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Abstract The laws of gestalt-perception play an important role in human 
vision. Psychological studies identified similarity, good continuation, proximity 
and symmetry as important inter-object relations that distinguish perceptive 
gestalts from arbitrary sets of clutter objects. Research in mimicking this 
behaviour for machine vision has a long history. This contribution focuses on 
coding these principles in production systems. Such systems capture declarative 
knowledge. The procedural details are defined as control strategy for the 
interpreter. Here this unit implements an assessment driven approach. Often an 
exact solution is not feasible while approximately correct interpretations of the 
data with the production system are sufficient. One such way to interpret given 
data and a given production system in any-time manner is the accumulative 
assessment driven control. There even has been work on speeding this search 
by associative memory structures and special parallel hardware. Recently the 
work focuses on coding such search in a machine-independent manner (e.g. in 
MATLAB). Here an example from the automatic extraction of man-made 
structure from high resolution SAR-image data is given.  

1 Introduction 

Psychological studies have been indicating for a long time now that human 
perception tends to group individual objects fulfilling certain relations into entities of 
higher order [14]. Fig. 1 illustrates some of these inter-object relations namely 
similarity, good continuation, proximity and symmetry. Obviously an object of higher 
more abstract hierarchical level is constructed. The information content is compressed 
in its description and its members are clearly distinguished from other objects which 
are perceived as background. Research in mimicking this behaviour for machine 
vision also has a quite remarkable history [5, 7]. Particularly, the application of such 
technique to image retrieval tasks has proven successful [4] (using also the very 
strong constraint of parallelism as grouping relation for man-made structure). There is 
joint work from psychologists, artificial-life researchers, neurophysiologists, 
Darwinists and computer vision experts to derive these principles from co-occurrence 
statistics of natural images and the principles of evolution of species [2]. Lately, 
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tensor voting has been proposed to constitute the interaction between local entities 
close to the filter- or feature extraction level [8]. On the other hand perceptual 

grouping may also be performed 
on higher symbolic reasoning 
level. In [3] Guo et al. give striking 
examples for the utility of grouping 
higher order objects they named 
textons. These have many more 
attributes than just a location and 
orientation. They use Gibbs-fields 
and Marcov chains to describe the 
inter-texton relations, to analyse 
given images and to generate new 
images. It also has been 
demonstrated that perceptual 
a) Proximity

c) Similarity d) Symmetry

b) Good Continuation

Fig.1 Examples of Gestalt relations 

groups may well be subject to 

meta-grouping [12] and also that the objects to be grouped may well be on such high 
level like 3D-houses (simple gabled parametric model) along a 3D-street [10].  
Perceptual grouping may be helpful on any level of a complex structural recognition 
approach.  
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Fig2. Production net 

Formally, a relation φ between an object T and its 
parts Si as well as the constraint π imposed on the 
parts can be written as production p=((S1,…, Sn), 
T, π, φ) of a coordinate grammar [11, 9]. Actually, 
π is a predicate defined on the coordinates of the 
generated side (S1,…, Sn) while φ is a function on 
the same space calculating the coordinates of the 
single object of the reduced side T. A structural 
recognition approach often requires more than 
one production. In such situation the productions 
may be simply listed as production system P ={S, 
A, P} where S is a finite set of object symbols, A 

is the attribute domain (containing things like image coordinates, orientations, number 
of members etc.) and P is a finite set of productions. It is preferred to display their 
interaction as production net [9, 13]. Fig 2 shows the example system used for this 
contribution. The syntactic structure of this formalization becomes apparent looking 
at an example production like 

 

p4 = ((Row, Spot), Row, good_continuation, append), 
 

which allows recursive generation or parsing (because of the cyclic net structure). 
Other productions like the example  

 

p2 = ({Line … Line}, Long_Line, collinear & overlapping, regression) 
 

define the constraint on a sub-set of arbitrary size. 
The production-system or production-net rationale postpones major problems of 

Gestalt-driven machine perception to the control unit of the production interpreter. 
Particularly, the two production forms given above may lead to excessive 
requirements for storage capacity and processing time. The number of objects Row 



Fehler! Kein Text mit angegebener Formatvorlage im Dokument.      3 

reducible by repetitive use of production p4 may well grow exponentially with the 
number of objects Spot in an image. This may be eased using a contextual production 
like p3 = ((Spot, Long_Line), Row, proximity, copy), that restricts the search to 
potential building outlines and also limits the orientation possibilities – objects Row 
with only one member inherit the position from the preceding Spot and the 
orientation from the preceding Long_Line. 

A production with a set of arbitrary size on the generation side – like p1 – will pose 
a power-set search problem if used in the reducing direction. Given a large generated 
set of objects Line from one object Long_Line many of the sub-sets will also be valid 
for reduction with p1. In other words: There may be many possibilities to split a given 
contour or to kick out “outliers”.   

Therefore coding such productions in a system like PROLOG and running them on 
non-toy data is doomed to produce large amounts of irrelevant information or fail 
completely. However, there are alternatives. While a complete list of solutions may 
not be feasible, a list of some good or important interpretations of the data with the 
production system may be sufficient for the task. In such case it is recommended to 
explicitly declare what is meant by “good” or “important”.  

The assessment of a Pixel object results from the response of the spot-operator 
used as well as the assessment of a Line object results from the edge ore line filter 
chosen by the operator. For the Spot object the total mass of all its predecessors was 
used (its centre of gravity also specifies its position). A Long_Line object is assessed 
by its length and the residual error of its parts. The assessment of an object  Row 
depends on the number of members and the regularity of their positioning. 

2 The Accumulating Interpretation Cycle 

Given a production system P ={S, A, P} a working element is defined as quadruple 
e=(s, i, as, pm) where s is a symbol from S, i is an object instance index, as is an 
assessment and pm is a production module index. Assessments may be taken from a 
symbolic discrete ordered domain like {very good, good, average, bad, very bad} or 
from a continuous ordered interval like [0, 1]. A production module is always 
triggered by a particular object instance. It contains code that queries the database for 
partner instances which fulfil the constraint relation π of the production given the 
triggering object instance. Usually search regions are constructed (e.g. a long stripe 
shaped region with the triggering Line instance in the centre for p2). If the query 
results in a non-empty set the module will create new instances according to the 
functional part φ of the production. Some productions need more than one module 
(e.g. p4 may be triggered by a Row instance or by a Spot instance requiring different 
queries). The set of module indices is expanded by nil. Always when a new instance 
is created – either by an external feature-extraction process or by one of the 
production modules – also a corresponding new working element is added using this 
module index nil (meaning that there is no module assigned yet). The set of working 
elements is called the queue. It is sorted occasionally (e.g. every 100 interpretation 
cycles) with respect to the assessments. The central control unit (AI-people call it 
dispatcher) always picks working elements from the good end of the queue. If the 
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module index of an element is nil it will be replaced by new working elements with 
appropriate module indices (recall that each connection from a symbol to a production 
in the production-net corresponds to a production module, i.e. a possibility to be 
tested). If there is a non-nil module index attached this module will be triggered by 
the corresponding object instances. Modules may be run in parallel on different 
processors. The dispatcher can start picking elements from the queue the moment the 
first primitive instances are inserted. It terminates inevitably when the queue happens 
to run empty. But usually it will be terminated before, either by external processes or 
the user, or by limiting the number of cycles or time.  

3 From BPI to MATLAB 

The BPI-system designed for the accumulative interpretation of images has proven 
successful on many applications where perceptual grouping capabilities were 
desirable for almost 20 years [6,9,10,12,13]. BPI (Blackboard-based Production-
systems for Image-analysis) was a compiler language providing special means useful 
for coding production modules. Special care was taken for set operations and 
particularly for associative access to the database organized in blackboard 
architecture. Data were taken from as different domains as oblique and aerial images, 
thermal IR-videos, SAR-data and laser range finder data. Many modules could be 
used with only slight modifications for these different data types. The BPI queue 
mechanism included not only sorting according to a finite symbolic assessment 
attribute but also the definition of focus of attention areas. Special associative access 
hardware memory was constructed and widely used with BPI. Massive parallel single 
instruction multiple data machinery was tested. Because of these issues the attribute 
values were restricted to discrete finite domains. This has proven a serious obstacle. 
Today, however, the most important disadvantage of this system is its machine 
dependency (the assembler routines in its kernel are designed for VAX/VMS).  

 Production systems like outlined in Section 1 and the modules and interpretation 
cycle explained in Section 2 can be coded in any computer language. MATLAB has 
proven a good choice because the database and the queue can be stored in arrays 
which will be automatically enlarged on demand. Also there are convenient graphical 
output means, access to all relevant information for debugging and large ready coded 
tool boxes for mathematical sub-tasks. Primarily, the use of MATLAB may foster the 
acceptability of the approach for other researchers or applicators.  

4 Extracting Scatterer Rows from SAR-Images   

As an example application the extraction of presumably man-made salient rows of 
strong scatterers in aerial X-band SAR images is chosen. The development of 
synthetic aperture radar systems has lead to very small sample sizes on the scene (in 
the order of a decimetre) [1]. In most of these small scene portions there is only low 
back-scattering, so that the image appears dark compared to traditional SAR images 
with several meter pixel sizes where at most some scatterers where present in almost 
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every pixel. Some pixels, however, give a response several orders of magnitude 
higher than the dark background leaking also into adjacent pixels. These contain 
special structure like rectangular corner reflectors formed by window-sills or metallic 
water gutters. Fig. 3 shows a section of such an image taken from urban terrain (the 
campus of the University of Karlsruhe). It also displays an automatic interpretation of 
it using the production system outlined in Section 2. 

 

  
Fig. 3: Left: Section from a high-resolution X-band SAR image (enhanced by noise reduction 
filter); right: Result of grouping after 10,000 interpreter cycles (white); objects rejected as 
clutter (black)  

The system obviously concentrates on the same salient rows that also absorb most 
attention of human subjects. In doing so it discriminates the large building complex 
well from vegetation and clutter. 

5 Conlusion 

Gestalt mechanisms in human perception will draw attention to the salient rows of 
scatterers in good continuation even if the human subject is not familiar with SAR 
imagery nor has any idea of what is the image content. Anybody will perceive man-
made structure like buildings instantaneously in such images although the details of 
SAR-image formation are not easy to understand and lead to awkward phenomena 
like lay-over. The same Gestalt mechanisms that were constructed by nature to fit the 
perception tasks of animal and man in its natural environment also work with other 
pictorial data coming from completely different sources. This indicates evidence that 
these principles reflect very general and important laws. So for any desired automatic 
recognition on pictorial data Gestalt mechanisms should be considered, at least next to 
the domain specific features.  

Coding these principles in declarative productions eases the designer from the 
labour of specifying in detail the sequence of actions of a digital machine or the 
connectivity of a neural network that causes such behaviour. 
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