability complexity in product line infrastructure code, and its
resulting evolvability from a family engineering perspective, I have
developed a hierarchy of hypotheses which matches the goal hierarchy
from Figure 45, as presented in Figure 48.

Case Study

 178

Figure 48: Investigated Goal and Hypothesis Hierarchies

The base hypothesis is that context-sensitive selection of variability
mechanism properties leads to variability complexity reduction in the
Variability Management base tier of reactive product line development
(Fig.19). It is related to the main goal G2 within this tier, variability
complexity reduction (see Sec.5.3). This base hypothesis is refined into
three types of sub-hypotheses. The first investigates the usefulness of
Cloning in family engineering. Sub-hypotheses 2 and 3 are concerned
with properties of other types of mechanisms besides Cloning, and are
formulated without particular reference to a single mechanism. The goal
of sub-hypothesis 2 is to investigate the suitability of properties that exist
in all variability mechanisms for reducing variability complexity. Sub-
hypothesis 3 investigates the usefulness of optimization properties that
are available in some, but not all mechanisms and which are also
available for other types of artifacts than code. As for the goals (Sec.5.3),
the base elements of the hypothesis hierarchy are subsumed by refined
elements, and only these are investigated further. These six hypotheses
H1.1 to H3.2 are listed in Table 17.

H Description
1.1 In short term evolution, Cloning does not result in significantly higher

variability complexity than most other mechanisms.
1.2 In long term evolution, Cloning results in variability complexity excess

and increases evolution effort, compared to any other mechanism.
2.1 Late binding increases variability complexity significantly.
2.2 Programming language-dependence increases variability complexity

significantly.
3.1 Defaults decrease variability complexity significantly.
3.2 Support for both closed and open variation decreases variability

complexity significantly.
Table 17: Overview of investigated hypotheses

Hypothesis H1.1 investigates if short-term cloning, like conventional
single systems development shown in the left bottom part of Fig.5b,
does not lead to unacceptable complexity excess in product line

Case Study

 179

infrastructure code. In this case, it would be beneficial in the context of
early evolution, as it can be performed rapidly, without risks (cf. Sec.3.3).
This assumption is supported by various studies on Cloning in single
systems (Sec.3.3). It also fits well to the product line realization process
developed in this thesis (Sec.5.2), which suggests a Modification sub-
process that contains the two successive activities Commonality
Realization and Variability Realization (Fig.39). Cloning may be used in
the early activity Commonality Realization, if it does not lead to
complexity excess at this stage.

The next hypothesis, H1.2, expects that sticking with cloned code leads
to complexity excess in the long term, and as a result makes the product
line infrastructure code harder to evolve then, if this is required (cf.
Sec.3.3). For this reason, the Variability Realization activity in the
Modification sub-process (Sec.5.2) suggests some variability refactorings,
in particular Consolidate Clones, to counteract the code smell of
Duplicated Code.

Hypothesis H2.1 states that late binding, in particular runtime binding, is
correlated with unnecessary increase of variability complexity. This
assumption is based on the observation that the possibility for mass
customization (Def.29), that is, composition (Def.9) and configuration
(Def.28), is completely missing at runtime (Def.16), whereas only the
possibility for configuration is missing at execution time (Def.15), and
unlimited mass customization is supported at construction time (Def.31).
This also motivates applying the variability refactorings Replace Runtime
Binding with Execution Time Binding, and Replace Execution Time
Binding with Construction Time Binding (Sec.5.2).

Hypothesis H2.2 investigates the correlation between a mechanism’s
programming language-dependence and variability complexity. The
motivation for this assumption is that programming language-
dependence forces variation points to be aligned with programming
language constructs, such as function call boundaries, while
programming language-independence offers the family engineer more
degrees of freedom in setting variation points, with potentially less
refactoring effort. Hypothesis H2.2 also refers to a special case contained
in hypothesis H2.1, the relation between construction time and
execution time binding.

As discussed in Def.55, defaults decrease the number of configuration
options, and so hypothesis H3.1 examines if variability complexity is
decreased in the presence of defaults. As shown in Chapter 4, some
variability mechanisms support defaults, and if these showed lower
variability complexity in the case study, this hypothesis would be
supported. Defaults are also a target of the two variability refactorings
Replace Variant Element with Default, and Replace Commonality with

Case Study

 180

Default (Sec.5.2), which counteract the minor code smell Lack of
Defaults.

The final hypothesis H3.2 claims that variability complexity will be
decreased if a single mechanism supports both closed and open
variation. This assumption is justified in the typical situation when
product line infrastructure code must realize both basic types of
variabilities: optional and alternative variabilities. Although each of these
can be expressed by the other [Synthesis93, Bayer++99, Pohl++05], the
result is extra effort and complexity which may be avoided if both basic
variability types are always supported.

6.2 Study Subject

As mentioned at the beginning of this chapter, the subject of the case
study is code for small embedded systems. The systems are battery-
powered wireless sensor nodes which are part of the Particle
Computer19 rapid prototyping platform for Ubiquitous and Pervasive
Computing environments. The sensor nodes are able to communicate
with internet gateways or with each other, forming an ad-hoc wireless
sensor network (WSN). They can be equipped with various types of
actuators and sensors. The sensors allow the node to register values of
its physical environment such as the node’s acceleration in two or three
dimensions, temperature, light or noise. For reasons of energy efficiency
and physical compactness, the sensors are equipped with extremely
resource constrained hardware, such as an 8 bit microcontroller, 128kB
of flash ROM and 4kB of RAM. Figure 49 depicts a wireless node and its
sensor board.

Figure 49: Particle Computer wireless sensor node and sensor board

The sensor node software can be developed in the C programming
language which is still among the most frequently used languages in
practice for developing embedded systems code [Chen++05]. An open-

19 particle.teco.edu (retirved August 2009)

Case Study

 181

source code library is available which offers basic functionalities, such as
querying sensor values or transmitting data. The library has been written
for the SDCC20 compiler which supports a C dialect that closely matches
ANSI C, with some C99 extensions. However, the library does not
provide a consistent application programming interface. For example,
different conventions exist for sensor initialization, refresh and value
retrieval, depending if the sensor exists on the wireless main board or on
an additional board, and the mechanism for obtaining timer functionality
is completely different than the corresponding mechanism for obtaining
sensor functionality. In order to avoid development complexities due to
these inconsistencies, I developed a consistent hardware abstraction
library as a façade [Gamma++95] of the original library. In other words,
the hardware abstraction library changes the existing modules externally
by composition (Def.9). For reasons of construction efficiency, both
libraries are provided together as a binary module that the product line
engineer can use (Def.6) for creating a sensor node application. The
library provides simple and consistent interfaces (Listing 26) for building
sensor node software that interacts with the physical environment
(sensor, actuator and clock abstractions (Def.17)), and that is able to
communicate with other wireless devices (transceiver abstraction). Figure
50 specifies these requirements in a problem frame diagram [Jackson01],
as an instance of the Four Variable Model [Parnas+95].

Figure 50: Sensor node problem frame

The sensor node is the system of interest. It receives input variables iS
from the sensors, which are related to the monitored variables mS from
the environment. The requirement REQ references the environment by
referring to these monitored variables mS. Likewise, the sensor node

20 sdcc.sf.net (retrieved August 2009)

Sensor
Node

 Actuators

Sensors

Trans-
ceiver

Environ-
ment

REQ

C

C

C

B

mS, cA

mT, cT

mS

cA

mT, cT

iT, oT

iS

oA

Legend:

subject of interest

problem domain

requirement

domain interface

requirement reference C causal domain

B biddable domain

Case Study

 182

refers to the output phenomena oA, which lead to phenomena cA that
control the environment. Similar sets of events exist as inputs iT and
outputs oT of the sensor node to the transceiver, and as monitored and
controlled variables mT and cT of the environment.

Not all sensor node applications are concerned with all development
problems mentioned above. The decision model [Muthig02] in Table 18
illustrates that within a sensor node product line, the actuators and the
possibility for wireless reception are optional variabilities, while sensors
and wireless transmission are commonalities.

Decision Question Resolution
Actuators Does the wireless sensor node use

actuators?
no => remove oA and cA

from Figure 50
Wireless
reception

Does the wireless sensor node receive
data wirelessly?

no => remove iT and mT
from Figure 50

Table 18: Decision model for the sensor node product line specified in Figure 50

The set of sensor node applications which must be realized also have in
common that they execute particular tasks at certain fixed time intervals.
For example, the sensors must query the monitored variables
[Parnas+95] of their physical environment at certain sampling rates, or
the transceiver must send out the collected information periodically. The
cooperative scheduler is an idiom [Coplien91] in the development of
time-triggered embedded systems [Pont01, p.246] which solves the
problem of scheduling periodic tasks in a simple, reliable and safe way.
In order to make the sensor node applications particularly easy to
develop, I provide a simple variant of a cooperative scheduler in the
hardware abstraction layer, so that the product line engineer can focus
on product line-related tasks rather than being concerned with
functionality issues. A similar solution has also been described in the
context of simplifying the software of an embedded system for
controlling an autonomous helicopter [Wirth01, p.490], where the task
was to periodically query sensors and compute aggregate values. The
solution is to use a single interrupt service routine for periodically setting
a Boolean variable, for example once every second. Sensor node
applications use the interrupt service routine, and within their endless
main loop, they constantly query if the variable has been set. In this case,
they reset the variable and perform the periodic task.

6.3 Study Procedure

The case study simulates the evolution of a product line in six steps, as
shown in Table 19. Initially, the source code of three different time-
triggered sensor node applications is given, and these three systems shall
be further evolved as a product line. This is a typical scenario seen in
practice. The case study starts with three systems because in reported

Case Study

 183

experience, the pay-back point where it becomes cheaper to develop
systems based on a product line infrastructure than without is typically
three systems [Linden++07, Muthig02, Weiss+99].

The first application realizes a tilt detector whose functionality is to
periodically query its orientation sensor values, to increment a counter if
it measured a certain pattern of change (a tilt of the device), and to
transmit the counter value in larger time intervals. By cloning and
modifying the code of this system, a second product has been
developed, a drop detector whose functionality is also to periodically
query orientation sensors, but after detecting another pattern of change
(a drop of the device), to transmit a warning message without delay. The
third product, also developed from the first one by cloning, realizes a
noise detector that periodically monitors the noise level of the
environment, stores if a certain noise threshold has been exceeded, and
transmits this information in larger intervals.

Step Description
0 Similar alternative products: tilt detector, drop detector, noise detector
1 Addition of new product: movement detector
2 Adoption of optional time transmission feature for all products
3 Addition of new product: raw detector
4 Addition of new optional voltage detection feature for all products
5 Removal of delayed transmission feature from most products
6 Addition of new optional clock adjustment feature for all products

Table 19: Steps in the evolution of a sensor node product line

The three product realizations shall be evolved according to different
typical evolution scenarios which in the majority of cases are instances of
the product line evolution scenarios presented in Section 5.1. The reason
for additionally having the 5th evolution scenario is to compare evolution
effort (goal Q3 in Tab.10) in case the product line becomes simpler (see
also the effort reduction sub-section in Sec.6.4). These evolutions are
depicted in the feature diagram in Figure 51.

In the first evolution step, the existing set of similar products with three
alternative features is to be extended by a fourth product. This product
realizes a movement detector which periodically monitors its movement
sensor, storing the time when a movement happened, and periodically
transmits the collected information. The type of evolution is Alternative
Feature Addition (Figure 34f).

In the second evolution step, the new time transmission capability
introduced by the movement detector shall become an optional feature
of all four products. This is an instance of the scenario Optional Variation
Point Creation (Figure 34b), in which an existing functionality becomes a
common product line feature. This results in a set of eight products.

Case Study

 184

Figure 51: Feature diagram snapshots of the evolving sensor node product line (cf. Table 19)

The third evolution step requires another new product to be added,
which means another alternative feature addition. The product
functionality is to query all available raw sensor values and to transmit
them. The cardinality of the set of products is ten.

In the fourth evolution step, all products must optionally monitor their
battery voltage, transmitting it in large time intervals. The set of realized
products to be managed and evolved together reaches twenty members.
The type of evolution scenario is Optional Feature Creation (Figure 34a),
where a new optional feature is made available to all product line
members.

Step

0
SN

TD DD ND

1
SN

TD DD ND MD

SN

TD DD ND MD

2

TT

SN

TD DD ND MD TT RD

3

SN

TD DD ND MD TT RD

4

VD

SN

TD DD ND MD TT RD VD

5

SN

TD DD ND MD TT RD VD

6

CA

Case Study

 185

The fifth evolution step simplifies some products of the product line by
removing a nearly common functionality. All products except for the
drop detector perform their sensor sampling and their transmission at
different intervals. This shall be removed now, so that all members of the
product line obtain the same transmission behavior. There are still
twenty products.

In the sixth and final evolution step, another new optional feature is to
be added to all products. Its functionality is to synchronize the clocks of
all sensor nodes. When a sensor node is put in operation, its clock value
is zero. Periodically, the gateway software (or other sensors) may
transmit the current time value if they are aware of the time. When
other sensors are able to adjust their clocks accordingly, there will soon
be a uniform notion of time within the entire wireless sensor network.
This optional feature creation scenario increases the number of products
to fourty.

As a result of realizing these scenarios, seven different versions of code
are gained which capture a trace of the product line infrastructure code
evolution, as shown in Figure 52 (compare Fig.23).

Figure 52: Evolution trace for product line infrastructure code

As described in Section 5.3 (Figure 47), measurements for the different
code versions are compared with temporal baseline code at t=t0 in order
to evaluate the change in complexity over time. In order to compare the
quality of variability mechanisms, each of the seven product line
infrastructure code generations listed in Figure 52 has been realized nine
times, which results in the sixty-three product line realizations depicted
in Figure 53. Excerpts of these realizations are listed in Appendix C.

Case Study

 186

Figure 53: Evolution trace for product line infrastructure code, with baselines (gray)

Sequences “a” to “g” have each been realized using a monoculture of
the seven variability mechanisms discussed in Chapter 4: Cloning,
Conditional Execution, Polymorphism, Module Replacement, Conditional
Compilation, Aspect-Orientation and Frame Technology. Sequence “i”
represents the “ideal” realization at each point in time which best
balances the tactics for effective family realization (Tab.2) and which
serves as the spatial reference (R(tm,s0) in Figure 47). It contains the same
C code as in the other realizations, enriched with variability management
pseudocode. The pseudocode expresses which activities a human
software engineer or an automated construction interpreter must at
least perform in order to create all required product instances from the C
code elements, e.g. by changing the text at certain lines. It separates
what must be performed for “good enough” variability management in
the respective development situation from how to achieve these tasks.
For example, a tactic is to realize a smaller optional element, or an
alternative or coexisting variability with only two resolution possibilities,
next to the common code. It makes less sense to extract the variant
elements into separate modules because there is no reason for such a
strong separation between the common and variant elements, especially
if both are likely to evolve together. Conversely, an alternative variability
with at least three choices shall usually be realized in one or more variant
modules separate from the common one, for at least two reasons. The

t

a0

t0 t1 t2 t3 t4 t5 t6

Cloning

Cond.
Exec.

Polym.

Module
Replace

a1 a2 a3 a4 a5 a6

b0 b1 b2 b3 b4 b5 b6

c0 c1 c2 c3 c4 c5 c6

d0 d1 d2 d3 d4 d5 d6

Cond.
Compil.

e0 e1 e2 e3 e4 e5 e6

Aspect
Orient.

f0 f1 f2 f3 f4 f5 f6

Frame
Technol.

g0 g1 g2 g3 g4 g5 g6

Good
Mix

h0 h1 h2 h3 h4 h5 h6

“Ideal”
Baseline

i0 i1 i2 i3 i4 i5 i6

Mechanism

Case Study

 187

first reason is that the more numerous variant elements belonging
together tend to require more visibility than just one or two elements.
The second reason is that a variation point for multiple alternatives tends
to be stronger, more likely to be needed again in future variability
management scenarios, than one that exists just due to an optional
variability. The remaining sequence “h” uses a mix of variability
mechanisms, staying as close as possible to the baseline.

In order to provide fair comparisons, the C code for each executable
product is kept as consistent in temporal and spatial evolution as the
mechanisms allow (comp. the different realizations in Appendix C). This
means that all realizations start with the same precondition. In particular,
latent variation points are not provided to give all mechanisms the same
chance in unpredicted evolution. This means, for example, that global
variables are deliberately used throughout the code, rather than making
them static or extracting them into functions that emerge due to some
variability mechanisms. Functions are not extracted and modules are not
split, unless the variability mechanism demands it. Wherever possible,
variability management is kept consistent and comparable. Possible
optimizations in variability management are deliberately avoided if they
are unrelated to the primary mechanism. For example, variable code
could have been extracted into a separate module in the Conditional
Execution and Conditional Compilation, but this extra step has
intentionally been omitted because it would introduce Module
Replacement as a secondary mechanism. Variation points are used
sparingly. For example, extra variation points for initializing or updating
individual sensors have not been realized because these tasks are not
central to successful product configuration – all products can tolerate the
small additional overhead caused by keeping these features common.
Each variability mechanism is also realized as consistently as possible, for
example by configuring the runtime mechanisms Conditional Execution
and Polymorphism in the same way as Conditional Compilation, or by
organizing the common and variant elements similarly for the pairs
Conditional Execution / Conditional Compilation, Polymorphism /
Module Replacement and Aspect-Orientation / Frame Technology.

Seven out of the nine sequences (49 product lines with 735 products)
result in machine code which can be executed on the hardware of the
wireless sensor node. For that task, Makefiles are provided which can
either configure and compile a single product, or which configure and
compile all products of a certain product line in succession. Some of the
software products have been used in Ambient Intelligence prototype
systems [Patzke++08], for example the tilt detector was embedded in a
cup, and the drop detector was part of a stick. The other two sequences
for Aspect-Orientation and the baseline have been realized in
pseudocode. The baseline has been realized in pseudocode because it is
used to represent how the family engineer intends to realize the current
evolution step, independent of any concrete realization mechanism. The

Case Study

 188

Aspect-oriented sequence “f” has been realized in pseudocode and does
not result in executable machine code because the required SDCC
compiler, with its necessary hardware-specific C extensions for interrupt
service routines and embedded assembler code, is not supported by any
of the few available C aspect weavers. Nonetheless, the provided aspect
pseudocode can at least be processed by the ACC weaver, although the
resulting intermediate code cannot be further compiled with SDCC.

Frame Technology is used in the sequences “g” and partially in “h”,
supported by the frame processor FP [Patzke+03] which I have been
developing since 2002. The tool deliberately offers only those frame
technology-specific variability management capabilities which are
missing in other variability mechanisms: open construction time
variation. In contrast to other frame processors, closed variation has
deliberately been omitted because it is already offered by Conditional
Compilation.

6.4 Results

Depending on the applied mechanism, the following issues have been
observed in the respective realization sequences: When Cloning is
applied and an optional feature must be introduced, the existing number
of modules is doubled. The names of the new modules have consistently
been extended by the new feature name. In Conditional Execution and
Polymorphism, global runtime variables of integer type have been used
for configuration (Listing 18, l.10-13; Listing 20, main.c, l.11-14). They
are initialized before execution and remain unchanged thereafter which
wastes memory resources. Due to the programming language-
dependency of Conditional Execution, the alternative feature for time
transmission has been duplicated for each alternative behavior (step b2
and b3). It has not been extracted into a separate function because of
consistency with the other mechanisms (Listing 18, l.49-52, l.68-71, l.91-
94, l.107-110, l.126-129). Initialization effort is particularly high in
Polymorphism because all function pointers have to be set individually,
according to the values of the configuration variables (Listing 20, main.c,
l.23-55). A function pointer table could have simplified the
configuration, at the expense of consistency with other mechanisms.
Another characteristic of both conventional open mechanisms
Polymorphism and Module Replacement is that their common module
main.c (Listing 20 and 21) contains a particularly small amount of
common code, and they both depend on forward function declarations,
which requires the presence of header files in consistent realizations
(Listing 20, main.c, l.2-5; Listing 21, main.c, l.2-4). Moreover, Module
Replacement requires a separate null module for each optional variant
(for reasons of consistency, the three resulting null modules
no_time_transmission, no_voltage_check and no_clock_sync (Listing 21)
have not been extracted into a single module). In both the programming

Case Study

 189

language agnostic mechanisms of Conditional Compilation and Frame
Technology, the optimization possibilities for managing incomplete C
code elements have deliberately not been used initially, so that all
alternative detector elements end with two redundant lines. The
elements have only been extracted after this became necessary because
of the new time transmission feature in step 2. During the later evolution
steps it became increasingly necessary to manage small or nesting code
elements in order to account for small differences among variant
elements (Listing 19, l.92-100, l.102-104; Listing 23, drop_detector, l.14-
16).

Defaults have not been used in Conditional Compilation because they
are not a primary element of this mechanism. This is not the case for
Frame Technology, and for reasons of consistency, Defaults have also
been used in Aspect-Oriented code. In any case, Aspect-Orientation
requires an extraction of a function (main_loop), in order to override its
contents (Listing 22, main.c, l.11-28). The extraction is also necessary in
Module Replacement which results in a simpler and more direct
realization (Listing 21, main.c, l.23). In step f2, the optional time
transmission feature has been realized in a time_transmission aspect
which composes (Def.9) the send() function of the hardware
abstraction library. This is only possible because that function is only
used once for each product. However, with the advent of the new raw
detection feature in step f3, the send function is called twice in a
product, which invalidates the aspect’s assumption and requires the new
wrapper function send2() to be introduced – an inelegant, but
necessary step caused by the limits of Aspect-Orientation (Listing 22,
main.c, l.30-32). At the same time, the new raw detector must always
set the event_happend variable, so that it can use the time_transmission
aspect as-is (Listing 22, raw_detector.acc, l.10, l.12). Again, as in Module
Replacement (step d3), it becomes necessary to abuse C code statements
for variability management purposes because of the limited
configuration (Def.28) possibilities of the applied variability mechanism:
The raw detector requires a restricted use of the existing time
transmission feature, but the available mechanism is not able to
configure this internally, but must use an external ad-hoc solution.

In contrast to Aspect-Orientation, the default code for tilt detection can
remain inline in Frame Technology because there is no necessity to
extract it (Listing 23, main, l.29-45). In step g2, the new time
transmission feature necessitates the Default to be changed: it is split
into two elements instead of shrinking it to only one smaller element (VP
more_loop) because this way the existing alternative detectors can still
only refer to the first variation point, whereas the new time transmission
feature is only associated with the new second variation point
(more_loop2). The frame technology sequence uses the parameterized
adaptation feature of FP to avoid using wrapper frames [Bassett97,

Case Study

 190

pp.178f.] for combining optional features, which reduces the number of
needed modules (Listing 23, drop/noise/movement/raw_detector,
voltage_check, clock_sync, l.1). A combination of only two mechanisms
is necessary to realize sequence “h” which closely resembles the ideal
sequence “i”. The mechanisms are Conditional Compilation and Frame
Technology, as provided by FP. Optional features are realized with
Conditional Compilation (Listing 24, main, l.47-55, l.59-66, l.67-75),
while Frame Technology is used for realizing alternative features. In
contrast to the monoculture of Conditional Compilation in sequence
“e”, the conditional elements in sequence “h” do not require nested
variation.

As mentioned in Sec.5.3, the super-goals G1 and G2 have not been
refined further. For most of the other identified goal categories of the
product line quality model, the corresponding metrics from Table 16
have been captured for all 63 product line realizations, either manually
or semi-automatically, for example using the scripts listed in Appendix
B.2. As explained above, the code has been developed as consistent as
possible, both in terms of its executable and variability management
properties. For that reason, variability management inconsistencies have
deliberately been avoided, so that their metrics (questions 17 to 19 in
Table 16) can be assumed to be low in all realizations and are thus
ignored. Another metric that has deliberately been kept at comparable
low values for all sequences is the number of variation points which is
also ignored in the following discussion. The following sub-sections list
aggregated results found for the goals G3, G4, G5, and G7. Detailed
results for each metric are shown in Appendix D.

Size Reduction

The first metric captured for the size reduction goal (G3) are the lines of
product line infrastructure code. Because a consistent coding style has
been used throughout, the code does not contain differences in
indentation, commenting or spacing, so that its comparable size could
simply be obtained using the Unix line count command wc –l. Table 20
shows the results. The gray title row and column in this and the
following tables indicate that the table contains values that have been
measured in the code, while tables which have white title rows and
columns contain aggregated values.

In these and the following measurements, the values in all successive
evolution steps always increase monotonically, except for step 5. The
reason for the overall trend is that the product line infrastructure code
becomes more sophisticated, with increasing variability management
complexity. In step 5, however, a product line-wide simplification
happens. Some quasi-common functionality is removed (transmission at
a lower frequency than sampling), without changing the distribution of
common and variant elements, as depicted in Figure 51. For that reason,

Case Study

 191

this step does not represent a typical product line evolution step, which
is why it is not contained in the basic product line evolution scenarios in
Section 5.1 (Figure 34). The step has been introduced in the case study
to compare evolution effort, as will be described in the Sustainable
Evolution sub-section below. In order to highlight only product line-
specific complexity trends step 5 is omitted in the following graphs.

LOC 0 1 2 3 4 5 6
a (Cloning) 98 129 268 349 788 708 1606
b (Cond. Exec.) 76 95 116 143 154 137 149
c (Polymorph.) 110 139 181 218 252 232 268
d (Module Replac.) 99 125 152 185 211 191 219
e (Cond. Compil.) 72 91 89 112 122 109 120
f (Aspect-Orient.) 73 92 94 122 133 120 131
g (Frame Technol.) 76 95 93 118 128 117 128
h (Good Mix) 76 95 93 118 128 117 128
i (Ideal Impl.) 64 80 82 104 114 102 113

Table 20: Code size evolution in all realization sequences (cf. Fig.53)

As explained in Sections 3.4 (Fig.22) and 5.3 (Fig.47), the temporal code
size delta expresses how much the product line infrastructure code has
changed within a sequence, compared to the temporal baseline at t=t0.
This is shown in Table 21a and Figure 54 which in the upper part shows
the overall trend, whereas in the lower part, the values for Cloning have
been stripped, for reasons of legibility. After step 6, the values for
sequence e to i remain close together, while Polymorphism and Module
Replacement result in at least 100% higher values.

zt 0 1 2 3 4 5 6 zs 0 1 2 3 4 5 6
a 0 31 170 251 690 610 1508 a 34 49 186 245 674 606 1493
b 0 19 40 67 78 61 73 b 12 15 34 39 40 35 36
c 0 29 71 108 142 122 158 c 46 59 99 114 138 130 155
d 0 26 53 86 112 92 120 d 35 45 70 81 97 89 106
e 0 19 17 40 50 37 48 e 8 11 7 8 8 7 7
f 0 19 21 49 60 47 58 f 9 12 12 18 19 18 18
g 0 19 17 42 52 41 52 g 12 15 11 14 14 15 15
h 0 19 17 42 52 41 52 h 12 15 11 14 14 15 15
i 0 16 18 40 50 38 49 i 0 0 0 0 0 0 0
a) b)

Table 21: Code size deltas: a) in time, b) in space

Case Study

 192

Figure 54: Trends for code size deltas a) in time, b) in space

The values for spatial code size delta are comparable, as shown in Table
21b and Figure 54. They express the difference in code size to the ideal
realization s=s0. The overall trend for both kinds of metrics is roughly
identical: At most until step 3, the metrics for all sequences have a
similar order of magnitude because their variability management
complexity is still low. At least after step 4, when two optional
variabilities are introduced, the values for Cloning become considerably
higher than those of all other mechanisms, with an exponential trend.
Compared to Cloning, the metrics for the other mechanisms remain
closer together, with a more linear trend.

Similar results have been obtained for temporal code churn (Table 22
and Figure 55), the amount of code needed to transfer the initial version
to each successor. These measurements were performed semi-
automatically using a custom script (Appendix B.2) which calculates the
line-wise edit distance between two files or between all files in two
directories. The slopes for Polymorphism and Module Replacement are
higher though, which means that over time, these realizations deviate
more from the baseline code. This happens because each new feature is
realized in a new module, with corresponding overheads for function
extraction and file inclusion.

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 6

0

50

100

150

200

250

300

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

0

50

100

150

200

250

300

0 1 2 3 4 6

a) b)

Case Study

 193

�LOC,t� 0 1 2 3 4 5 6
a 0 31 170 251 690 610 1508
b 0 19 40 67 78 69 81
c 0 29 79 115 149 147 183
d 0 26 53 86 112 112 140
e 0 18 24 47 57 53 64
f 0 19 21 49 60 63 74
g 0 19 25 52 62 60 71
h 0 19 25 50 60 55 66
i 0 18 20 42 52 49 60

Table 22: Code churn in time �LOC,t for all sequences

0

50

100

150

200

250

300

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

Figure 55: Trends for code churn in lines of code, compared to baselines at t=t0

A similar trend exists in terms of the number of modules in each product
line realization (Tab.23a) and their spatial code churn (Tab.23b and
Fig.56). Although Cloning starts at an ideal number of modules, the
deviation from the ideal realization after step 6 is more than 200%
higher than for any other mechanism. Polymorphism and Module
Replacement have comparatively high values because they uncon-
ditionally spawn new modules in each step. Conversely, Conditional Exe-
cution and Conditional Compilation always result in fewer modules than
desirable, with a negative trend because they use a single module only.

NOM 0 1 2 3 4 5 6 zs 0 1 2 3 4 5 6
a 3 4 8 10 20 20 40 a 0 0 4 5 15 15 35
b 1 1 1 1 1 1 1 b -2 -3 -3 -4 -4 -4 -4
c 5 6 8 9 11 11 13 c 2 2 4 4 6 6 8
d 5 6 9 10 13 13 16 d 2 2 5 5 8 8 11
e 1 1 1 1 1 1 1 e -2 -3 -3 -4 -4 -4 -4
f 3 4 5 6 7 7 8 f 0 0 1 1 2 2 3
g 3 4 5 6 7 7 8 g 0 0 1 1 2 2 3
h 3 4 4 5 5 5 5 h 0 0 0 0 0 0 0
i 3 4 4 5 5 5 5 i 0 0 0 0 0 0 0
a) b)

Table 23: a) Evolution in number of modules; b) comparison to spatial baseline

Case Study

 194

-5

0

5

10

15

20

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

Figure 56: Trends for number of module delta, compared to ideal realization

Effort Reduction

As mentioned above, step 5 has been has been introduced to compare
evolution effort in the different sequences when some variation exists in
the product line. After step 4, five different alternative behaviors exist in
the product line infrastructure code for capturing and transmitting
monitored variables. Most behaviors (except for drop detection) transmit
the information at a lower frequency than sampling it. This requirement
becomes obsolete in step 5, which means that the respective code
elements must be removed from the code. In particular, the task is to
manually eliminate all code elements concerned with the tick variable,
to re-indent the code correspondingly and to rename all tick2 variables
to tick. This task has been performed on product line infrastructure
code from step a4 (Cloning), d4 (Module Replacement), e4 (Conditional
Compilation) and g4 (Frame Technology). Two subjects performed these
tasks, measuring the time from starting each development task until
successful compilation of all twenty products. Table 24 lists the results.
Although the values differ among the subjects, due to their different
product line realization experience, both subjects on average performed
the tasks in about half the time when a proper variability mechanism
existed, compared to a situation in which all previous code had been
cloned. As in the size measurements, this is another strong indicator that
cloning leads to less evolvable code.

time4->5/min subject 1 t/ta subject 2 t/ta
a (Cloning) 6:35 21:46
d (Module Repl.) 3:05 47% 4:50 22%
e (Cond. Comp.) 5:10 78% 14:20 66%
g (Frame Techn.) 3:10 48% 10:26 48%

Table 24: Effort for realizing scenario 5, compared to Cloning

Case Study

 195

Shape Alignment

Tables 25 and 26 show the values for the depth and width of the reuse
hierarchies in the different realizations (goal G4). Whereas the ideal
cases only require a depth of two in all scenarios (as more or less reuse
levels are not required in this situation, see Fig.11), they constantly
remain at their minimal value 1 for Cloning and the closed mechanisms.
There is a slight increase for the open mechanisms, due to
interdependencies of variant elements, and a stronger increase for Frame
Technology because it performs all configuration activities by its frame
hierarchy, whereas the other mechanisms additionally require the
Makefile for that purpose.

DRH 0 1 2 3 4 5 6
a 1 1 1 1 1 1 1
b 1 1 1 1 1 1 1
c 2 2 3 3 3 3 3
d 2 2 3 3 3 3 3
e 1 1 1 1 1 1 1
f 2 2 3 3 3 3 3
g 2 2 3 3 4 4 5
h 2 2 2 2 2 2 2
i 2 2 2 2 2 2 2

Table 25: Evolution in depth of reuse hierarchy

WRH 0 1 2 3 4 5 6 zs 0 1 2 3 4 5 6
a 3 4 8 10 20 20 40 a 1 1 5 6 16 16 36
b 1 1 1 1 1 1 1 b -1 -2 -2 -3 -3 -3 -3
c 3 4 5 6 7 7 8 c 1 1 2 2 3 3 4
d 3 4 6 7 9 9 11 d 1 1 3 3 5 5 7
e 1 1 1 1 1 1 1 e -1 -2 -2 -3 -3 -3 -3
f 2 3 4 5 6 6 7 f 0 0 1 1 2 2 3
g 2 3 3 4 4 4 4 g 0 0 0 0 0 0 0
h 2 3 3 4 4 4 4 h 0 0 0 0 0 0 0
i 2 3 3 4 4 4 4 i 0 0 0 0 0 0 0
a) b)

Table 26: a) Evolution in width of reuse hierarchy; b) comparison to spatial baseline

As depicted in Figure 57, the trend for the delta in width of the reuse
hierarchy is similar as that for the number of modules (Figure 56), except
that in this case, frame technology matches the ideal shape, while
Aspect-Orientation still diverges slightly.

Case Study

 196

-5

0

5

10

15

20

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

Figure 57: Trends for width of reuse hierarchy delta, compared to ideal realization

Tables 27 and 28 show the evolution of closed and open runtime and
construction time cyclomatic complexity, as invented in Section 5.3.

v(G)rt,closed 0 1 2 3 4 5 6 v(G)rt,open 0 1 2 3 4 5 6
a 26 33 68 81 180 164 388 a 3 4 8 10 20 20 40
b 23 28 35 40 43 39 43 b 1 1 1 1 1 1 1
c 26 32 35 40 45 41 47 c 7 9 14 17 20 20 23
d 23 28 29 33 36 32 36 d 4 5 7 8 10 10 12
e 20 24 24 27 29 25 28 e 1 1 1 1 1 1 1
f 23 28 29 34 37 33 37 f 3 4 5 6 7 7 8
g 22 27 28 32 35 31 35 g 3 4 5 6 7 7 8
h 22 27 27 31 33 29 31 h 3 4 4 5 5 5 5
i 18 23 23 27 29 25 28 i 3 4 4 5 5 5 5
a) b)

Table 27: Evolution of a) closed, and b) open runtime cyclomatic complexity

v(G)ct,closed 0 1 2 3 4 5 6 v(G)ct,open 0 1 2 3 4 5 6
a 3 4 8 10 20 20 40 a 3 4 8 10 20 20 40
b 1 1 1 1 1 1 1 b 1 1 1 1 1 1 1
c 5 6 8 9 11 11 13 c 5 6 8 9 11 11 13
d 5 6 9 10 13 13 16 d 8 10 21 25 30 30 35
e 4 5 10 13 14 10 11 e 1 1 1 1 1 1 1
f 3 4 5 6 7 7 8 f 5 7 12 16 18 18 20
g 3 4 5 6 7 7 8 g 5 7 9 13 15 15 17
h 3 4 5 6 7 7 8 h 5 7 7 11 11 11 11
i 3 4 5 6 7 7 8 i 5 7 7 11 11 11 11
a) b)

Table 28: Evolution of a) closed, and b) open construction time cyclomatic complexity

For conventional closed runtime cyclomatic complexity, Cloning results in
at least 800% higher values after step 6 than any other mechanism,
while the values for these remain close together. The open runtime
cyclomatic complexity corresponds to the number of modules for
Cloning and the closed mechanisms because these do not have open
variation. The constant value 1 for the latter denotes that there is not

Case Study

 197

enough open variation. Closed construction time cyclomatic complexity
is the number of modules in the case of all monocultures except for
Conditional Compilation because the metric counts the number of
construction time conditions. The values for Cloning, Polymorphism,
Module Replacement and Conditional Compilation end up too high,
while Conditional Execution results in the undesirable minimal value. For
open construction time cyclomatic complexity, the values for Cloning,
the runtime mechanisms and Conditional Execution are the number of
modules because either no construction time mechanisms exist or
because variation is not open. Module Replacement has a particularly
high open construction time complexity, exceeding the value for Cloning
until step 6. Both Aspect-Orientation and the employed Frame
Technology dialect have values above the ideal case because they
unconditionally employ open variation.

sumrt 0 1 2 3 4 5 6 sumct 0 1 2 3 4 5 6
a 29 37 76 91 200 184 428 a 6 8 16 20 40 40 80
b 24 29 36 41 44 40 44 b 2 2 2 2 2 2 2
c 33 41 49 57 65 61 70 c 10 12 16 18 22 22 26
d 27 33 36 41 46 42 48 d 13 16 30 35 43 43 51
e 21 25 25 28 30 26 29 e 5 6 11 14 15 11 12
f 26 32 34 40 44 40 45 f 8 11 17 22 25 25 28
g 25 31 33 38 42 38 43 g 8 11 14 19 22 22 25
h 25 31 31 36 38 34 36 h 8 11 12 17 18 18 19
i 21 27 27 32 34 30 33 i 8 11 12 17 18 18 19
a) b)

Table 29: Evolution in a) runtime, and b) construction time cyclomatic complexity

sumclosed 0 1 2 3 4 5 6 sumopen 0 1 2 3 4 5 6
a 29 37 76 91 200 184 428 a 6 8 16 20 40 40 80
b 24 29 36 41 44 40 44 b 2 2 2 2 2 2 2
c 31 38 43 49 56 52 60 c 12 15 22 26 31 31 36
d 28 34 38 43 49 45 52 d 12 15 28 33 40 40 47
e 24 29 34 40 43 35 39 e 2 2 2 2 2 2 2
f 26 32 34 40 44 40 45 f 8 11 17 22 25 25 28
g 25 31 33 38 42 38 43 g 8 11 14 19 22 22 25
h 25 31 32 37 40 36 39 h 8 11 11 16 16 16 16
i 21 27 28 33 36 32 36 i 8 11 11 16 16 16 16
a) b)

Table 30: Evolution in a) closed, and b) open cyclomatic complexity

Table 29 lists the sums of the runtime and construction time
complexities. Table 30 shows the sums of closed vs. open-variant
complexities.

Figures 58 and 59 depict the corresponding deltas, in relation to an ideal
realization. Cloning and Polymorphism lead to an excess in runtime
complexity (Figure 58a), whereas the other mechanisms remain in a close
range. A similar trend exists for closed-variant complexity (Figure 59a).

Case Study

 198

Cloning and Module Replacement lead to an excess in construction time
complexity (Figure 58b), Conditional Execution has a clear lack thereof.
Monocultures of mechanisms never match an ideal closed-variant
complexity (Figure 59b). Cloning and all four closed mechanisms lead to
an excess, the two open mechanisms lead to a shortage in closed-variant
complexity.

Figure 58: Trends for a) runtime, and b) construction time complexity delta, compared to ideal code

Figure 59: Trends for a) closed, and b) open complexity delta, compared to ideal code

Whereas the open-variant metrics (Tab.29b and Tab.30b) express how
many modules have been adapting the open variation points, the lines of
adaptee code metric expresses the same phenomenon at a finer level of
granularity, by counting the lines of code within the adapting modules.
Table 31a lists lines of adaptee code in each product line realization. As
mentioned in Section 5.3, the metric is inversely proportional to
adaptability. For that reason, adaptability in relation to the ideal
realization corresponds to the adapted lines of code for the ideal code
divided by the adapted lines of the corresponding code (Table 31b). The
corresponding graph in Figure 60 illustrates that all conventional
mechanisms (a-e) are always less adaptable than the more advanced
ones (f-i), with extremely low values for Cloning.

0

10

20

30

40

50

60

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

-20

-10

0

10

20

30

40

50

60

70

0 1 2 3 4 6

a) b)

-10

0

10

20

30

40

50

60

70

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

-30

-20

-10

0

10

20

30

40

50

60

70

0 1 2 3 4 6

a) b)

Case Study

 199

LOCad 0 1 2 3 4 5 6 ad 0 1 2 3 4 5 6
a 98 129 268 349 788 708 1606 a 0,26 0,3 0,13 0,14 0,06 0,06 0,03
b 76 95 116 143 154 137 149 b 0,33 0,41 0,3 0,35 0,32 0,31 0,29
c 75 100 126 151 168 148 166 c 0,33 0,39 0,28 0,33 0,3 0,29 0,26
d 77 102 123 150 168 148 167 d 0,32 0,38 0,28 0,33 0,3 0,29 0,26
e 72 91 89 112 122 109 120 e 0,35 0,43 0,39 0,45 0,41 0,39 0,36
f 30 47 49 67 77 69 77 f 0,83 0,83 0,71 0,75 0,65 0,62 0,56
g 34 51 47 66 75 69 77 g 0,74 0,76 0,74 0,76 0,67 0,62 0,56
h 34 51 41 57 57 51 51 h 0,74 0,76 0,85 0,88 0,88 0,84 0,84
i 25 39 35 50 50 43 43 i 1 1 1 1 1 1 1
a) b)

Table 31: Evolution in a) LOC of adaptees, and b) adaptability, compared to ideal realization

0

0,2

0,4

0,6

0,8

1

1,2

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

Figure 60: Trends for adaptability, compared to ideal realization

Variability Emphasis

Another goal (G5) in sustainable product line evolution is to emphasize
variant elements, so that the family engineer can easily see and control
them. Variant elements are most visible when they can be seen at
module granularity, that is, externally. However, not all variant elements
require external visibility. For example, it is often sufficient for optional
variants to be internally visible. In any case, it is undesirable that variant
elements are ambiguous, hard to distinguish from common elements.
Table 32 lists the numbers of externally visible, internally visible and
ambiguous variant elements in the case study code. The corresponding
deltas compared to the spatial baseline are listed in Table 33, illustrated
graphically in Figure 61. Cloning and the closed mechanisms result in a
lack of externally visible variant elements, and the open mechanisms in
an excess thereof. Cloning, Conditional Execution, Polymorphism and
Aspect-Orientation cause a clear lack of internally visible variant
elements. For the runtime mechanisms, this is due to the ambiguity of
those elements, as revealed in Figure 61c which shows them as having
the highest ambiguous values. For the same reason, this also holds for
Aspect-Orientation: it scores worst for internally visible variant elements,
and at the same time results in a clear excess of ambiguous variant

Case Study

 200

elements. This is mainly due to an inherent feature of Aspect-Orientation
that many of its proponents claim to be a virtue: obliviousness
[Filman+00, Steimann06]. Obliviousness means that the realization of
the common elements makes no assumptions on the variant elements
which adapt them. While this is a good tactic for isolating variants
(Tab.2), it is not well-realized in language-dependent component-based
mechanisms such as Aspect-Orientation or Module Replacement because
the common elements must usually be functions which the family
engineer cannot easily detect as true variation points by looking at core
asset code alone, so that these become ambiguous (see Listing 5 and
Listing 8).

NVe 0 1 2 3 4 5 6 NVi 0 1 2 3 4 5 6 NVa 0 1 2 3 4 5 6
a 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0 a 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0 b 0 0 0 0 0 0 0 b 3 4 8 10 11 11 12
c 3 4 5 6 7 7 8 c 0 0 0 0 0 0 0 c 1 1 5 6 7 7 8
d 3 4 5 6 7 7 8 d 0 0 0 0 0 0 0 d 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0 e 3 4 5 6 7 7 8 e 0 0 0 0 0 0 0
f 2 3 4 5 6 6 7 f 0 0 0 0 0 0 0 f 1 1 5 6 6 6 6
g 2 3 4 5 6 6 7 g 1 1 2 3 3 3 3 g 0 0 0 0 0 0 0
h 2 3 3 4 4 4 4 h 1 1 3 4 5 5 6 h 0 0 0 0 0 0 0
i 2 3 3 4 4 4 4 i 1 1 2 3 4 4 5 i 0 0 0 0 0 0 0
a) b) c)

Table 32: Evolution in a) externally visible, b) internally visible, and c) ambiguous variant elements

zs 0 1 2 3 4 5 6 zs 0 1 2 3 4 5 6 zs 0 1 2 3 4 5 6
a -2 -3 -3 -4 -4 -4 -4 a -1 -1 -2 -3 -4 -4 -5 a 0 0 0 0 0 0 0
b -2 -3 -3 -4 -4 -4 -4 b -1 -1 -2 -3 -4 -4 -5 b 3 4 8 10 11 11 12
c 1 1 2 2 3 3 4 c -1 -1 -2 -3 -4 -4 -5 c 1 1 5 6 7 7 8
d 1 1 2 2 3 3 4 d -1 -1 -2 -3 -4 -4 -5 d 0 0 0 0 0 0 0
e -2 -3 -3 -4 -4 -4 -4 e 2 3 3 3 3 3 3 e 0 0 0 0 0 0 0
f 0 0 1 1 2 2 3 f -1 -1 -2 -3 -4 -4 -5 f 1 1 5 6 6 6 6
g 0 0 1 1 2 2 3 g 0 0 0 0 -1 -1 -2 g 0 0 0 0 0 0 0
h 0 0 0 0 0 0 0 h 0 0 1 1 1 1 1 h 0 0 0 0 0 0 0
i 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0
a) b) c)
Table 33: Deltas to baseline for a) externally visible, b) internally visible, and c) ambiguous variant

 elements

Figure 61: Trends for a) externally visible, b) internally visible, and c) ambiguous variant element

deltas, compared to ideal code

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

- 6

- 5

- 4

- 3

- 2

- 1

0

1

2

3

4

0 1 2 3 4 6

0

2

4

6

8

10

12

14

0 1 2 3 4 6

a) b) c)

Case Study

 201

The applied Frame Technology dialect also results in less internally visible
variant elements than necessary because it only supports open variation.
It compensates this by its ability to make Defaults internally visible. This is
why it also does not lead to ambiguities in variant elements.
Unoptimized Conditional Compilation, on the other hand, results in an
excess of internally visible variant elements because it lacks support of
open variability, which the simple Frame Technology dialect has in
excess. For that reason, a combination of the two mechanisms is
desirable, and this has been performed in the near-ideal sequence “h”.

Reuse Efficiency

The efficiency of code reuse (goal G7) can be measured by reuse ratio,
using two of the already collected metrics, total and adaptee lines of
code. Table 34 shows the aggregated values, and Figure 62 depicts the
corresponding trends.

RR 0 1 2 3 4 5 6 zs 0 1 2 3 4 5 6
a 0 0 0 0 0 0 0 a -0,61 -0,51 -0,57 -0,52 -0,56 -0,58 -0,62
b 0 0 0 0 0 0 0 b -0,61 -0,51 -0,57 -0,52 -0,56 -0,58 -0,62
c 0,32 0,28 0,3 0,31 0,33 0,36 0,38 c -0,29 -0,23 -0,27 -0,21 -0,23 -0,22 -0,24
d 0,22 0,18 0,19 0,19 0,2 0,23 0,24 d -0,39 -0,33 -0,38 -0,33 -0,36 -0,35 -0,38
e 0 0 0 0 0 0 0 e -0,61 -0,51 -0,57 -0,52 -0,56 -0,58 -0,62
f 0,59 0,49 0,48 0,45 0,42 0,43 0,41 f -0,02 -0,02 -0,09 -0,07 -0,14 -0,15 -0,21
g 0,55 0,46 0,49 0,44 0,41 0,41 0,4 g -0,06 -0,05 -0,08 -0,08 -0,15 -0,17 -0,22
h 0,55 0,46 0,56 0,52 0,55 0,56 0,6 h -0,06 -0,05 -0,01 -0 -0,01 -0,01 -0,02
i 0,61 0,51 0,57 0,52 0,56 0,58 0,62 i 0 0 0 0 0 0 0
a) b)

Table 34: a) Evolution in reuse ratio; b) comparison to spatial baseline

Figure 62: a) Trends for reuse ratio; b) comparison to spatial baseline

For Cloning, reuse ratio is always 0 because no module is used for
building more than a single product. The values for the closed
mechanisms are also 0 because variable code was only measured at
module granularity, and for these mechanisms, no module exists that
contains variant elements only. The highest reuse ratios after step 6 are

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0 1 2 3 4 6

a) b)

Case Study

 202

obtained in the ideal and well-realized sequences “i” and “h”. Aspect-
Orientation and the employed Frame Technology dialect result in 20%
lower reuse ratios after step 6 because as closed mechanisms they result
in more adaptation code at module granularity, compared to mixed-
mode mechanisms. The value for Polymorphism is relatively high, due to
its large amount of code for both the variable and the common
elements. Due to its lack of common initialization code, compared to
Polymorphism, the reuse ratio for Module Replacement is constantly
lower.

The goal of defaults (Def.55) is to optimize reuse efficiency. Table 35
shows the amount of defaults in the different case study sequences. The
conventional mechanisms, applied consistently, do not lead to defaults.
Frame Technology, the good mechanism mix and the ideal realization
result in a maximum of defaults. When applying Aspect-Orientation in a
comparable way, only a single default is obtained.

NOD 0 1 2 3 4 5 6
a 0 0 0 0 0 0 0
b 0 0 0 0 0 0 0
c 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0
e 0 0 0 0 0 0 0
f 1 1 1 1 1 1 1
g 1 1 2 3 3 3 3
h 1 1 2 3 3 3 3
i 1 1 2 3 3 3 3

Table 35: Evolution in number of defaults

Reuse efficiency also suffers if alternative variant modules become too
similar. As explained in Section 5.3, the similarity of two or more
modules in lines of code can be measured by spatial code churn (edit
distance). Tab.36a lists the corresponding values which were obtained
using a custom script (Appendix B.2). Table 36b presents the deviation
from an ideal case, which is also depicted in Figure 63. The closed
mechanisms do not apply here because they only offer a single module.
For that reason, they have a strong negative deviation from the ideal
case. Like for the other code line-related metrics, Cloning leads to
extremely unfavorable metrics after few evolution steps. Polymorphism
and Module Replacement also lead to alternative siblings which are more
similar than necessary, while Aspect-Orientation, Frame Technology and
the mixed realization lead to metrics close to the ideal case.

Case Study

 203

�LOC,s� 0 1 2 3 4 5 6 zs 0 1 2 3 4 5 6
a 32 53 116 163 335 302 604 a 17 26 93 126 298 272 574
b b -15 -27 -23 -37 -37 -30 -30
c 32 52 51 71 71 65 65 c 17 25 28 34 34 35 35
d 30 49 55 72 82 76 87 d 15 22 32 35 45 46 57
e e -15 -27 -23 -37 -37 -30 -30
f 12 25 21 35 35 34 34 f -3 -2 -2 -2 -2 4 4
g 15 28 25 38 38 36 36 g 0 1 2 1 1 6 6
h 15 28 25 38 38 36 36 h 0 1 2 1 1 6 6
i 15 27 23 37 37 30 30 i 0 0 0 0 0 0 0
a) b)

Table 36: a) Evolution in spatial code churn among variable siblings; b) comparison to baseline

-60

-40

-20

0

20

40

60

80

100

120

140

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

Figure 63: Trends for spatial code churn among variable siblings, compared to ideal code

At a finer level of granularity, the similarity between alternative variable
siblings has been measured as compression distance K, as introduced in
Section 5.3, again partially automated. The values and deviations are
listed in Table 37, and the deviation trend is shown in Figure 64. Again,
the closed mechanisms do not apply. The conventional open
mechanisms lead to a positive deviation, which means that their variant
elements have more commonalities than necessary. The cloned modules
are too similar, compared to the ideal case, while the values for the
remaining mechanisms converge to the ideal value.

Kvar 0 1 2 3 4 5 6 zs 0 1 2 3 4 5 6
a 0,45 0,44 0,41 0,44 0,43 0,45 0,46 a -0,21 -0,16 -0,2 -0,18 -0,2 -0,2 -0,2
b b
c 0,72 0,67 0,74 0,72 0,76 0,77 0,78 c 0,06 0,07 0,13 0,1 0,13 0,12 0,12
d 0,73 0,69 0,74 0,73 0,76 0,76 0,77 d 0,07 0,09 0,13 0,11 0,13 0,11 0,11
e e
f 0,59 0,54 0,58 0,63 0,65 0,68 0,68 f -0,07 -0,06 -0,03 0,01 0,02 0,03 0,02
g 0,61 0,58 0,64 0,65 0,68 0,69 0,69 g -0,05 -0,02 0,03 0,03 0,05 0,04 0,03
h 0,61 0,58 0,6 0,61 0,62 0,66 0,67 h -0,05 -0,02 -0,01 -0,01 -0,01 0,01 0,01
i 0,66 0,6 0,61 0,62 0,63 0,65 0,66 i 0 0 0 0 0 0 0
a) b)

Table 37: a) Evolution in compression distance among variable siblings; b) comparison to baseline

Case Study

 204

-0,25

-0,2

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

0 1 2 3 4 6

a

b

c

d

e

f

g

h

i

Figure 64: Trends for compression distance among variable siblings, compared to ideal code

Summary

In order to compare complexity trends associated with each mechanism
from the case study, the metrics for single complexity factors presented
so far were aggregated in two ways: as temporal snapshots and as goal-
specific aggregations.

For the first type of aggregation, snapshots of complexity values for the
different mechanisms were made that existed at a particular moment in
time (i.e. after a certain evolution step). For example, Table 38 lists the
measured 17 values for all investigated 9 variability mechanisms after
performing the final evolution step 6. The corresponding tables for the
other evolution steps 0 to 5 can be found in Appendix D. This
representation helps to compare the absolute values caused by all
mechanisms at a fixed point in time during evolution.

LO
C

�
LO

C
,t
�

N
O

M

D
RH

W
RH

v(
G

) rt
,c

lo
se

d

v(
G

) rt
,o

pe
n

v(
G

) ct
,c

lo
se

d

v(
G

) ct
,o

pe
n

LO
C

ad

N
V

e

N
V

i

N
V

a

RR

N
O

D

�
LO

C
,s
�

K
va

r

a 1606 1508 40 1 40 388 40 40 40 1606 0 0 0 0 0 604 0,46
b 149 81 1 1 1 43 1 1 1 149 0 0 12 0 0 0 0
c 268 183 13 3 8 47 23 13 13 166 8 0 8 0,38 0 65 0,78
d 219 140 16 3 11 36 12 16 35 167 8 0 0 0,24 0 87 0,77
e 120 64 1 1 1 28 1 11 1 120 0 8 0 0 0 0 0
f 131 74 8 3 7 37 8 8 20 77 7 0 6 0,41 1 34 0,68
g 128 71 8 5 4 35 8 8 17 77 7 3 0 0,4 3 36 0,69
h 128 66 5 2 4 31 5 8 11 51 4 6 0 0,6 3 36 0,67
i 113 60 5 2 4 28 5 8 11 43 4 5 0 0,62 3 30 0,66

Table 38: Seventeen measured values for all mechanisms after evolution step 6

In order to make these values easier to compare, each metric type was
normalized to an interval between 0 and 1, where lower values denote
less complexity. Because Cloning often resulted in values that exceeded
the others considerably, normalization happened against the worst of

Case Study

 205

the remaining values in these cases, so that the values ranged between 0
for the ideal realization “i”, and 1 for the worst case. For example, Table
41 shows that the highest metric for LOC excluding the Cloning case
“a” is 268, obtained for Polymorphism (“c”). As a result, the normalized
complexity values for LOC are in the range between 0 for mechanism “i”
and 1 for mechanism “c”, as shown in Table 39.

LO
C

�
LO

C
,t
�

N
O

M

D
RH

W
RH

v(
G

) rt
,c

lo
se

d

v(
G

) rt
,o

pe
n

v(
G

) ct
,c

lo
se

d

v(
G

) ct
,o

pe
n

LO
C

ad

N
V

e

N
V

i

N
V

a

RR

N
O

D

�
LO

C
,s
�

K
va

r

a 9,63 11,8 3,18 0,3 5,1 19 2 4 1 12,6 1 1 0 1 1 10 0,3
b 0,23 0,17 0,36 0,3 0,4 0,8 0 0,9 0 0,85 1 1 1 1 1 0,5 1
c 1 1 0,73 0,3 0,6 1 1 0,6 0 0,99 1 1 0,67 0,39 1 0,6 0,18
d 0,68 0,65 1 0,3 1 0,4 0 1 1 1 1 1 0 0,62 1 1 0,17
e 0,05 0,03 0,36 0,3 0,4 0 0 0,4 0 0,62 1 1 0 1 1 0,5 1
f 0,12 0,11 0,27 0,3 0,4 0,5 0 0 0 0,27 1 1 0,5 0,33 1 0,1 0,03
g 0,1 0,09 0,27 1 0 0,4 0 0 0 0,27 1 0 0 0,36 0 0,1 0,05
h 0,1 0,05 0 0 0 0,2 0 0 0 0,06 0 0 0 0,03 0 0,1 0,02
i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 39: Normalized metrics from Table 38

Thereafter, average values have been computed for the corresponding
four goal categories. For example, the average value for size reduction in
Cloning is (9,63+11,8+3,18)/3=8,2. These values, after evolution step 6,
are listed in Table 40, together with an unweighted average value for
each mechanism, which corresponds to the primary goal G1 (see Fig.45).

 size shape emph. optim. avg.
a 8,2 6,31 0,67 3,09 4,57
b 0,26 0,56 1 0,88 0,67
c 0,91 0,66 0,89 0,55 0,75
d 0,78 0,73 0,67 0,7 0,72
e 0,15 0,34 0,53 0,88 0,48
f 0,17 0,29 0,75 0,28 0,37
g 0,15 0,29 0,38 0,13 0,24
h 0,05 0,03 0,07 0,04 0,05
i 0 0 0 0 0

Table 40: Aggregated normalized complexities after evolution step 6

The corresponding Kiviat diagram in Figure 65a illustrates that the values
for Cloning exceed the others considerably at this late evolution phase.
The excerpt in Figure 65b highlights the differences of the remaining
mechanisms, for example, that the mechanism “h” actually results in
near-ideal values (small deviations from zero), that Polymorphism and
Module Replacement result in a large excess in size, that Conditional
Compilation performs poor with regard to variability optimization, and
that Conditional Execution, Polymorphism and Aspect-Orientation result
in lack of variability emphasis.

Case Study

 206

Figure 65: a) Kiviat diagram according to Table 40; b) excerpt for automated approaches

Table 41 summarizes all average values, and Figure 66 shows the
corresponding complexity trends per mechanism.

cplx 0 1 2 3 4 5 6
a 0,52 0,64 1,26 1,42 2,65 2,5 4,57
b 0,77 0,77 0,74 0,83 0,74 0,73 0,67
c 0,65 0,61 0,75 0,75 0,74 0,74 0,75
d 0,57 0,52 0,68 0,68 0,7 0,7 0,72
e 0,67 0,69 0,61 0,66 0,56 0,53 0,48
f 0,13 0,11 0,3 0,33 0,35 0,36 0,37
g 0,06 0,06 0,14 0,14 0,19 0,2 0,24
h 0,06 0,06 0,06 0,06 0,05 0,06 0,05
i 0 0 0 0 0 0 0

Table 41: Evolution in complexity, compared to ideal realization

The figure illustrates that after few product line evolution scenarios in
the case study, Cloning leads to a large excess of complexity. The three
conventional variability mechanisms Conditional Execution,
Polymorphism and Module Replacement lead to a comparable level of
overall complexity, while Conditional Compilation results in complexity
decrease in later evolution phases. From all mechanisms used in
monocultures, the unoptimized Frame Technology dialect used in the
case study always results in lowest complexity, while the idealized
Aspect-oriented pseudocode leads to nearly 90% more complexity on
average, but still to lower complexity than other monocultures. Using a
combination of Conditional Compilation and Frame Technology, the
lowest complexity was achieved, which also remained constantly low
across all evolution steps.

0

2

4

6

8

10
si ze

shape

emph.

opt i m.

0

0,2

0,4

0,6

0,8

1

1,2
size

shape

emph.

opt im.

a

b

c

d

e

f

g

h

i

a)

b)

Case Study

 207

Figure 66: a) Complexity trends according to Table 41; b) excerpt for automated approaches

A second type of aggregation was used to illustrate complexity trends at
a finer level of granularity, that is, for each goal category. Using the
same aggregation process as explained above for average complexity
(Tab.40, Tab.41), complexity trends have been investigated for the four
goals G3, G4, G5, and G7. As an example, Table 42 shows how
complexities according to goal G3 (size reduction) have increased for the
different mechanisms. The tables for the other goals are shown in
Appendix D.

size 0 1 2 3 4 5 6
a 0,25 0,67 1,74 2 4,45 4,09 8,2
b 0,42 0,45 0,43 0,49 0,35 0,32 0,26
c 0,67 0,89 0,93 0,93 0,92 0,92 0,91
d 0,59 0,72 0,76 0,77 0,77 0,78 0,78
e 0,39 0,4 0,25 0,31 0,2 0,2 0,15
f 0,07 0,1 0,11 0,15 0,16 0,18 0,17
g 0,09 0,12 0,13 0,15 0,15 0,16 0,15
h 0,09 0,12 0,07 0,08 0,06 0,06 0,05
i 0 0 0 0 0 0 0

Table 42: Evolution in size complexity, compared to ideal realization

It was found that the complexity trends for the goals G3, G4, and G7
were similar than the overall trend, with Cloning complexity rising
excessively in later evolution phases, while it remained relatively
moderate in the complexity trends for variability emphasis (goal G5),
shown in Figure 67.

0

1

2

3

4

5

0 1 2 3 4 5 6

0

0,2

0,4

0,6

0,8

1

1,2

1,4

0 1 2 3 4 5 6

a

b

c

d

e

f

g

h

i

a) b)

Case Study

 208

Figure 67: Complexity trends for variability emphasis

6.5 Interpretation

The aggregated results obtained as described above were used to
validate the hypotheses for the case study. The following sub-sections list
the findings for each group of hypotheses. The corresponding detailed
measurement results are shown in Appendix E.

Hypothesis 1

The goal of hypothesis 1 (H1.1 and H1.2) is to investigate the short-term
and long-term effects of Cloning on variability complexity. To this end,
the complexity values obtained by Cloning in the case study (e.g. row
“a” in Tab.41) were compared to the average values of all other
monocultures (e.g. rows “b” to “g” in Tab.41). This was both done for
the aggregated values per goal (e.g. for goal G3), and for the
unweighted complexity of all values, corresponding to goals G1 or G2.
As an example, according to Tab.41, the complexity value for Cloning in
step 0 is 0.52, and the average value for the other monocultures at this
step is (0.77+0.65+0.57+0.67+0.13+0.06+0.06)/7= 0.48 (rounded). This
means that Cloning is 0.52/0.48-1= 8% more complex than the others.
The corresponding values are shown in Tab.43.

 0 1 2 3 4 5 6
G1 0,08 0,4 1,35 1,52 3,84 3,6 7,48
G3 -0,33 0,51 3,01 3,27 9,44 8,61 19,4
G4 -0,11 0,36 1,48 1,67 5,23 5,14 12,1
G5 0,17 0,23 0,01 0,12 0,03 0,03 -0,1
G7 0,48 0,44 1,26 1,38 2,77 2,54 4,45

Table 43: Cloning complexity excess, compared to other mechanism monocultures

This calculation was also repeated without taking the more advanced
mechanisms of Aspect-Orientation and Frame Technology into account,
in order to compare Cloning just with the plain mechanisms of

Case Study

 209

Conditional Execution, Polymorphism, Module Replacement, and
Conditional Compilation, which are always available to a family engineer
in real-world embedded systems development with C/C++. The results
are summarized in Table 44, which is illustrated in Figure 68.

 0 1 2 3 4 5 6
G1 -0,23 -0,01 0,82 0,95 2,86 2,7 5,97
G3 -0,52 0,09 1,95 2,19 6,92 6,38 14,7
G4 -0,37 -0,03 1 1,14 4,1 4,05 10
G5 -0,12 -0,1 -0,2 -0,07 -0,1 -0,1 -0,1
G7 0,02 -0,01 0,63 0,72 1,78 1,65 3,12

Table 44: Cloning complexity excess, compared to other conventional mechanisms

Figure 68: Complexity trends according to Tab.44

The results show that in early evolution phases, especially within the first
three evolution steps, Cloning has a very similar, sometimes even lower
overall complexity than the other mechanisms (12% average complexity
decrease after 2nd step, 19% complexity increase after 3rd step). This
supports hypothesis H1.1. Cloning may even be tolerated to a certain
degree during the next evolution step (38% complexity increase). But in
the long term, as for the steps 4, 5, and 6 in Fig.67, Cloning results in
significant complexity increase (88% to 187%), rising more than linearly
compared to other mechanisms, which supports hypothesis H1.2.

Hypothesis 2

In order to validate hypothesis H2.1 which investigates the negative
impact of late binding on variability complexity, complexity values
measured for the two runtime variability mechanisms in the case study,
Conditional Execution and Polymorphism, were compared to the
complexity values of the other mechanisms, except for Cloning. This was
done by comparing their average values, again for the main goal and the
three sub-goals. For example, according to Tab.41, the average
complexity values for Conditional Execution (row “b”) and Polymorphism
(row “c”) in step 0 is (0.77+0.65)/2= 0.71, whereas the average value
for the other four mechanisms (rows “d” to “g”) is
(0.57+0.67+0.13+0.06)/4= 0.36, so that the complexity of the runtime

Case Study

 210

mechanisms is 0.71/0.36-1= 99% higher. The values are shown in
Tab.45, which is illustrated in Figure 69.

 0 1 2 3 4 5 6
G1 0,99 1 0,73 0,74 0,64 0,64 0,58
G3 0,92 1,01 1,18 1,06 0,98 0,89 0,87
G4 1,21 1,15 0,5 0,54 0,45 0,52 0,46
G5 1 1 0,75 0,82 0,71 0,71 0,62
G7 0,85 0,86 0,65 0,65 0,54 0,5 0,44

Table 45: Runtime mechanism complexity excess

Figure 69: Complexity trends according to Tab.45

The results show that for all goals, runtime mechanisms lead to more
complexity than mechanisms with earlier binding times, although with a
decreasing trend over time. On average, the complexity of runtime
mechanisms is 76% higher than for execution time or construction time
mechanisms (Tab.59), which supports hypothesis H2.1.

The goal of hypothesis H2.2 is to investigate the effect of a mechanism’s
programming language dependence on variability complexity. This was
investigated by comparing the average complexity values of the four
programming language-dependent mechanisms Conditional Execution,
Polymorphism, Module Replacement, and Aspect-Orientation with the
average complexity values of the programming language-independent
mechanisms Conditional Compilation and Frame Technology in the same
way as mentioned above. The results are shown in Table 46 and Fig.70.

 0 1 2 3 4 5 6
G1 0,46 0,34 0,65 0,62 0,68 0,72 0,76
G3 0,82 1,11 1,95 1,52 2,1 2,07 2,52
G4 0,66 0,31 0,57 0,45 0,51 0,69 0,76
G5 0,42 0,13 0,63 0,88 0,84 0,84 0,8
G7 0,16 0,12 0,25 0,2 0,2 0,19 0,19

Table 46: Complexity excess due to programming language-dependence

Case Study

 211

Figure 70: Complexity excess according to Tab.46

The results show that programming language dependent mechanisms
have higher complexity values than programming language-independent
mechanisms, mostly independent of evolution time. On average, they
have been 60% more complex in the case study (Tab.60), which is lower
than the average complexity increase due to runtime binding (76%). The
results support hypothesis H2.2.

Hypothesis 3

Whereas hypothesis 2 dealt with the influence of code characteristics on
complexity, hypothesis 3 contains two code-independent sub-hypotheses
which are investigated on source code in the current case study.

The goal of hypothesis H3.1 is to investigate the effect of defaults
(Def.55) on variability complexity. As shown in the variability mechanism
pattern language, Polymorphism and Module Replacement definitely do
not support defaults, while they may be realized, for example, with
Aspect-Orientation. Frame Technology has built-in support for defaults.
Although not strictly necessary, the aspect-oriented pseudocode in the
case study was also realized using defaults, that is, function bodies
contained default code that was overridden by around advices. This was
done in order not to cause complexity disadvantages compared to Frame
Technology, where the Default idiom is commonly used. In order to
validate the current hypothesis, a second set of Frame Technology
realizations has been developed, without making use of defaults which
lead to identical code after construction. With all other conditions equal,
it should have higher complexity than the original realization with
defaults. As Frame Technology may be used for artifacts beyond code,
this investigation also applies to other types of artifacts, such as
architecture or requirement documents. The results are shown in Table
47 and Figure 71.

The results indicate that, at least for Frame Technology as used in the
case study, defaults lead to complexity reduction, especially noticeable in
early evolution phases, with a decreasing impact over time. The average
complexity reduction over all evolution scenarios was 58% (Tab.61),

Case Study

 212

which is comparable to the complexity increase caused by language-
dependence (60%). The results support hypothesis H3.1.

 0 1 2 3 4 5 6
G1 -0,85 -0,78 -0,59 -0,55 -0,47 -0,45 -0,39
G3 -0,68 -0,52 -0,46 -0,47 -0,39 -0,34 -0,29
G4 -0,78 -0,65 -0,38 -0,37 -0,33 -0,33 -0,29
G5 -1 -1 -0,5 -0,5 -0,25 -0,25 -0,18
G7 -0,93 -0,92 -0,87 -0,84 -0,8 -0,75 -0,73

Table 47: Complexity decrease due to defaults

Figure 71: Complexity reduction according to Tab.47

Hypothesis H3.2 investigates if a single variability mechanism that
supports both closed and open variation leads to less complex product
line infrastructures, and in particular code. In order to validate this, one
set of product line infrastructure code in the case study has been realized
with two mechanisms (mechanism “h” in Fig.52), one of which supports
only closed variation (Conditional Compilation), and the other only open
variation (restricted Frame Technology). The resulting complexity is now
compared against the average value for the single mechanisms. If that
complexity is lower, it would hint at the validity of hypothesis H3.2. The
results were obtained in a similar way as described for the two sub-
hypotheses H2.1 and H2.2. For example, according to Tab.41, the
complexity for mechanism “h” in evolution step 0 is 0.06, while the
average complexity of the mechanisms “e” (Conditional Compilation)
and “g” (Frame Technology) is (0.67+0.06)/2=0.36, which means a
complexity decrease of 85%. All results are shown in Tab.48 and Fig.72.

 0 1 2 3 4 5 6
G1 -0,85 -0,84 -0,83 -0,84 -0,87 -0,84 -0,87
G3 -0,64 -0,55 -0,65 -0,67 -0,65 -0,67 -0,68
G4 -0,75 -0,77 -0,86 -0,88 -0,89 -0,87 -0,9
G5 -1 -1 -0,71 -0,7 -0,8 -0,8 -0,85
G7 -0,92 -0,92 -0,95 -0,98 -0,98 -0,92 -0,93

Table 48: Complexity decrease due to both open and closed variation support

Case Study

 213

Figure 72: Complexity reduction according to Tab.48

The results show a strong complexity decrease for all goals and across all
evolution steps, with a constant trend. The average complexity decrease
over all investigated steps is -85% (Tab.62), which is more than the
increases for runtime mechanisms (76%) and programming language-
dependence (60%). Hypothesis H3.2 is supported by the case study.

Summary and Recommendations

As summarized in Table 49, all six investigated hypotheses have been
supported by the case study.

H Description Supported
1.1 In short term evolution, Cloning does not result in

significantly higher variability complexity than most other
mechanisms.

yes
(for 2-3

iterations)
1.2 In long term evolution, Cloning results in variability

complexity excess and increases evolution effort, compared
to any other mechanism.

yes
(super-linear

growth)
2.1 Late binding increases variability complexity significantly. yes

(76% on avg.)
2.2 Programming language-dependence increases variability

complexity significantly.
yes

(60% on avg.)
3.1 Defaults decrease variability complexity significantly. yes

(-58% on avg.)
3.2 Support for both closed and open variation decreases

variability complexity significantly.
yes

(-85% on avg.)
Table 49: Validation summary

The following consequences result for the investigated mechanisms, or
for other mechanisms that possess or lack the investigated properties:

Cloning should not be banned from the outset as a product line
infrastructure evolution possibility in all contexts of family engineering.
Particularly in early evolution stages, when new features are realized in
the code, Cloning may be a cost-effective and riskless alternative to
more involved variability mechanisms, especially when variation points

Case Study

 214

remain detectable. Cloning may also be viable if the change frequency of
the branched code will be low during future evolution. However,
Cloning leads by far to highest complexity excess in long-term evolution,
compared to other mechanisms, if the cloned code elements undergo
frequent changes.

Mechanisms that result in runtime binding, such as Conditional
Execution or Subtype Polymorphism, should not be used for variability
management in product line infrastructure code, unless the production
process does requires it. This also applies to startup initialization. If the
family engineer is uncertain about this issue, he should prefer early
binding techniques. In cases when late binding is currently needed, but
when the possibility exists that production process changes may make
late binding obsolete, and if these changes must then be realized
instantly, Aspect-Orientation may be selected if its particular tooling
supports both late and earlier binding times.

Family engineers should prefer language-independent mechanisms over
language-dependent ones if new features are to be realized and the
existing product line infrastructure code is not yet organized in such a
way that easily usable variation points exist. The rationale behind this
heuristic is that programming language-independent mechanisms may
both be used in situations when programming language-dependent
variation points exist or if they are missing, whereas programming
language-dependent mechanisms require additional refactoring effort in
the latter case and potentially make the code harder to evolve in the
future. Conditional Compilation, Frame Technology and Cloning are
language-independent.

Variability mechanisms that provide Defaults (Def.55) should be
preferred over those without Default support, even if this property is not
yet needed because this strategy makes it easier to later refactor to
defaults if needed. Defaults are especially valuable for realizing optional
variabilities or alternatives with few variants which are unlikely to grow
to more variants in mid-term evolution. Defaults are valuable in that
context because they reduce the number of variant modules in case of
open variability, and lead to less configuration effort. Defaults can be
realized with many mechanisms, but are unsupported in Module
Replacement and Subtype Polymorphism.

When developing support for product line infrastructure evolution, both
closed and open variation should be supported, as this reduces the
complexity of mechanism excess often observed in family engineering in
practice [Krueger07].

Case Study

 215

6.6 Threats to Validity

The validity of the case study results can be threatened along at least five
dimensions [Wohlin00, Yin03]: internal, external, construct, conclusion,
and reliability validity, which are discussed in this section. Threats to
internal validity are internal issues that may affect that the conclusions
drawn from the case study are true, for example in case of false positives
or false negatives. External validity denotes to what degree the results
may be generalized, in this case for example to real-world product line
infrastructures. Construct validity ensures that the construction of the
case study is related to the investigated research problem. Conclusion
validity is concerned with the statistical significance of the results.
Threats to reliability validity are associated with reproducibility issues.

Internal Validity

Internal validity is threatened in two respects. First, the realization of the
product line infrastructures may contain defects that lead to wrong
measurement results, and second, the measurements may be erroneous.

Concerning the first issue, the product line infrastructure code in the
case study was created manually by three different subjects, which may
increase inconsistencies, but also reduced the risk of undetected errors.
In order to avoid deviations in functionality, the underlying hardware
abstraction layer code has been unit tested on the target hardware, and
representative product samples have been deployed at fixed intervals. In
order to avoid construction errors, continual construction tests (Sec.5.2)
were made which documented the consumed resources of all produced
products. The code was not developed at one point in time, but has
been evolved over more than one year, in several dozens of stable
versions, which improves confidence in its low defect rate. On the other
hand, during this time there were several changes in the applied
technology (one hardware update and two compiler updates), which
could have caused functionality defects. However, this was counteracted
by developing a stable hardware abstraction layer, and issues of
functionality were not the primary measurement concern. Moreover,
efforts have been made to keep the code as simple and consistent as
possible, for example by deliberately using a minimum of comments in
the code, or by using Unix symbolic links for realizing identical modules
in successive stages of evolution, instead of cloning them.

The issue of incorrect measurement results was counteracted by partially
automating the measurement procedure. The obtained measurement
tools were also continually improved, and they were unit-tested as well.
However, some measurements were still performed manually, as well as
documenting the results in spreadsheets and aggregating them there,
which may have caused certain irregularities. To reduce the probability of

Case Study

 216

manual measurement errors, they were always performed within a short
interval, uninterrupted, while cross-checking trends. Inconsistencies
among aggregations were avoided by spreadsheet automation.

External Validity

External validity can be threatened by the development environment
used in the case study, the studied system itself, and the development
process.

To ensure external validity of the development environment, standard
development tools were used (the open-source C compiler GCC, the
build system GNU make, standard development environments such as
Eclipse and Emacs, and the host operating systems Windows, Linux and
MacOS), which in our experience represent in these combinations the
state of the practice in small to medium-sized embedded systems
development. The employed wireless sensor network hardware is part of
a commercial system that has also been used in various other academic
and industrial settings21.

The studied system itself is a small-scale embedded system, with
comparable functionality and sophistication than I have seen in various
industrial settings in the automotive and related industries. Although
only a single product line infrastructure was studied, it resembles reuse
infrastructures used in these environments, which often consist of a mix
of custom and 3rd party code. In a similar way, the C99 standard libraries
and PIC controller-specific libraries provided by the SDCC compiler and
Particle-specific code accompanying the hardware were 3rd party code in
the case study. Yet, more case studies should be performed on systems
of different application types and sizes, in order to generalize my
findings in other application domains beyond embedded systems and to
evaluate scalability issues (see also the outlook in Sec.7).

Another external threat is if the results for Aspect-Orientation may be
generalized to industrial practice, and if they may be compared to the
others, as only the Aspect-oriented pseudocode in the case study is less
realistic than the code in all other cases, which can be run on real
hardware. On the one hand, it is difficult to judge industrial usage of
Aspect-Orientation in real-world projects at all, especially in embedded
systems development and in product lines, as reports and standard tool
support are missing. On the other hand, the study could be repeated if
an aspect weaver is developed that supports the SDCC compiler.

A threat to external validity is also if the results for Cloning may not
apply in product line development in practice. As shown in Section 3.3,
various recent empirical studies have shown that Cloning is not generally

21 particle.teco.edu/publications (retrieved August 2009)

Case Study

 217

harmful in single systems development in practice, especially for
variability in time. As this is the first study to investigate these issues for
both variability in space and time, further work should investigate this
issue.

As product line infrastructures are just entering mainstream industrial
development, a typical development process, especially in product line
realization, has not yet been established. This makes it hard to judge
typical product line evolution steps. However, from my experience, the
predominating types of variability are optional and alternative, and these
have been covered in the case study in representative scenarios. Numeric
variabilities which play a greater role in other product line realization
examples [Weiss+99] have deliberately been omitted, as they typically do
not pose serious realization problems. In my experience, either proactive
approaches as documented in [Pohl++05] are applied for new projects,
or more reactive approaches are used for product line adoption in
existing projects [Buhrdorf++04]. The former represent more an initial
development situation for P- or S-type systems (Sec.3.4) which are not
the focus of this thesis. For the latter, more studies should be conducted
to confirm the results found in this thesis.

Another process-related external threat is only a minority of the
practically relevant types of product line infrastructure evolution has
been covered. It is true that the current thesis deliberately focuses only
on those evolution scenarios in which each version invalidates its
predecessor, so that evolution only happens on the most current version.
This is because the focus is on new development. I am aware that there
is another type of evolution situation in practice, in which not (only) the
current version must evolve, but also previous ones, which becomes a
topic for configuration management [Anastasopoulos++09]. Follow-up
studies are necessary to evaluate synergies of the two approaches.

Construct Validity

There may be threats to construct validity concerning my quality model.
A threat to both construct and external validity is if the invented metrics
are indicators for complexity growth in product line infrastructures in
practice. On the one hand, as comparable types of metrics have been
missing, and as they must have practical relevance, the most popular
mechanism for goal-oriented software measurement in practice, the
GQM method, has been applied for metrics identification. On the other
hand, the criteria for using the described goals were based on decades
of practical reuse research [Bassett97], which increases validity. Both of
these measures were taken to increase construct validity. The construct
validity threat of redundant metrics is mitigated because the metrics are
based on a disjoint set of goals. Another threat in this category is if
measurements are comparable for all mechanisms, for example in case
of Compression Distance Kvar for variant sibling modules, when some

Case Study

 218

mechanisms inevitably had more such modules than others, increasing
their compression distance. Such measurements were balanced by using
comparable modules in both cases. Construct validity for each goal is
also increased because multiple sources of evidence (i.e., multiple
metrics) are provided for each goal.

A related threat is that realizations using different mechanisms at the
same evolution stage are not comparable because of mutual
inconsistencies that are not related to product line issues, for example
different code formatting or coding conventions. While such
inconsistencies due to manual realization cannot be completely avoided,
effort has been spent to reduce them as much as possible, for example
by using a single editor with identical formatting rules (C mode in GNU
Emacs) for developing all code, or by semi-automatically comparing the
respective realizations with diff to keep them as consistent as possible.

Another threat for both external and construct validity is that all goals
and metrics were given equal weighting during aggregation, which
makes the results unrealistic. While it is true that not all goals and
metrics are equally important in each family engineering context, they
must be customized (prioritized and extended) in an industrial context,
using the given goals as a starting point.

Construct validity is also threatened by mechanism or experimenter bias.
While it is true that the developed complexity model was influenced by
ideas that led to the development of Frame Technology, these ideas
were conceptual ones that did not penalize a particular mechanism
(except for Cloning) in advance.

Conclusion Validity

Two conclusion validity threats exist for the current case study. First, the
data set is relatively small, so that further studies with larger evolution
scenarios, for example, would be necessary to increase statistical
significance. Second, the smaller long-term differences in average
complexity among many mechanisms could also mean that they may
arbitrarily be selected in the long term. However, finer-grained
investigations lead to the opposite results, that significant complexity
reduction can in fact be achieved.

Reliability Validity

Reliability validity could be threatened if the results are not reproducible.
However, various artifacts such as code, build scripts, measurement
scripts and aggregation tables are available so that all automatic results
can instantly be reproduced. Documented hints in the aggregation tables
also make it possible to reproduce the manual measurements.

Summary and Outlook

 219

7 Summary and Outlook

This thesis presented a reactive product line evolution method that helps
family engineers in practice to keep product line infrastructure code
reusable in the long run. Like conventional single-system development,
the development of product lines does not end with initial construction.
In practice, product line infrastructure code becomes less reusable over
time. The reason is not only that the scope changes and that the product
line infrastructure is not changed, but the cause is also that the code
becomes increasingly complex because it is changed inappropriately.

To avoid this situation, this thesis offers a practical guide, aimed at family
engineers, for well-behaved product line infrastructure code evolution so
that its decay is avoided. The focus is on product line realization
techniques and variability management in the code, which provides the
foundation for a software product line practice [Krueger07]. In contrast
to the single system case, product line infrastructure code evolution is
more difficult because it is developed to be reused. This requires the
family engineer to make additional trade-offs among variability, reuse
efficiency, or ease-of configuration, which causes additional complexity,
but much of this variability-related complexity is non-essential.

Variability mechanisms allow the family engineer to intentionally realize
variability in core assets. A set of five orthogonal tactics for effective
family realization is developed, and a set of seven types of plain
variability mechanisms is presented which cover all combinations of the
mentioned tactics. The set of mechanisms comprises Cloning,
Conditional Execution, Polymorphism, Module Replacement, Conditional
Compilation, Aspect-Orientation and Frame Technology. For didactic
purposes, the mechanisms are presented as interconnected elements of
a pattern language, in a format known to software engineers in practice
which highlights each mechanism’s intent, motivation, applicability,
process, consequences, details and related patterns, and which
addresses the family engineer directly. Except for Cloning, all
mechanisms aim to make the resulting code easier to use in the long
term by consolidating common core asset elements and separating them
from variant elements in different ways. By selecting those tactics and
combinations of tactics which are at least required, the family engineer is
guided towards variability mechanisms with low complexity.

Within the larger product line evolution method developed in this thesis,
the mentioned variability mechanisms are one input to a product line
realization process. Product line evolution scenarios are a second input.
They serve to describe recurring product line requirements that can result

Summary and Outlook

 220

in more complex product line infrastructure code. Nine different
scenarios are presented, and it is shown that these scenarios consist of
combinations of atomic evolution steps. It is also shown that the order of
these sub-steps has an impact on complexity qualities of the overall
evolution process.

The product line realization process developed in this thesis consists of
the three phases Selection, Modification, and Quality Assurance,
performed in an incremental and iterative way. The goal of the Selection
phase is that the family engineer understands how variability is currently
managed in the existing code, which particular core assets are probably
affected by the upcoming change, and which defects exist in the current
code that may have a negative impact on realizing these changes. A
classification of 23 typical defects (product line infrastructure code
smells) is given.

The goal of the Modification phase is for the family engineer to realize
the required changes in the given product line infrastructure code. It is
explained that a core asset can be regarded as symmetrical if it only
contains a common element, whereas it becomes more asymmetric
when variation points or variants are added. A catalog of 37 variability
refactorings is presented whose purpose is to counteract the above-
mentioned product line infrastructure code smells.

The Quality Assurance phase consists of product line testing and
measurement sub-activities. It is shown that product line testing is not
only different from conventional testing because its artifacts contain
common and variant elements. The testing process is split into two parts:
Construction Testing and Execution Testing. The novel Construction
Testing process only tests whether the product can be produced. The
following Execution Testing process then performs conventional tests at
runtime.

For variability complexity measurement, a quality model according to the
GQM approach is proposed, consisting of seven goals, organized in a 3-
level goal hierarchy. The goals are cost effective product line
development, variability complexity reduction, and five basic sub-goals.
The sub-goals are size reduction, shape alignment, variability emphasis,
variability management consistency, and reuse efficiency. Questions are
given for all goals, and all basic sub-goals are refined to 22 concrete,
mostly newly invented metrics. For size reduction, the metrics are lines of
product line infrastructure code, temporal code churn, number of
modules and number of variation points. Shape alignment metrics are
the depth and width of the reuse hierarchy, lines of adaptee code and
four different cyclomatic complexity types, three of which have newly
been developed, and two of which are product line-specific. Variability
emphasis metrics are the numbers of externally and internally visible
variant elements, and the number of ambiguous variant elements.

Summary and Outlook

 221

Proposed metrics for variability management consistency are the number
of inconsistent usages of a mechanism, the number of inconsistent
variability mechanisms and the number of configuration inconsistencies.
Reuse efficiency is measured by reuse ratio, number of defaults, spatial
code churn among variant siblings and compression distance of spatial
variant siblings.

Because the underlying complexity concept used in this thesis always
requires a reference, a product line-specific baselining approach is
developed. It extends the single system approach which uses a temporal
reference by a second dimension that applies a spatial reference
simultaneously. The spatial baseline corresponds to an ideal product line
realization which expresses the family engineer’s variability management
intentions, possibly with variability management pseudocode. This is
illustrated in the case study.

The case study simulates the evolution of an embedded systems product
line as seen in practice. The goal is to compare what impact the
presented variability mechanisms have on different dimensions of
variability complexity and on sustainable evolution. Six different
hypotheses are developed, two of which investigate the impact of
Cloning on variability complexity, and four are mechanism-independent,
investigating properties suggested in the family realization tactics.

The code, developed in the C programming language, runs on real
hardware: wireless sensor nodes that form part of an ambient
intelligence system. All product line members capture product-specific
monitored variables of their physical environment through different
types of sensors and in different ways. Some product line members
collect this information. All product line members wirelessly transmit the
results to a receiver in certain intervals. The product line initially consists
of three different products. In six evolution steps, the product line is
gradually changed, mostly enhanced by new products or features, as
instances of the product line evolution scenarios described above. This
means that seven different product lines have been realized as the
product line’s evolution trace. Each of these are realized using a
monoculture of all the seven variability mechanisms under discussion,
plus pseudocode corresponding to ideal product line realizations,
according to a fixed set of family engineering tactics, and a realization of
this ideal baseline using a best mix of the mechanisms. All 63 product
lines were realized as consistently as possible, to eliminate complexities
due to inconsistencies. In order not to favor single mechanisms in
advance, the source code was deliberately kept as simple as necessary,
which meant omitting premature or arbitrary separation of variants or
function extractions. For all 63 product line realizations, measurements
have been performed for five different goals of the quality model, using
17 of the above mentioned metrics.

Summary and Outlook

 222

The results show that all hypotheses are supported. In accordance with
recent results in single-system clone research, Cloning was shown not to
be universally harmful, even in a product line context. In the short-term,
it resulted in similar complexity than the other mechanisms, and only in
the long term it performed considerably worse. The language-
independent hypotheses which expected significant results in complexity
reduction were all supported, with average reduction rates between
58% and 80%.

Outlook

The presented approach of sustainable product line infrastructure code
evolution is extensible in various respects. First, the complexity ideas
should be extended to cover single system development as well, which
means evaluating which semantic source code elements are essential
and which cause arbitrary complexities in specific contexts, and to
deliberately omit the latter elements when there is no reason to use
them. For example, if a multi-paradigm programming language such as
C++ is used, deliberate simplification would mean not to apply object-
orientation unless its presence becomes essential for the software
development task at hand. Extension to single system development also
means tailoring the presented product line realization process, with its
selection, modification and quality assurance phases, to one-of-a-kind
systems, omitting the spatial dimension and just focusing on temporal
evolution. This also involves continuous feedback on architectural
compliance, both for during realization and architecting, as well as
prediction of likely system evolution.

A second extension of the approach is to broaden its dynamic aspect as
a process description from realization activities to other software
engineering activities, for example architecting, so that all product line
infrastructure artifacts are systematically simplified and become more
evolvable. This point is especially concerned with finding an appropriate
overall software development sequence in a particular context, balancing
proactive and reactive approaches in such a way that the resulting
product line generations become as sustainable as required. A related
issue would be to apply formal algebraic approaches to describe and
prescribe the product line development process. This will result in a
group theoretic method for passively and actively controlling the product
line realization process, where changes in common and variable user
needs are characterized by operations on symmetries and asymmetries in
the structure or structures22 of product line assets, covering both
variability in space and variability in time. This means that alternative
approaches could be researched for describing product line ecosystems,

22 This term refers to Clements’ definition of software architecture as “the structure

or structures of the system”, according to [Clements01] a tribute to Parnas’ early
contributions to this field [Parnas74].

Summary and Outlook

 223

where the focus is not to characterize their common and variable
elements, but to elaborate the common and variable activities which
lead to their development and evolution.

Third, the scalability of the product line evolution method proposed in
this thesis should be empirically validated in the development of larger
and long-lived product line systems, for example in prominent open-
source systems or heavily reused systems in industry, in order to better
evaluate its usefulness under real-world constraints. This could also mean
to apply it in other development contexts besides embedded systems
development, for example in IT systems development, where different
trade-offs between usability and reusability are made. Scaling up the
method will also require more tool automation, for example by
extending the measurement or variability management tools developed
in this thesis, as a complement to existing tools for checking architectural
compliance in single systems [Knodel10], alongside tools for variant
comparison [Duszynski++09]. More tool support could comprise
Recommendation Systems [Robillard++10] for variability management.
Other practically relevant issues to investigate in this context are
integrated solutions for handling the co-existence of multiple product
line infrastructures at a fixed point in time (see the discussion on
[Elsner+10] and Fig.23 in Sec.3.5), and solutions to foster bounded
combinatorics (see the discussion in Sec.3.2).

Fourth, synergies with other dimensions of product line realization
technologies should be researched, in particular how a unified variability
management approach across space and time can be facilitated by
product line-specific construction and build environments (more modern
build environments than Makefiles, such as the scons23 build system
already offer some variability support), configuration management
[Anastasopoulos++09] (for expressing product line snapshots), and
variability management in the source code (by synergies with commercial
product line tools such as Gears24 or PureVariants25). This also means to
refine some of the evaluated methods and techniques, for example to
invent lightweight variability assets (Def.57) for core asset code, or to
automate code smell detection and refactoring activities.

Finally, method and tool support could also be improved in other areas,
for example in quality assurance or agile development. To this end, the
applicability of novel Cloning approaches, such as Clone Region
Descriptors [Ekoko+10], should be investigated. In product line quality
assurance, synergies of Construction Testing and other published
product line testing approaches should be investigated, as well as

23 www.scons.org (retrieved August 2009)
24 www.biglever.com (retrieved August 2009)
25 www.pure-systems.com (retrieved August 2009)

Summary and Outlook

 224

variability inspection approaches, or the usefulness of the Alpha
Complexity metric (Sec.3.4) for variability complexity detection and
reduction.

References

 225

References

[Adams06] B. Adams: AOP on the C-Side. LATE-2, AOSD 2006

[Ajila+07] S.A. Ajila, R.T. Dumitrescu: Experimental Use of Code Delta, Code
Churn, and Rate of Change to Understand Software Product Line
Evolution. Journal of Systems and Software 80(1), 74–91, 2007

[Ajila+08] S.A. Ajila, A.B. Kaba: Evolution support mechanisms for software
product line process. Journal of Systems and Software 81: 1784-
1801, 2008

[Alexander++77] C. Alexander, S. Ishikawa, M. Silverstein: A Pattern Language.
Oxford University Press, 1977

[Alexander02] C. Alexander: The Nature of Order, Book 2. CES Publishing, 2002

[Alexandrescu01] A. Alexandrescu. Modern C++ Design. Generic Programming and
Design Patterns Applied. Addison-Wesley, 2001

[Ali++10] M.S. Ali, M. Ali Babar, L. Chen, K.-J. Stol: A systematic review of
comparative evidence of aspect-oriented programming.
Information and Software Technology 52: 871-887, 2010

[Alves++05] V., P. Matos Jr., L. Cole, P. Borba, G. Ramalho: Extracting and
Evolving Mobile Games Product Lines. SPLC-9: 70-81, Springer
LNCS 3714, 2005

[Alves++06] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, C. Lucena:
Refactoring Product Lines. GPCE’06: 201-210, 2006

[Alves07] V. Alves: Implementing Software Product Line Adoption
Strategies. PhD Thesis, Universidade Federal de Pernambuco, 2007

[Amin++10] F. Amin, A.K. Mahmood, A. Oxley: A Review on Aspect-Oriented
Implementation on Product Line Components. Information
Technology Journal 9(6): 1262-1269, 2010

[Anastasopoulos+01] M. Anastasopoulos, C. Gacek: Implementing Product Line
Variabilities. ACM Software Engineering Notes 26(3): 109-117,
2001

[Anastasopoulos++04] M. Anastasopoulos, D. Muthig, I. John: Model-driven and Efficient
Development (of Embedded Systems). A Case Study from the
Mobile Phone Domain. Embedded World 2004: 615-624, 2004

[Anastasopoulos++09] M. Anastasopoulos, D. Muthig, T.H. Burgos de Oliveira, E.S.
Almeida, S.R. de Lemos Meira: Evolving a Software Product Line
Reuse Infrastructure: A Configuration Management Solution.
VaMoS-3: 19-28, 2009

[Apel07] S. Apel: The Role of Features and Aspects in Software
Development. PhD Thesis, University of Magdeburg, 2007

[Apel++07] S. Apel, C. Lengauer, D. Batory, B. Möller, C. Kästner: An Algebra
for Feature-Oriented Software Development. Technical Report
MIP-0706, Department of Informatics and Mathematics, University
of Passau, 2007

[Apel+09] S. Apel, C. Kästner: An Overview of Feature-Oriented Software
Development. Journal of Object Technology 8(5), 2009

References

 226

[Atkinson++01] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R.
Laqua, D. Muthig, B. Paech, J. Wüst, J. Zettel. Component-Based
Product-Line Engineering with UML. Addison-Wesley, 2001

[Aversano++07] L. Aversano, L. Cerulo, M. Di Penta: How Clones are Maintained:
An Empirical Study. CSMR-11: 81-90, 2007

[Bachmann++04] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh,
A. Vilbig: A Meta-model for Representing Variability in Product
Family Development. PFE-5: 66-80, Springer LNCS 3014, 2004

[Bachmann+05] F. Bachmann, P. C. Clements: Variability in Software Product
Lines. Technical Report CMU/SEI-2005-TR-12, Software Engineer-
ing Institute, 2005

[Bakota++07] T. Bakota, R. Ferenc, T. Gyimothy: Clone Smells in Software
Evolution. ICSM-23: 24-33, 2007

[Basit++05] H.A. Basit, D.C. Rajapakse, S. Jarzabek: Beyond Templates: A
Study of Clones in the STL and Some General Implications. ICSE-
27: 451-459, 2005

[Bass++97] L. Bass, P.Clements, S. Cohen, L. Northrop, J. Withey: Product Line
Practice Workshop Report. Technical Report CMU/SEI-97-TR-003,
Software Engineering Institute, 1997

[Bass++98] L. Bass, P. Clements, R. Kazman: Software Architecture in Practice.
Addison-Wesley, 1998

[Bass++03] L. Bass, P. Clements, R. Kazman: Software Architecture in Practice
(2nd ed.). Addison-Wesley, 2003

[Bass++04] L. Bass, F. Bachmann, M. Klein: Making Variability Decisions
during Architecture Design. PFE-5: 454-465, Springer LNCS 3014,
2004

[Bassett84] P.G. Bassett: Design Principles for Software Manufacturing Tools.
ACM'84 Annual Conference: 85-93, 1984

[Bassett87] P.G. Bassett: Frame-Based Software Engineering. IEEE Software
44(4): 9-16, 1987

[Bassett97] P.G. Bassett: Framing Software Reuse. Lessons From The Real
World. Prentice Hall, 1997

[Bassett02] P.G. Bassett: Does (Software + Engineering) = Software
Engineering? Position Paper, Canada’s Association of I.T.
Professionals (CIPS), 2002

[Bassett07] P.G. Bassett: The Case for Frame-Based Software Engineering.
IEEE Software 24(4): 90-99, 2007

[Batory++04] D. Batory, J.N. Sarvela, A. Rauschmayer: Scaling Step-Wise
Refinement. IEEE Trans. Software Engineering 30(6): 355-371,
2004

[Batory05] D. Batory: Feature Models, Grammars, and Propositional
Formulas. SPLC-9: 7-20, Springer LNCS 3714, 2005

[Batory++06] D. Batory, David Benavides, Antonio Ruiz-Cortés: Automated
Analysis of Feature Models: Challenges Ahead. Communications
of the ACM 49(12): 45-47, 2006

[Bayer++99] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T.
Widen, J.-M. DeBaud: PuLSE: A Methodology to Develop Software
Product Lines. SSR’99: 122-131, 1999

[Bayer+02] J. Bayer, T. Widen: Introducing Traceability to Product Lines. PFE-
4: 399-406, Springer LNCS 2290, 2002

[Bayer04] J. Bayer: View-Based Software Documentation. PhD Theses in
Experimental Software Engineering Vol.15, Fraunhofer-Verlag,
2004

References

 227

[Bayer++06] J. Bayer, S. Gerard, Ø. Haugen, J. Mansell, B. Møller-Pedersen, J.
Oldevik, P. Tessier, J.-P. Thibault, T. Widen: Consolidated Product
Line Variability Modeling. In [Käkölä+06]: 195-241

[Beck96] K. Beck: Smalltalk Best Practice Patterns. Prentice Hall, 1996

[Beck02] K. Beck: Test-Driven Development: By Example. Addison-Wesley,
2002

[Becker00] M. Becker: Generic components: a symbiosis of paradigms.
GPCE’00, 100-113, 2000

[Becker04] M.Becker: Anpassungsunterstützung in Software-Produktfamilien.
PhD Thesis, University of Kaiserslautern, 2004

[Berg++05] K. Berg, J. Bishop, D. Muthig: Tracing Software Product Line
Variability – From Problem to Solution Space. SAICSIT 2005: 182-
192

[Berger++10] C. Berger, H. Rendel, B. Rumpe: Measuring the Ability to Form a
Product Line from Existing Products. VaMoS-4: 151-154, 2010

[Bettenburg++10] N. Bettenburg, W. Shang, W.M. Ibrahim, B. Adams, Y. Zou,
A.E. Hassan: An empirical study on inconsistent changes to code
clones at the release level. Science of Computer Programming,
2010 (in print)

[Boehm10] B. Boehm: The Changing Nature of Software Evolution. IEEE
Software 27(4): 26-29, 2010

[Booch91] G. Booch: Object-Oriented Design with Applications. Benja-
min/Cummings Publishing, 1991

[Bosch00] J. Bosch: Design & Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. Addison-Wesley, 2000

[Bosch02] J. Bosch: Maturity and Evolution in Software Product Lines:
Approaches, Artefacts and Organization. SPLC-2: 247-262,
Springer LNCS 2379, 2002

[Bosch++02] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, J.H. Obbink, K. Pohl:
Variability Issues in Software Product Lines. PFE-4: 13-21, Springer
LNCS 2290, 2002

[Bosch09] J. Bosch: From Software Product Lines to Software Ecosystems.
SPLC-13: 111-119, 2009

[Brcina++09] R. Brcina, S. Bode, M. Riebisch: Optimisation Process for
Maintaining Evolvability during Software Evolution. ECBS-16: 109-
118, 2009

[Breivold++08] H.P. Breivold, I. Crnkovic, P.J. Eriksson: Analyzing Software
Evolvability. COMPSAC-32: 327-330, 2008

[Breivold09] H.P. Breivold: Software Architecture Evolution and Software
Evolvability. PhD Thesis, University of Mälardalen, 2009

[Brooks95] F.P. Brooks: The Mythical Man-Month: Essays on Software
Engineering (20th Anniversary Edition). Addison-Wesley, 1995

[Brooks10] F.P. Brooks: The Design of Design. Addison-Wesley, 2010

[Brownsword+96] L. Brownsword, P. Clements: A Case Study in Successful Product
Line Development. Technical Report CMU/SEI-96-TR-016,
Software Engineering Institute, 1996

[Bruntink++04] M. Bruntink, A. v.Deursen, R. v.Engelen, T. Tourwe: An Evaluation
of Clone Detection Techniques for Identifying Cross-Cutting
Concerns. ICSM-20: 200-209, 2004

References

 228

[Bühne++04] S. Bühne, K. Lauenroth, K. Pohl: Why is it not Sufficient to Model
Requirements Variability with Feature Models? AURE04: 5-12,
2004

[Buhrdorf++04] R. Buhrdorf, D. Churchett, C.W. Krueger: Salion’s Experience with
a Reactive Software Product Line Approach. PFE-5: 317-322,
Springer LNCS 3014, 2004

[Buschmann++96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal:
Pattern-Oriented Software Architecture: A System of Patterns.
Wiley, 1996

[Campbell++90] G.H. Campbell, S.R. Faulk, D.M. Weiss: Introduction to Synthesis.
Software Productivity Consortium, 1990

[Campbell07] G. Campbell: Software-Intensive Systems Producibility: A Vision
and Roadmap (v 0.1), Technical Note CMU/SEI-2007-TN-017,
Software Engineering Institute, 2007

[Chen++05] Y. Chen, R. Dios, A. Mili, L. Wu, K. Wang: An Empirical Study of
Programming Language Trends. IEEE Software 22(3): 72-79, 2005

[Cilibrasi+05] R. Cilibrasi, P. Vitanyi: Clustering by Compression. IEEE Trans.
Information Theory 51(4): 1523-1545, 2005

[Classen++08] A. Classen, P. Heymans, P. Schobbens: What’s in a Feature: A
Requirements Engineering Perspective. FASE 2008: 16-30, 2008

[Clements01] Introduction to [Parnas74]. In [Hoffman+01]: 157-159

[Clements+01] P. Clements, L.M. Northrop: Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001

[Clements++03] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R.
Nord, J. Stafford: Documenting Software Architectures. Views and
Beyond. Addison-Wesley, 2003

[Clements+06] P. Clements, D. Muthig (Eds.): Variability Management – Working
with Variability Mechanisms (SPLC-10 Workshop). Fraunhofer IESE
Report 152.06/E, 2006

[Coady++01] Y. Coady, G. Kiczales, M. Feely, G. Smolyn: Using AspectC to
Improve the Modularity of Path-Specific Customization in
Operating System Code. ESEC/SIGSOFT FSE 2001: 88-98

[Codenie++10] W. Codenie, N. Gonzalez-Deleito, J. Deleu, V. Blagojevic, P.
Kuvaja, J. Similä: Managing Flexibility and Variability: A Road to
Competitive Advantage. In [Kang++10]: 269-313

[Coleman++94] D. Coleman, D. Ash, B. Lowther, P. Oman: Using Metrics to
Evaluate Software System Maintainability. IEEE Computer 27(8):
44-49, 1994

[Coplien91] J.O. Coplien: Advanced C++ Programming Styles and Idioms.
Addison-Wesley, 1991

[Coplien99] J.O. Coplien: Multi-Paradigm Design for C++. Addison-Wesley,
1999

[Cordy03] J.R. Cordy: Comprehending Reality - Practical Barriers to Industrial
Adoption of Software Maintenance Automation. IWPC-11:
pp.196, 2003

[Crochemore+96] M. Crochemore, T. Lecroq: Pattern-Matching and Text-
Compression Algorithms. ACM Computing Surveys 28(1): 39-41,
1996

[Curtis79] B. Curtis. In search of software complexity. Workshop on
Qualitative Software Models for Reliability, Complexity and Cost:
95-106, 1979

References

 229

[Czarnecki++00] C. Czarnecki, U.W. Eisenecker: Generative Programming:
Methods, Tools and Applications. Addison-Wesley, 2000

[Damerau64] F.J. Damerau: A Technique for Computer Detection and
Correction of Spelling Errors. Communications of the ACM 7(3):
171-176, 1964

[Davis87] S.M. Davis; Future Perfect. Addison-Wesley, 1987

[Deelstra03] S. Deelstra: Evolution of Variability in Software Product Families.
Master Thesis, University of Groningen, 2003

[Deelstra++05] S. Deelstra, M. Sinnema, J. Bosch: Product derivation in software
product families: a case study. Journal of Systems and Software
74(2): 173-194, 2005

[Deelstra+08] S.K. Deelstra, M. Sinnema: Managing the Complexity of Variability
in Software Product Families. PhD Thesis, University of Groningen,
2008

[Demeyer++02] S. Demeyer, S. Ducasse, O. Nierstrasz: Object-Oriented
Reengineering Patterns. Dpunkt Verlag, 2002

[Dijkstra68] E.W. Dijkstra: Complexity controlled by hierarchical ordering of
function and variability. In [Naur+69]: 181-185

[Dijkstra69] E.W. Dijkstra: Notes on Structured Programming. In O.J. Dahl,
E.W. Dijkstra, C.A.R. Hoare: Structured Programming. Academic
Press Inc., 1972

[Ducasse++99] S. Ducasse, M. Rieger, S. Demeyer: A Language-Independent
Approach for Detecting Duplicated Code. ICSM-15: 109-118,
1999

[Duret++01] A. Duret-Lutz, T. Geraud, A. Demaille: Design Patterns for Generic
Programming in C++. COOTS-6: 189-202, 2001

[Duszynski++09] S. Duszynski, J. Knodel, M. Naab: Analyzing Variability in Software
Variants with the Variant Comparison Technique, IESE Report
005.09/E, 2009

[Duvall++07] P.M. Duvall, S. Matyas, A. Glover: Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley,
2007

[Eaddy++08] M. Eaddy, T. Zimmermann, K.D. Sherwood, V. Garg, G.C.
Murphy, N. Nagappan, A.V. Aho: Do Crosscutting Concerns
Cause Defects? IEEE Trans. Software Engineering, 34(4): 497-515,
2008

[Ebraert09] P. Ebraert: A bottom-up approach to program variation. PhD
Thesis, University of Brussels, 2009

[Eden+06] A.H. Eden, T. Mens: Measuring Software Flexibility. IEE Software
153 (3), 2006

[Ekoko+10] E. Duala-Ekoko, M.P. Robillard: Clone Region Descriptors:
Representing and Tracking Duplication in Source Code. ACM
Trans. Softw. Eng. Methodol. 20(1): 1-31. 2010

[Elrad++01] T. Elrad, R.E. Filman, A. Bader (Guest Eds.): Aspect-Oriented
Programming. Communications of the ACM 44(10): 28-97,
October 2001

[Elsner++10] C. Elsner, G. Botterweck, D. Lohmann, W. Schröder-Preikschat:
Variability in Time – Product Line Variability and Evolution
Revisited. VaMoS-4: 131-137, 2010

[Endres+03] A. Endres, H.D. Rombach: A Handbook of Software and Systems
Engineering. Empirical Observations, Laws and Theories. Addison-
Wesley, 2003

References

 230

[Estublier++10] J. Estublier, I.A. Dieng, T. Leveque: Software Product Line
Evolution: The Selecta System. PLEASE’10: 32-39, 2010

[Fenton96] N.E. Fenton: Software Metrics. A Rigorous and Practical Approach
(2nd ed.). International Thomson Computer Press, 1996

[Filman+00] R.E. Filman, D.P. Friedman: Aspect-Oriented Programming is
Quantification and Obliviousness. OOPSLA’00 Workshop on
Advanced Separation of Concerns, 2000

[Filman++05] R.E. Filman, T. Elrad, S. Clarke, M. Askit: Aspect-Oriented
Software Development. Addison-Wesley, 2005

[Fowler99] M. Fowler: Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999

[Gabriel96] R.P. Gabriel: Patterns of Software. Tales From The Software
Community. Oxford University Press, 1996

[Gamma++95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995

[Ganesan++06] D. Ganesan, D. Muthig, K. Yoshimura: Predicting Return-on-
Investment for Product Line Generations. SPLC-10: 13-24, 2006

[Garlan++95] D. Garlan, R. Allen, J. Ockerbloom: Architectural Mismatch or
Why it’s hard to build systems out of existing parts. ICSE-17: 179-
185, 1995

[Geppert++04] B. Geppert, C. Krueger, J. Jenny Li (Eds.): SPLiT-1, 2004

[Geppert++05] B. Geppert, C. Krueger, T. Trew (Eds.): SPLiT-2, Avaya Labs
Technical Report ALR-2005-17, 2005

[Godfrey+08] M.W. Godfrey, D.M. German: The Past, Present and Future of
Software Evolution. ICSM-24: 129-138, 2008

[Godfrey+10] M. Godfrey, C. Kapser: Copy-Paste as a Principled Engineering
Tool. In G. Wilson, A. Oram (Eds.): Making Software: What Really
Works, and Why We Believe It. O’Reilly, 2010

[Gomaa04] H. Gomaa: Designing Software Product Lines with UML. From Use
Cases to Pattern-Based Software Architectures. Addison-Wesley,
2004

[Greenwald+59] I.D. Greenwald, M. Kane: The Share 709 System: Programming
and Modification. Journal of the ACM 6(2): 128-133, 1959

[Gurp++01] G. van Gurp, J. Bosch, M. Svahnberg: On the Notion of Variability
in Software Product Lines. Working IEEE/IFIP Conference on
Software Architecture, 2001

[Hall+00] G.A. Hall, J.C. Munson: Software Evolution: Code Delta and Code
Churn. Journal of Systems and Software 54(2): 111-118, 2000

[Hannemann+02] J. Hannemann, G. Kiczales: Design Pattern Implementation in Java
and AspectJ. OOPSLA'02: 161-173, 2002

[Hanssen+08] G.K. Hanssen, T.E. Faegri: Process fusion: An industrial case study
on agile software product line engineering. Journal of Systems
and Software 81(6): 843-854, 2008

[Heering03] J. Heering: Quantification of Structural Information: On a
Question Raised by Brooks. ACM Sigsoft Software Engineering
Notes 28(3): 6, 2003

[Hoffman+01] D.M. Hoffman, D.M. Weiss (Eds.): Software Fundamentals:
Collected Papers by David L. Parnas. Addison-Wesley, 2001

[Hordijk++09] W. Hordijk, M.L. Ponisio, R. Wieringa: Harmfulness of Code
Duplication - A Structured Review of the Evidence. EASE-13, 2009

References

 231

[Hotta++10] K. Hotta, Y. Sano, Y. Higo, S. Kusumoto: Is Duplicate Code More
Frequently Modified than Non-duplicate Code in Software
Evolution?: An Empirical Study on Open Source Software. IWPSE-
EVOL’10: 73-82, 2010

[Hotz++06] L. Hotz, K. Wolter, T. Krebs, S. Deelstra, M. Sinnema, J. Nijhuis, J.
MacGregor: Configuration in Industrial Product Families: The
ConIPF Methodology. Akademische Verlagsgesellschaft, 2006

[Hunt06] J.M. Hunt: Managing Product Line Asset Bases. PhD Thesis,
Clemson University, 2006

[IEEE610] IEEE Standard Glossary of Software Engineering Terminology.
IEEE-Std 610.12-1990

[IEEE1517] IEEE Standard for Information Technology – System and Software
Lifecycle Processes – Reuse Processes. IEEE-Std 1517-2010

[IEEE12207] IEEE Standard for Systems and Software Engineering- Software
Lifecycle Processes. IEEE Std 12207-2008

[ISO24765] ISO Standard for Systems and Software Engineering - Vocabulary.
ISO/IEC/IEEE 24765:2009

[Jackson01] M. Jackson: Problem Frames: Analysing and Structuring Software
Development Problems. Addison-Wesley, 2001

[Jacobson++97] I. Jacobson, M. Griss, P. Jonsson: Software Reuse: Architecture,
Process and Organization for Business Success. Addison-Wesley,
1997

[Jalote05] P. Jalote: An Integrated Approach to Software Engineering (3rd
ed.), Springer-Verlag, 2005

[Jarzabek+10] S. Jarzabek, Y. Xue: Are Clones Harmful for Maintenance?
IWSC’10: 73-74, 2010

[John++07] I. John, J. Lee, D. Muthig: Separation of Variability Dimension and
Development Dimension. VaMoS-1: 45-49, 2007

[John10] I. John: Pattern-based Documentation Analysis for Software
Product Lines. PhD Theses in Experimental Software Engineering
Vol. 30, Fraunhofer-Verlag, 2010

[Jürgens++09] E. Jürgens, F. Deissenboeck, B. Hummel, S. Wagner: Do code
clones matter? ICSE-31: 485-495, 2009

[Jürgens+10] E. Jürgens, F. Deissenböck: How Much is a Clone? SCM-4, 2010

[Käkölä+06] T. Käkölä, J. C. Dueñas: Software Product Lines. Research Issues in
Engineering and Management. Springer-Verlag, 2006

[Kästner10] C. Kästner: Virtual Separation of Concerns: Toward Preprocessors
2.0, PhD Thesis, University of Magdeburg, 2010

[Kang++90] K.C. Kang, S.G. Cohen, J.A. Hess, W.E. Novak, A.S. Peterson:
Feature-Oriented Domain Analysis (FODA) Feasibility Study. SEI
Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute ,1990

[Kang+98] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh: FORM: A
feature-oriented reuse method with domain-specific reference
architectures. Annals of Software Engineering 5(1): 143-168,
1998

[Kang++10] K.C. Kang, V. Sugumaran, S. Park (Eds.): Applied Software
Product Line Engineering. Auerbach Publications, 2010

[Kapser+06] C.J. Kapser, M.W. Godfrey: Supporting the analysis of clones in
software systems: a case study. Journal of Software Maintenance
and Evolution: Research and Practice 18: 61-82, 2006

References

 232

[Kapser+08] C. Kapser, M.W. Godfrey: “Cloning Considered Harmful”
Considered Harmful. Empirical Software Engineering 13(6): 645-
692, 2008

[Kapser09] C.J. Kapser: Toward an Understanding of Software Code Cloning
as a Development Practice. PhD Thesis, University of Waterloo,
2009

[Karlsson95] E.-A. Karlsson: Software Reuse. A Holistic Approach. Wiley, 1995

[Kelly06] D. Kelly: A Study of Design Characteristics in Evolving Software
Using Stability as a Criterion. IEEE Trans. Software Engineering
32(5): 315-329, 2006

[Kerevinsky04] J. Kerevinsky: Refactoring to Patterns. Addison-Wesley, 2004

[Kiczales++97] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.-
M. Loingtier, J. Irwin: Aspect-Oriented Programming. ECOOP’97:
220-242, Springer LNCS 1241, 1997

[Kiczales+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W.G.
Griswold: Getting Started with AspectJ. In [Elrad++01]: 59-65

[Kim++04] M. Kim, L. Bergman, T. Lau, D. Notkin: An Ethnographic Study of
Copy and Paste Programming Practices in OOPL. ISESE’04: 83-92,
2004

[Kim++05a] S.D. Kim, J.S. Her, S.H. Chang: A theoretical foundation of
variability in component-based development. Information and
Software Technology 47: 663-673, 2004

[Kim++05b] M. Kim, V. Sazawal, D. Notkin, G.C. Murphy: An Empirical Study
of Code Clone Genealogies. ESEC/SIGSOFT FSE 2005: 187-196,
2005

[Kim08] M. Kim: Analyszing and Inferring the Structure of Code Changes.
PhD Thesis, University of Washington, 2008

[Kirby++10] J. Kirby, D.M. Weiss, R.R. Lutz: Evidence-based Software
Production. FSE-FoSER 2010: 191-194, 2010

[Knauber04] P. Knauber: Managing the Evolution of Software Product Lines.
Poster Summary from ICSR-8, 2004

[Knauber++06] P. Knauber, C. Krueger, T. Trew (Eds.): SPLiT-3, 2006

[Knauber++08] P. Knauber, A. Metzger, J. McGregor (Eds): SPLiT-5, 2008

[Knodel10] J. Knodel: Sustainable Structures in Software Implementations by
Live Compliance Checking. PhD Theses in Experimental Software
Engineering, Fraunhofer-Verlag, 2010 (to appear)

[Kokol++99] P. Kokol, V. Podgorelec, M. Zorman, M. Pidgin: Alpha – A Generic
Software Complexity Metric. ESCOM-10: 397-405, 1999

[Kolb++06] R. Kolb, D. Muthig, T. Patzke, K. Yamauchi: Refactoring a legacy
component for reuse in a software product line: a case study.
Journal of Software Maintenance and Evolution: Research and
Practice 18(2):109–132, 2006

[Kolb+10] R. Kolb, F. van der Linden: The Need for Speed / Why Do We Do
Product Lines (Point - Counterpoint Column). IEEE Software 27(3):
56-59, 2010

[Kolmogorov68] A.L. Kolmogorov: Logical Basis for Information Theory and
Probability Theory. IEEE Trans. Information Theory 14(5): 662-
664,1968

[Krinke07] J. Krinke: A Study of Consistent and Inconsistent Changes to
Code Clones. WCRE’07: 170-178, 2007

References

 233

[Krinke08] J. Krinke: Is Cloned Code more stable than Non-Cloned Code?
SCAM-8: 57-66, 2008

[Kruchten95] P. Kruchten: Architectural Blueprints—The “4+1” View
Model of Software Architecture. IEEE Software 12(6): 42-50, 1995

[Krueger92] C.W. Krueger: Software Reuse. ACM Computing Surveys 24(2):
131-183, 1992

[Krueger02a] C.W. Krueger: Easing the Transition to Software Mass
Customization. PFE-4: 282-293, Springer LNCS 2290, 2002

[Krueger02b] C.W. Krueger: Variation Management for Software Production
Lines. SPLC-2: 37-48, Springer LNCS 2379, 2002

[Krueger04] C.W. Krueger: Towards a Taxonomy for Software Product Lines.
PFE-5: 323-331, Springer LNCS 3014, 2004

[Krueger07] C.W. Krueger: The 3-Tiered Methodology: Pragmatic Insights from
New Generation Software Product Lines. SPLC-11: 97-106, 2007

[Krueger10] C.W. Krueger: New Methods behind a New Generation of Soft-
ware Product Line Successes. In [Kang++10]: 39-60

[Labrosse02] J.J. Labrosse: MicroC/OS-II: The Real-Time Kernel. Butterworth
Heinemann, 2002

[Laddad06] R. Laddad: Aspect Oriented Refactoring. Addison-Wesley, 2008

[Laird+06] L.M. Laird, C.M. Brennan: Software Measurement and Estimation:
A Practical Approach. Wiley & Sons, 2006

[Lapham06] M.A. Lapham: Sustaining Software-Intensive Systems. Technical
Note CMU/SEI-2006-TN-007, Software Engineering Institute, 2006

[Lee+04] J. Lee, K.C. Kang: Feature Binding Analysis for Product Line
Component Development. PFE-5: 250-260, Springer LNCS 3014,
2004

[Lee+10] J. Lee, G. Kotonya: Combining Service Orientation with Product
Line Engineering. IEEE Software 27(3): 35-41, 2010

[Lehman80] M.M. Lehman: Programs, Life Cycles, and Laws of Software
Evolution. Proceedings of the IEEE 68(5): 1060-1076, 1980

[Lehman02] M.M. Lehman: Software Evolution. In [Marciniak02]: 1507-1513

[Lehman+06a] M.M. Lehmann, J.C. Fernandez-Ramil: Rules and Tools for
Software Evolution Planning and Management. In
[Madhavij++06]: 539-563

[Lehman+06b] M.M. Lehman, J.C. Fernandez-Ramil: Software Evolution. In
[Madhavij++06]: 7-40

[Levenshtein66] V.I. Levenshtein: Binary codes capable of correcting deletions,
insertions, and reversals. Soviet Physics Doklady 10(8): 707-710,
1966

[Linden++07] F. van der Linden, K. Schmid, E. Rommes: Software Product Lines
in Action. The Best Industrial Practice in Product Line Engineering.
Springer-Verlag, 2007

[Liskov94] B.H. Liskov, J.M. Wing: A Behavioral Notion of Subtyping. ACM
Trans. Programming Languages and Systems 16(6): 1811-
1841,1994

[Lösch+07] F. Loesch, E. Ploedereder: Restructuring Variability in Software
Product Lines using Concept Analysis of Product Configurations.
CSMR-11: 159-170, 2007

[Lohmann++06] D. Lohmann, F. Scheler, R. Tartler, O. Spinczyk, W. Schröder-
Preikschat: A Quantitative Analysis of Aspects in the eCos Kernel.
EuroSys’06: 191-204, 2006

References

 234

[Lopez+08] R.E. Lopez-Herrejon, S. Trujillo: How complex is my Product Line?
The case for Variation Point Metrics. VaMoS-2: 97-100, 2008

[Loughran+04] N. Loughran, A. Rashid: Framed Aspects: Supporting Variability
and Configurability for AOP. ICSR-8: 127-140, 2004

[Lozano++07] A. Lozano, M. Wermelinger, B. Nuseibeh: Evaluating the
harmfulness of cloning: a change based experiment. MSR’07 at
ICSE-29, 2007

[Lozano++08] A. Lozano, M. Wermelinger: Assessing the effect of clones on
changeability. ICSM-24: 227-236, 2008

[Lozano09] A. Lozano Roduigez: Assessing the effect of source code
characteristics on changeability. PhD Thesis, The Open University,
United Kingdom, 2009

[Lutz++10] R. Lutz, D.M. Weiss, S. Krishnan, J. Yang: Software Product Line
Engineering for Long-Lived, Sustainable Systems. SPLC-14: 430-
434, Springer LNCS 6287, 2010

[Madhavij++06] N.M. Madhavij, J. Fernandez-Ramil, E.E. Perry (Eds.): Software
Evolution and Feedback - Theory and Practice. Wiley & Sons, 2006

[Mäntylä09] M. Mäntylä: Software Evolvability – Empirically Discovered Evolva-
bility Issues and Human Evaluations. PhD Thesis, Helsinki
University of Technology, 2009

[Marciniak02] J.J. Marciniak (Ed.): Encyclopedia of Software Engineering (2nd
Ed.), John Wiley & Sons, 2002

[Martin02] R.C. Martin: Agile Software Development: Principles, Patterns, and
Practices. Prentice Hall, 2002

[McCabe76] T.J. McCabe: A Complexity Measure. IEEE Trans. Software
Engineering 2(4): 308-320, December 1976

[McGregor03] J.D. McGregor: The Evolution of Product Line Assets. Technical
Report CMU/SEI-2003-TR005, Software Engineering Institute,
2003

[McGregor++10] J.D. McGregor, D. Muthig, K. Yoshimura, P. Jansen: Successful
Software Product Line Practices. IEEE Software 27(3): 16-21, 2010

[McIlroy68] M.D. McIlroy: Mass Produced Software Components. In
[Naur+69]: 88-98

[Mens+07] K. Mens, T. Tourwe: Evolutionary Problems in Aspect-Oriented
Software Development. 3rd ECRIM Workshop on Software
Evolution, 2007

[Mens+08] T. Mens, S. Demeyer (Eds.): Software Evolution. Springer-Verlag,
2008

[Meszaros07] G. Meszaros: xUnit Patterns: Refactoring Test Code. Addison-
Wesley, 2007

[Metzger++07] A. Metzger, K. Pohl, P. Heymans, P.-Y. Schobbens, G. Saval:
Disambiguating the Documentation of Variability in Software
Product Lines: A Separation of Concerns, Formalization and
Automated Analysis. RE-15, 2007

[Meyer97] B. Meyer: Object-Oriented Software Construction. Prentice Hall,
1997

[Meyer+97] M. Meyer and A. Lehnerd; The Power of Product Platforms, Free
Press, 1997

[Mohan++10] K. Mohan, B. Ramesh, V. Sugumaran: Integrating Software
Product Line Engineering and Agile Development. IEEE Software
27(3): 48-55, 2010

References

 235

[Monteiro05] M.J.T.P. Monteiro: Refactorings to Evolve Object-Oriented
Systems with Aspect-Oriented Concepts. PhD Thesis, University do
Minho, Portugal, 2005

[Munson96] J.C. Munson: Software Faults, Software Failures and Software
Reliability Modeling. Information and Software Technology, 1996

[Murphy++10] E. Murphy-Hill, G.C. Murphy, W.G. Griswold: Understanding
Context: Creating a Lasting Impact in Experimental Software
Engineering Research. FSE-FoSER’10: 255-258, 2010

[Muthig02] D. Muthig: A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines. PhD Theses in
Experimental Software Engineering Vol. 11, Fraunhofer-Verlag,
2002

[Muthig++02] D. Muthig, M. Anastasopoulos, R. Laqua, S. Kettemann, T. Patzke:
Technology Dimensions of Product Line Implementation
Approaches. Fraunhofer IESE Report 051.02/E, 2002

[Muthig+03] D. Muthig, T. Patzke: Generic Implementation of Product Line
Components. NetObjectDays 2002: 313-329, 2003

[Muthig09] D. Muthig. Software Product Line Engineering for Embedded
Systems. Postgraduate Distance Studies Textbook E-M.3,
Fraunhofer IESE & Technical University of Kaiserslautern (DIST),
2009

[Myllymäki01] T. Myllymäki: Variability Management in Software Product Lines.
PhD Thesis, University of Tampere University of Technology, 2001

[Nagrappan+05] N. Nagrappan, T. Ball: Use of Relative Code Churn Measures to
Predict System Defect Density, ICSE-27: 284-292, 2005

[Naur+69] P. Naur, B. Randell (Eds.): Software Engineering: Report on a
Conference sponsored by the NATO Science Committee. NATO,
1969

[Navarro01] G. Navarro: A Guided Tour to Approximate String Matching. ACM
Computing Surveys 33(1): 31-88, 2001

[Neighbors80] J.M. Neighbors: Software Construction Using Components. PhD
thesis, University of California, Irvine, 1980

[Neto++11] P.A. Neto, I. Machado, J.D. McGregor, E. Almeida, S.R. Meira: A
systematic mapping study of software product lines testing.
Information and Software Technology 53: 407-423, 2011

[Northrop++06] L. Northrop et al: Ultra-Large-Scale Systems: The Software
Challenge of the Future. Software Engineering Institute, 2006

[Northrop+07] L.M. Northrop, P.C. Clements: A Framework for Software Product
Line Practice, Version 5.0. Available at www.sei.cmu.edu/product-
lines/framework.html (Retrieved August 2009)

[O’Connor++94] J. O’Connor, C. Mansour, J. Turner-Harris, G.H. Campbell: Reuse
in Command-and-Control Systems. IEEE Software 11(5): 70-79,
1994

[Olbrich++10] S.M. Olbrich, D.S. Cruzes, D.I.K. Sjøberg: Are all Code Smells
Harmful? A Study of God Classes and Brain Classes in the
Evolution of three Open Source Systems. ICSM-26, 2010

[Ommering04] R.C. van Ommering: Building Product Populations with Software
Components. PhD Thesis, Groningen, 2004

[Opdyke92] W.F. Opdyke: Refactoring Object-Oriented Frameworks. PhD
Thesis, University of Illinois, 1992

[Parnas72] D.L. Parnas: On the Criteria To Be Used in Decomposing Systems
into Modules. In [Hoffman+01]: 145-155

References

 236

[Parnas74] D.L. Parnas: On A Buzzword: Hierarchical Structure. In
[Hoffman+01]: 161-170

[Parnas76] D.L. Parnas: On the Design and Development of Program Families.
In [Hoffman+01]: 193-213

[Parnas78] D.L. Parnas: Some Software Engineering Principles. In [Hoff-
man+01]: 257-265

[Parnas79] D.L. Parnas: Designing Software for Ease of Extension and
Contraction. In [Hoffman+01]: 269-290

[Parnas94] D.L. Parnas: Software Aging. In [Hoffman+01]: 551-567

[Parnas+95] D.L. Parnas, J. Madey: Functional Documents for Computer
Systems. Science of Computer Programming 25(1): 41-61, 1995

[Parnas07] D.L. Parnas: Software Product-Lines: What To Do When Enumera-
tion Won’t Work. VaMoS-1: 7-14, 2007

[Parnas08] D.L. Parnas: Multi-Dimensional Software Families: Document
Defined Partitions of a Set of Products. Keynote at SPLC-12, 2008

[Patzke+03] T. Patzke, D. Muthig: Product Line Implementation with Frame
Technology: A Case Study. Fraunhofer IESE Report 018.03/E, 2003

[Patzke+04] T. Patzke, D. Muthig: Improving Variability Management in a
Product Line of Embedded Systems – A Case Study from Industry.
SET’04: 45-48, 2004

[Patzke07] T. Patzke: An Incremental Approach for Improving Variability
Management in Embedded Systems Code. Fraunhofer IESE Report
045.07/E, 2007

[Patzke08] T. Patzke: A Method for Reducing Arbitrary Source Code
Complexity in Reusable Embedded Systems Code. SVPP’08, 2008

[Patzke++08] T. Patzke, L. Vajda, A. Török: Evolving Heterogeneous Wireless
Sensor Networks - An Assisted Living Case Study. RCEAS'07: 89-
93, 2008

[Patzke10a] T. Patzke: The Impact of Variability Mechanisms on Sustainable
Product Line Code Evolution. SE 2010: 189-200, GI-Edition
Lecture Notes in Informatics (LNI) P-159, 2010

[Patzke10b] T. Patzke: Product Line Engineering Terminology: A Survey.
Fraunhofer IESE Report (to appear)

[Pine93] B.J. Pine II: Mass Customization. The New Frontier in Business
Competition. Harvard Business School Press, 1993

[Pohl++05] K. Pohl, G. Böckle, F. van der Linden: Software Product Line
Engineering. Foundations, Principles, and Techniques. Springer-
Verlag, 2005

[Pont01] M.J. Pont: Patterns for Time-Triggered Embedded Systems.
Addison-Wesley, 2001

[Poulin96] J.S. Poulin: Measuring Software Reuse. Principles, Patterns, and
Economic Models. Addison-Wesley, 1996

[Pree94] Meta Patterns—A Means For Capturing the Essentials of Reusable
Object-Oriented Design. ECOOP’94, 1994

[Pressman10] R.S. Pressman: Software Engineering. A Practitioner's Approach
(7th Ed.). McGraw-Hill, 2010

[Prieto94] R. Prieto-Diaz: The Disappearance of Software Reuse. ICSR-3:
225,1994

[Pussinen02] M. Pussinen: A survey on software product-line evolution. Institute
of Software Systems, Tampere University of Technology, 2002

[Rahman++10] F. Rahman, C. Bird, P. Devanbu: Clones: What is that Smell? MSR-
7: 72-81, 2010

References

 237

[Rajapakse+07] D.C. Rajapakse, S. Jarzabek: Using Server Pages to Unify Clones in
Web Applications: A Trade-off Analysis. ICSE-29, 2007

[Rajlich+00] V.T. Rajlich, K.H. Bennett: A Staged Model for the Software Life
Cycle. IEEE Computer 33(7): 66-71, 2000

[Ramasubbo+10] N. Ramasubbu, R.K. Balan: Evolution of a Bluetooth Test
Application Product Line: A Case Study. FSE-18: 107-116, 2010

[Ran99] A. Ran: Software Isn’t Build from Lego Blocks. SSR’99: 164-169,
1999

[Rashid++10] A. Rashid, T. Cottenier, P. Greenwood, R. Chitchyan, R. Meunier,
R. Coelho, M. Südholt, W. Joosen: Aspect-Oriented Software
Development in Practice: Tales from AOSD-Europe, IEEE Computer
43(2): 19-26, 2010

[Reiser08] M.-O. Reiser: Managing Complex Variability in Automotive
Product Lines with Subscoping and Configuration Links. PhD
Thesis, University of Berlin, 2008

[Riebisch03] M. Riebisch. Towards a More Precise Definition of Feature Models.
Position Paper in: M. Riebisch, J. 0. Coplien, D. Streitferdt (Eds.):
Modelling Variability for Object-Oriented Product Lines, 2003

[Roberts99] D.B. Roberts: Practical Analysis for Refactoring. PhD Thesis,
University of Illinois, 1999

[Robillard++10] M.P. Robillard, R. J. Walker, T. Zimmermann: Recommendation
Systems for Software Engineering. IEEE Software 27(4): 80-86,
2010

[Roy++09] C.K. Roy, J.R. Cordy, R. Koschke: Comparison and evaluation of
clone detection techniques and tools: A quantitative approach.
Science of Computer Programming 74(7): 470-495, 2009

[Saha++10] R.K. Saha, M.Asaduzzaman, M.F. Zibran, C.K. Roy, K.A.
Schneider: Evaluating Code Clone Genealogies at Release Level:
An Empirical Study. SCAM-10: 87-96, 2010

[Sauer02] F. Sauer: Metadata-Driven Multi-Artifact Code Generation Using
Frame Oriented Programming. OOPSLA’02 Workshop on
Generative Techniques in the Context of MDA, 2002

[Savolainen+01] J. Savolainen, J. Kuusela: Volatility Analysis Framework for Product
Lines. SSR’01: 133-141, 2001

[Savolainen++09] J. Savolainen, J. Bosch, J. Kuusela, T. Männistö: Default Values for
Improved Product Line Management. SPLC-13: 51-60, 2009

[Schäfer++09] I. Schäfer, A. Worret, A. Poetzsch-Heffter: A Model-Based
Framework for Automated Product Derivation. MAPLE’09, 2009

[Schmid03] K. Schmid: Planning Software Reuse - A Disciplined Scoping Ap-
proach for Software Product Lines. PhD Theses in Experimental
Software Engineering Vol. 12, Fraunhofer-Verlag, 2003

[Schmid+04] K. Schmid, I. John: A customizable approach to full lifecycle varia-
bility management. Science of Computer Programming 53(3):
259-284, 2004

[Selim++10] G.M.K. Selim, L. Barbour, W. Shang, B. Adams, A.E. Hassan, Y.
Zou: Studying the Impact of Clones on Software Defects. WCRE-
17: 13-21, 2010

[Shaw+97] M. Shaw, P. Clements: A Field Guide to Boxology: Preliminary
Classification of Architectural Styles for Software Systems.
COMPSAC-21: 6-13, 1997

[Shaw05] Mary Shaw (Ed.). Software Engineering for the 21st Century: A
basis for rethinking the curriculum, Technical Report CMU-ISRI-05-
108, Carnegie Mellon University, 2005

References

 238

[Sinnema++04] M. Sinnema, S. Deelstra, J. Nijhuis, J. Bosch: COVAMOF: A
Framework for Modeling Variability in Software Product Families.
SPLC-3: 197-213, Springer LNCS 3154, 2004

[Smaragdakis+02] Y. Smaragdakis, D. Batory: Mixin Layers: An Object-Oriented
Implementation Technique for Refinements and Collaboration-
Based Designs. ACM Trans. Software Engineering and
Methodology 11(2): 215-255, 2002

[Sneed++10] H.M. Sneed, R. Seidl, M. Baumgartner: Software in Zahlen. Carl
Hanser Verlag, 2010

[Solingen++02] R. van Solingen, V.R. Basili, G. Caldiera, H.D. Rombach: Goal
Question Metric (GQM) Approach. In [Marciniak02]: 578-583

[Sommerville04] I. Sommerville: Software Engineering (7th Ed.). Pearson Education,
2004

[Steimann06] F. Steimann: The Paradoxical Success of Aspect-Oriented
Programming. OOPSLA'06: 481-497, 2006

[Svahnberg+99] M. Svahnberg, J. Bosch: Evolution in Software Product Lines.
Journal of Software Maintenance 11(6): 391-422, 1999

[Svahnberg03] M. Svahnberg: Supporting Software Architecture Evolution. PhD
Thesis, Blekinge Institute of Technology, 2003

[Svahnberg++05] M. Svahnberg, J: van Gurp, J. Bosch: A Taxonomy of Variability
Realization Techniques. Software - Practice and Experience 35:
705-754, Wiley & Sons, 2005

[Synthesis93] Reuse-Driven Software Process Guidebook. Software Productivity
Consortium, 1993

[Szyperski98] C. Szyperski: Component Software. Addison-Wesley, 1998

[Tarr++99] P. Tarr, H. Ossher, W. Harrison: N Degrees of Separation: Multi-
Dimensional Separation of Concerns. ICSE-21: 107-119, 1999

[Tegarden++92] D.P. Tegarden, S.D. Sheetz, D.E. Monarchi: Effectiveness of
Traditional Software Metrics for Object-Oriented Systems. System
Sciences: 359-368, 1992

[Thörn10] C. Thörn: Current state and potential of variability management
practices in software-intensive SMEs: Results from a regional
industrial survey. Information and Software Technology 52: 411-
421, 2010

[Thummalapenta++10] S. Thummalapenta, L. Cerulo, L. Aversano, M. Di Penta: An
empirical study on the maintenance of source code clones.
Empirical Software Engineering 15: 1-34, 2010

[Tourwe03] T. Tourwe, J. Brichau, K. Gybels. On the Existence of the AOSD
Evolution Paradox. AOSD’03 SPLAT Workshop, 2003

[Trujillo07] S. Trujillo Gonzalez: Feature Oriented Model Driven Product Lines.
PhD Thesis, Universidad del País Vasco, 2007

[Vlissides98] J. Vlissides: Pattern Hatching: Design Patterns Applied. Addison-
Wesley, 1998

[Wake04] W.C. Wake: Refactoring Workbook. Addison-Wesley, 2004

[Weiss+99] D.M. Weiss, C.T.R. Lai: Software Product-Line Engineering: A
Family-Based Software Development Process. Addison-Wesley,
1999

[Whithey96] J. Withey: Investment Analysis of Software Assets for Product
Lines. Technical Report CMU/SEI-96-TR-010, Software Engineering
Institute, 1996

References

 239

[Wilkes++51] M.V. Wilkes, D.J. Wheeler, S. Gill: The Preparation of Programs for
an Electronic Digital Computer. Addison-Wesley, 1951

[Wirfs09] R. J. Wirfs-Brock: Creating Sustainable Designs. IEEE Software
26(3): 5-7, 2009

[Wirth01] N. Wirth: Embedded Systems and Real-Time Programming.
EMSOFT 2001: 486-492, Springer LNCS 221, 2001

[Wohlin00] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A.
Wesslen: Experimentation in Software Engineering. An
Introduction. Kluwer Academic Publishers, 2000

[Woolf98] B. Woolf: The Null Object Pattern. In R.C. Martin, D. Riehle, F.
Buschmann (Eds.): Pattern Language of Program Design 3.
Addison-Wesley, 1998

[Wong++01] T.W. Wong, S. Jarzabek, S.M. Swe, R. Shen, H. Zhang: XML
Implementation of Frame Processor. SSR’01: 164-172, 2001

[Yin03] R.K. Yin: Case Study Research. Design and Methods (3rd ed.).
Sage Publications, 2003

[Zave99] P. Zave, “FAQ Sheet on Feature Interactions”,
www.research.att.com/~pamela/faq.html, 1999 (retrieved August
2009)

[Zhang++01] H. Zhang, S. Jarzabek, S. Myat Swe: XVCL Approach to Separating
Concerns in Product Line Assets. GCSE-3: 36-47, Springer LNCS
2186, 2001

[Zhang++03] H. Zhang., S. Jarzabek: An XVCL-Based Approach to Software
Product Line Development. SEKE-15, 2003

[Zhang++08] T. Zhang, L. Deng, J. Wu, Q. Zhou, C. Ma: Some Metrics for
Accessing Quality of Product Line Architecture. International
Conference on Computer Science and Software Engineering: 500-
503, 2008

[Zhang+10] H. Zhang, S. Jarzabek: A Hybrid Approach to Feature-Oriented
Programming in XVCL. SPLC-14: 440-445, Springer LNCS 6287,
2010

[Zhang++11] M. Zhang, T. Hall, N. Baddoo: Code Bad Smells: a review of
current knowledge. Journal of Software Maintenance and
Evolution: Research and Practice 23: 179-202, 2011

References

 240

Appendix A

 241

Appendix A Glossary

Abstraction (17): A succinct description which suppresses details that
are unimportant for the purpose at hand, while emphasizing properties
that are important to this purpose.

Activity (10): “A set of cohesive tasks of a process” [IEEE12207].

Application Engineering (AE, 61): The process of PLE in which a
particular PL member is produced by consuming elements from the PLI.
The goal is to efficiently produce all required PL members. Contrast with:
Family Engineering.

Artifact (44): The output of an engineering process. An artifact may be
a requirements specification, an architecture, a source code module, a
test case, or any other useful process result.

Binding (13): “The act of assigning a value to a variable in a module”
[Bassett97].

Binding Time (14): The moment when binding happens.

Commonality (45): Prescribes what needs to be identical among a set
of PL members. The goal is to facilitate rapid, cost-effective
development. Contrast with: Variability.

Complexity (43): The absence of simplicity in an artifact or process. This
defect makes the artifact more difficult to develop than necessary. It
arises when elements have been realized in engineering that are not
immediately required by stakeholders. Complexity reduction aims at
making the artifact easier to understand and change. See also: Variability
Complexity.

Composition (9): a) The activity of a user who combines executable
modules without modifying them internally, or b) the result of the
activity in a). Contrast with: Configuration.

Configuration (28): The activity of a reuser adapting constructible
modules to modify them internally via manual techniques or automated
mechanisms. Contrast with: Composition.

Constructible Module (26): A module that is interpreted by a
construction interpreter. Contrast with: Executable Module.

Construction (27): The interpretation of a constructible module by a
construction interpreter. Contrast with: Execution.

Construction Interpreter (25): An interpreter whose input consists of
constructible modules. Contrast with: Execution Interpreter.

Appendix A

 242

Construction Time (31): The binding time during which a construction
interpreter interprets a constructible module, emitting executable
modules. Contrast with: Execution Time.

Context (20): “The setting in which software engineering is practiced”
[Murphy++10].

Core Asset (56): A reusable artifact that is developed for reuse in more
than one PL member. Core assets explicitly capture the PL’s commonality
and predicted variability. The goal is to support the efficient production
of all PL members. Contrast with: Variability Asset.

Default (55): A variant that is automatically chosen if no other variant is
selected in its place. The goal is to simplify production, decreasing the
number of configuration options.

Development (12): All the activities associated with a software product,
from conception through client negotiation, design, realization,
validation, operation, and evolution.

Domain Engineering: The process (11) of software product line
engineering in which the commonality and the variability of the PL are
defined and realized [Pohl++05].

Encapsulation (18): Hides the elements of an executable abstraction
that its users do not need to know.

Engineering (41): A process “governing the total technical and
managerial effort required to transform a set of [stakeholders’] needs
into a solution and to support that solution throughout its life”
[ISO24765]. The goal is to support “practical, cost-effective solutions to
problems [in system development] in a timely and predictable manner”
[Shaw05]. Syn.: Systems Engineering. See also: Software Engineering.

Evolution (66): The sub-activity of development during which changes
occur in the problem space over an extended period of time which lead
to changes in real-world artifacts in the solution space. The goals are to
explicitly address long-term issues and to “aim at long-term progressive
quality change trends, possibly tolerating short-term degradation”
[Lehmann+06]. Syn.: Sustainment, Variability in Time. See also:
Variability Evolution.

Evolution Step (68): A smaller sequence of changes during the larger
evolution of a system. The goal is to break down the evolution activity
into more manageable sub-activities that keep the evolving artifact
maximally stable.

Executable Module (4): a) A binary module that can run on computer
hardware, or b) a module that can be compiled and linked to run on
computer hardware. Contrast with: Constructible Module.

Execution (3): The interpretation a) of a binary module by computer
hardware, or b) of a module “by a compiler-linker-computer trio, or by

Appendix A

 243

any functionally equivalent interpreter” [Bassett97]. Contrast with:
Construction.

Execution Interpreter (5): An interpreter whose input consists of
executable modules. Contrast with: Construction Interpreter.

Execution Time (15): The binding time during which an execution
interpreter interprets an executable module, emitting machine code.
Contrast with: Construction Time, Runtime.

Family Engineering (FE, 60): The process of PLE in which PL assets are
developed for a given scope. Domain Engineering consists of family
engineering and scoping. The goal is to reduce PL complexity by
developing just the required PL assets. Contrast with: Application
Engineering. Note: Family engineering and product line engineering are
different concepts.

Feature (63): In PLE, a feature is an end-user visible functional or non-
functional characteristic of a PL member. The goals are a) to
communicate variable characteristics between stakeholders and software
engineers, and b) to document variability in the form of abstract
requirements.

Interpreter (2): “An agent capable of interacting with a module”
[Bassett97].

Mass Customization (29): Focuses on the means of efficiently
producing and evolving multiple similar products, “exploiting what they
have in common and managing what varies among them” [Krueger02a].

Method: Guidance and criteria that prescribe a systematic, repeatable
technique for performing an activity [Synthesis93].

Module (1): An artifact containing a group of symbols that can be
consistently referenced as a unit.

Needs (24): “The considerations that customers identify as desired
capabilities, perceived weaknesses, or desired improvements in a system
of interest” [Campbell07]. See also: Requirements.

Problem (36): “The gap between a system as it exists and the system as
would better enable a customer in achieving objectives” [Campbell07].
Contrast with: Solution.

Problem Space (50): Early activities in PLE where PL members are
specified. Contrast with: Solution Space.

Process (11): Defines, in a repeatable and consistent way, how
“development is - or should be - performed, i.e. the specific activities
that need to be conducted” [Linden++07].

Product Line (PL, 23): A set of similar systems that “share a common,
managed set of features satisfying the needs of a particular market

Appendix A

 244

segment […], and that are developed from a common set of core assets
in a prescribed way” [Clements+01].

Product Line Asset (59): An artifact that consists of a set of core assets
and the corresponding variability assets. The goal is to capture the
output of FE in an integrated form.

Product Line Engineering (PLE, 49): “An engineering approach that
subsumes all processes […] supporting the development […] of a PL”
[Muthig09].

Product Line Infrastructure (PLI, 62): A repository of all PL assets of an
organization, including common methods and tools for developing these
assets in FE, and for reusing them in AE. The main goals are to capture
all types of elements relevant in the PLE life cycle, and to provide an
explicit interface between FE and AE. Syn.: Core Asset Base.

Product Line Member (48): “A deployed software-intensive system or
software” [Northrop+07] “that has been defined [by stakeholders] to be
built [from a PLI]” [Metzger++07].

Production (30): “The process used for building all products in a PL”
[Northrop+07]. Syn.: Instantiation, Product Derivation.

Production Plan (38): A guide to show how products in the PL will be
composed and constructed from modules.

Realization (34): a) The lower, more detailed level of an abstraction, or
b) the process of developing the artifact in a). Contrast with:
Specification.

Requirements (35): “The criteria, consistent with needs and constraints,
that determine whether a product is acceptable as a solution to a
problem” [Campbell07].

Reusability (19): The capability of a module to be adapted in order to
become usable in a specific context. Reusability depends on usability,
variability and adaptability. See also: Usability.

Reuse (21): “The process of adapting” a module “in order to make it
usable” (adapted from [Bassett97]). See also: Use.

Reuse Hierarchy (40): In the reuse hierarchy which is formed when a
constructible module A reuses a constructible module B, there exist reuse
levels with the following properties: 1) Level 0 is the set of all
constructible modules A such that there does not exist a constructible
module B for which R(A,B); 2) Level n is the set of all constructible
modules A such that a) there exists a constructible module B at level n-1
such that R(A,B), and b) if R(A,C) then C is at level n-1 or lower (adapted
from [Parnas74]).

Reuse Relation (39): We can say of two modules A and B that A reuses
B if correct construction of B may be necessary for A to complete the

Appendix A

 245

production process described in its specification (adapted from
[Parnas79]). See also: Use Relation.

Reuser (22): An agent capable of reusing a module. See also: User.

Runtime (16): The binding time during which machine code runs on
computer hardware. Contrast with: Execution Time.

(Development) Scenario: Describes a certain arrangement of software
development activities that lead to the development of a piece of
software (or even a whole PL) [Schmid03].

Scoping: The process of determining the boundaries of the PLE activity
[Linden++07]. Syn.: Product Management [Pohl++05].

Software Engineering: An engineering approach to the practical, cost-
effective multi-person development of multi-version software systems,
with a primary focus on processes (adapted from [Jalote05, Shaw05,
Parnas78]).

Solution (37): “A means of transforming a system to resolve an
identified problem” [Campbell07]. Contrast with: Problem.

Solution Space (51): Later activities in PLE where PL members are
realized. Contrast with: Problem Space.

Specification (33): Serves to state requirements, and represents the
higher of the two levels of abstraction. Contrast with: Realization.

Stakeholder (42): Someone who has a vested interest in a system and
who is entitled to contribute to requirements.

Traceability (58): The ability to establish a relationship between two
artifacts developed in different engineering phases. The goal in PLE is to
efficiently identify dependencies between core assets that exist due to
variability.

Usability (7): The capability of an executable module to be used again.
Usability depends on functionality, efficiency and ease-of-change. See
also: Reusability.

Use (6): The process of reapplying an executable module in unmodified
form. Syn.: Unmodified Reuse. See also: Reuse.

Use Relation (32): We can say of two modules A and B that A uses B if
correct execution of B may be necessary for A to complete the task
described in its specification (adapted from [Parnas79]). See also: Reuse
Relation.

User (8): An agent capable of using an executable module. See also:
Reuser.

Variability (46): Prescribes what may differ among a set of PL members.
“The goal […] is to maximize ROI [for developing products] over a
specified period of time or number of products” [Bachmann+05]. The

Appendix A

 246

major types of variability are optional and alternative variability. Contrast
with: Commonality.

Variability Asset (57): An artifact, such as a Decision Model, a
Variability Diagram, or a Product Model, that captures the relationships,
constraints and resolutions of variability in core assets in an integrated
form. The goal is to facilitate traceability of variability throughout the
engineering life cycle. Contrast with: Core Asset.

Variability Complexity (65): The absence of simplicity in a PLI or PLE
process. This defect makes the PLI more difficult to evolve than
necessary. It arises when variability-related elements have been realized
in FE that are not immediately required by AE. PL complexity reduction
aims at making the PLI easier to evolve, especially the variants within the
core assets. See also: Complexity.

Variability Evolution (67): The sub-activity of PLE during which
changes occur in the problem space over an extended period of time,
which lead to changes in solution-space artifacts of the PLI. The goals are
to explicitly address long-term issues, such as unpredicted changes in the
variability of the PL. See also: Evolution.

Variability Management: Encompasses the activities of explicitly
representing variability in software artifacts throughout the lifecycle,
managing dependences among different variabilities, and supporting the
instantiation of the variabilities [Schmid+04]. Syn.: Variation
Management [Krueger02b].

Variability Mechanism (64): A particular way of intentionally realizing
variability in core assets. The goal is to balance reuse effort and evolution
effort by efficiently organizing common elements and variants, as
appropriate in the particular context of PLE.

Variability Refactoring (69): A specific FE activity by which a PLI is
changed in order to evolve or reuse it in a more cost-effective way.

Variant (53): A realization of variation within PL assets, at a particular
VP. A variant consists of one or more variant elements. The goal is to
realize how PL members differ from each other.

Variant Element (54): A cohesive part of a variant.

Variation (47): A particular instance of variability. The goal is to define
how PL members have to differ conceptually from each other.

Variation Point (VP, 52): A particular realization of variability within PL
assets. The main goal is to highlight where variability occurs within the
realized commonality, making the realized variations easy to see and
control.

Appendix B

 247

Appendix B Scripts

The following listings show the executable code of the Python scripts
used in the case study. The frame processor scripts are accompanied by
unit tests (not shown), and the lineio scripts are shared by the frame
processor and the metrics scripts. The metrics scripts have been used to
measure edit and compression distances, code delta and code churn.

B.1 Frame Processor (version 1.8.3)

1

5

10

15

20

25

30

35

40

#!/usr/bin/env python
'''
 fp - a variability management tool based on frame technology
 Copyright (C) 2002-2009 Thomas Patzke (thomas.patzke@web.de)

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
'''

__author__ ='Thomas Patzke'
__version__='1.8.3'

import sys,os
from os.path import dirname,basename
from lineio import readlines,writelines
from frame import *

frameStore={}
adaptPairs=[]

def createFrame(fn):
 if not fn in frameStore:
 frameStore[fn]=Frame(readlines(fn))
 return frameStore[fn]

def getAdaptees(fn):
 ret=[]
 f=createFrame(fn)
 for el in getChildren(f):
 ret.append((fn,el))
 return ret
def makeAdaptPairs(a):

Appendix B

 248

45

50

55

60

65

70

75

80

85

90

95

100

105

 for el in a:
 adaptPairs.append(el)
 d=getAdaptees(el[1])
 makeAdaptPairs(d)

def buildFrames():
 for el in adaptPairs:
 f0=createFrame(el[0]).getFramePiece(el[1])
 f1=createFrame(el[1])
 f0.adapt(f1)
 processed=[]
 for el in adaptPairs:
 if not el[1] in processed:
 processed.append(el[1])
 f=createFrame(el[1])
 f.doChange()

def createOutput():
 for f in frameStore.values():
 o=getOutput(f)
 f={}
 for el in o:
 if hasKeyword(el,'OUTFILE'):
 p=getParameter(el)
 f[p]=[]
 elif not hasKeyword(el,'VP') and not hasKeyword(el,'END'):
 f[p].append(el)
 for el in f:
 print('=> '+el+' ('+str(len(f[el]))+' l.)')
 writelines(el,f[el])

def run(f,fn='#'):
 frameStore[fn]=Frame(f)
 a=getAdaptees(fn)
 makeAdaptPairs(a)
 buildFrames()
 createOutput()

usage='Frame Processor '+__version__+'\n'+\
'''Usage: fp [options] spc

Argument:
spc Specification frame

Option:
-h Print this help

Commands:
OUTFILE <file> Create output in <file>
ADAPT <adaptee> Adapt the frame <adaptee>
VP <vp> Define a variation point <vp>
END End of a variation point (mandatory)
INSERT <vp> Override the text of variation point(s) <vp>
INSERT_BEFORE <vp> Insert before the variation point
INSERT_AFTER <vp> Insert after the variation point
'''

def main():
 if len(sys.argv)==1 or sys.argv[1]=='-h':
 print(usage)
 sys.exit(-1)
 p=dirname(sys.argv[1])

Appendix B

 249

110

115

 if p!='':
 os.chdir(p)
 frameStore.clear()
 spc=[]
 for el in sys.argv[1:]:
 b=basename(el)
 spc.append('ADAPT '+b)
 run(spc)

if __name__=='__main__':
 main()

Listing 10: Frame processor driver: fp.py

1

5

10

15

20

25

30

40

45

50

import sys
from frameparser import *

def getAdaptText(f,a):
 ret=[]
 fnd=0
 for el in f:
 if hasAdaptee(el,a):
 fnd=1
 continue
 if fnd:
 if hasKeyword(el,'ADAPT') or hasKeyword(el,'OUTFILE'):
 return ret
 else:
 ret.append(el)
 return ret

def getChildren(f):
 ret=[]
 for el in f:
 if hasKeyword(el,'ADAPT'):
 c=getParameter2(el)
 if not c in ret:
 ret.append(c)
 return ret

def getModifyText(f,i):
 ret=[]
 for j in range(i+1,len(f)):
 if hasCommand(f[j]):
 return ret
 ret.append(f[j])
 return ret

def getOutput(f):
 ret=[]
 doOutput=0
 for el in f:
 if hasKeyword(el,'OUTFILE'):
 doOutput=1
 if hasKeyword(el,'ADAPT'):
 doOutput=0
 if doOutput:
 ret.append(el)
 return ret

Appendix B

 250

55

60

65

70

75

80

85

90

95

100

105

110

def appendUnique(lst,d):
 if not d in lst:
 lst.append(d)
def extendUnique(lst,l):
 for el in l:
 appendUnique(lst,el)

def getVpEndPos(f,i):
 pos=i
 indent=0
 while pos<len(f):
 if hasKeyword(f[pos],'VP'):
 indent=indent+1
 if hasKeyword(f[pos],'END'):
 indent=indent-1
 if indent==0:
 return pos
 pos=pos+1
 print("error: VP '"+getParameter(f[i])+"' without END")
 sys.exit(-1)

class Frame(list):
 def __init__(self,d=[]):
 super(Frame,self).__init__(d)
 self.commands=[]
 def adapt(self,f):
 for i in range(len(self)):
 if hasKeyword(self[i],'INSERT_BEFORE') or hasKeyword(self[i],
 'INSERT_AFTER') or hasKeyword(self[i],'INSERT'):
 modifier=(self[i],getModifyText(self,i))
 appendUnique(f.commands,modifier)
 extendUnique(f.commands,self.commands)

 def doChange(self):
 for i in range(len(self.commands)):
 # this iteration must come first,
 # because the commands must only be traversed once!
 vp=getParameter(self.commands[i][0])
 j=0
 while j<len(self):
 if matchesVp(self[j],vp):
 m=self.commands[i][1]
 if hasKeyword(self.commands[i][0],'INSERT_BEFORE'):
 self[j:j]=m
 j=j+len(m)
 if hasKeyword(self.commands[i][0],'INSERT_AFTER'):
 p=getVpEndPos(self,j)
 self[p+1:p+1]=m
 j=j+p+len(m)
 if hasKeyword(self.commands[i][0],'INSERT'):
 p=getVpEndPos(self,j)
 self[j+1:p]=m
 j=j+p+len(m)
 j=j+1

 def getFramePiece(self,a):
 ret=Frame(getAdaptText(self,a))
 ret.commands=self.commands
 return ret

Listing 11: Logic for processing a single frame: frame.py

Appendix B

 251

1

5

10

15

20

25

import os

def hasKeyword(str,kw):
 lst=str.split()
 if lst!=[]:
 return lst[0]==kw

commands=('INSERT_BEFORE','INSERT_AFTER','ADAPT','OUTFILE','INSERT')
def hasCommand(str):
 lst=str.split()
 if len(lst)>0:
 return lst[0] in commands

def getParameter(str):
 pos=str.find(' ')
 if pos!=-1:
 return str[pos+1:].rstrip()
def getParameter2(str):
 c=getParameter(str)
 if c in os.environ:
 return os.environ[c]
 return c

def matchesVp(str,vp):
 if hasKeyword(str,'VP'):
 return getParameter(str)==vp
def hasAdaptee(str,ad):
 if hasKeyword(str,'ADAPT'):
 return getParameter2(str)==ad

Listing 12: Logic for parsing a single line: frameparser.py

1

5

10

15

20

from os import sep

def readlines(fn):
 f=open(fn)
 ret=f.readlines()
 f.close()
 for pos in range(len(ret)):
 if ret[pos].endswith('\n'):
 if sep=='/': # on Unix systems, handle Dos leaves correctly
 if len(ret[pos])>1 and ret[pos][-2]=='\r':
 ret[pos]=ret[pos][:-2]+ret[pos][-1]
 ret[pos]=ret[pos][:-1]
 return ret
def writelines(fn,data):
 f=open(fn,'w')
 # use tmp because data has to remain const!
 tmp=[]
 for el in data:
 if el.endswith('\n'):
 tmp.append(el)
 else:
 tmp.append(el+'\n')
 f.writelines(tmp)
 f.close()

Listing 13: Logic for input and output of text lines: lineio.py

Appendix B

 252

B.2 Measurement Scripts (version 0.1.7)

1

5

10

15

20

25

30

35

40

45

50

55

#!/usr/bin/env python

import sys,zlib,math
from optparse import OptionParser
from os.path import basename
from lineio import readlines

def readlines_noindent(f):
 d=f.readlines()
 ret=[]
 for el in d:
 el2=el.strip()
 ret.append(el2)
 return ret
def readData(modules,chars):
 ret=[]
 for m in modules:
 f=open(m)
 if chars==1:
 d=f.read()
 else:
 d=readlines_noindent(f)
 f.close()
 ret.append(d)
 return ret

def ncd(s1,s2):
 sz1=len(zlib.compress(s1))
 sz2=len(zlib.compress(s2))
 c_all=len(zlib.compress(s1+s2))
 c_min=min((sz1,sz2))
 c_max=max((sz1,sz2))
 return float(c_all-c_min)/c_max
def ncdx(s1,s2):
 if s1==s2:
 return 0.0
 ret=(ncd(s1,s2)+ncd(s2,s1))/2
 if ret>1:
 return 1.0
 return ret

def levenshtein(s,t):
 m=len(s)
 n=len(t)
 d=[list(range(n+1))]
 for i in range(1,m+1):
 d=d+[[i]]
 for i in range(m):
 for j in range(n):
 rm=d[i][j+1]+1
 add=d[i+1][j]+1
 c=0
 if s[i]!=t[j]:
 c=1
 chg=d[i][j]+c
 val=min(rm,add,chg)
 d[i+1].append(val)
 return d[m][n]
def levenshtein2(s,t):

Appendix B

 253

60

65

70

75

80

85

90

100

105

110

115

120

125

 m=len(s)
 n=len(t)
 d=[[]]
 for i in range(n+1):
 d[0].append((i,0,0,0)) # dist,remove,add,change
 for i in range(1,m+1):
 d=d+[[(i,0,0,0)]]
 for i in range(m):
 for j in range(n):
 rm=d[i][j+1][0]+1
 add=d[i+1][j][0]+1
 c=0
 if s[i]!=t[j]:
 c=1
 chg=d[i][j][0]+c
 if rm<=add:
 if rm<=chg:
 d[i+1].append((rm,d[i][j+1][1]+1,d[i][j+1][2],d[i][j+1][3]))
 else:
 d[i+1].append((chg,d[i][j][1],d[i][j][2],d[i][j][3]+c))
 elif chg<=add:
 d[i+1].append((chg,d[i][j][1],d[i][j][2],d[i][j][3]+c))
 else:
 d[i+1].append((add,d[i+1][j][1],d[i+1][j][2]+1,d[i+1][j][3]))
 return d[m][n]

def tri(m):
 ret=[]
 dim=int(math.sqrt(len(m)))
 for i in range(len(m)):
 # for dimension n, element x*(n+1) is dropped (main diagonal)
 if i%(dim+1)!=0:
 ret.append(m[i])
 return ret
def avg(v):
 sum=0.0
 for el in v:
 sum=sum+el
 return sum/len(v)
def stdev(v):
 a=avg(v)
 sum=0.0
 for el in v:
 sum=sum+(el-a)*(el-a)
 x=sum/len(v)
 return math.sqrt(x)

def dist(modules,type='compression',agg='none'):
 if type.startswith('edit'):
 chars=0
 else:
 chars=1
 d=readData(modules,chars)

 v=[]
 for el in d:
 for el2 in d:
 if type=='compression':
 val=ncdx(el,el2)
 elif type=='edit':
 val=levenshtein(el,el2)
 elif type=='edit2':

Appendix B

 254

130

135

140

145

150

155

160

165

170

175

180

185

 val=levenshtein2(el,el2)
 elif type=='ncd':
 val=ncd(el,el2)
 v.append(val)

 if agg=='none':
 return v
 t=tri(v)
 if agg=='avg':
 return avg(t)
 elif agg=='stdev':
 return stdev(t)
 elif agg=='min':
 return min(t)
 elif agg=='max':
 return max(t)

if __name__=='__main__':
 usage='%prog [options] module1...'
 desc='Calculate module distance statistics.'
 parser=OptionParser(usage,description=desc)
 parser.set_defaults(agg='none',
 type='compression',
 quiet=False,
 file='',
 list=False)
 parser.add_option('-a',metavar='MODE',dest='agg',
 help='aggregation MODE: none*,avg,stdev,min or max')
 parser.add_option('-f',dest='file',
 help='input FILE')
 parser.add_option('-t',metavar='TYPE',dest='type',
 help='distance TYPE: compression* , edit or ncd')
 parser.add_option('-q',action='store_true',dest='quiet',
 help='quiet (only display numbers)')
 parser.add_option('-l',action='store_true',dest='list',
 help='output as list')
 opts,args=parser.parse_args()

 if opts.agg not in ['avg','stdev','min','max','none']:
 parser.error('-a option needs argument none, avg, stdev, min or max')
 if opts.type not in ['compression','edit','edit2','ncd']:
 parser.error('-t option needs argument compression, edit or ncd')
 if opts.file!='':
 args=readlines(opts.file)
 else:
 if len(args)==0:
 parser.error('at least 1 argument required')
 if len(args)==1:
 args.append(basename(args[0]))

 v=dist(args,type=opts.type,agg=opts.agg)
 if opts.agg!='none':
 print v,
 if not opts.quiet:
 for el in args:
 print el,
 print
 else:
 dim=len(args)
 if opts.list:
 for i in range(dim):
 for j in range(0,i):

Appendix B

 255

190

195

 print args[i]+' '+args[j],
 print v[i*dim+j]
 else:
 for i in range(dim):
 for j in range(dim):
 print v[i*dim+j],
 if not opts.quiet:
 print args[i],
 print

Listing 14: Calculation of edit and compression distance: dist.py

1

5

10

15

20

25

30

35

40

45

50

#!/usr/bin/env python

import os,sys
from os.path import isfile
from lineio import readlines

def readlines_noindent(f):
 d=f.readlines()
 ret=[]
 for el in d:
 el2=el.strip()
 ret.append(el2)
 return ret

def readData(modules):
 ret=[]
 for m in modules:
 f=open(m)
 d=readlines_noindent(f)
 f.close()
 ret.append(len(d))
 return ret

def delta(modules):
 d=readData(modules)
 return d[0]-d[1]

if __name__=='__main__':
 p=sys.argv[1]
 if isfile(p):
 print(delta(sys.argv[1:]))
 sys.exit(0)
 f=[]
 for el in os.walk(p):
 f=el[2]
 p2='.'
 if len(sys.argv)>2:
 p2=sys.argv[2]
 f2=[]
 for el in os.walk(p2):
 f2=el[2]

 ret=0
 for el in f:
 if el=='Makefile':
 continue
 if el not in f2:
 fi=open(p+os.sep+el)
 d=fi.readlines()
 ret=ret+len(d)

Appendix B

 256

55

65

 fi.close()
 for el in f2:
 if el=='Makefile':
 continue
 if el in f:
 pn=[p+os.sep+el,p2+os.sep+el]
 ret=ret+delta(pn)
 else:
 fi=open(p2+os.sep+el)
 d=fi.readlines()
 ret=ret-len(d)
 fi.close()
 print(ret)

Listing 15: Calculation of code delta: delta.py

1

5

10

15

20

25

30

35

40

45

#!/usr/bin/env python

import os,sys
from os.path import isfile
from lineio import readlines

def readlines_noindent(f):
 d=f.readlines()
 ret=[]
 for el in d:
 el2=el.strip()
 ret.append(el2)
 return ret

def readData(modules):
 ret=[]
 for m in modules:
 f=open(m)
 d=readlines_noindent(f)
 f.close()
 ret.append(d)
 return ret

def levenshtein(s,t):
 m=len(s)
 n=len(t)
 d=[list(range(n+1))]
 for i in range(1,m+1):
 d=d+[[i]]
 for i in range(m):
 for j in range(n):
 rm=d[i][j+1]+1
 add=d[i+1][j]+1
 c=0
 if s[i]!=t[j]:
 c=1
 chg=d[i][j]+c
 val=min(rm,add,chg)
 d[i+1].append(val)
 return d[m][n]

def churn(modules):
 d=readData(modules)
 return levenshtein(d[0],d[1])

if __name__=='__main__':

Appendix B

 257

50

60

65

70

75

80

85

 p=sys.argv[1]
 if isfile(p):
 print(churn(sys.argv[1:]))
 sys.exit(0)
 f=[]
 for el in os.walk(p):
 f=el[2]
 p2='.'
 if len(sys.argv)>2:
 p2=sys.argv[2]
 f2=[]
 for el in os.walk(p2):
 f2=el[2]

 ret=0
 for el in f:
 if el=='Makefile':
 continue
 if el not in f2:
 fi=open(p+os.sep+el)
 d=fi.readlines()
 ret=ret+len(d)
 fi.close()
 for el in f2:
 if el=='Makefile':
 continue
 if el in f:
 pn=[p+os.sep+el,p2+os.sep+el]
 ret=ret+churn(pn)
 else:
 fi=open(p2+os.sep+el)
 d=fi.readlines()
 ret=ret+len(d)
 fi.close()
 print(ret)

Listing 16: Calculation of code churn: churn.py

Appendix B

 258

Appendix C

 259

Appendix C Code Excerpts from the Case Study

The following listings show representative C code, Makefile and
pseudocode excerpts from different evolution stages of the sensor node
product line, using different variability mechanisms (Figure 53), followed
by the realized HAL interfaces and construction test output.

Listings 17-25 show that the code which realizes functionality is
consistent, to which degree the realizations differ for the respective
variability mechanisms, and how the code is build. Section 6.4 refers to
some of these listings.

1

5

10

15

20

25

30

35

#include “hal.h”

bool event_happened=false;
int32_t event_time=0;
int16_t tick=0;
int16_t tilt_count=0;

void main() {
 init();
 init_x_position();
 while(true) {
 if(period_elapsed) {
 period_elapsed=false;
 update_x_position();
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 if(event_happened) { // a tilt has started
 event_time=the_clock; // start one-shot timer
 }
 else { // a tilt has ended
 // has the device been tilted for a period between 1 and 5s?
 if(the_clock-event_time>0 && the_clock-event_time<=5) {
 toggle_led_2();
 tilt_count++;
 }
 }
 }
 tick=tick+1;
 if(tick%5==0) {
 tick=0;
 sprintf(send_buffer,"drink=%d",tilt_count*25);
 send();
 }
 }
 }
}

1

5

CC= sdcc -mpic16 -p18f6720
CFLAGS=-I ../../hal
LDFLAGS=-Wl,-ms../../teco/system/"app\#229.lkr" ../../hal/hal.lib

all:

Appendix C

 260

10

15

20

25

30

35

40

45

50

 export BEHAVIOR=tilt_detector; make clean product
 export BEHAVIOR=noise_detector; make clean product
 export BEHAVIOR=drop_detector; make clean product
 export BEHAVIOR=movement_detector; make clean product
 export BEHAVIOR=tilt_detector_time; make clean product
 export BEHAVIOR=noise_detector_time; make clean product
 export BEHAVIOR=drop_detector_time; make clean product
 export BEHAVIOR=movement_detector_time; make clean product
 export BEHAVIOR=raw_detector; make clean product
 export BEHAVIOR=raw_detector_time; make clean product
 export BEHAVIOR=tilt_detector_voltage; make clean product
 export BEHAVIOR=noise_detector_voltage; make clean product
 export BEHAVIOR=drop_detector_voltage; make clean product
 export BEHAVIOR=movement_detector_voltage; make clean product
 export BEHAVIOR=tilt_detector_voltage_time; make clean product
 export BEHAVIOR=noise_detector_voltage_time; make clean product
 export BEHAVIOR=drop_detector_voltage_time; make clean product
 export BEHAVIOR=movement_detector_voltage_time; make clean product
 export BEHAVIOR=raw_detector_voltage; make clean product
 export BEHAVIOR=raw_detector_voltage_time; make clean product
 export BEHAVIOR=tilt_detector_sync; make clean product
 export BEHAVIOR=noise_detector_sync; make clean product
 export BEHAVIOR=drop_detector_sync; make clean product
 export BEHAVIOR=movement_detector_sync; make clean product
 export BEHAVIOR=tilt_detector_sync_time; make clean product
 export BEHAVIOR=noise_detector_sync_time; make clean product
 export BEHAVIOR=drop_detector_sync_time; make clean product
 export BEHAVIOR=movement_detector_sync_time; make clean product
 export BEHAVIOR=raw_detector_sync; make clean product
 export BEHAVIOR=raw_detector_sync_time; make clean product
 export BEHAVIOR=tilt_detector_sync_voltage; make clean product
 export BEHAVIOR=noise_detector_sync_voltage; make clean product
 export BEHAVIOR=drop_detector_sync_voltage; make clean product
 export BEHAVIOR=movement_detector_sync_voltage; make clean product
 export BEHAVIOR=tilt_detector_sync_voltage_time; make clean product
 export BEHAVIOR=noise_detector_sync_voltage_time; make clean product
 export BEHAVIOR=drop_detector_sync_voltage_time; make clean product
 export BEHAVIOR=movement_detector_sync_voltage_time; \
 make clean product
 export BEHAVIOR=raw_detector_sync_voltage; make clean product
 export BEHAVIOR=raw_detector_sync_voltage_time; make clean product

product: $(BEHAVIOR).hex

$(BEHAVIOR).hex:
 $(CC) $(CFLAGS) $(LDFLAGS) $(BEHAVIOR).c

clean:
 rm -f *.hex *.cod *.map *.asm *.lst *.o

Listing 17: Original tilt detector from product line (a6): tilt_detector.c, Makefile

1

5

10

#include<string.h>
#include<stdlib.h>
#include "hal.h"

bool event_happened=false;
int32_t event_time=0;
int16_t tilt_count=0;
int16_t tick=0;
bool time_set=false;
int behavior=BEHAVIOR;

Appendix C

 261

15

20

25

30

35

40

45

50

55

60

65

70

bool has_time=HAS_TIME_TX;
bool has_voltage_check=HAS_VOLTAGE_CHECK;
bool has_clock_sync=HAS_CLOCK_SYNC;

void main() {
 init();
 init_x_position();
 init_y_position();
 init_sound();
 init_light();
 init_temperature();
 while(true) {
 update_receive();
 if(period_elapsed) {
 period_elapsed=false;
 update_x_position();
 update_y_position();
 update_sound();
 update_light();
 update_temperature();
 update_voltage();
 if(behavior==0) {
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 if(event_happened) { // a tilt has started
 event_time=the_clock; // start one-shot timer
 }
 else { // a tilt has ended
 // has the device been tilted for a period between 1 and 5s?
 if(the_clock-event_time>0 && the_clock-event_time<=5) {
 toggle_led_2();
 tilt_count++;
 }
 }
 }
 sprintf(send_buffer,"drink=%d",tilt_count*25);
 if(has_time) {
 if(event_happened) {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
 }
 send();
 }
 if(behavior==1) {
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 // on change of tilt state, start a timer
 event_time=the_clock;
 }
 if(event_time>0 && the_clock-event_time>=1) { // tilted > 1s
 set_led_2(event_happened);
 event_time=0;
 sprintf(send_buffer,"dropped=%d",event_happened ?1 :0);
 if(has_time) {
 if(event_happened) {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
 }

Appendix C

 262

75

80

85

90

95

100

105

110

115

120

125

130

 send();
 }
 }
 if(behavior==2) {
 if(sound>20) {
 event_time=the_clock; // start one-shot timer
 event_happened=true;
 }
 // forgetting
 if(the_clock-event_time>=10) {
 // forget when a presence was detected
 event_time=0;
 // forget about presence
 event_happened=false;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"presence=%d",event_happened ?1 :0);
 if(has_time) {
 if(event_happened) {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
 }
 send();
 }
 if(behavior==3) {
 update_movement();
 if(!event_happened && movement) {
 event_time=the_clock;
 event_happened=true;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"movement=%d",event_happened ?1 :0);
 if(has_time) {
 if(event_happened) {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
 }
 send();
 }
 if(behavior==4) {
 if(!movement) {
 update_movement();
 }
 sprintf(send_buffer,"x=%d,y=%d,mv=%d,snd=%d",
 x_position,y_position,movement,sound);
 if(movement) {
 movement=false;
 }
 send();
 sprintf(send_buffer,"li=%d,tmp=%d,vlt=%d",
 light,temperature,voltage);
 if(has_time) {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
 send();
 }
 if(has_voltage_check) {
 tick=tick+1;
 if(tick%60==0) {

Appendix C

 263

135

140

145

150

 tick=0;
 if(voltage<1200) {
 set_led_1(true);
 }
 }
 }
 if(has_clock_sync) {
 if(has_received) {
 if(!time_set && strncmp(receive_buffer,"set time=",9)==0) {
 the_clock=atol(receive_buffer+9);
 time_set=true;
 }
 }
 }
 }
 }
}

1

5

10

15

20

25

30

CC= sdcc -mpic16 -p18f6720
CFLAGS=-I ../../hal
LDFLAGS=-Wl,-ms../../teco/system/"app\#229.lkr" ../../hal/hal.lib

CFLAGS+=-DBEHAVIOR=$(BEHAVIOR)
CFLAGS+=-DHAS_TIME_TX=$(HAS_TIME_TX)
CFLAGS+=-DHAS_VOLTAGE_CHECK=$(HAS_VOLTAGE_CHECK)
CFLAGS+=-DHAS_CLOCK_SYNC=$(HAS_CLOCK_SYNC)

BEHAVIORS=0 1 2
BEHAVIORS+=3
BEHAVIORS+=4
all:
 for el in $(BEHAVIORS); do \
 for el2 in 0 1; do \
 for el3 in 0 1; do \
 for el4 in 0 1; do \
 export BEHAVIOR=$$el HAS_TIME_TX=$$el2 HAS_VOLTAGE_CHECK=$$el3
HAS_CLOCK_SYNC=$$el4; \
 make clean product; \
 done; \
 done; \
 done; \
 done;

product: main.hex

main.hex:
 $(CC) $(CFLAGS) $(LDFLAGS) main.c

clean:
 rm -f *.hex *.cod *.map *.asm *.lst *.o

Listing 18: Conditional execution code after 6th evolution step (b6): main.c, Makefile

1

5

10

#include<string.h>
#include<stdlib.h>
#include "hal.h"

bool event_happened=false;
int32_t event_time=0;
int16_t tilt_count=0;
int16_t tick=0;
bool time_set=false;

Appendix C

 264

15

20

25

30

35

40

45

50

55

60

65

70

void main() {
 init();
 init_x_position();
 init_y_position();
 init_sound();
 init_light();
 init_temperature();
 while(true) {
 update_receive();
 if(period_elapsed) {
 period_elapsed=false;
 update_x_position();
 update_y_position();
 update_sound();
 update_light();
 update_temperature();
 update_voltage();
#if TILT_DETECTOR
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 if(event_happened) { // a tilt has started
 event_time=the_clock; // start one-shot timer
 }
 else { // a tilt has ended
 // has the device been tilted for a period between 1
 // and 5s?
 if(the_clock-event_time>0 && the_clock-event_time<=5) {
 toggle_led_2();
 tilt_count++;
 }
 }
 }
 sprintf(send_buffer,"drink=%d",tilt_count*25);
#elif DROP_DETECTOR
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 // on change of tilt state, start a timer
 event_time=the_clock;
 }
 if(event_time>0 && the_clock-event_time>=1) { // tilted longer
 // than 1s
 set_led_2(event_happened);
 event_time=0;
 sprintf(send_buffer,"dropped=%d",event_happened ?1 :0);
#elif NOISE_DETECTOR
 if(sound>20) {
 event_time=the_clock; // start one-shot timer
 event_happened=true;
 }
 // forgetting
 if(the_clock-event_time>=10) {
 // forget when a presence was detected
 event_time=0;
 // forget about presence
 event_happened=false;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"presence=%d",event_happened ?1 :0);
#elif MOVEMENT_DETECTOR
 update_movement();

Appendix C

 265

75

80

85

90

95

100

105

110

115

120

125

 if(!event_happened && movement) {
 event_time=the_clock;
 event_happened=true;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"movement=%d",event_happened ?1 :0);
#elif RAW_DETECTOR
 if(!movement) {
 update_movement();
 }
 sprintf(send_buffer,"x=%d,y=%d,mv=%d,snd=%d",
 x_position,y_position,movement,sound);
 if(movement) {
 movement=false;
 }
 send();
 sprintf(send_buffer,"li=%d,tmp=%d,vlt=%d",
 light,temperature,voltage);
#endif
#if HAS_TIME_TX
#if !RAW_DETECTOR
 if(event_happened)
#endif
 {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
#endif
 send();
#if DROP_DETECTOR
 }
#endif
#if HAS_CLOCK_SYNC
 if(has_received) {
 if(!time_set && strncmp(receive_buffer,"set time=",9)==0) {
 the_clock=atol(receive_buffer+9);
 time_set=true;
 }
 }
#endif
#if HAS_VOLTAGE_CHECK
 tick=tick+1;
 if(tick%60==0) {
 tick=0;
 if(voltage<1200) {
 set_led_1(true);
 }
 }
#endif
 }
 }
}

1

5

CC= sdcc -mpic16 -p18f6720
CFLAGS=-I ../../hal
LDFLAGS=-Wl,-ms../../teco/system/"app\#229.lkr" ../../hal/hal.lib

CFLAGS+=-D$(BEHAVIOR)
CFLAGS+=-DHAS_TIME_TX=$(HAS_TIME_TX)
CFLAGS+=-DHAS_VOLTAGE_CHECK=$(HAS_VOLTAGE_CHECK)
CFLAGS+=-DHAS_CLOCK_SYNC=$(HAS_CLOCK_SYNC)

Appendix C

 266

10

15

20

25

30

BEHAVIORS=TILT_DETECTOR NOISE_DETECTOR DROP_DETECTOR
BEHAVIORS+=MOVEMENT_DETECTOR
BEHAVIORS+=RAW_DETECTOR
all:
 for el in $(BEHAVIORS); do \
 for el2 in 0 1; do \
 for el3 in 0 1; do \
 for el4 in 0 1; do \
 export BEHAVIOR=$$el HAS_TIME_TX=$$el2
HAS_VOLTAGE_CHECK=$$el3 HAS_CLOCK_SYNC=$$el4; \
 make clean product; \
 done; \
 done; \
 done; \
 done;

product: main.hex

main.hex:
 $(CC) $(CFLAGS) $(LDFLAGS) main.c

clean:
 rm -f *.hex *.cod *.map *.asm *.lst *.o

Listing 19: Conditional compilation code after 6th evolution step (e6): main.c, Makefile

1

5

10

15

20

25

30

35

#include "hal.h"
#include "detectors.h"
#include "time_transmission.h"
#include "voltage_check.h"
#include "clock_sync.h"

void (*more_loop)()=0;
void (*more_loop_2)()=0;
void (*before_send)()=0;
void (*do_sync)()=0;
int behavior=BEHAVIOR;
bool has_time_tx=HAS_TIME_TX;
bool has_volt_chk=HAS_VOLT_CHK;
bool has_clock_sync=HAS_CLOCK_SYNC;

void main() {
 init();
 init_x_position();
 init_y_position();
 init_sound();
 init_light();
 init_temperature();
 if(behavior==0) {
 more_loop=&tilt_more_loop;
 }
 else if(behavior==1) {
 more_loop=&drop_more_loop;
 }
 else if(behavior==2) {
 more_loop=&noise_more_loop;
 }
 else if(behavior==3) {
 more_loop=&movement_more_loop;
 }
 else if(behavior==4) {
 more_loop=&raw_more_loop;

Appendix C

 267

40

45

50

55

60

65

70

 }
 if(has_time_tx) {
 before_send=&transmit_time;
 }
 else {
 before_send=&no_transmit_time;
 }
 if(has_volt_chk) {
 more_loop_2=&check_voltage;
 }
 else {
 more_loop_2=&no_check_voltage;
 }
 if(has_clock_sync) {
 do_sync=&sync_clock;
 }
 else {
 do_sync=&no_sync_clock;
 }
 while(true) {
 update_receive();
 if(period_elapsed) {
 period_elapsed=false;
 update_x_position();
 update_y_position();
 update_sound();
 update_light();
 update_temperature();
 update_voltage();
 (*more_loop)();
 (*do_sync)();
 (*more_loop_2)();
 }
 }
}

1

5

10

15

#include "detectors.h"
#include "hal.h"

extern void (*before_send)();
extern bool event_happened;
extern int32_t event_time;

void movement_more_loop() {
 update_movement();
 if(!event_happened && movement) {
 event_time=the_clock;
 event_happened=true;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"movement=%d",event_happened ?1 :0);
 (*before_send)();
 send();
}

1

5

#include "detectors.h"
#include "hal.h"

extern void (*before_send)();
static int16_t tilt_count=0;
extern bool event_happened;
extern int32_t event_time;

void tilt_more_loop() {

Appendix C

 268

10

15

20

25

 update_x_position();
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 if(event_happened) { // a tilt has started
 event_time=the_clock; // start one-shot timer
 }
 else { // a tilt has ended
 // has the device been tilted for a period between 1 and 5s?
 if(the_clock-event_time>0 && the_clock-event_time<=5) {
 toggle_led_2();
 tilt_count++;
 }
 }
 }
 sprintf(send_buffer,"drink=%d",tilt_count*25);
 (*before_send)();
 send();
}

1

5

10

15

20

#include "detectors.h"
#include "hal.h"

extern void (*before_send)();
extern bool event_happened;
extern int32_t event_time;

void drop_more_loop() {
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 // on change of tilt state, start a timer
 event_time=the_clock;
 }
 if(event_time>0 && the_clock-event_time>=1) { // tilted longer than 1s
 set_led_2(event_happened);
 event_time=0;
 sprintf(send_buffer,"dropped=%d",event_happened ?1 :0);
 (*before_send)();
 send();
 }
}

1

5

10

15

20

#include "detectors.h"
#include "hal.h"

extern void (*before_send)();
extern bool event_happened;
extern int32_t event_time;

void noise_more_loop() {
 update_sound();
 if(sound>20) {
 event_time=the_clock; // start one-shot timer
 event_happened=true;
 }
 // forgetting
 if(the_clock-event_time>=10) {
 // forget when noise was detected
 event_time=0;
 // forget about noise
 event_happened=false;
 }
 set_led_2(event_happened);

Appendix C

 269

25

 sprintf(send_buffer,"presence=%d",event_happened ?1 :0);
 (*before_send)();
 send();
}

1

5

10

15

20

#include "detectors.h"
#include "hal.h"

extern void (*before_send)();
extern bool event_happened;

void raw_more_loop() {
 if(!movement) {
 update_movement();
 }
 sprintf(send_buffer,"x=%d,y=%d,mv=%d,snd=%d",
 x_position,y_position,movement,sound);
 if(movement) {
 movement=false;
 }
 send();
 sprintf(send_buffer,"li=%d,tmp=%d,vlt=%d",light,temperature,voltage);
 event_happened=true; // just to use time_transmitter as-is
 (*before_send)();
 send();
}

1

5

10

15

#include "time_transmission.h"
#include<string.h>
#include "hal.h"

// these variables had to become non-static because they
// need to be accessed by all detectors & time_transmitter
bool event_happened=false;
int32_t event_time=0;

void transmit_time() {
 if(event_happened) {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
}

void no_transmit_time() {
}

1

5

10

15

#include "voltage_check.h"
#include "hal.h"

int16_t tick=0;

void check_voltage() {
 tick=tick+1;
 if(tick%60==0) {
 tick=0;
 if(voltage<1200) {
 set_led_1(true);
 }
 }
}

void no_check_voltage() {
}

1

#include "clock_sync.h"
#include<string.h>

Appendix C

 270

5

10

15

#include<stdlib.h>
#include "hal.h"

bool time_set=false;

void sync_clock() {
 if(has_received) {
 if(!time_set && strncmp(receive_buffer,"set time=",9)==0) {
 the_clock=atol(receive_buffer+9);
 time_set=true;
 }
 }
}

void no_sync_clock() {
}

1

5

10

15

20

25

30

35

CC= sdcc -mpic16 -p18f6720
CFLAGS=-I ../../hal
LDFLAGS=-Wl,-ms../../teco/system/"app\#229.lkr" ../../hal/hal.lib

OBJ= tilt_detector.o noise_detector.o drop_detector.o
OBJ+= movement_detector.o
OBJ+= raw_detector.o
OBJ+= time_transmission.o
OBJ+= voltage_check.o
OBJ+= clock_sync.o
CFLAGS+=-DBEHAVIOR=$(BEHAVIOR)
CFLAGS+=-DHAS_TIME_TX=$(HAS_TIME_TX)
CFLAGS+=-DHAS_VOLT_CHK=$(HAS_VOLT_CHK)
CFLAGS+=-DHAS_CLOCK_SYNC=$(HAS_CLOCK_SYNC)
LDFLAGS+=libc18f.lib

BEHAVIORS=0 1 2
BEHAVIORS+=3
BEHAVIORS+=4
all:
 for el in $(BEHAVIORS); do \
 for el2 in 0 1; do \
 for el3 in 0 1; do \
 for el4 in 0 1; do \
 export BEHAVIOR=$$el HAS_TIME_TX=$$el2 HAS_VOLT_CHK=$$el3 \
 HAS_CLOCK_SYNC=$$el4; \
 make clean product; \
 done; \
 done; \
 done; \
 done;

product: main.hex

main.hex: $(OBJ)
 $(CC) $(CFLAGS) $(LDFLAGS) main.c $(OBJ)

clean:
 rm -f *.hex *.cod *.map *.asm *.lst *.o

Listing 20: Polymorphism code after 6th evolution step (c6): main.c,
tilt/drop/noise/movement/raw_detector.c, time_transmission.c, voltage_check.c, clock_sync.c, Makefile

1

#include "hal.h"
#include "detector.h"
#include "voltage_check.h"

Appendix C

 271

5

10

15

20

25

#include "clock_sync.h"

void main() {
 init();
 init_x_position();
 init_y_position();
 init_sound();
 init_light();
 init_temperature();
 while(true) {
 update_receive();
 if(period_elapsed) {
 period_elapsed=false;
 update_x_position();
 update_y_position();
 update_sound();
 update_light();
 update_temperature();
 update_voltage();
 more_loop();
 sync_clock();
 check_voltage();
 }
 }
}

1

5

10

15

20

25

#include "detector.h"
#include "hal.h"
#include "time_transmission.h"

bool event_happened=false;
int32_t event_time=0;
int16_t tilt_count=0;

void more_loop() {
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 if(event_happened) { // a tilt has started
 event_time=the_clock; // start one-shot timer
 }
 else { // a tilt has ended
 // has the device been tilted for a period between 1 and 5s?
 if(the_clock-event_time>0 && the_clock-event_time<=5) {
 toggle_led_2();
 tilt_count++;
 }
 }
 }
 sprintf(send_buffer,"drink=%d",tilt_count*25);
 transmit_time();
 send();
}

1

5

10

#include "detector.h"
#include "hal.h"
#include "time_transmission.h"

bool event_happened=false;
int32_t event_time=0;

void more_loop() {
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {

Appendix C

 272

15

20

 event_happened=x_position>-100;
 // on change of tilt state, start a timer
 event_time=the_clock;
 }
 if(event_time>0 && the_clock-event_time>=1) { // tilted longer than 1s
 set_led_2(event_happened);
 event_time=0;
 sprintf(send_buffer,"dropped=%d",event_happened ?1 :0);
 transmit_time();
 send();
 }
}

1

5

10

15

20

#include "detector.h"
#include "hal.h"
#include "time_transmission.h"

bool event_happened=false;
int32_t event_time=0;

void more_loop() {
 if(sound>20) {
 event_time=the_clock; // start one-shot timer
 event_happened=true;
 }
 // forgetting
 if(the_clock-event_time>=10) {
 // forget when a presence was detected
 event_time=0;
 // forget about presence
 event_happened=false;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"presence=%d",event_happened ?1 :0);
 transmit_time();
 send();
}

1

5

10

15

#include "detector.h"
#include<string.h>
#include "hal.h"
#include "time_transmission.h"

bool event_happened=false;
int32_t event_time=0;

void more_loop() {
 update_movement();
 if(!event_happened && movement) {
 event_time=the_clock;
 event_happened=true;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"movement=%d",event_happened ?1 :0);
 transmit_time();
 send();
}

1

5

#include "detector.h"
#include "hal.h"
#include "time_transmission.h"

bool event_happened=false;
int32_t event_time=0;

Appendix C

 273

10

15

20

void more_loop() {
 if(!movement) {
 update_movement();
 }
 sprintf(send_buffer,"x=%d,y=%d,mv=%d,snd=%d",
 x_position,y_position,movement,sound);
 if(movement) {
 movement=false;
 }
 send();
 sprintf(send_buffer,"li=%d,tmp=%d,vlt=%d",light,temperature,voltage);
 event_happened=true;
 transmit_time();
 send();
}

1 #include "time_transmission.h"

void transmit_time() {
}

1

5

10

#include "time_transmission.h"
#include<string.h>
#include "hal.h"

extern bool event_happened;
extern int32_t event_time;

void transmit_time() {
 if(event_happened) {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
}

1 #include "voltage_check.h"

void check_voltage() {
}

1

5

10

#include "voltage_check.h"
#include "hal.h"

int16_t tick=0;

void check_voltage() {
 tick=tick+1;
 if(tick%60==0) {
 tick=0;
 if(voltage<1200) {
 set_led_1(true);
 }
 }
}

1 #include "clock_sync.h"

void sync_clock() {
}

1

5

#include "clock_sync.h"
#include<string.h>
#include<stdlib.h>
#include "hal.h"

bool time_set=false;

void sync_clock() {

Appendix C

 274

10

15

 if(has_received) {
 if(!time_set && strncmp(receive_buffer,"set time=",9)==0) {
 the_clock=atol(receive_buffer+9);
 time_set=true;
 }
 }
}

1

5

10

15

20

25

30

35

CC= sdcc -mpic16 -p18f6720
CFLAGS=-I ../../hal
LDFLAGS=-Wl,-ms../../teco/system/"app\#229.lkr" ../../hal/hal.lib

OBJ= $(BEHAVIOR).o
OBJ+= $(FEATURE).o
OBJ+= $(FEATURE2).o
OBJ+= $(FEATURE3).o
LDFLAGS+=libc18f.lib

BEHAVIORS=tilt_detector noise_detector drop_detector
BEHAVIORS+=movement_detector
BEHAVIORS+=raw_detector
FEATURES=no_time_transmission time_transmission
FEATURES2=no_voltage_check voltage_check
FEATURES3=no_clock_sync clock_sync
all:
 for el in $(BEHAVIORS); do \
 for el2 in $(FEATURES); do \
 for el3 in $(FEATURES2); do \
 for el4 in $(FEATURES3); do \
 export BEHAVIOR=$$el FEATURE=$$el2 FEATURE2=$$el3 \
 FEATURE3=$$el4; \
 make clean product; \
 done; \
 done; \
 done; \
 done;

product: main.hex

main.hex: $(OBJ)
 $(CC) $(CFLAGS) $(LDFLAGS) main.c $(OBJ)

clean:
 rm -f *.hex *.cod *.map *.asm *.lst *.o

Listing 21: Module replacement code after 6th evolution step (d6): main.c,
tilt/drop/noise/movement/raw_detector.c, no_/time_transmission.c,no_/ voltage_check.c, no_/clock_sync.c,
Makefile

1

5

10

#include<string.h>
#include<stdlib.h>
#include "hal.h"

bool event_happened=false;
int32_t event_time=0;
int16_t tick=0;
int16_t tilt_count=0;
bool time_set=false;

void more_loop() {
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;

Appendix C

 275

15

20

25

30

35

40

45

50

 if(event_happened) { // a tilt has started
 event_time=the_clock; // start one-shot timer
 }
 else { // a tilt has ended
 // has the device been tilted for a period between 1 and 5s?
 if(the_clock-event_time>0 && the_clock-event_time<=5) {
 toggle_led_2();
 tilt_count++;
 }
 }
 }
 sprintf(send_buffer,"drink=%d",tilt_count*25);
 send();
}

void send2() {
 send(); // only for supporting the new raw_detector aspect
}

void main() {
 init();
 init_x_position();
 init_y_position();
 init_sound();
 init_light();
 init_temperature();
 while(true) {
 update_receive();
 if(period_elapsed) {
 period_elapsed=false;
 update_x_position();
 update_y_position();
 update_sound();
 update_light();
 update_temperature();
 update_voltage();
 more_loop();
 }
 }
}

1

5

10

15

around():execution(void more_loop()) {
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 // on change of tilt state, start a timer
 event_time=the_clock;
 }
 if(event_time>0 && the_clock-event_time>=1) { // tilted longer than 1s
 set_led_2(event_happened);
 event_time=0;
 sprintf(send_buffer,"dropped=%d",event_happened ?1 :0);
 send();
 }
}

1

5

around():execution(void more_loop()) {
 if(sound>20) {
 event_time=the_clock; // start one-shot timer
 event_happened=true;
 }
 // forgetting
 if(the_clock-event_time>=10) {

Appendix C

 276

10

15

 // forget when a presence was detected
 event_time=0;
 // forget about presence
 event_happened=false;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"presence=%d",event_happened ?1 :0);
 send();
}

1

5

10

around():execution(void more_loop()) {
 update_movement();
 if(!event_happened && movement) {
 event_time=the_clock;
 event_happened=true;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"movement=%d",event_happened ?1 :0);
 send();
}

1

5

10

15

around():execution(void more_loop)() {
 if(!movement) {
 update_movement();
 }
 sprintf(send_buffer,"x=%d,y=%d,mv=%d,snd=%d",
 x_position,y_position,movement,sound);
 if(movement) {
 movement=false;
 }
 send2(); // this shall not be affected by the existing time aspect!
 sprintf(send_buffer,"li=%d,tmp=%d,vlt=%d",light,temperature,voltage);
 event_happened=true; // just to use transmit_time as-is
 send();
}

1

5

before():execution(void send()) {
 if(event_happened) {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
}

1

5

10

after():execution(void more_loop()) {
 tick=tick+1;
 if(tick%60==0) {
 tick=0;
 update_voltage();
 if(voltage<1200) {
 set_led_1(true);
 }
 }
}

1

5

after():execution(void more_loop()) {
 if(has_received) {
 if(!time_set && strncmp(receive_buffer,"set time=",9)==0) {
 the_clock=atol(receive_buffer+9);
 time_set=true;
 }
 }
}

Listing 22: AOP pseudocode after 6th evolution step (f6): main.c,
drop/noise/movement/raw_detector.acc, time_transmission.acc, voltage_check.acc, clock_sync.acc

Appendix C

 277

1

5

10

15

20

25

30

35

40

45

50

OUTFILE main.c
#include<string.h>
#include<stdlib.h>
#include "hal.h"

bool event_happened=false;
int32_t event_time=0;
int16_t tick=0;
int16_t tilt_count=0;
bool time_set=false;

void main() {
 init();
 init_x_position();
 init_y_position();
 init_sound();
 init_light();
 init_temperature();
 while(true) {
 update_receive();
 if(period_elapsed) {
 period_elapsed=false;
 update_x_position();
 update_y_position();
 update_sound();
 update_light();
 update_temperature();
 update_voltage();
VP more_loop
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 if(event_happened) { // a tilt has started
 event_time=the_clock; // start one-shot timer
 }
 else { // a tilt has ended
 // has the device been tilted for a period between 1 and 5s?
 if(the_clock-event_time>0 && the_clock-event_time<=5) {
 toggle_led_2();
 tilt_count++;
 }
 }
 }
 sprintf(send_buffer,"drink=%d",tilt_count*25);
END
VP more_loop2
 send();
END
 }
 }
}

1

5

10

ADAPT ADAPTEE
INSERT more_loop
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 // on change of tilt state, start a timer
 event_time=the_clock;
 }
 if(event_time>0 && the_clock-event_time>=1) { // tilted longer
 // than 1s
 set_led_2(event_happened);

Appendix C

 278

15

 event_time=0;
 sprintf(send_buffer,"dropped=%d",event_happened ?1 :0);
INSERT more_loop2
 send();
 }

1

5

10

15

ADAPT ADAPTEE
INSERT more_loop
 if(sound>20) {
 event_time=the_clock; // start one-shot timer
 event_happened=true;
 }
 // forgetting
 if(the_clock-event_time>=10) {
 // forget when a presence was detected
 event_time=0;
 // forget about presence
 event_happened=false;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"presence=%d",event_happened ?1 :0);

1

5

ADAPT ADAPTEE
INSERT more_loop
 update_movement();
 if(!event_happened && movement) {
 event_time=the_clock;
 event_happened=true;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"movement=%d",event_happened ?1 :0);

1

5

10

ADAPT ADAPTEE
INSERT more_query
INSERT more_loop
 if(!movement) {
 update_movement();
 }
 sprintf(send_buffer,"x=%d,y=%d,mv=%d,snd=%d",
 x_position,y_position,movement,sound);
 if(movement) {
 movement=false;
 }
 send();
 sprintf(send_buffer,"li=%d,tmp=%d,vlt=%d",
 light,temperature,voltage);

1

5

ADAPT main
INSERT_BEFORE more_loop2
VP more_query
 if(event_happened)
END
 {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }

1

5

ADAPT ADAPTEE2
INSERT_AFTER more_loop2
 tick=tick+1;
 if(tick%60==0) {
 tick=0;
 if(voltage<1200) {
 set_led_1(true);
 }
 }

1 ADAPT ADAPTEE3

Appendix C

 279

5

INSERT_AFTER more_loop2
 if(has_received) {
 if(!time_set && strncmp(receive_buffer,"set time=",9)==0) {
 the_clock=atol(receive_buffer+9);
 time_set=true;
 }
 }

1

5

10

15

20

25

30

35

40

45

50

55

CC= sdcc -mpic16 -p18f6720
CFLAGS=-I ../../hal
LDFLAGS=-Wl,-ms../../teco/system/"app\#229.lkr" ../../hal/hal.lib

BEHAVIORS=drop_detector noise_detector
BEHAVIORS+=movement_detector
BEHAVIORS+=raw_detector
FEATURES=main time_transmission
all:
 make clean
 fp main
 make product
 make clean
 fp time_transmission
 make product
 make clean
 export ADAPTEE2=main;fp voltage_check
 make product
 make clean
 export ADAPTEE2=time_transmission;fp voltage_check
 make product
 make clean
 export ADAPTEE3=main;fp clock_sync
 make product
 make clean
 export ADAPTEE3=time_transmission;fp clock_sync
 make product
 make clean
 export ADAPTEE3=voltage_check ADAPTEE2=main;fp clock_sync
 make product
 make clean
 export ADAPTEE3=voltage_check ADAPTEE2=time_transmission;fp
clock_sync
 make product
 for el in $(BEHAVIORS); do \
 for el2 in $(FEATURES); do \
 make clean; \
 export ADAPTEE=$$el2; \
 fp $$el; \
 make product; \
 make clean; \
 export ADAPTEE=voltage_check ADAPTEE2=$$el2; \
 fp $$el; \
 make product; \
 make clean; \
 export ADAPTEE=clock_sync ADAPTEE3=$$el2; \
 fp $$el; \
 make product; \
 make clean; \
 export ADAPTEE=voltage_check ADAPTEE2=clock_sync ADAPTEE3=$$el2; \
 fp $$el; \
 make product; \
 done; \
 done;

Appendix C

 280

60

product: main.hex

main.hex:
 $(CC) $(CFLAGS) $(LDFLAGS) main.c

clean:
 rm -f *.hex *.cod *.map *.asm *.lst *.o *.c

Listing 23: Frame technology code after 6th evolution step (g6): main,
drop/noise/movement/raw_detector, time_transmission, voltage_check, clock_sync, Makefile

1

5

10

15

20

25

30

35

40

45

50

OUTFILE main.c
#include<string.h>
#include<stdlib.h>
#include "hal.h"

bool event_happened=false;
int32_t event_time=0;
int16_t tick=0;
int16_t tilt_count=0;
bool time_set=false;

void main() {
 init();
 init_x_position();
 init_y_position();
 init_sound();
 init_light();
 init_temperature();
 while(true) {
 update_receive();
 if(period_elapsed) {
 period_elapsed=false;
 update_x_position();
 update_y_position();
 update_sound();
 update_light();
 update_temperature();
 update_voltage();
VP more_loop
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 if(event_happened) { // a tilt has started
 event_time=the_clock; // start one-shot timer
 }
 else { // a tilt has ended
 // has the device been tilted for a period between 1
 // and 5s?
 if(the_clock-event_time>0 && the_clock-event_time<=5) {
 toggle_led_2();
 tilt_count++;
 }
 }
 }
 sprintf(send_buffer,"drink=%d",tilt_count*25);
END
#if HAS_TIME_TX
VP more_query
 if(event_happened)
END
 {

Appendix C

 281

55

60

65

70

75

 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
#endif
VP more_loop2
 send();
END
#if HAS_CLOCK_SYNC
 if(has_received) {
 if(!time_set && strncmp(receive_buffer,"set time=",9)==0) {
 the_clock=atol(receive_buffer+9);
 time_set=true;
 }
 }
#endif
#if HAS_VOLTAGE_CHECK
 tick=tick+1;
 if(tick%60==0) {
 tick=0;
 if(voltage<1200) {
 set_led_1(true);
 }
 }
#endif
 }
 }
}

1

5

10

15

ADAPT main
INSERT more_loop
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 // on change of tilt state, start a timer
 event_time=the_clock;
 }
 if(event_time>0 && the_clock-event_time>=1) { // tilted
 // longer than 1s
 set_led_2(event_happened);
 event_time=0;
 sprintf(send_buffer,"dropped=%d",event_happened ?1 :0);
INSERT more_loop2
 send();
 }

1

5

10

15

ADAPT main
INSERT more_loop
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 // on change of tilt state, start a timer
 event_time=the_clock;
 }
 if(event_time>0 && the_clock-event_time>=1) { // tilted
 // longer than 1s
 set_led_2(event_happened);
 event_time=0;
 sprintf(send_buffer,"dropped=%d",event_happened ?1 :0);
INSERT more_loop2
 send();
 }

1

ADAPT main
INSERT more_loop
 if(sound>20) {

Appendix C

 282

5

10

15

 event_time=the_clock; // start one-shot timer
 event_happened=true;
 }
 // forgetting
 if(the_clock-event_time>=10) {
 // forget when a presence was detected
 event_time=0;
 // forget about presence
 event_happened=false;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"presence=%d",event_happened ?1 :0);

1

5

10

ADAPT main
INSERT more_loop
 update_movement();
 if(!event_happened && movement) {
 event_time=the_clock;
 event_happened=true;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"movement=%d",event_happened ?1 :0);

1

5

10

15

ADAPT main
INSERT more_query
INSERT more_loop
 if(!movement) {
 update_movement();
 }
 sprintf(send_buffer,"x=%d,y=%d,mv=%d,snd=%d",
 x_position,y_position,movement,sound);
 if(movement) {
 movement=false;
 }
 send();
 sprintf(send_buffer,"li=%d,tmp=%d,vlt=%d",
 light,temperature,voltage);

1

5

10

15

20

25

CC= sdcc -mpic16 -p18f6720
CFLAGS=-I ../../hal
LDFLAGS=-Wl,-ms../../teco/system/"app\#229.lkr" ../../hal/hal.lib

CFLAGS+=-DHAS_TIME_TX=$(HAS_TIME_TX)
CFLAGS+=-DHAS_VOLTAGE_CHECK=$(HAS_VOLTAGE_CHECK)
CFLAGS+=-DHAS_CLOCK_SYNC=$(HAS_CLOCK_SYNC)

BEHAVIORS=main noise_detector drop_detector
BEHAVIORS+=movement_detector
BEHAVIORS+=raw_detector
all:
 for el in $(BEHAVIORS); do \
 for el2 in 0 1; do \
 for el3 in 0 1; do \
 for el4 in 0 1; do \
 export HAS_TIME_TX=$$el2 HAS_VOLTAGE_CHECK=$$el3 \
 HAS_CLOCK_SYNC=$$el4; \
 make clean; \
 fp $$el; \
 make product; \
 done; \
 done; \
 done; \
 done;

Appendix C

 283

30

product: main.hex

main.hex:
 $(CC) $(CFLAGS) $(LDFLAGS) main.c

clean:
 rm -f *.hex *.cod *.map *.asm *.lst *.o *.c

Listing 24: Ideal compilable code code after 6th evolution step (h6): main,
drop/noise/movement/raw_detector, Makefile

1

5

10

15

20

25

30

35

40

45

50

#include<string.h>
#include<stdlib.h>
#include "hal.h"

bool event_happened=false;
int32_t event_time=0;
int16_t tick=0;
int16_t tilt_count=0;
bool time_set=false;

void main() {
 init();
 init_x_position();
 init_y_position();
 init_sound();
 init_light();
 init_temperature();
 while(true) {
 update_receive();
 if(period_elapsed) {
 period_elapsed=false;
 update_x_position();
 update_y_position();
 update_sound();
 update_light();
 update_temperature();
 update_voltage();
 if((x_position>(-100+25) && !event_happened)
 ||(x_position<(-100-25) && event_happened)) {
 event_happened=x_position>-100;
 if(event_happened) { // a tilt has started
 event_time=the_clock; // start one-shot timer
 }
 else { // a tilt has ended
 // has the device been tilted for a period between 1 and 5s?
 if(the_clock-event_time>0 && the_clock-event_time<=5) {
 toggle_led_2();
 tilt_count++;
 }
 }
 }
 sprintf(send_buffer,"drink=%d",tilt_count*25);
option time_transmission
 if(event_happened)
 {
 strcat(send_buffer,",time=");
 strcat(send_buffer,timetoa(the_clock-event_time));
 }
end
 send();

Appendix C

 284

55

60

65

70

option sync_voltage
 if(has_received) {
 if(!time_set && strncmp(receive_buffer,"set time=",9)==0) {
 the_clock=atol(receive_buffer+9);
 time_set=true;
 }
 }
end
option voltage_check
 tick=tick+1;
 if(tick%60==0) {
 tick=0;
 if(voltage<1200) {
 set_led_1(true);
 }
 }
end
 }
 }
}

1

5

10

change lines 31 to 43 of main
 // on change of tilt state, start a timer
 event_time=the_clock;
 }
 if(event_time>0 && the_clock-event_time>=1) { // tilted longer
 // than 1s
 set_led_2(event_happened);
 event_time=0;
 sprintf(send_buffer,"dropped=%d",event_happened ?1 :0);
add after line 50 of main
 }

1

5

10

change lines 25 to 40 of main
 if(sound>20) {
 event_time=the_clock; // start one-shot timer
 event_happened=true;
 }
 // forgetting
 if(the_clock-event_time>=10) {
 // forget when a presence was detected
 event_time=0;
 // forget about presence
 event_happened=false;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"presence=%d",event_happened ?1 :0);

1

5

change lines 25 to 40 of main
 update_movement();
 if(!event_happened && movement) {
 event_time=the_clock;
 event_happened=true;
 }
 set_led_2(event_happened);
 sprintf(send_buffer,"movement=%d",event_happened ?1 :0);

1

5

change lines 25 to 40 of main
 if(!movement) {
 update_movement();
 }
 sprintf(send_buffer,"x=%d,y=%d,mv=%d,snd=%d",
 x_position,y_position,movement,sound);
 if(movement) {
 movement=false;
 }

Appendix C

 285

10 send();
 sprintf(send_buffer,"li=%d,tmp=%d,vlt=%d",
 light,temperature,voltage);
delete line line 41 of main

Listing 25: Ideal pseudocode after 6th evolution step (i6): main, drop/noise/movement/raw_detector

Listing 26 shows the four realized simple interfaces of the hardware
abstraction library for sensors, actuators, transceiver and clock.

1

5

10

15

20

25

30

35

40

45

50

#ifndef SENSORS_H
#define SENSORS_H

// sensor abstractions

#include<stdbool.h>
#include<stdint.h>

// sensor values
extern int16_t x_position;
extern int16_t y_position;
extern int16_t z_position;
extern bool movement;
extern int8_t sound;
extern int16_t light;
extern int16_t infrared;
extern int8_t temperature;
extern int16_t voltage;
extern int16_t force;

// sensor operations
// init_.. must be called before first sensor use
// update_.. is called to refesh the sensor value

void init_x_position();
void update_x_position();

void init_y_position();
void update_y_position();

void init_z_position();
void update_z_position();

void update_movement();

void init_sound();
void update_sound();

void init_light();
void update_light();

void init_infrared();
void update_infrared();

void init_temperature();
void update_temperature();

void update_voltage();

void init_force();
void update_force();

Appendix C

 286

#endif
1

5

10

15

20

#ifndef ACTUATORS_H
#define ACTUATORS_H

// actuator abstractions

#include<stdint.h>
#include<stdbool.h>

void beep(uint16_t frequency,uint16_t duration);

// switches led 1 on or off
void set_led_1(bool);
// toggles led 1: on <-> off
void toggle_led_1();

// switches led 2 on or off
void set_led_2(bool);
// toggles led 2: on <-> off
void toggle_led_2();

#endif

1

5

10

15

20

#ifndef TRANSCEIVER_H
#define TRANSCEIVER_H

// wireless transmission and reception

#include<stdbool.h>

// becomes true when sth. has been received
extern bool has_received;
// string to send
extern char send_buffer[61];
// received string
extern char receive_buffer[61];

// sends send_buffer
void send();
// updates receive_buffer
void update_receive();

#endif

1

5

10

15

#ifndef CLOCK_H
#define CLOCK_H

// clock abstraction

#include<stdint.h>
#include<stdbool.h>

// clock value (seconds since startup; implicitly updated)
extern int32_t the_clock;

// periodically set to true by ISR every second
extern volatile bool period_elapsed;

// converts the clock value to a string
char* timetoa(int32_t);

#endif

Listing 26: HAL interface realizations (init.h, sensors.h, actuators.h, clock.h)

Appendix C

 287

Listing 27 shows construction test output obtained after constructing,
compiling Frame Technology code for evolution scenarios 3 and 4. These
tests have been made for all 63 product line realizations (mechanisms
“a” to “e”, “g” and “h” for evolution steps 0 to 6. The first column
shows the configured product, the second the code size, and the third
the stack size. The same results were obtained for Conditional
Compilation (scenarios “e3 and e4). It can be seen that all produced
product line members have different sizes and that the same variants
cause the same size increases. This indicates that the product line
members have been constructed correctly. It can also be seen that
product size in successive scenarios nearly does not change.

tilt_det,normal 59586 1083
tilt_det,time_tr 59764 1083
drop_det,normal 59112 1083
drop_det,time_tr 59290 1083
noise_det,normal 59494 1083
noise_det,time_tr 59672 1083
movmt_det,normal 59414 1083
movmt_det,time_tr 59592 1083
raw_det,normal 59020 1080
raw_det,time_tr 59190 1080

tilt_det,normal,no_voltg 59588 1085
tilt_det,time_tr,no_voltg 59766 1085
tilt_det,normal,voltg 59676 1085
tilt_det,time_tr,voltg 59856 1085
drop_det,normal,no_voltg 59114 1085
drop_det,time_tr,no_voltg 59292 1085
drop_det,normal,voltg 59614 1085
drop_det,time_tr,voltg 59794 1085
noise_det,normal,no_voltg 59496 1085
noise_det,time_tr,no_voltg 59674 1085
noise_det,normal,voltg 59584 1085
noise_det,time_tr,voltg 59764 1085
movmt_det,normal,no_voltg 59416 1085
movmt_det,time_tr,no_voltg 59594 1085
movmt_det,normal,voltg 59504 1085
movmt_det,time_tr,voltg 59684 1085
raw_det,normal,no_voltg 59022 1082
raw_det,time_tr,no_voltg 59192 1082
raw_det,normal,voltg 59640 1082
raw_det,time_tr,voltg 59810 1082

Listing 27: Construction test output in successive scenarios (g3 and g4)

Appendix C

 288

Appendix D

 289

Appendix D Detailed Results

The following tables list the results discussed in Sec.6.4.

 LO
C

�
LO

C
,t
�

N
O

M

D
RH

W
RH

v(
G

) rt
,c

lo
se

d

v(
G

) rt
,o

pe
n

v(
G

) ct
,c

lo
se

d

v(
G

) ct
,o

pe
n

LO
C

ad

N
V

e

N
V

i

N
V

a

RR

N
O

D

�
LO

C
,s
�

K
va

r

a 98 0 3 1 3 26 3 3 3 98 0 0 0 0 0 32 0,45
b 76 0 1 1 1 23 1 1 1 76 0 0 3 0 0 0 0
c 110 0 5 2 3 26 7 5 5 75 3 0 1 0,32 0 32 0,72
d 99 0 5 2 3 23 4 5 5 77 3 0 0 0,22 0 30 0,73
e 72 0 1 1 1 20 1 4 4 72 0 3 0 0 0 0 0
f 73 0 3 2 2 23 3 3 3 30 2 0 1 0,59 1 12 0,59
g 76 0 3 2 2 22 3 3 3 34 2 1 0 0,55 1 15 0,61
h 76 0 3 2 2 22 3 3 3 34 2 1 0 0,55 1 15 0,61
i 64 0 3 2 2 18 3 3 3 25 2 1 0 0,61 1 15 0,66
y 78 0 4 2 3 22 3 4 4 56 3 1 0 0,28 0 29 0,63
zs
a 34 0 0 1 8 0 0 0 73 2 1 0 0,61 1 17 0,21
b 12 0 2 1 1 5 2 2 2 51 2 1 3 0,61 1 15 0,66
c 46 0 2 0 1 8 4 2 2 50 1 1 1 0,29 1 17 0,06
d 35 0 2 0 1 5 1 2 2 52 1 1 0 0,39 1 15 0,07
e 8 0 2 1 1 2 2 1 1 47 2 2 0 0,61 1 15 0,66
f 9 0 0 0 0 5 0 0 0 5 0 1 1 0,02 0 3 0,07
g 12 0 0 0 0 4 0 0 0 9 0 0 0 0,06 0 0 0,05
h 12 0 0 0 0 4 0 0 0 9 0 0 0 0,06 0 0 0,05
i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y 14 0 1 0 1 4 0 1 1 31 1 0 0 0,33 1 14 0,03
max 46 0 2 1 1 8 4 2 2 52 2 2 3 0,61 1 17 0,66
zs/max
a 0,74 0 0 0 1 1 0 0 0 1,4 1 0,5 0 1 1 1 0,32
b 0,26 0 1 1 1 0,63 0,5 1 1 0,98 1 0,5 1 1 1 0,88 1
c 1 0 1 0 1 1 1 1 1 0,96 0,5 0,5 0,33 0,48 1 1 0,09
d 0,76 0 1 0 1 0,63 0,25 1 1 1 0,5 0,5 0 0,64 1 0,88 0,11
e 0,17 0 1 1 1 0,25 0,5 0,5 0,5 0,9 1 1 0 1 1 0,88 1
f 0,2 0 0 0 0 0,63 0 0 0 0,1 0 0,5 0,33 0,03 0 0,18 0,11
g 0,26 0 0 0 0 0,5 0 0 0 0,17 0 0 0 0,09 0 0 0,08
h 0,26 0 0 0 0 0,5 0 0 0 0,17 0 0 0 0,09 0 0 0,08
i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
y 0,3 0 0,5 0 1 0,5 0 0,5 0,5 0,6 0,5 0 0 0,54 1 0,82 0,05
avggoal avgall
a 0,25 0,49 0,5 0,83 0,52
b 0,42 0,87 0,83 0,97 0,77
c 0,67 0,85 0,44 0,64 0,65
d 0,59 0,7 0,33 0,66 0,57
e 0,39 0,66 0,67 0,97 0,67
f 0,07 0,1 0,28 0,08 0,13
g 0,09 0,1 0 0,04 0,06
h 0,09 0,1 0 0,04 0,06
i 0 0 0 0 0
y 0,27 0,44 0,17 0,6 0,37

Table 50: Measurements for initial versions (directly measured values in gray rows)

Appendix D

 290

 LO
C

�
LO

C
,t
�

N
O

M

D
RH

W
RH

v(
G

) rt
,c

lo
se

d

v(
G

) rt
,o

pe
n

v(
G

) ct
,c

lo
se

d

v(
G

) ct
,o

pe
n

LO
C

ad

N
V

e

N
V

i

N
V

a

RR

N
O

D

�
LO

C
,s
�

K
va

r

a 129 31 4 1 4 33 4 4 4 129 0 0 0 0 0 53 0,44

b 95 19 1 1 1 28 1 1 1 95 0 0 4 0 0 0 0

c 139 29 6 2 4 32 9 6 6 100 4 0 1 0,28 0 52 0,67

d 125 26 6 2 4 28 5 6 10 102 4 0 0 0,18 0 49 0,69

e 91 18 1 1 1 24 1 5 1 91 0 4 0 0 0 0 0

f 92 19 4 2 3 28 4 4 7 47 3 0 1 0,49 1 25 0,54

g 95 19 4 2 3 27 4 4 7 51 3 1 0 0,46 1 28 0,58

h 95 19 4 2 3 27 4 4 7 51 3 1 0 0,46 1 28 0,58

i 80 18 4 2 3 23 4 4 7 39 3 1 0 0,51 1 27 0,6

y 97 19 5 2 4 27 4 5 7 73 4 1 0 0,25 0 42 0,63

zs

a 49 13 0 1 1 10 0 0 3 90 3 1 0 0,51 1 26 0,16

b 15 1 3 1 2 5 3 3 6 56 3 1 4 0,51 1 27 0,6

c 59 11 2 0 1 9 5 2 1 61 1 1 1 0,23 1 25 0,07

d 45 8 2 0 1 5 1 2 3 63 1 1 0 0,33 1 22 0,09

e 11 0 3 1 2 1 3 1 6 52 3 3 0 0,51 1 27 0,6

f 12 1 0 0 0 5 0 0 0 8 0 1 1 0,02 0 2 0,06

g 15 1 0 0 0 4 0 0 0 12 0 0 0 0,05 0 1 0,02

h 15 1 0 0 0 4 0 0 0 12 0 0 0 0,05 0 1 0,02

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 17 1 1 0 1 4 0 1 0 34 1 0 0 0,27 1 15 0,03

max 59 11 3 1 2 9 5 3 6 63 3 3 4 0,51 1 27 0,6

zs/max

a 0,83 1,18 0 1 1 1,11 0 0 0,5 1,43 1 0,33 0 1 1 0,96 0,27

b 0,25 0,09 1 1 1 0,56 1 1 1 0,89 1 0,33 1 1 1 1 1

c 1 1 0,67 0 1 1 1 0,67 0,17 0,97 0,33 0,33 0,25 0,45 1 0,93 0,12

d 0,76 0,73 0,67 0 1 0,56 0 0,67 0,5 1 0,33 0,33 0 0,64 1 0,81 0,15

e 0,19 0 1 1 1 0,11 1 0,33 1 0,83 1 1 0 1 1 1 1

f 0,2 0,09 0 0 0 0,56 0 0 0 0,13 0 0,33 0,25 0,05 0 0,07 0,1

g 0,25 0,09 0 0 0 0,44 0 0 0 0,19 0 0 0 0,1 0 0,04 0,03

h 0,25 0,09 0 0 0 0,44 0 0 0 0,19 0 0 0 0,1 0 0,04 0,03

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 0,29 0,09 0,33 0 1 0,44 0 0,33 0 0,54 0,33 0 0 0,52 1 0,56 0,05

avggoal avgall

a 0,67 0,65 0,44 0,81 0,64

b 0,45 0,86 0,78 1 0,77

c 0,89 0,61 0,31 0,62 0,61

d 0,72 0,49 0,22 0,65 0,52

e 0,4 0,7 0,67 1 0,69

f 0,1 0,1 0,19 0,05 0,11

g 0,12 0,09 0 0,04 0,06

h 0,12 0,09 0 0,04 0,06

i 0 0 0 0 0

y 0,24 0,26 0,11 0,53 0,28

Table 51: Measurements after evolution step 1

Appendix D

 291

 LO
C

�
LO

C
,t
�

N
O

M

D
RH

W
RH

v(
G

) rt
,c

lo
se

d

v(
G

) rt
,o

pe
n

v(
G

) ct
,c

lo
se

d

v(
G

) ct
,o

pe
n

LO
C

ad

N
V

e

N
V

i

N
V

a

RR

N
O

D

�
LO

C
,s
�

K
va

r

a 268 170 8 1 8 68 8 8 8 268 0 0 0 0 0 116 0,41

b 116 40 1 1 1 35 1 1 1 116 0 0 8 0 0 0 0

c 181 79 8 3 5 35 14 8 8 126 5 0 5 0,3 0 51 0,74

d 152 53 9 3 6 29 7 9 21 123 5 0 0 0,19 0 55 0,74

e 89 24 1 1 1 24 1 10 1 89 0 5 0 0 0 0 0

f 94 21 5 3 4 29 5 5 12 49 4 0 5 0,48 1 21 0,58

g 93 25 5 3 3 28 5 5 9 47 4 2 0 0,49 2 25 0,64

h 93 25 4 2 3 27 4 5 7 41 3 3 0 0,56 2 25 0,6

i 82 20 4 2 3 23 4 5 7 35 3 2 0 0,57 2 23 0,61

y 105 26 6 3 5 28 5 6 9 70 5 2 0 0,33 0 39 0,6

zs

a 186 150 4 1 5 45 4 3 1 233 3 2 0 0,57 2 93 0,2

b 34 20 3 1 2 12 3 4 6 81 3 2 8 0,57 2 23 0,61

c 99 59 4 1 2 12 10 3 1 91 2 2 5 0,27 2 28 0,13

d 70 33 5 1 3 6 3 4 14 88 2 2 0 0,38 2 32 0,13

e 7 4 3 1 2 1 3 5 6 54 3 3 0 0,57 2 23 0,61

f 12 1 1 1 1 6 1 0 5 14 1 2 5 0,09 1 2 0,03

g 11 5 1 1 0 5 1 0 2 12 1 0 0 0,08 0 2 0,03

h 11 5 0 0 0 4 0 0 0 6 0 1 0 0,01 0 2 0,01

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 23 6 2 1 2 5 1 1 2 35 2 0 0 0,24 2 16 0,01

max 99 59 5 1 3 12 10 5 14 91 3 3 8 0,57 2 32 0,61

zs/max

a 1,88 2,54 0,8 1 1,67 3,75 0,4 0,6 0,07 2,56 1 0,67 0 1 1 2,91 0,33

b 0,34 0,34 0,6 1 0,67 1 0,3 0,8 0,43 0,89 1 0,67 1 1 1 0,72 1

c 1 1 0,8 1 0,67 1 1 0,6 0,07 1 0,67 0,67 0,63 0,47 1 0,88 0,21

d 0,71 0,56 1 1 1 0,5 0,3 0,8 1 0,97 0,67 0,67 0 0,67 1 1 0,21

e 0,07 0,07 0,6 1 0,67 0,08 0,3 1 0,43 0,59 1 1 0 1 1 0,72 1

f 0,12 0,02 0,2 1 0,33 0,5 0,1 0 0,36 0,15 0,33 0,67 0,63 0,16 0,5 0,06 0,05

g 0,11 0,08 0,2 1 0 0,42 0,1 0 0,14 0,13 0,33 0 0 0,14 0 0,06 0,05

h 0,11 0,08 0 0 0 0,33 0 0 0 0,07 0 0,33 0 0,02 0 0,06 0,02

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 0,23 0,1 0,4 1 0,67 0,42 0,1 0,2 0,14 0,38 0,67 0 0 0,42 1 0,5 0,02

avggoal avgall

a 1,74 1,44 0,56 1,31 1,26

b 0,43 0,73 0,89 0,93 0,74

c 0,93 0,76 0,65 0,64 0,75

d 0,76 0,8 0,44 0,72 0,68

e 0,25 0,58 0,67 0,93 0,61

f 0,11 0,35 0,54 0,19 0,3

g 0,13 0,26 0,11 0,06 0,14

h 0,07 0,06 0,11 0,03 0,06

i 0 0 0 0 0

y 0,24 0,42 0,22 0,48 0,34

Table 52: Measurements after evolution step 2

Appendix D

 292

 LO
C

�
LO

C
,t
�

N
O

M

D
RH

W
RH

v(
G

) rt
,c

lo
se

d

v(
G

) rt
,o

pe
n

v(
G

) ct
,c

lo
se

d

v(
G

) ct
,o

pe
n

LO
C

ad

N
V

e

N
V

i

N
V

a

RR

N
O

D

�
LO

C
,s
�

K
va

r

a 349 251 10 1 10 81 10 10 10 349 0 0 0 0 0 163 0,44

b 143 67 1 1 1 40 1 1 1 143 0 0 10 0 0 0 0

c 218 115 9 3 6 40 17 9 9 151 6 0 6 0,31 0 71 0,72

d 185 86 10 3 7 33 8 10 25 150 6 0 0 0,19 0 72 0,73

e 112 47 1 1 1 27 1 13 1 112 0 6 0 0 0 0 0

f 122 49 6 3 5 34 6 6 16 67 5 0 6 0,45 1 35 0,63

g 118 52 6 3 4 32 6 6 13 66 5 3 0 0,44 3 38 0,65

h 118 50 5 2 4 31 5 6 11 57 4 4 0 0,52 3 38 0,61

i 104 42 5 2 4 27 5 6 11 50 4 3 0 0,52 3 37 0,62

y 133 57 7 3 6 32 6 7 13 89 6 3 0 0,33 0 40 0,61

zs

a 245 209 5 1 6 54 5 4 1 299 4 3 0 0,52 3 126 0,18

b 39 25 4 1 3 13 4 5 10 93 4 3 10 0,52 3 37 0,62

c 114 73 4 1 2 13 12 3 2 101 2 3 6 0,21 3 34 0,1

d 81 44 5 1 3 6 3 4 14 100 2 3 0 0,33 3 35 0,11

e 8 5 4 1 3 0 4 7 10 62 4 3 0 0,52 3 37 0,62

f 18 7 1 1 1 7 1 0 5 17 1 3 6 0,07 2 2 0,01

g 14 10 1 1 0 5 1 0 2 16 1 0 0 0,08 0 1 0,03

h 14 8 0 0 0 4 0 0 0 7 0 1 0 0 0 1 0,01

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 29 15 2 1 2 5 1 1 2 39 2 0 0 0,19 3 3 0,01

max 114 73 5 1 3 13 12 7 14 101 4 3 10 0,52 3 37 0,62

zs/max

a 2,15 2,86 1 1 2 4,15 0,42 0,57 0,07 2,96 1 1 0 1 1 3,41 0,29

b 0,34 0,34 0,8 1 1 1 0,33 0,71 0,71 0,92 1 1 1 1 1 1 1

c 1 1 0,8 1 0,67 1 1 0,43 0,14 1 0,5 1 0,6 0,41 1 0,92 0,16

d 0,71 0,6 1 1 1 0,46 0,25 0,57 1 0,99 0,5 1 0 0,64 1 0,95 0,18

e 0,07 0,07 0,8 1 1 0 0,33 1 0,71 0,61 1 1 0 1 1 1 1

f 0,16 0,1 0,2 1 0,33 0,54 0,08 0 0,36 0,17 0,25 1 0,6 0,13 0,67 0,05 0,02

g 0,12 0,14 0,2 1 0 0,38 0,08 0 0,14 0,16 0,25 0 0 0,15 0 0,03 0,05

h 0,12 0,11 0 0 0 0,31 0 0 0 0,07 0 0,33 0 0 0 0,03 0,02

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 0,25 0,21 0,4 1 0,67 0,38 0,08 0,14 0,14 0,39 0,5 0 0 0,36 1 0,08 0,02

avggoal avgall

a 2 1,6 0,67 1,42 1,42

b 0,49 0,81 1 1 0,83

c 0,93 0,75 0,7 0,62 0,75

d 0,77 0,75 0,5 0,69 0,68

e 0,31 0,67 0,67 1 0,66

f 0,15 0,35 0,62 0,22 0,33

g 0,15 0,25 0,08 0,06 0,14

h 0,08 0,05 0,11 0,01 0,06

i 0 0 0 0 0

y 0,29 0,4 0,17 0,37 0,3

Table 53: Measurements after evolution step 3

Appendix D

 293

 LO
C

�
LO

C
,t
�

N
O

M

D
RH

W
RH

v(
G

) rt
,c

lo
se

d

v(
G

) rt
,o

pe
n

v(
G

) ct
,c

lo
se

d

v(
G

) ct
,o

pe
n

LO
C

ad

N
V

e

N
V

i

N
V

a

RR

N
O

D

�
LO

C
,s
�

K
va

r

a 788 690 20 1 20 180 20 20 20 788 0 0 0 0 0 335 0,43

b 154 78 1 1 1 43 1 1 1 154 0 0 11 0 0 0 0

c 252 149 11 3 7 45 20 11 11 168 7 0 7 0,33 0 71 0,76

d 211 112 13 3 9 36 10 13 30 168 7 0 0 0,2 0 82 0,76

e 122 57 1 1 1 29 1 14 1 122 0 7 0 0 0 0 0

f 133 60 7 3 6 37 7 7 18 77 6 0 6 0,42 1 35 0,65

g 128 62 7 4 4 35 7 7 15 75 6 3 0 0,41 3 38 0,68

h 128 60 5 2 4 33 5 7 11 57 4 5 0 0,55 3 38 0,62

i 114 52 5 2 4 29 5 7 11 50 4 4 0 0,56 3 37 0,63

y 143 67 8 4 7 35 7 8 15 98 7 3 0 0,31 0 53 0,61

zs

a 674 638 15 1 16 151 15 13 9 738 4 4 0 0,56 3 298 0,2

b 40 26 4 1 3 14 4 6 10 104 4 4 11 0,56 3 37 0,63

c 138 97 6 1 3 16 15 4 0 118 3 4 7 0,23 3 34 0,13

d 97 60 8 1 5 7 5 6 19 118 3 4 0 0,36 3 45 0,13

e 8 5 4 1 3 0 4 7 10 72 4 3 0 0,56 3 37 0,63

f 19 8 2 1 2 8 2 0 7 27 2 4 6 0,14 2 2 0,02

g 14 10 2 2 0 6 2 0 4 25 2 1 0 0,15 0 1 0,05

h 14 8 0 0 0 4 0 0 0 7 0 1 0 0,01 0 1 0,01

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 29 15 3 2 3 6 2 1 4 48 3 1 0 0,25 3 16 0,02

max 138 97 8 2 5 16 15 7 19 118 4 4 11 0,56 3 45 0,63

zs/max

a 4,88 6,58 1,88 0,5 3,2 9,44 1 1,86 0,47 6,25 1 1 0 1 1 6,62 0,32

b 0,29 0,27 0,5 0,5 0,6 0,88 0,27 0,86 0,53 0,88 1 1 1 1 1 0,82 1

c 1 1 0,75 0,5 0,6 1 1 0,57 0 1 0,75 1 0,64 0,41 1 0,76 0,21

d 0,7 0,62 1 0,5 1 0,44 0,33 0,86 1 1 0,75 1 0 0,64 1 1 0,21

e 0,06 0,05 0,5 0,5 0,6 0 0,27 1 0,53 0,61 1 0,75 0 1 1 0,82 1

f 0,14 0,08 0,25 0,5 0,4 0,5 0,13 0 0,37 0,23 0,5 1 0,55 0,25 0,67 0,04 0,03

g 0,1 0,1 0,25 1 0 0,38 0,13 0 0,21 0,21 0,5 0,25 0 0,26 0 0,02 0,08

h 0,1 0,08 0 0 0 0,25 0 0 0 0,06 0 0,25 0 0,01 0 0,02 0,02

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 0,21 0,15 0,38 1 0,6 0,38 0,13 0,14 0,21 0,41 0,75 0,25 0 0,44 1 0,36 0,03

avggoal avgall

a 4,45 3,25 0,67 2,23 2,65

b 0,35 0,64 1 0,96 0,74

c 0,92 0,67 0,8 0,59 0,74

d 0,77 0,73 0,58 0,71 0,7

e 0,2 0,5 0,58 0,96 0,56

f 0,16 0,3 0,68 0,25 0,35

g 0,15 0,28 0,25 0,09 0,19

h 0,06 0,04 0,08 0,01 0,05

i 0 0 0 0 0

y 0,25 0,41 0,33 0,46 0,36

Table 54: Measurements after evolution step 4

Appendix D

 294

 LO
C

�
LO

C
,t
�

N
O

M

D
RH

W
RH

v(
G

) rt
,c

lo
se

d

v(
G

) rt
,o

pe
n

v(
G

) ct
,c

lo
se

d

v(
G

) ct
,o

pe
n

LO
C

ad

N
V

e

N
V

i

N
V

a

RR

N
O

D

�
LO

C
,s
�

K
va

r

a 708 610 20 1 20 164 20 20 20 708 0 0 0 0 0 302 0,45

b 137 69 1 1 1 39 1 1 1 137 0 0 11 0 0 0 0

c 232 147 11 3 7 41 20 11 11 148 7 0 7 0,36 0 65 0,77

d 191 112 13 3 9 32 10 13 30 148 7 0 0 0,23 0 76 0,76

e 109 53 1 1 1 25 1 10 1 109 0 7 0 0 0 0 0

f 120 63 7 3 6 33 7 7 18 69 6 0 6 0,43 1 34 0,68

g 117 60 7 4 4 31 7 7 15 69 6 3 0 0,41 3 36 0,69

h 117 55 5 2 4 29 5 7 11 51 4 5 0 0,56 3 36 0,66

i 102 49 5 2 4 25 5 7 11 43 4 4 0 0,58 3 30 0,65

y 126 65 8 4 7 31 7 8 15 88 7 3 0 0,3 0 48 0,63

zs

a 606 561 15 1 16 139 15 13 9 665 4 4 0 0,58 3 272 0,2

b 35 20 4 1 3 14 4 6 10 94 4 4 11 0,58 3 30 0,65

c 130 98 6 1 3 16 15 4 0 105 3 4 7 0,22 3 35 0,12

d 89 63 8 1 5 7 5 6 19 105 3 4 0 0,35 3 46 0,11

e 7 4 4 1 3 0 4 3 10 66 4 3 0 0,58 3 30 0,65

f 18 14 2 1 2 8 2 0 7 26 2 4 6 0,15 2 4 0,03

g 15 11 2 2 0 6 2 0 4 26 2 1 0 0,17 0 6 0,04

h 15 6 0 0 0 4 0 0 0 8 0 1 0 0,01 0 6 0,01

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 24 16 3 2 3 6 2 1 4 45 3 1 0 0,28 3 18 0,02

max 130 98 8 2 5 16 15 6 19 105 4 4 11 0,58 3 46 0,65

zs/max

a 4,66 5,72 1,88 0,5 3,2 8,69 1 2,17 0,47 6,33 1 1 0 1 1 5,91 0,31

b 0,27 0,2 0,5 0,5 0,6 0,88 0,27 1 0,53 0,9 1 1 1 1 1 0,65 1

c 1 1 0,75 0,5 0,6 1 1 0,67 0 1 0,75 1 0,64 0,37 1 0,76 0,18

d 0,68 0,64 1 0,5 1 0,44 0,33 1 1 1 0,75 1 0 0,61 1 1 0,17

e 0,05 0,04 0,5 0,5 0,6 0 0,27 0,5 0,53 0,63 1 0,75 0 1 1 0,65 1

f 0,14 0,14 0,25 0,5 0,4 0,5 0,13 0 0,37 0,25 0,5 1 0,55 0,27 0,67 0,09 0,05

g 0,12 0,11 0,25 1 0 0,38 0,13 0 0,21 0,25 0,5 0,25 0 0,29 0 0,13 0,06

h 0,12 0,06 0 0 0 0,25 0 0 0 0,08 0 0,25 0 0,02 0 0,13 0,02

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 0,18 0,16 0,38 1 0,6 0,38 0,13 0,17 0,21 0,43 0,75 0,25 0 0,48 1 0,39 0,03

avggoal avgall

a 4,09 3,19 0,67 2,06 2,5

b 0,32 0,67 1 0,91 0,73

c 0,92 0,68 0,8 0,58 0,74

d 0,78 0,75 0,58 0,7 0,7

e 0,2 0,43 0,58 0,91 0,53

f 0,18 0,31 0,68 0,27 0,36

g 0,16 0,28 0,25 0,12 0,2

h 0,06 0,05 0,08 0,04 0,06

i 0 0 0 0 0

y 0,24 0,42 0,33 0,48 0,37

Table 55: Measurements after evolution step 5

Appendix D

 295

 LO
C

�
LO

C
,t
�

N
O

M

D
RH

W
RH

v(
G

) rt
,c

lo
se

d

v(
G

) rt
,o

pe
n

v(
G

) ct
,c

lo
se

d

v(
G

) ct
,o

pe
n

LO
C

ad

N
V

e

N
V

i

N
V

a

RR

N
O

D

�
LO

C
,s
�

K
va

r

a 1606 1508 40 1 40 388 40 40 40 1606 0 0 0 0 0 604 0,46

b 149 81 1 1 1 43 1 1 1 149 0 0 12 0 0 0 0

c 268 183 13 3 8 47 23 13 13 166 8 0 8 0,38 0 65 0,78

d 219 140 16 3 11 36 12 16 35 167 8 0 0 0,24 0 87 0,77

e 120 64 1 1 1 28 1 11 1 120 0 8 0 0 0 0 0

f 131 74 8 3 7 37 8 8 20 77 7 0 6 0,41 1 34 0,68

g 128 71 8 5 4 35 8 8 17 77 7 3 0 0,4 3 36 0,69

h 128 66 5 2 4 31 5 8 11 51 4 6 0 0,6 3 36 0,67

i 113 60 5 2 4 28 5 8 11 43 4 5 0 0,62 3 30 0,66

y 137 76 9 5 8 35 8 9 17 96 8 3 0 0,3 0 48 0,63

zs

a 1493 1448 35 1 36 360 35 32 29 1563 4 5 0 0,62 3 574 0,2

b 36 21 4 1 3 15 4 7 10 106 4 5 12 0,62 3 30 0,66

c 155 123 8 1 4 19 18 5 2 123 4 5 8 0,24 3 35 0,12

d 106 80 11 1 7 8 7 8 24 124 4 5 0 0,38 3 57 0,11

e 7 4 4 1 3 0 4 3 10 77 4 3 0 0,62 3 30 0,66

f 18 14 3 1 3 9 3 0 9 34 3 5 6 0,21 2 4 0,02

g 15 11 3 3 0 7 3 0 6 34 3 2 0 0,22 0 6 0,03

h 15 6 0 0 0 3 0 0 0 8 0 1 0 0,02 0 6 0,01

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 24 16 4 3 4 7 3 1 6 53 4 2 0 0,32 3 18 0,03

max 155 123 11 3 7 19 18 8 24 124 4 5 12 0,62 3 57 0,66

zs/max

a 9,63 11,8 3,18 0,33 5,14 18,9 1,94 4 1,21 12,6 1 1 0 1 1 10,1 0,3

b 0,23 0,17 0,36 0,33 0,43 0,79 0,22 0,88 0,42 0,85 1 1 1 1 1 0,53 1

c 1 1 0,73 0,33 0,57 1 1 0,63 0,08 0,99 1 1 0,67 0,39 1 0,61 0,18

d 0,68 0,65 1 0,33 1 0,42 0,39 1 1 1 1 1 0 0,62 1 1 0,17

e 0,05 0,03 0,36 0,33 0,43 0 0,22 0,38 0,42 0,62 1 0,6 0 1 1 0,53 1

f 0,12 0,11 0,27 0,33 0,43 0,47 0,17 0 0,38 0,27 0,8 1 0,5 0,33 0,67 0,07 0,03

g 0,1 0,09 0,27 1 0 0,37 0,17 0 0,25 0,27 0,8 0,4 0 0,36 0 0,11 0,05

h 0,1 0,05 0 0 0 0,16 0 0 0 0,06 0 0,2 0 0,03 0 0,11 0,02

i 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

y 0,15 0,13 0,36 1 0,57 0,37 0,17 0,13 0,25 0,43 1 0,4 0 0,52 1 0,32 0,05

avggoal avgall

a 8,2 6,31 0,67 3,09 4,57

b 0,26 0,56 1 0,88 0,67

c 0,91 0,66 0,89 0,55 0,75

d 0,78 0,73 0,67 0,7 0,72

e 0,15 0,34 0,53 0,88 0,48

f 0,17 0,29 0,75 0,28 0,37

g 0,15 0,29 0,38 0,13 0,24

h 0,05 0,03 0,07 0,04 0,05

i 0 0 0 0 0

y 0,22 0,42 0,47 0,47 0,39

Table 56: Measurements after evolution step 6

Appendix D

 296

G3 0 1 2 3 4 5 6
a 0,25 0,67 1,74 2 4,45 4,09 8,2
b 0,42 0,45 0,43 0,49 0,35 0,32 0,26
c 0,67 0,89 0,93 0,93 0,92 0,92 0,91
d 0,59 0,72 0,76 0,77 0,77 0,78 0,78
e 0,39 0,4 0,25 0,31 0,2 0,2 0,15
f 0,07 0,1 0,11 0,15 0,16 0,18 0,17
g 0,09 0,12 0,13 0,15 0,15 0,16 0,15
h 0,09 0,12 0,07 0,08 0,06 0,06 0,05
i 0 0 0 0 0 0 0
y 0,27 0,24 0,24 0,29 0,25 0,24 0,22

G4 0 1 2 3 4 5 6
a 0,49 0,65 1,44 1,6 3,25 3,19 6,31
b 0,87 0,86 0,73 0,81 0,64 0,67 0,56
c 0,85 0,61 0,76 0,75 0,67 0,68 0,66
d 0,7 0,49 0,8 0,75 0,73 0,75 0,73
e 0,66 0,7 0,58 0,67 0,5 0,43 0,34
f 0,1 0,1 0,35 0,35 0,3 0,31 0,29
g 0,1 0,09 0,26 0,25 0,28 0,28 0,29
h 0,1 0,09 0,06 0,05 0,04 0,05 0,03
i 0 0 0 0 0 0 0
y 0,44 0,26 0,42 0,4 0,41 0,42 0,42

G5 0 1 2 3 4 5 6
a 0,5 0,44 0,56 0,67 0,67 0,67 0,67
b 0,83 0,78 0,89 1 1 1 1
c 0,44 0,31 0,65 0,7 0,8 0,8 0,89
d 0,33 0,22 0,44 0,5 0,58 0,58 0,67
e 0,67 0,67 0,67 0,67 0,58 0,58 0,53
f 0,28 0,19 0,54 0,62 0,68 0,68 0,75
g 0 0 0,11 0,08 0,25 0,25 0,38
h 0 0 0,11 0,11 0,08 0,08 0,07
i 0 0 0 0 0 0 0
y 0,17 0,11 0,22 0,17 0,33 0,33 0,47

G7 0 1 2 3 4 5 6
a 0,83 0,81 1,31 1,42 2,23 2,23 3,09
b 0,97 1 0,93 1 0,96 0,96 0,88
c 0,64 0,62 0,64 0,62 0,59 0,59 0,55
d 0,66 0,65 0,72 0,69 0,71 0,71 0,7
e 0,97 1 0,93 1 0,96 0,96 0,88
f 0,08 0,05 0,19 0,22 0,25 0,25 0,28
g 0,04 0,04 0,06 0,06 0,09 0,09 0,13
h 0,04 0,04 0,03 0,01 0,01 0,01 0,04
i 0 0 0 0 0 0 0
y 0,6 0,53 0,48 0,37 0,46 0,46 0,47

all 0 1 2 3 4 5 6
a 0,52 0,64 1,26 1,42 2,65 2,5 4,57
b 0,77 0,77 0,74 0,83 0,74 0,73 0,67
c 0,65 0,61 0,75 0,75 0,74 0,74 0,75
d 0,57 0,52 0,68 0,68 0,7 0,7 0,72
e 0,67 0,69 0,61 0,66 0,56 0,53 0,48
f 0,13 0,11 0,3 0,33 0,35 0,36 0,37
g 0,06 0,06 0,14 0,14 0,19 0,2 0,24
h 0,06 0,06 0,06 0,06 0,05 0,06 0,05
i 0 0 0 0 0 0 0
y 0,37 0,28 0,34 0,3 0,36 0,37 0,39

Table 57: Aggregated complexity per goal

Appendix E

 297

Appendix E Aggregated Results

The following tables list the results discussed in Sec.6.5.

E.1 Results for Hypotheses H1.1 and H1.2

G3
a 0,246377 0,670776 1,740387 2,004046 4,445459 4,087009 8,195478
b 0,42029 0,448382 0,427472 0,494857 0,352632 0,324437 0,255542
c 0,666667 0,888889 0,933333 0,933333 0,916667 0,916667 0,909091
d 0,586957 0,718884 0,755464 0,771089 0,773818 0,775824 0,778092
e 0,391304 0,39548 0,246168 0,31289 0,203172 0,198221 0,147106
f 0,065217 0,0981 0,11272 0,151262 0,156718 0,177106 0,167559
g 0,086957 0,115049 0,131952 0,153264 0,151514 0,15921 0,152977

-0,52281 0,094413 1,946764 2,190941 6,916093 6,380107 14,68639

G4
a 0,486264 0,648526 1,435505 1,596252 3,246081 3,194455 6,311596
b 0,872253 0,863492 0,726478 0,811814 0,643783 0,666174 0,560015
c 0,851648 0,614512 0,762585 0,748299 0,667347 0,680952 0,657862
d 0,696429 0,488889 0,79529 0,753295 0,732568 0,752976 0,734754
e 0,664835 0,695692 0,581711 0,665926 0,50045 0,431651 0,342394
f 0,103022 0,097506 0,349189 0,35437 0,304367 0,307053 0,293064
g 0,096154 0,090703 0,255913 0,252746 0,275818 0,280926 0,294183

-0,36955 -0,02572 1,003451 1,143099 4,103603 4,047024 10,00049

G5
a 0,5 0,444444 0,555556 0,666667 0,666667 0,666667 0,666667
b 0,833333 0,777778 0,888889 1 1 1 1
c 0,444444 0,305556 0,652778 0,7 0,795455 0,795455 0,888889
d 0,333333 0,222222 0,444444 0,5 0,583333 0,583333 0,666667
e 0,666667 0,666667 0,666667 0,666667 0,583333 0,583333 0,533333
f 0,277778 0,194444 0,541667 0,616667 0,681818 0,681818 0,75
g 0 0 0,111111 0,083333 0,25 0,25 0,383333

-0,12195 -0,09859 -0,1623 -0,06977 -0,09974 -0,09974 -0,13669

G7
a 0,829545 0,807407 1,30853 1,423932 2,234921 2,055184 3,093301
b 0,970588 1 0,929688 1 0,955556 0,913043 0,881579
c 0,642191 0,623782 0,639491 0,622074 0,592039 0,579884 0,545365
d 0,655935 0,651448 0,720062 0,68975 0,710836 0,695005 0,695841
e 0,970588 1 0,929688 1 0,955556 0,913043 0,881579
f 0,078975 0,054918 0,194115 0,217151 0,248214 0,266258 0,275429
g 0,042219 0,041662 0,06218 0,056675 0,09101 0,120679 0,126881

0,024351 -0,01392 0,626044 0,719816 1,781494 1,651016 3,11841

all 0 1 2 3 4 5 6
a 0,515547 0,642788 1,259994 1,422724 2,648282 2,500829 4,566761
b 0,774116 0,772413 0,743132 0,826668 0,737993 0,725914 0,674284
c 0,651238 0,608185 0,747047 0,750927 0,742877 0,743239 0,750302
d 0,568163 0,520361 0,678815 0,678534 0,700139 0,701785 0,718839
e 0,673349 0,68946 0,606058 0,66137 0,560628 0,531562 0,476103
f 0,131248 0,111242 0,299423 0,334862 0,347779 0,358059 0,371513
g 0,056332 0,061853 0,140289 0,136505 0,192085 0,202704 0,239344 avg

-0,22674 -0,00744 0,816174 0,950608 2,863797 2,701504 5,973411 -0,11709
Table 58: Results for H1.1 and H1.2 (Cloning complexity)

Appendix E

 298

E.2 Results for Hypothesis H2.1

G3
b 0,42029 0,448382 0,427472 0,494857 0,352632 0,324437 0,255542
c 0,666667 0,888889 0,933333 0,933333 0,916667 0,916667 0,909091
d 0,586957 0,718884 0,755464 0,771089 0,773818 0,775824 0,778092
e 0,391304 0,39548 0,246168 0,31289 0,203172 0,198221 0,147106
f 0,065217 0,0981 0,11272 0,151262 0,156718 0,177106 0,167559
g 0,086957 0,115049 0,131952 0,153264 0,151514 0,15921 0,152977

0,923077 1,014702 1,183745 1,057164 0,975219 0,894293 0,869792

G4
b 0,872253 0,863492 0,726478 0,811814 0,643783 0,666174 0,560015
c 0,851648 0,614512 0,762585 0,748299 0,667347 0,680952 0,657862
d 0,696429 0,488889 0,79529 0,753295 0,732568 0,752976 0,734754
e 0,664835 0,695692 0,581711 0,665926 0,50045 0,431651 0,342394
f 0,103022 0,097506 0,349189 0,35437 0,304367 0,307053 0,293064
g 0,096154 0,090703 0,255913 0,252746 0,275818 0,280926 0,294183

1,209507 1,153287 0,502508 0,539836 0,446203 0,51994 0,463446

G5
b 0,833333 0,777778 0,888889 1 1 1 1
c 0,444444 0,305556 0,652778 0,7 0,795455 0,795455 0,888889
d 0,333333 0,222222 0,444444 0,5 0,583333 0,583333 0,666667
e 0,666667 0,666667 0,666667 0,666667 0,583333 0,583333 0,533333
f 0,277778 0,194444 0,541667 0,616667 0,681818 0,681818 0,75
g 0 0 0,111111 0,083333 0,25 0,25 0,383333

1 1 0,748031 0,821429 0,711191 0,711191 0,619048

G7
b 0,970588 1 0,929688 1 0,955556 0,913043 0,881579
c 0,642191 0,623782 0,639491 0,622074 0,592039 0,579884 0,545365
d 0,655935 0,651448 0,720062 0,68975 0,710836 0,695005 0,695841
e 0,970588 1 0,929688 1 0,955556 0,913043 0,881579
f 0,078975 0,054918 0,194115 0,217151 0,248214 0,266258 0,275429
g 0,042219 0,041662 0,06218 0,056675 0,09101 0,120679 0,126881

0,845584 0,857845 0,646528 0,652163 0,543261 0,49668 0,441554

all 0 1 2 3 4 5 6
b 0,774116 0,772413 0,743132 0,826668 0,737993 0,725914 0,674284
c 0,651238 0,608185 0,747047 0,750927 0,742877 0,743239 0,750302
d 0,568163 0,520361 0,678815 0,678534 0,700139 0,701785 0,718839
e 0,673349 0,68946 0,606058 0,66137 0,560628 0,531562 0,476103
f 0,131248 0,111242 0,299423 0,334862 0,347779 0,358059 0,371513
g 0,056332 0,061853 0,140289 0,136505 0,192085 0,202704 0,239344 avg

0,994768 0,996648 0,728158 0,741975 0,644833 0,637752 0,57779 0,7602749
Table 59: Results for H2.1 (Binding time complexity)

Appendix E

 299

E.3 Results for Hypothesis H2.2

G3
b 0,42029 0,448382 0,427472 0,494857 0,352632 0,324437 0,255542
c 0,666667 0,888889 0,933333 0,933333 0,916667 0,916667 0,909091
d 0,586957 0,718884 0,755464 0,771089 0,773818 0,775824 0,778092
e 0,391304 0,39548 0,246168 0,31289 0,203172 0,198221 0,147106
f 0,065217 0,0981 0,11272 0,151262 0,156718 0,177106 0,167559
g 0,086957 0,115049 0,131952 0,153264 0,151514 0,15921 0,152977

0,818182 1,109826 1,947463 1,521206 2,101099 2,069175 2,516163

G4
b 0,872253 0,863492 0,726478 0,811814 0,643783 0,666174 0,560015
c 0,851648 0,614512 0,762585 0,748299 0,667347 0,680952 0,657862
d 0,696429 0,488889 0,79529 0,753295 0,732568 0,752976 0,734754
e 0,664835 0,695692 0,581711 0,665926 0,50045 0,431651 0,342394
f 0,103022 0,097506 0,349189 0,35437 0,304367 0,307053 0,293064
g 0,096154 0,090703 0,255913 0,252746 0,275818 0,280926 0,294183

0,657942 0,312572 0,572031 0,451976 0,512406 0,689052 0,763881

G5
b 0,833333 0,777778 0,888889 1 1 1 1
c 0,444444 0,305556 0,652778 0,7 0,795455 0,795455 0,888889
d 0,333333 0,222222 0,444444 0,5 0,583333 0,583333 0,666667
e 0,666667 0,666667 0,666667 0,666667 0,583333 0,583333 0,533333
f 0,277778 0,194444 0,541667 0,616667 0,681818 0,681818 0,75
g 0 0 0,111111 0,083333 0,25 0,25 0,383333

0,416667 0,125 0,625 0,877778 0,836364 0,836364 0,80303

G7
b 0,970588 1 0,929688 1 0,955556 0,913043 0,881579
c 0,642191 0,623782 0,639491 0,622074 0,592039 0,579884 0,545365
d 0,655935 0,651448 0,720062 0,68975 0,710836 0,695005 0,695841
e 0,970588 1 0,929688 1 0,955556 0,913043 0,881579
f 0,078975 0,054918 0,194115 0,217151 0,248214 0,266258 0,275429
g 0,042219 0,041662 0,06218 0,056675 0,09101 0,120679 0,126881

0,159001 0,118476 0,251859 0,196666 0,197558 0,187064 0,189047

all 0 1 2 3 4 5 6
b 0,774116 0,772413 0,743132 0,826668 0,737993 0,725914 0,674284
c 0,651238 0,608185 0,747047 0,750927 0,742877 0,743239 0,750302
d 0,568163 0,520361 0,678815 0,678534 0,700139 0,701785 0,718839
e 0,673349 0,68946 0,606058 0,66137 0,560628 0,531562 0,476103
f 0,131248 0,111242 0,299423 0,334862 0,347779 0,358059 0,371513
g 0,056332 0,061853 0,140289 0,136505 0,192085 0,202704 0,239344 avg

0,455955 0,339122 0,653665 0,623681 0,679782 0,722127 0,757599 0,604561
Table 60: Results for H2.2 (Programming language-dependence complexity)

Appendix E

 300

E.4 Results for Hypothesis H3.1

G3
g 0,086957 0,115049 0,131952 0,153264 0,151514 0,15921 0,152977
y 0,268116 0,237459 0,244673 0,286622 0,246595 0,24096 0,216185

-0,67568 -0,5155 -0,4607 -0,46527 -0,38557 -0,33927 -0,29238

G4
g 0,096154 0,090703 0,255913 0,252746 0,275818 0,280926 0,294183
y 0,442308 0,259637 0,415829 0,400924 0,409785 0,4163 0,415562

-0,78261 -0,65066 -0,38457 -0,36959 -0,32692 -0,32518 -0,29208

G5
g 0 0 0,111111 0,083333 0,25 0,25 0,383333
y 0,166667 0,111111 0,222222 0,166667 0,333333 0,333333 0,466667

-1 -1 -0,5 -0,5 -0,25 -0,25 -0,17857

G7
g 0,042219 0,041662 0,06218 0,056675 0,09101 0,120679 0,126881
y 0,601533 0,530695 0,483708 0,365015 0,456692 0,475171 0,469534

-0,92981 -0,9215 -0,87145 -0,84473 -0,80072 -0,74603 -0,72977

all 0 1 2 3 4 5 6
g 0,056332 0,061853 0,140289 0,136505 0,192085 0,202704 0,239344
y 0,369656 0,284726 0,341608 0,304807 0,361601 0,366441 0,391987 avg

-0,84761 -0,78276 -0,58933 -0,55216 -0,46879 -0,44683 -0,38941 -0,58241
Table 61: Results for H3.1 (Lack of Default complexity)

Appendix E

 301

E.5 Results for Hypothesis H3.2

G3
e 0,391304 0,39548 0,246168 0,31289 0,203172 0,198221 0,147106
g 0,086957 0,115049 0,131952 0,153264 0,151514 0,15921 0,152977
h 0,086957 0,115049 0,065286 0,077465 0,061308 0,05887 0,048518

-0,63636 -0,5493 -0,65468 -0,66764 -0,6543 -0,6706 -0,67664

G4
e 0,664835 0,695692 0,581711 0,665926 0,50045 0,431651 0,342394
g 0,096154 0,090703 0,255913 0,252746 0,275818 0,280926 0,294183
h 0,096154 0,090703 0,057038 0,053857 0,044189 0,046599 0,031773

-0,74729 -0,76932 -0,86381 -0,88275 -0,88615 -0,86921 -0,90018

G5
e 0,666667 0,666667 0,666667 0,666667 0,583333 0,583333 0,533333
g 0 0 0,111111 0,083333 0,25 0,25 0,383333
h 0 0 0,111111 0,111111 0,083333 0,083333 0,066667

-1 -1 -0,71429 -0,7037 -0,8 -0,8 -0,85455

G7
e 0,970588 1 0,929688 1 0,955556 0,913043 0,881579
g 0,042219 0,041662 0,06218 0,056675 0,09101 0,120679 0,126881
h 0,042219 0,041662 0,025843 0,011888 0,012515 0,042648 0,03733

-0,91663 -0,92001 -0,94789 -0,9775 -0,97608 -0,91749 -0,92597

all 0 1 2 3 4 5 6
e 0,673349 0,68946 0,606058 0,66137 0,560628 0,531562 0,476103
g 0,056332 0,061853 0,140289 0,136505 0,192085 0,202704 0,239344
h 0,056332 0,061853 0,06482 0,06358 0,050336 0,057862 0,046072 avg

-0,8456 -0,83535 -0,8263 -0,84063 -0,86625 -0,84239 -0,87121 -0,84682
Table 62: Results for H3.2 (Open/closed variant complexity)

CV

Name Thomas Patzke

Address Buchenheckenstraße 17a
 67661 Kaiserslautern

Date of Birth January 9, 1968

Studies 1987-1994 Ruhr-Universität Bochum
 Degree: Dipl.-Ing. Electrical Engineering

Professional Life 1994-2001 Software Developer at Kassenärztliche

Vereinigung Westfalen-Lippe, Dortmund
 2001-today Scientist at Fraunhofer Institute Experimental

Software Engineering (IESE), Kaiserslautern

Kaiserslautern, March 30, 2011

PhD Theses in Experimental Software Engineering

Volume 1 Oliver Laitenberger (2000), Cost-Effective Detection of Software Defects
Through Perspective-based Inspections

Volume 2 Christian Bunse (2000), Pattern-Based Refinement and Translation of
Object-Oriented Models to Code

Volume 3 Andreas Birk (2000), A Knowledge Management Infrastructure for
Systematic Improvement in Software Engineering

Volume 4 Carsten Tautz (2000), Customizing Software Engineering Experience
Management Systems to Organizational Needs

Volume 5 Erik Kamsties (2001), Surfacing Ambiguity in Natural Language
Requirements

Volume 6 Christiane Differding (2001), Adaptive Measurement Plans for Software
Development

Volume 7 Isabella Wieczorek (2001), Improved Software Cost Estimation
A Robust and Interpretable Modeling Method and a Comprehensive
Empirical Investigation

Volume 8 Dietmar Pfahl (2001), An Integrated Approach to Simulation-Based
Learning in Support of Strategic and Project Management in Software
Organisations

Volume 9 Antje von Knethen (2001), Change-Oriented Requirements Traceability
Support for Evolution of Embedded Systems

Volume 10 Jürgen Münch (2001), Muster-basierte Erstellung von Software-
Projektplänen

Volume 11 Dirk Muthig (2002), A Light-weight Approach Facilitating an Evolutionary
Transition Towards Software Product Lines

Volume 12 Klaus Schmid (2003), Planning Software Reuse – A Disciplined Scoping
Approach for Software Product Lines

Volume 13 Jörg Zettel (2003), Anpassbare Methodenassistenz in CASE-Werkzeugen

Volume 14 Ulrike Becker-Kornstaedt (2004), Prospect: a Method for Systematic
Elicitation of Software Processes

Volume 15 Joachim Bayer (2004), View-Based Software Documentation

Volume 16 Markus Nick (2005), Experience Maintenance through Closed-Loop
Feedback

Volume 17 Jean-François Girard (2005), ADORE-AR: Software Architecture
Reconstruction with Partitioning and Clustering

Volume 18 Ramin Tavakoli Kolagari (2006), Requirements Engineering für Software-
Produktlinien eingebetteter, technischer Systeme

Volume 19 Dirk Hamann (2006), Towards an Integrated Approach for Software
Process Improvement: Combining Software Process Assessment and
Software Process Modeling

Volume 20 Bernd Freimut (2006), MAGIC: A Hybrid Modeling Approach for
Optimizing Inspection Cost-Effectiveness

Volume 21 Mark Müller (2006), Analyzing Software Quality Assurance Strategies
through Simulation. Development and Empirical Validation of a Simulation
Model in an Industrial Software Product Line Organization

Volume 22 Holger Diekmann (2008), Software Resource Consumption Engineering for
Mass Produced Embedded System Families

Volume 23 Adam Trendowicz (2008), Software Effort Estimation with Well-Founded
Causal Models

Volume 24 Jens Heidrich (2008), Goal-oriented Quantitative Software Project Control

Volume 25 Alexis Ocampo (2008), The REMIS Approach to Rationale-based Support
for Process Model Evolution

Volume 26 Marcus Trapp (2008), Generating User Interfaces for Ambient Intelligence
Systems; Introducing Client Types as Adaptation Factor

Volume 27 Christian Denger (2009), SafeSpection – A Framework for Systematization
and Customization of Software Hazard Identification by Applying Inspection
Concepts

Volume 28 Andreas Jedlitschka (2009), An Empirical Model of Software Managers’
Information Needs for Software Engineering Technology Selection
A Framework to Support Experimentally-based Software Engineering
Technology Selection

Volume 29 Eric Ras (2009), Learning Spaces: Automatic Context-Aware Enrichment of
Software Engineering Experience

Volume 30 Isabel John (2009), Pattern-based Documentation Analysis for Software
Product Lines

Volume 31 Martín Soto (2009), The DeltaProcess Approach to Systematic Software
Process Change Management

Volume 32 Ove Armbrust (2010), The SCOPE Approach for Scoping Software
Processes

Volume 33 Thorsten Keuler (2010), An Aspect-Oriented Approach for Improving
Architecture Design Efficiency

Volume 34 Jörg Dörr (2010), Elicitation of a Complete Set of Non-Functional
Requirements

Volume 35 Jens Knodel (2010), Sustainable Structures in Software Implementations by
Live Compliance Checking

Volume 36 Thomas Patzke (2011), Sustainable Evolution of Product Line Infrastructure
Code

�

��
�
��
�
��
��
���
��
�
��
�!
��
�
��	
�
��
"
�
��
��
#
��
��
��
�
#%	��*��
���#��

���#������
�	�
�	�
�	����
���+	���	���	��	�,��
��

%��
��
��
�
��������(���
������
��-�.
����$�� 	�����
�&��/
����$�	��
(���
������
��0��	�,��
��%��
��
��
,����
���������
�!�����	�
��
1�������
� �	�� �2,
���
����� %	��*��
� ��#��

���#� 31�%�4� �	������ �
�
�
������������������
���	���
��
/
�	,�
���	���	�,�
2��	��*��
��,�
,������	������
��	��
�#��

���#�,�����,�
���������
5���
���$��
������
,�	�
����	�
����	������#��#��	�,�
2��$-��
��	��������
����5�
��
�	��
������#�,�	���������,�	�
���5�����$-������������
��	������
���
	����	���	�
���#��������������#��$��
���
��/�	����	����
���������
�
,	�
������������������	���	����
�
��
���	�	#�
�-�
2,
���
�����

���	�
�
��	�����
���	��5���������/
�����5��������/
�
/������	��������,�	/
�
�
������������
�	���	��*��
�
�#��

���#��
�
����-�*�����������
��	��
��
�
2,
���
��������
���6��,�����#�-�����
�
��
���	����0�2,
���
�����
%	��*��
���#��

���#0��
1��������
��
�-�*
�,�������������
�
����	����
�!�����	�
��1�������
��	��
�2,
���
�����%	��*��
���#��

���#�31�%�4�������	����
�%	��*��
����
#��

���#��
�
�����.�	�,��	����
�	�,��
��%��
��
��
,����
������
��
�&��/
����$�	��(���
������
����������
�
�������	��#����
�
��
*�
�
�
�����
�������
�-�������
,�
���$���
�����	����� 	�����

����	�������
�����	���������
�
���	�����
�2
����/
����
��	��	��!�����	�
��1�%������'
���	����
�7.%��.�	�,�
	����
�	�,��
��%��
��
��
,����
��-�&��/
����$�	��(���
������
��

����	����� 	����8
��
�����	��������
�
��"�##
��
$
�
%��
���6�����
��	��	��!�����	�
��1�%������'
���	����
�7.���.�	�,�
	����
�	�,��
��%��
��
��
,����
��-�&��/
����$�	��(���
������
��

����	����� 	����8
��
�����	�������!����� 	������
�
,��$����
��	��	��!�����	�
��1�%��������	�
��	���	��	�,��
��%���

��
� ��� ��
��
,����
��� 	�� ��#��

���#-�&��/
����$� 	��7,,��
�� %���

��
�-�(���
������
��

�
��������
	����������

ISBN 978-3-8396-0315-4

9 7 8 3 8 3 9 6 0 3 1 5 4

