

INTELLIGENCE

COGNITIVE SYSTEMS | ARTIFICIAL INTELLIGENCE & MACHINE LEARNING | AUTONOMOUS SYSTEMS | AUTONOMOUS DRIVING | INDUSTRY 4.0 | IOT

AFIN MEDTECH PRODUCTION

VISUAL INSPECTION FOR QUALITY ASSURANCE

FRAUNHOFER IKS – COMPETENCY IN SAFE INTELLIGENCE

Fraunhofer Institute for Cognitive Systems IKS

- Application-oriented research for reliable software technologies
- Expertise on cognitive systems, AI and modern software architectures in safety-critical applications
- Combining Safety and Intelligence:
 Safe Intelligence

Quick facts

Founded in 2019

80 employees

3 research areas

(VISUAL) QUALITY ASSURANCE

HOW CAN QUALITY RELATED PROPERTIES BE CHECKED?

Source Image: https://xkcd.com/1838/

MACHINE LEARNING MODELS – WHAT CAN GO WRONG?

Overconfidence Lack of Interpretability

Most modern DNNs are too confident in their own predictions, i.e. scores (like softmax) do not reflect certainty. Complex models are opaque to the user and behave like black box functions.

Out-of-Distribution Scalable Oversight

Unpredictable results for unknown and unspecified inputs.

Critical situations occur rarely and are therefore inadequately trained.

Distributional Shift Robustness

Performance sensitive to subtle changes in the environment over time and to naturally occurring variations, e.g., due to sensor noise, lighting, etc.

UNCERTAINTY: KNOW WHEN YOU DO NOT KNOW

UNCERTAINTY: KNOW WHEN YOU DO NOT KNOW

UNCERTAIN UNCERTAINTY

Monte Carlo Dropout (MCDO) (Gal et al. 2016) **Deep Ensembles (DE)** (Lakshminarayanan et al. 2017)

DEEP DIVE: ENSEMBLE DIVERSITY

		CIFAR-10			CINIC-10			GTSRB		
		BasicCNN	MobileNet	ResNet	BasicCNN	MobileNet	ResNet	BasicCNN	MobileNet	ResNet
None	Acc	81.75	85.98	86.22	70.64	77.09	77.56	98.78	98.39	98.20
		83.52	88.07	88.35	71.54	79.00	79.47	99.23	99.59	99.42
	Acc@1%	47.91	54.50	55.41	28.79	36.59	38.33	98.71	97.95	97.84
		53.05	62.81	63.23	30.76	42.64	43.36	99.23	99.59	99.42
	ECE	1.04	3.66	3.02	1.26	3.55	2.11	0.32	1.07	0.59
		2.81	6.87	6.41	2.92	6.31	5.81	0.94	3.26	2.89
Brightness	Acc	77.40	79.03	80.26	66.65	71.74	72.03	96.79	95.55	95.50
		79.53	83.85	83.66	68.02	74.91	75.14	97.71	97.60	97.55
	Acc@1%	37.78	39.60	41.29	23.05	29.43	29.25	94.40	91.84	91.35
		42.98	50.94	51.63	25.44	35.34	35.56	96.47	96.20	96.41
	ECE	1.01	3.40	2.86	1.75	4.17	2.74	0.47	2.04	0.50
		2.80	8.11	7.22	3.73	7.84	6.49	1.14	5.87	4.43
Contrast	Acc	61.23	64.02	68.49	50.69	61.00	64.02	97.21	94.81	95.54
		65.51	70.73	76.62	53.38	65.98	69.46	98.23	98.23	98.12
	Acc@1%	15.02	17.12	23.74	9.74	17.84	20.62	95.06	90.89	92.19
		21.35	27.10	35.18	12.13	22.88	27.26	97.53	97.66	97.52
	ECE	3.39	0.88	0.92	3.84	1.18	0.81	1.21	2.44	1.21
		7.97	4.48	5.45	6.49	5.68	5.88	2.32	6.34	6.32
Cutout	Acc	69.96	77.46	77.97	63.38	71.24	72.14	95.34	94.70	94.71
		73.08	81.72	82.64	64.90	74.07	75.56	96.07	96.52	96.38
	Acc@1%	25.94	33.17	36.61	20.41	28.38	29.37	91.27	89.68	89.64
		32.97	49.21	49.45	22.34	33.58	35.69	93.05	93.07	93.63
	ECE	1.56	2.28	2.11	0.49	3.39	1.59	0.44	1.37	0.68
		4.22	6.92	6.69	2.31	6.81	6.45	1.29	4.89	3.66

12 | 29.07.2021

www.iks.fraunhofer.de

L. Heidemann et al. "Measuring Ensemble Diversity and Its Effects on Model Robustness", AISafety 2021

DEEP DIVE: ENSEMBLE DIVERSITY (OOD)

www.iks.fraunhofer.de

BETTER KNOW YOUR MODEL

UNDERSTANDING THE IMPACT OF AI ON RELIABILITY

- What properties of AI need to be argued for them to be considered reliable?
- Which evidence, in which combination is required?

ACTIVE LEARNING: ASK THE EXPERT

ACTIVE LEARNING: ASK THE EXPERT

Examples

If **uncertainty is reliably estimated**, we can start with little data and a low performing model gradually **improving it in use**.

<u>)</u>

SUMMARY

Machine Learning

can automate time consuming and expensive inspection and analysis task. Uncertainty Estimation is a key component to reduce unwanted errors and improve reliability of the function. Active Learning is a promising approach to reduce the cost and risk of data acquisition and preparation upfront.

Karsten Roscher

Department Head Certifiable Artifical Intelligence karsten.roscher@iks.fraunhofer.de

ONGOING RESEARCH – ROLE OF QUANTITATIVE RISK ASSESSMENT IN DETERMINING RELIABILITY OF AI

