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Abstract�

Highly interactive multimedia applications, like browsing in video databases, generate strongly
varying loads on the media server during the presentation of media data. Existing admission
control approaches for limiting the number of concurrent users and thus guaranteeing acceptable
service quality are only suited for applications with uniform load characteristics like video-on-
demand. We propose an approach to admission control that is based on the stochastical model
of Continuous Time Markov Chains, which allows to describe the different presentation states
occurring in the interactive access to the multimedia database. The model is derived from seman-
tic information on the forthcoming browsing session, in particular, it considers the relevance of
the videos to the user. In this way a more precise prediction on resource usage can be given for
achieving the two goals of Quality of Service (QoS) and good server utilization. The admission
control mechanism is part of a multimedia database architecture for supporting efficient browsing
in large video collections.

Keywords: Admission Control, Interactive Multimedia Applications, Browsing, Multimedia
DBMS

Zusammenfassung

Interaktive multimediale Anwendungen, wie beispielsweise das Browsen in Videodatanbanken,
erzeugen w¨ahrend der Pr¨asentation von Mediendaten stark schwankende Serverlasten. Die
Aufgabe von Zulassungskontrollmechanismen ist die Begrenzung der gleichzeitig zu bedienen-
den Nutzer, um dadurch akzeptable Servicequalit¨aten zu erreichen. Bereits existierende Ver-
fahren zur Zulassungskontrolle sind jedoch nur f¨ur Anwendungen mit relativ konstanten Las-
ten, wie beispielsweise Video-on-Demand Anwendungen, geeignet. In diesem Artikel wird ein
Ansatz zur Zulassungskontrolle vorgestellt, der auf dem stochastischen Modell von sogenannten
“Zeitkontinuierlichen Markov-Ketten” (Continuous Time Markov Chains) basiert. Dadurch wird
die Modellierung verschiedener Pr¨asentationszust¨ande, die aufgrund des interaktiven Nutzerver-
haltens entstehen, erm¨oglicht. Zur Modellierung werden semantische Informationen einer ak-
tuellen Session verwendet, indem die Relevanzwerte einzelner Videos hinsichtlich einer vorheri-
gen Anfrage ber¨ucksichtigt werden. Somit ist eine pr¨azisere Vorhersage der Ressourcenver-
brauchs m¨oglich, wodurch sowohl Dienstg¨uteparameter (Quality of Service) als auch Server-
auslastung verbessert werden k¨onnen. Der Zulassungskontrollmechanismus ist Bestandteil einer
multimedialen Datenbankarchitektur, die Video-Browsing in großen Datenbest¨anden unterst¨utzt.

Keywords: Zulassungskontrolle, Interaktive Multimediale Anwendungen, Browsing, Multime-
dia DBMS

�This work has been funded by the ESPRIT joint project (Long Term Research No. 9141)HERMES (Foundations
of High Performance Multimedia Information Management Systems).
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1 Introduction

Large digital collections of multimedia data, like Digital Libraries (DL), are getting increasingly
important due to the widespread use of information networks like the World Wide Web. The
amount of data available in digital multimedia collections is huge. Thus, a user needs to be
supported to efficiently explore the digital collections by preselecting, browsing and presenting
the data. Besides Digital Libraries, other applications also require this type of access, for ex-
ample, previewing in pay-per-view systems or telelearning applications, where scholars from
various disciplines like political scientists, psychologists, and historians, study moving images
as primary source material [YYWL95].

In this article we focus on the problem of browsing multimedia data collections, in particular
video collections. Browsing in video collections is particularly relevant, since content-based
querying on video data is still not well supported. Browsing in video collections differs from
other types of accesses to video databases, in particular video-on-demand applications. Only
the relevant parts of the video are accessed and no complete videos need to be streamed to the
user. By limiting data delivery to the relevant portions of videos the system throughput can be
improved [CT95]. Frequent user interactions in browsing scenarios, like video selection and use
of VCR-functions, and videos with different data rates, e.g., due to different encoding formats,
cause highly varying data consumption rates. In addition, the required Quality of Service (QoS)
may vary for different requests [SN95].

Thus, the media storage components have to provide mechanisms which are able to deal with
this characteristics of highly interactive multimedia applications. In order to achieve the required
presentation quality, the clients compete for limited resources on the server. The basic strategies
to deal with limited resources can be classified as optimistic or pessimistic ones.

With optimistic strategies all requests are served as well as possible (best effort). These
strategies are typically used in client-pull architectures, where the client requests small chunks of
media data during presentation. The data requests arrive aperiodically at the server [RVT96]. In
case of user interactions the client changes its request behavior, e.g., it will request larger blocks
of a media or send more frequent requests. The client-pull architecture is suitable for interactive
applications with varying resource requirements since it is not assumed that the required data rate
will be constant for the duration of a presentation. Bottlenecks are dealt with either by the server
or clients with various strategies, e.g., by means of quality adaptation mechanisms at the client
[HKR97] or at the server [TK96][TKC+97].

With pessimistic strategies resource reservations are made at the server, in advance. An ad-
mission control mechanism usually checks at the server if enough resources are available for
the adequate delivery of data to a new client. If there are enough resources available, the client
is admitted and the resources are reserved for this client until the end of the presentation. For
interactive applications with varying resource demands this means that the admission control
mechanism has to make predictions on the future resource consumption of client. This predic-
tion can either be based on the past resource usage of a client, or can be predicted by exploiting
knowledge on the semantics of the request. Both approaches have their pros and cons. Predici-
tions based on past system behavior do not require high-level understanding of the semantics
of the request and truly reflect the actual system usage. Thus, as long as the users behave in a
uniform way, this approach appears to be appropriate. On the other hand, the implicit heuris-
tic assumption that user behaviour does not change may be inappropriate if opposite knowledge
exists. Therefore, in situations in which knowledge on the forthcoming access behavior is avail-
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able, it might be substantial to derive predictions from that, though, inevitably, many assumptions
and heuristics might be involved in the prediction. We give a concrete example for illustration.
If users request access to a multimedia database for unrestricted browsing, a uniform model of
usage is appropriate and access can be granted if it can be derived from access statistics that suffi-
cient resources are available. On the other hand, if users request access to a multimedia database
to browse a pre-specified subset of data, e.g. given by the result of a retrieval request, this subset
may bear certain characteristics which allow much more precise estimations of future resource
usage. For example, it might occur, that only low quality videos have been selected, and thus
resource consumption is substantially lower than in the general case where both low and high
quality videos are accessed equally.

In a previous paper, we have introduced an admission control framework for client-pull ar-
chitectures that exploited the past client request behavior as an indicator for its future behavior
[HA98]. On the one hand, this approach is fully application-independent, on the other hand, it
does not exploit available knowledge on the application semantics for improved estimations of
expected resource requirements. In this paper, we will introduce an admission control framework
which allows to make predictions for the resource demands for browsing sessions in multimedia
databases based on the semantics of the request. We propose an admission control mechanism for
browsing applications which uses models of user behavior in a browsing session. The model is
based on information that is extracted from the set of browsing candidates selected by a preceding
retrieval request. We assume that the starting point to a browsing session is given by a retrieval
request. The result of the retrieval is a hit list with corresponding relevance values for each hit.
From this information we derive a Continuous Time Markov Chain (CTMC) which stochasti-
cally models the presumable behavior of a user. From the CTMC, we can derive a stochastic
prediction of the future resource consumption of the client. This prediction is then used as an
admission criterion. Thus, admission to the clients is granted in session-oriented manner. We ex-
pect that these techniques are not only suitable for browsing scenarios but with some adaptations
also applicable for other types of access to multimedia databases, in particular preorchestrated
multimedia presentations.

The paper is structured as follows: We first introduce the browsing system architecture in
Section 2. In Section 3, we model different types of browsing scenarios by using the CTMC
model. In Section 4, we describe how resource predictions can be made on the basis of the
CTMC models and how they are used as admission control criteria. We conclude the paper with
related work, in Section 5, and remarks on the future research direction in Section 6.

2 System Architecture

In this chapter, we describe the system architecture that is under implementation for a MM-
DBMS at GMD-IPSI. It is designed to support highly interactive browsing applications [THE98].
The system architecture supports (1) content-based access to data, (2) continuous media presen-
tation by means of client-side buffering mechanism, and (3) admission control for highly inter-
active applications.

Our browsing system is based on a client/server architecture where the server is responsible
for the storage of continuous and discrete data. The client is responsible for requesting data units
from the server, for presenting them, and for handling interactions with the user. The choice of a
client-pull architecture gives adequate support for browsing applications since user interactions
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are reflected by modified client requests.
The browsing prototype consists of the following components: a Multimedia Database Man-

agement System (MM-DBMS) that is responsible for the storage and retrieval of meta data and
media objects, a multimedia retrieval engine based on abductive logic, an admission control
module to restrict the access to the limited resouces on the server and to schedule data requests,
a client-side buffering mechanism for media data, and a user interface for query formulation and
result presentation. Figure 1 displays the relationships of the different components. These are
described now, in more detail.

Server
Video-MM-DBMS

Client BufferUser Interface

Retrieval Engine
control data

discrete data

Legend:

continuous data

Admission Control 

Figure 1: System architecture

2.1 Multimedia Database Management System

Our browsing prototype is implemented on the object-relational DBMS Informix Dynamic
Server (IDS). The IDS enables the integration of so-called DataBlades which provide a flexible
extension mechanism for new datatypes and their corresponding functions which are dynami-
cally integrated into the DBMS's data model. We use the Video Foundation DataBlade [INF97]
that forms the core of a system architecture for managing video data. It consists of three com-
ponents: the IDS DBMS, the external storage manager, and the application program. The IDS
DBMS stores the discrete data like text and images and the meta data for videos. It manages and
controls the access to the external storage managers and devices. The external storage managers
handle the storage of the various media streams. This means that the media data and meta data
of the media are stored separately.

2.2 Retrieval Engine

The Retrieval Engine provides content-based access by employing different multimedia retrieval
techniques, like feature extraction, feature aggregation, and classification for videos on scene
granularity. Content-based access to media data is supported by conceptual queries. For exam-
ple, when a user is interested in indoor shots he specifies “artificial light” and “artefacts”. The
queries are mapped by a rule-based engine to requests expressed in constraints on feature val-
ues [THE98]. As a query result, a hit list of stills, scenes, and videos, that have been found, is
returned, together with relevance values - ranging between 0 and 1. The basic image features,
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like edge analysis, grayscale, and entropy, are annotated in the IDS as meta data since feature
extraction is a time consuming task. The features relate to single frames or scenes of a media.
Rules define search criteria on the feature level which can be executed on the meta data [ME97].
The relevance values corresponding to a conceptual query are calculated by means of feature
aggregation on video scene granularity. Since meta data management is important to the brows-
ing application, a MM-DBMS implementation is best suited for providing the needed support
[CT95].

2.3 Admission Control

The admission control module is located on top of the video server. It is responsible to schedule
the limited server resources such as disk bandwidth and buffer space. Thus, given the delay-
sensitivity of multimedia presentations, there is a limited number of clients that can be admitted
for the service. The admission control module has access to meta data stored in the IDS DBMS.

In our architecture, an admission control module for highly interactive browsing applications
is provided that considers the varying data rate requirements. Its tasks are divided into: (1)
the admission of new clients, when it is assumed that system resources are sufficient, (2) the
scheduling and adaptation of the single data requests of the admitted clients. In this paper, we
will introduce an admission control mechanism that exploits knowledge about the query results,
namely the content-based relevance of the single objects to a corresponding query.

2.4 Client Buffering

Since the Video Foundatation DataBlade does not support continuous presentation, we devel-
oped the Continuous Long Field DataBlade. It manages continuous data transport, client-side
buffering, and client-side adaptation in distributed environments [HSHA98]. Additionally, we
enhanced the client buffer strategy to support browsing applications by means of a content-based
preloading and replacement strategy. The client buffer manager prefetches data by means of
requesting single units of a continuous media from the server (client-pull). The client buffer-
management strategy considers, in addition to the current presentation state, the relevance to a
conceptual query result, too [EHT98]. The goal is to keep the most important scenes, corre-
sponding to the current presentation state and to a previous query, in the buffer.

2.5 User Interface

The user interface enables the specification of a conceptual query that is sent to IDS DBMS and
the selection of result scenes for presentation. At the server, the first hit request of a retrieval
session is subject to admission control. During presentation the user has the possibility to control
the presentation through VCR-interactions and to jump interactively to other hits.

3 Modeling of Browsing Applications

A major difficulty in estimating resource usage in interactive applications is the high variation
of resource requirements. In this section, we will use a stochastical model, namely Continuous
Time Markov Chains (CMTCs) to describe user interactions with a multimedia database server.
It can be used to estimate future resource demands and, thus, to provide a more precise criterion
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for an admission control mechanism. The admission control mechanism itself will be discussed
in the subsequent section 4. We will use multimedia browsing sessions as an application scenario
for inspecting multimedia retrieval results.

3.1 Modeling of Multimedia Sessions as Continuous Time Markov Chains

The retrieval and browsing system described in Section 2 delivers a result listL that contains
references to scenes of videos or whole videos together with their relevance values as the result
of a retrieval query. Thus an elementli 2 L; i = 1; : : : ; jLj is of the formli =< scenei; rvi >,
wherescenei is an identifier for a video scene andrvi 2 [0; 1] is a relevance value. Additionally,
it is possible to compute physical information on the video scene from the meta data in the
multimedia database, in particular, its durationd(scenei) 2 R+ and the dataraterate(scenei) 2
R+.

This information is available when a browsing session is started. The browsing session itself
can be viewed as a state transition system, where the user switches between states for presenting
particular videos and idle states for selecting the next video to be presented. For resource control
it is important to consider, in addition to those states, the temporal dimension, i.e., the holding
time of a state. A well established model to describe such state transitation systems stochastically
are Continuous Time Markov Chains (CTMC) [Tij94].

A state transition process is specified by a CTMC by a set of statesI, by holding times
1

vi
; i 2 I and by transition probabilitiespi;j with i; j 2 I; j 6= i and

P
j 6=i pi;j = 1 for all i 2 I.

If the systems jumps into statei, it stays in statei an exponentially distributed holding time with
mean 1

vi
independently of how the system reached statei and how long it took to get there. If the

system leaves statei, it jumps to statej with probability pi;j independently of the holding time
of the statei. States are memory-less, which is called the Markovian property, i.e., the history
how a state is reached is not relevant [Tij94]. Continuous time Markov chains are an extension
of discrete time Markov chains, which do not model the holding times in the states.

Using CTMC for the modeling of a browsing session, the session states, i.e., the playback of
a video scene or an idle time, are represented as corresponding states of a CTMC. The sojourn
time or holding time in a state is the time until a user decides to change presentation process by
an interaction. The transition probabilities denote the probability that a user switches from one
session state to another one.

In our approach, we assume that the parameters determining a CTMC, i.e., the transition
probabilities and the holding times of a state, are related to the relevance valuesrvi of a hit
li 2 L. When a user finds a large number of hits he will not inspect all of them since the total
presentation duration is too long. Typically, a user selects those scenes that have a high relevance
with respect to the query. Furthermore, the time a user will spend to view a hit is dependent on
its duration. The structure of the CTMC used to model the browsing session and the detailed
relationship between the relevance values and the CTMC parameters are the subject of the next
subsections.

3.2 Modeling Browsing Behavior by CTMCs

Depending on the application, a user may pursue different goals in a browsing session. Some
users may aim at getting an overview of all hits in the hit list, others may intend to extract detailed
information from the hit list. This results in different browsing behaviors. In the following, we
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will discuss different possible browsing behaviors and model them by CTMCs. This discussion
is not intended to exhaustively explore the issue of how browsing sessions are structured, but
to illustrate how different assumptions on the nature of browsing sessions lead to structurally
very different CTMC models. From this, we will eventually analyse the computational methods
required for resource prediction. This discussion will be the basis for selecting appropriate and
feasible resource predicition methods and, thus, eventually an admission criterion.

In the following discussion, we will first make a simplifying assumption on the viewing of
the results. We will neglect different VCR-presentation states, like fast forward, fast rewind, and
slow motion.

There are only two principle states we consider, namely theidle statesin which the user
selects the next scene to be presented, where no resources are consumed, and theplayback states
where particular videos are viewed, e.g., in standard playback mode. Transitions are possible
only from idle states to playback states and from playback states to idle states. At the end of the
section, we will then indicate how to additionally model different modes of presentation.

The structural differences in modelling browsing behavior by means of CTMC emerge from
the different ways of how the browsing history is accounted for in the model. Since the CTMC
itself is memory-less any use of historical information in the process needs to be encoded into
different states.

3.3 Memory-free Browsing

In the simplest case, the selection of the next step is fully independent of the previous browsing
steps. For modelling this situation it is sufficient to use one single idle stateis and playback states
1; : : : ; jLj for the presentation of the different videos in the hit list. The transition probabilitypis;i
is a function ofrvi only. In the simplest case, we choose the probabilities to be distributed in
the same way as the relevance values, i.e., we use thenormalized relevance valuesrvi of a hit li,
given by

rvi =
rviPjLj

j=1
rvj

; i = 1; : : : ; jLj

as transition probabilities. Thenpis;i = rvi and
P

i=1;:::;jLj pis;i = 1, whereas alwayspi;is =
1. An advanced model might use a weighting function in addition, e.g., to overproportionally
increase the probability that videos of higher relevance are viewed.

For the holding times, we assume the following heuristic model: for short scenes, the mean
of the exponentially distributed holding time is proportional to the length of the scene. There
is a minimum presentation timedmin and for longer scenes the mean is limited by a maximal
presentation durationdmin + dmax. In addition, we weight the mean by the relevance of the
video, i.e. more relevant videos are viewed longer than less relevant ones. This heuristics is
reflected in the following formula for the mean holding time:

1=vi = dmin + dmax
d(scenei)

d(scenei) + dmax
rvi; i = 1; : : : ; jLj

Example. To demonstrate the concepts, we use a running example in the following. A user
query with 5 result scenes (jLj = 5) delivers the following results:
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d(scene1) = 5sec; rate(scene1) = 1:5Mb=s; rv1 = 0:8

d(scene2) = 60sec; rate(scene2) = 0:8Mb=s; rv2 = 0:7

d(scene3) = 20sec; rate(scene3) = 4:0Mb=s; rv3 = 0:7

d(scene4) = 10sec; rate(scene4) = 1:5Mb=s; rv4 = 0:1

d(scene5) = 20sec; rate(scene5) = 4:0Mb=s; rv5 = 0:05

By settingdmax = 30sec anddmin = 3 we get the following (rounded) values for the holding
times.

1

v1
= 6:4;

1

v2
= 17;

1

v3
= 11:4;

1

v4
= 3:75;

1

v5
= 3:6

For the idle stateis, we assume a mean holding time

1

vis = 5

which means it takes an average of 5 seconds to select the next presentation.
The transition probabilites in the example are then:

pis;1 = 0:34; pis;2 = 0:3; pis;3 = 0:3; pis;4 = 0:04; pis;5 = 0:02:

In Figure 2 the CTMC is given for the example. The numbers at the arrows represent the
transition probabilities between the states.

scene 2

scene 3

scene 1

scene 5

0.34

0.3

0.3

0.040.02

scene 4

1

1

1

11

Start/Idle State

Figure 2: CTMC for memory-free browsing

3.4 General history-dependent Browsing

We introduce the most general model for browsing where the transition probabilities are fully
dependent on the browsing history. In order to model this case we have to use a CTMC with the
tree structure indicated in Figure 3. In this model, the root represents the start state, the nodes
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at the first level represent all hits selected at first, the nodes at the second level all hits selected
second, and so on. In this way, the CTMC represents all possible session histories. Each state
represents a different viewing sequence of earlier videos and, since repetitions are possible, we
end up with an infinite number of states. In contrast to the previous case, we have to distinguish
a start statess and different idle statesish for each different presentation historyh consisting of
the sequence of videos that have been presented before.

We discuss now a simple model of how the transition probabilities can depend on the previous
browsing history. A video that has just been viewed is not likely to be selected again. However,
the longer a video has not been selected and the more other videos have been selected the more
likely it becomes that the video will be selected again. Assume that the browsing session is in
the idle stateish belonging to a certain sequence of videos that have been selected before. Then
for every scenescenei; i = 1; : : : ; jLj modify the relevance values as follows:

rv0i = rvi
2n

n+ jLj
;

wheren is the number of timesscenei has not been viewed in the historyh. From the modified
relevance values, we compute the normalized relevance valuesrv0i and use them as transition
probabilities. Note, that forn = 0 the we getrv0i = 0 and forn = jLj we getrv0i = rvi. The
factor is monotonically increasing forn > 0.

Assume that in our running examplescene1 has just been viewed. Then the modified rele-
vance valuesrv01 for scene1 used to compute the transition probability for the consecutive steps
are 0; 0:27; 0:45; 0:6; 0:71; 0:8; 0:87; 0:93 : : : assuming the video is not selected within those
steps. A fragment of the CTMC for this case with normalizedrv0i as transition probabilities
is given in Figure 3. The dotted lines represent missing paths that are omitted due to the lack of
space in the figure.

scene 4

scene 5

scene 3

scene 2

scene 1

Start State

Idle States

Idle States

0.34

0.3

0.04
0.02

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.3

scene 4

scene 3

scene 2

scene 1

scene 4

scene 5

scene 2

scene 1

scene 4

scene 5

scene 2

scene 1

scene 4

scene 5

scene 3

scene 2

0.3

0.3
0.35

0.03 0.04

0.45

0.45

0.07

0.05

0.43

0.06

0.36

0.52

0.08

0.49

0.02

Idle States

Figure 3: CTMC with tree structure for general history-dependent browsing
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3.5 Browsing without Repetition

Up to now, we have assumed that the user is free to select any video for viewing an arbitrary
number of times. We now investigate how further constraints on the selection of videos to be
viewed impact the CTMC model for browsing.

The first additional constraint we consider is, that the user can view each video only once.
Thus, we will obtain a finite CTMC as opposed to the previously discussed case of general,
history-dependent browsing, where an infinite CTMC has become necessary. The general struc-
ture of the resulting CTMC is depicted in Figure 4. Since we assume that each video will be
viewed only once, the number of subsequent states decreases in each level by the state that has
been presented already and, thereby, the one-step transition probabilities increase for the remain-
ing videos.

scene 4

scene 5

scene 3

scene 2

scene 1

Start State

Idle States

Idle States

0.34

0.3

0.04
0.02

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.3

scene 1

scene 2

scene 3

scene 4

1

1

1

scene 2

scene 3

scene 4

scene 5

scene 3

scene 4

scene 5

1

1

1

1

scene 4

scene 3

scene 2

Idle States

1scene 2

1

1

1

1

1

1

1

Idle States

scene 3

scene 4

scene 3

scene 4

scene 5

scene 3

scene 4

0.07

0.03

0.04

0.35
0.3

0.45

0.45

0.47

0.06

0.12

0.82 0.67

0.33

0.07

0.93

0.88

0.12

0.5

0.5

0.06

0.47

0.3

Figure 4: CTMC with tree structure for browsing without repetition

The transition probabilities are determined at each level from the normalized relevance values
of the remaining videos. They are given for the case of our running example in Figure 4.

3.6 Browsing in Relevance Order

This is a very restricted form of browsing where the user can access the query result only in
the order of their relevance values. Thus, the user basically only determines the holding times
for each video that is viewed. In this case, we obtain a degenerated CTMC with a (nearly)
linear structure, as displayed in Figure 5. The state on the left side represents the start state, the
relevance valuesrv of the hits viewed in the playback states decrease from left to right. States
with the same relevance are modeled by alternative state sequences that are accessed with the
same probability.

Figure 5 displays the structure of the CTMC for browsing in relevance order for our running
example.
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scene 2

scene 3

1 1

scene 4
scene 3

1

1

1

1

scene 2

scene 3 1

scene 5

1 1

scene 1 1

10.5

0.5Start State
Idle States

Figure 5: CTMC with sequential linear browsing

3.7 Representation of VCR-functionality

As indicated earlier, in the different CTMC models, we have used the simplifying assumption
that the viewing of videos is represented by a single playback state in the CTMC. In practice,
a user may use VCR-functionality. In the following we sketch how this can be accommodated
within a CTMC model.

We assume now that, during the presentation of a video, a user may switch to a fast forward,
fast rewind, or slow motion state. We determine that these interactions are only accessible from
the playback state and extend thus a CTMC in the following way: for each video of the hit
list, we introduce additional VCR-states for fast forward (ff), fast rewind (fr), and slow motion
(sm). We assume fixed transition probabilities from the playback state to the VCR-states. The
transition probability from the VCR-state to its playback state is always 1. The holding times can
be derived from the holding times of the playback state, for example, by decreasing it for fast
forward and fast rewind and increasing it for slow motion.

We illustrate the extended CTMC for our running example in the case of memory-free brows-
ing. As transition probabilities to the VCR-states, we have arbitrarily chosenppresent;ff =
0:25; ppresent;fr = 0:05; ppresent;sm = 0:1 in this example. Figure 6 displays the correspond-
ing CTMC when VCR-functionality is supported. Since the transition probabilities from the
VCR-states to the present state are all equal to 1 they are not displayed in the figure.

0.34

scene 1 scene 2

scene 4

0.3

0.3

0.04

0.02

0.1

scene 5

0.25
0.25

0.25

0.25
0.25

scene 3

0.05

0.05

0.05

0.05

0.05

0.1

0.1 0.6

0.6
0.6

0.6

0.6 0.1

0.1

present

start/idle

Legend:

ff

ff

ff
ff

ff

fast forward (ff)

fast rewind (fr)

fr fr

fr

frfr

slow motion (sm)

sm

smsm

smsm
sm

Figure 6: CTMC for memory-free browsing with VCR-functionality
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3.8 Possible Refinements of the Modeling Approach

Appearently, in the modelling, a number of assumptions have been made on parameters and
functions that capture certain characteristics of browsing sessions. It is beyond the scope of this
paper to devise methods of how concrete parameters can be analytically derived from evaluations
of concrete behavior of users. This is an important direction for future work. Such an approach
allows not only to come up with better-substantiated heuristics on the user behavior, but would
also allow to determine the necessary parameters individually for different users or application
scenarios. As a drawback, individualized user parameters require additional bookkeeping mech-
anisms.

Some of the models introduced were of very high complexity. One can devise different
ways of how this complexity could be reduced in order to obtain computationally more feasible
models for browsing sessions, without giving up too much precision in the prediction. One
obvious approach would be to aggregate states with similar characteristics, e.g., comparable
resource consumption and holding time, and, thus, to substantially reduce the number of states
in the model. Another possibility would be to allow for small errors and just omit less important
scenes, i.e., those with low relevance.

In this paper, we have used a rather abstract view on how the occurence of a video within
a query result is related to the probability that it will be accessed. Other parameters than the
relevance value may influence the access probability to a video. In particular, the way in which
the result list is presented at the user interface can play a substantial role. For example, for videos
with the same or similar relevance value, the position in the result list can be of importance, or
if the result hits are presented in a page oriented way, hits on the first page are more likely to be
accessed than on later pages etc.. Thus the way, of how a multimedia presentation is generated
from the hit list is certainly of relevance to the access behavior of the user. This discussion also
shows that similar methods for modeling the user access to multimedia data may be employed
for general preorchestrated multimedia presentations.

4 Admission Control Using Resource Prediction

4.1 Analysis of CTMC Models

In the previous section, we have modelled browsing behavior with CTMCs under various as-
sumptions of how browsing might be performed. The main purpose of this analysis was to
explore the question which structures occur in the CTMC models, how these structures are re-
lated to different assumptions on how browsing is performed, and how the resulting CTMCs are
suited to compute a resource prediction.

The first important question in analyzing CTMCs is whether we have an open or a closed
CTMC at hand. A CTMC is called closed if every state can be reached from every other state.
This classification is important with regard to the applicable analysis methods. One distinguishes
transient analysis and equilibrium analysis. Equilibrium analysis determines certain measures
that are attached to a CTMC with regard to long term behavior. Transient analysis determines
those measures over a given (short) finite time span. Equilibrium analysis is only applicable to
closed CTMCs. With transient analysis, on the other hand we can also analyse CTMCs of infinite
size, as they occured in the case of general memory-dependent browsing.

For the computational complexity of the analysis, the size of the CTMC is of importance.
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Both, for the CTMC model for general history-dependent browsing and for browsing without
repetition the size of the (relevant fragment of the) model grows exponentially in the number of
hits, when a transient analysis is performed. For memory-less and sequential browsing the size
of the CTMC is linear in the number of hits.

In this paper we will not be able to give a conclusive statement on which model and which
type of analysis will prevail as the most relevant one. Rather, we will give the analysis for a
selected case, namely memory-less browsing. As analysis method, we will use an equilibrium
analysis. There are a number of reasons why this choice is reasonable and practical as well,
in particular, considering the requirement that the resource predicition has to be performed effi-
ciently:

From the computational viewpoint, encoding of histories into CTMCs leads to combinatori-
ally explosive sizes of the resulting models and, thus, to prohibitively high costs in the analysis.
In addition, equilibrium analysis is computationally simpler than transient analysis. A problem
which further complicates transient analysis is the choice of the expected duration of the brows-
ing session. This does not occur in equilibrium analysis.

When the impact of the history on the transition probabilities is small the equilibrium analysis
is a good approximation of the transient analysis. This is also the case when only a few hits will
be viewed in a browsing section, since then only a few transition probabilities change, too. In
addition, there exists the possibility to redo the equilibrium analysis at a later stage with modified
parameters and to accomodate changes that result from the previous history.

4.2 Resource Estimation for memory-less Browsing using Equilibrium Analysis

Since for each playback state the corresponding data rates are known, it is possible to stochas-
tically determine an overall expected data rate for a single client session, based on its CTMC
model for browsing. In the following, we will give the necessary steps to perform this calcula-
tion. Details on the mathematical background of this calculation can be found in [Tij94].

A closed Continuous Time Markov chain with bounded ratesvi; i 2 I has a unique equilib-
rium distributionPi; i 2 I, where thePi can be interpreted as the probability that the Markov
chain is in statei. In order to compute this equilibrium distribution one first transforms it into a
discrete Markov chain by introducing so called transition ratesqi;j with

qi;j = vipi;j (�);

with i; j 2 I; j 6= i. Based on the transition rates, the equilibrium distribution can be determined
by solving the following system of linear equations, which has a unique solution.

viPi =
P

k 6=i qk;iPk; i 2 I

P
k2I Pk = 1 (��).

For the concrete case of the CTMC for memory-less browsing we can compute the expected
data rate as follows. Given holding timesvis andvi; i = 1; : : : ; jLj we getviPi = qis;iPis since
the statesi can only be reached fromstateis and thus

Pi =
vis
vi

pis;iPis (� � �)

for i = 1; : : : ; jLj, using equation(�).
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Substituting equation(��) for our concrete case with
P

i2jLj Pi+Pis = 1 and using equation
(� � �) yields

Pis =
1

1 +
P

i=1;:::;jLj
vis
vi
pis;i

from which the other valuesPi can be immediately derived.
The expected valueE(i) of resources required by statei within the long-run analysis is

determined then by

E(i) = Pi � res(i)

whereres(i) is the amount of resources consumed in statei.
The expected amount of resources required by a browsing session is then

Esession =
P

i2I E(i).

Since idle states do not consume resources, the expected resource demand is then computed
as

Esession =
X

i=1;:::;jLj

Pi � rate(scenei):

This derivation shows that for the CTMC for memory-less browsing we can derive the equilib-
rium distribution and, thus, the expected resource demand in linear time cost in the size of the
result list.

For our running example, we obtain by means of using equation(� � �) and thevi- andpi-
values from section 3.3 the equilibrium probabilities

Pis = 0:31; P1 = 0:14; P2 = 0:32; P3 = 0:21; P4 = 0:01; P5 = 0:005:

Note, though the first video has higher relevance the probability that the system is in the state
of presenting the second or third video is higher. This is due to the fact that those videos
have substantially longer holding times. The expected resource demand for this session is then
Esession = 1:35Mb=s.

4.3 Admission Control of Pending Clients

The multimedia database systems limit the number of active clients that are allowed to simulta-
neously perform a browsing session for inspecting the hit list. Thus when a client issues a query,
the results will only be presented if sufficient resources are available. For determining whether
sufficient resources are available the prediction models introduced in the previous section are
employed. A client that has been admitted will be served for the complete browsing session,
with high probability in the required quality.

Let us assume the system has already admitted clientsc1; : : : ; ck and a new clientcp requests
admission. Then the admission control mechanism computes the expected resource demand of
the running clientsE(cj); j = 1; : : : ; ck and the expected resource demandE(cp) of the new
client. Then the admission criterion is

E(cp) +
X

j=1;:::;ck

E(cj) < � � smax;
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wheresmax is the amount of maximal available resources and� 2 [0,1] is a safety margin to
allow small deviations from the expected resource usage. The quantity� determines how close
the average load values may approach the maximum server load, and thus how much tolerance
is available to compensate for deviations between predicted and real server load. High values of
� represent a permissive admission policy, while low values of� represent a cautios admission
policy. For a large number of possible clients, such a criterion based on an estimation of the
average resource usage appears to be appropriate, since deviations from the average values of
single clients can be expected to compensate for statistical reasons. For a small number of clients,
other admission criteria based, for example, on maximum expected resource usage or maximum
expected deviation, can be considered in addition.

The actual resource usage of a client can be determined a posteriori by analyzing its requests
to the system. This technique has been used in [HA98] to devise an alternative admission control
mechanism, based on the lookback to past system behavior. It may occur that the predicted re-
source usage of a client and the actual resource usage systematically deviate from each other. In
such a case, it is quite clear, that one can use the information on the actual behavior to systemat-
ically correct future predictions. A detailed discussion of this approach is, however, beyond the
scope of this paper.

For the concrete realization of the admission control mechanism a number of further issues
need to be resolved, like the definition of admission points, the treatment of rejected clients, the
recomputation of predictions for admitted clients and the reaction to overload situations. Some
solutions to that extent have been presented in [HA98], in particular, a complete specification of
an admission control algorithm.

5 Related Work

Most approaches to admission control consider the request of single media streams within a
server-push architecture. Since the resource requirements of a whole presentation are prespeci-
fied by the request the server manages the delivery of the whole media stream and pushes the data
continuously to the client. Admission control mechanisms for “pure” server-push architectures
assume that during a presentation the data rate consumed by the client will be nearly constant
[RVT96]. The available system resources are calculated by stochastic [NMW97], [VGGG94] or
deterministic approaches [VGG95], [ORSN96]. Based on the knowledge about the already re-
served and freely available resources, it is possible to reject requests in case of server overloads.
In the following, we discuss some of the strategies that consider interactive applications.

A priori reservation. To guarantee a given QoS worst-case assumptions about the data
rate required can be made. Obviously, the reservation of the worst-case data rate wastes server
resources and decreases the number of clients that can be served in parallel. Dey-Sircar et al.
[DSSKT94] give stochastical guarantees by means of reserving separate server bandwidth for
VCR-interactions. The drawback of their work is that they assume interactions to occur rarely.
Most concepts providing stochastical service guarantees assume stochastical retrieval time from
storage system which we do not consider. For example, [VGGG94] exploit the variation in access
times from disk, but neglect varying user demands.
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Re-admission at interaction points. A straightforward way to use standard admission con-
trol policies with interactive applications is to perform admission control for each single media
object request that can occur as the result of an interaction as described in Gollapudi and Zhang
[GZ96]. One drawback of their approach is that each client request is subject to the admission
control. For example, when the first scene of a video is admitted there is no guarantee for the
admission of the subsequent scenes of the same presentation. This may lead to unacceptable
delay in presentation when too many clients send requests. The main problem of their approach
is that the admission is not performed for a client session. Thus, the admission of one continu-
ous media stream of a multimedia presentation does not necessarily guarantee the admission of
another continuous media stream that has to be synchronized with the already admitted streams.

Smooth the application data rates. Some approaches to admission control for interac-
tive applications propose to “smooth” the data rate deviations to achieve a relatively constant
workload. Shenoy and Vin [SV95] reduce the high data rate for fast forward and fast rewind of
MPEG-videos by encoding the stream in base and enhanced layers. The encoding of the base
layer is done by reducing the temporal and spatial resolution. For fast forward, only the base
layer is used. Chen, Kandlur, and Yu [CKY94] suggest segment skipping where a segment can
be a set of Group of Pictures (GoP) of an MPEG-video. For fast forward or fast rewind, some
segments are skipped. Chen, Krishnamurthy, Little, and Venkatesch [CKLV95] change the or-
der of MPEG-frames to a priority sequence. For fast forward and fast rewind, only the most
important frames (I- and P-Frames) are pushed to the client. The higher data rate is reduced by
quality adaptation on the temporal dimension of other requests by a dynamic resource reserva-
tion. Reddy [Red97] reduces the latency of “urgent” requests, but neglects varying bandwidth
requirements. The smoothing approach is, however, restricted to relativley simple interactive
scenarios where interactions take place within the presentation of one single media stream.

Inspect the past system behavior. In earlier work, we presented a general admission con-
trol mechanism which is applicable for varying resource requirements of highly interactive appli-
cations requiring a client-pull architecture [HA98]. It consists of (1) the admission of new clients
when server resources are available and (2) the scheduling and adaptation of requests of admitted
clients. For the admission of new clients, we inspect the past system behavior. For a large number
of parallel sessions, the average client consumption is a good estimate for prediction. Data rate
variations are accounted for by introducing a safety margin. Thus, an admitted client is supposed
to obtain sufficient resources. If in spite of the admission control resource bottlenecks occur,
strategies for rescheduling requests are used to achieve high QoS by means of load balancing. In
the worst case quality adaptations are required to enable guaranteed continuous delivery.

Usage of application semantics. Zhao and Tripathi [ZT98] propose a session-based reser-
vation approach for multimedia applications with varying resource requirements. A multimedia
session consists of the presentation of multiple multimedia objects that have to be synchronized
in temporal order. The temporal order of the presentation is known at admission time. They pro-
pose an “advanced resource reservation” mechanism, i.e., to reserve resources for time intervals
in the future. The goal of the approach is to determine a starting point for the presentation for
which all required resources (i.e., network and end system) are available. The basic reservation
model does not consider user interactions. The extensions they propose for interactions are not
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sufficient since they are not economically (i.e., specification of a minimum upper bound) or are
not able to bound delays since they suggest re-admission at interaction point as described earlier
in this section.

The use of continuous-time Markov chains for modeling the access behavior in a multimedia
database system to support the efficient vertical data migration between the tertiary and secondary
storage has been devised in [KW97]. This shows that the application of the CTMCs to model
resource usage in multimedia databases is not only limited to admission control but is applicable
to other aspects of resource management as well.

6 Conclusion

In this paper, we presented an admission control mechanism for highly interactive browsing
applications by considering application semantics for the admission of new clients. It is based
on the stochastical resource prediction of clients. We assume that the user behavior is related
to the relevance values of a conceptual query and specify the user behavior as Continuous Time
Markov Chains.

A Java based implementation of the admission algorithm within the IDS based system archi-
tecture described in Section 2 is under way. Future work will concentrate on the refinement and
evaluation of the approach and on learning models for user profiles. An evaluation of the concept
will strongly depend on the availability of sufficient real-world data against which the proposed
models can be calibrated. From this data, learning methods which are applicable to the Markov
chain models can be exploited to adapt the admission control framework to particular application
scenarios. In combination with the retrospective approach to admission control by inspection
of past system behavior, a long term vision is a self-adapting admission control framework for
multimedia database access.
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