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Less-than-Truckload (LTL) Services
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System Alliance (D)
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Kühne & Nagel (CH) (IDS (D) =650)

Dachser (D)

European LTL freight - companies and turnover [m. €] (Klaus and Kille 2007)

• Logistics market: 
803 bn. €

• LTL Market: 
32 bn. €

• Market share TOP 
10:
35 percent

• Partner in co-
operations like IDS, 
Cargoline, 24plus or 
System Alliance are 
often SME
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LTL Freight

Definition
• Packed or loose goods up to 

a weight of three tons
• Treated as handling-unit when 

being transported, transshipped 
or stored

• Palette as standard device
• Strongly heterogeneous
• Utilization of automatic 

transshipment devices is difficult

Exemplary LTL freight (GPAL, GDV, BAM 2008)
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Operations of LTL Networks

• Preliminary leg (inbound)
• Pickup of loads in origin regions 

(i.e., collection of shipments within 
short-distance traffic region)

• Consolidation of commodities for 
transport

• Main leg / line haul
• Transportation of shipments 

between transshipment points
• Subsequent leg (outbound)

• Transshipment of commodities for 
transport

• Delivery of consignments to 
customers in destination region 
(i.e., delivery of shipments within 
short-distance traffic region)

Hub

Terminal

Local area
dispatching terminal

Local area
receiving terminal
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Operations of LTL Networks

Less-than-truckload freight network

Exemplary short distance service region

• Preliminary leg (inbound)
• Pickup of loads in origin regions 

(i.e., collection of shipments within 
short-distance traffic region)

• Consolidation of commodities for 
transport

• Main leg / line haul
• Transportation of shipments 

between transshipment points
• Subsequent leg (outbound)

• Transshipment of commodities for 
transport

• Delivery of consignments to 
customers in destination region 
(i.e., delivery of shipments within 
short-distance traffic region)
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Motivation

Typical shipping companies have
• Simultaneous deliveries and pickups
• Numerous orders, vehicles, and restrictions
• Business and end customers
• The requirement that pickup orders cannot be neglected
Dynamics
• Service requests shortly before pickup
• Varying travel times

• Predictable (e.g., rush hours)
• Random (e.g., accidents)

Consequences: lateness, penalty fees, and bad vehicle utilization



Uwe Clausen | Berkeley | October 5-7, 2009 | 8

State of the Art

Solution techniques for PDPs
• Exact optimization: e.g., MI(N)LP, branch-and-cut, column generation, . . . 

(e.g., Hiller et al. [1], Jaillet and Wagner [2], Kenyon and Morton [3], 
Savelsberg and Sol [4])

• (Meta) heuristics: sequencing policies, insertion, TABU search, genetic 
or evolutionary algorithms, . . . (e.g., Bent and Van Hentenryck [5], 
Branke et al. [6], Fleischmann et al. [7], Van Hemert and La Poutr´e [8])

Primarily consideration of either
• Varying travel times
• Unknown customer orders
• Time windows and capacities

Neglect of specific requirements of forwarding agencies
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Objective and Approach

Objective
• Overall, use of both anticipation of and reaction on unknown customer 

orders and varying travel times to improve vehicle routing
• Here, integration of varying travel times to reduce lateness and increase 

utilization
Approach
• Analysis of problem characteristics, modeling options, and definition 

and specifications
• Modeling of discrete mixed integer PDP optimization model
• Determination of travel time zones
• Development of solution approach and analysis in terms of

• Varying travel times
• Real-time optimization within an intelligent planning system
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Time Dependent Travel Times

6 min

9 min

5 min

A B

Traffic lights

Network with time dependent travel times

Non-busy 
period
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Time Dependent Travel Times

7 min

9 min

8 min

A B

Traffic lights

Network with time dependent travel times

Rush hour
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Methodology

Degree of dynamism (Larsen [9])

Time dependent travel times
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Intelligent Planning System

Intelligent Planning System

Traffic Management Center
(new travel times)

Events (new request, 
vehicle break-down, …)

1) Trigger recalculations
2) Identify changes Intelligent Planning System

Display results to scheduler Historic order and
travel time data

1)

2)
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Real-time Optimization with Time 
Dependent Travel Times

Optimization with time dependent travel timesOptimization with static travel times
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Objectives and Modeling

The objective is to get robust and flexible tours
• Robustness in a sense that, if travel times change or a new customers 

order arrive, if at all only minor changes in the schedule are necessary
• Flexibility allows to keep the general schedule, because the generated 

plan contains more options

Assets and drawbacks of integration of stochastic data to reach desired 
tours

• Stochastic scheduling performance worse with deterministic evaluation
• Hopefully, stochastic scheduling will reduce recourse costs
• Solving stochastic models vs. solving deterministic models with 

additional constraints

Deterministic modeling seems favorable
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Number of Traffic Jams
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• Reported traffic 
jams on interstates 
in North Rhine-
Westphalia in 2007

• Traffic jams of 
average weeks 
include
• predictable 
• and random 

events
• Readily identifiable 

rush-hour times
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Deduced Travel Time Zones
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Travel time zones in North Rhine-Westphalia

• Huge complexity of 
routing with 
individual travel 
times or time zones

• Identification of 
universally valid 
travel times

• Aggregation to 
appropriate time 
zones
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Time Zones vs. Real Travel Times
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Travel time interval vs. travel time (Monday to Friday)

• Rough estimates 
with general travel 
times

• The fit is 
reasonable well for 
first investigation 
of profitableness …

• Later fine-tuning is 
still possible, if  
routing with time 
zones is successful
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Model Extract

Objective function

Customer and vehicle related constraints: e.g.,

Flow related constraints: e.g.,

Time windows and travel times: e.g.,
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Approach

Results of preliminary investigation
• Exact approaches (e.g., Column Generation, ...) require huge solving 

times
• Even small instances (i.e., a great deal smaller than practical problems) 

cannot be solved within given times
• Waiting strategies, especially with unknown customer orders, are only 

beneficial for a low number of unknown customers (see [6]).
Approach
• Enhancement of heuristics that have proven valuable
• For example, development of a tabu search (TS) with time-based 

delimitation and geographical distances
• Admission of reoptimization

Tabu search with reoptimization
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Tabu Search

• … is a mathematical optimization method
• … belongs to the class of local search techniques
• … is a metaheuristic that guides a local search procedure to 

explore the solution space beyond local optimality
• … memory-based strategies are the hallmark of tabu search 

approaches
• … uses memory structures so that evaluated, but disregarded 

solutions are "tabu" 
• Pros: Generally short solving times & generally quite good 

solutions for optimization problems
• Cons: Tabu list construction is problem specific (parameter 

settings) & no guarantee of global optimal solutions
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Tabu Search 
History to present

Tabu search is attributed to Fred Glover [12], because Glover
• … describes a very simple memory mechanism to implement an 

oscillating assignment heuristic [13] 
• … introduces tabu search as a “meta-heuristic” superimposed on 

another heuristic [14]
• … provides a full description of the method [12] [15] 

• Current research suggest the suitability for a dynamic pickup und 
delivery problem, e.g., 

• Grendreau et al. [16] or 
• J.-F. Cordeau, G. Laporte, and A. Mercier [17] 

Suitable, but neglect of requirements of forwarding agencies
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Tabu Search

• TS explores only parts of the solution space by 
moving at each iteration to the most promising 
neighbor of the current solution

• Cycling is avoided by using a tabu list, where recently 
considered solutions are blocked out for a number of 
iterations

• Neighborhood are only solutions, complying with the 
time dependent travel times

• The objective function       associated with a particular 
solution      of an iteration is characterized by the 
vector               , denoting the used edges        .

• An initial solution is required
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Preliminary Investigations

Intelligent Planning System

Anticipation of travel times is promising / of customer ord. is difficult

Traffic Management Center
(new travel times)

Events (new request, 
vehicle break-down, …)

1) Trigger recalculations
2) Identify changes Intelligent Planning System

Display results to scheduler Historic order and
travel time data

1)

2)
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Result Overview

Static vs. time dependent optimization

Dynamic customers vs. dynamic customers with clusters

Time dependent and dynamic vs. combined optimization

Total travel time (%) 5.35
Fleet size (%) 0.89
Reduction of late deliveries -68

Total travel time (%) 0.09
Fleet size (%) - 0.91
Reduction of late deliveries -14

Total travel time (%) -1.23
Fleet size (%) 1.82
Reduction of late deliveries 0

• About 2300 
customers

• Between 0 and 30 
percent unknown 
orders

• About 200 
vehicles 

• Up to 3 percent 
reduction of costly 
late arrivals
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Summary and Outlook

Conclusion
• Evaluations show that dynamic routing with anticipation of travel times 

is promising
• Dynamic (real time) routing with anticipation might be beneficial for 

forwarding agencies in cases of
 High degrees of dynamism
 Appropriate cluster strategies

• Increasingly objectives in routing require the consideration of ecological 
and economical aspects

• A small example…
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Routing Example 

Germany 2009
The 800 CNG EcoFuel Tour:

800 gas stations in 80 days
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Natural Gas-Powered Vehicles

• Pros:
• Low emissions
• No petroleum taxes 

until 2018
• Based on the energy-level

natural gas costs
0,65-0,75 €/l compared to
gasoline respectively diesel

• Cons:
• Ca. 1,500-3,000 € surcharges for new vehicles
• Ca. 2,500-3,500 € surcharges for retrofitting
• Small cruising range

• Based on the average fuel costs natural gas is 50% cheaper compared to 
gasoline and 22 % cheaper compared to diesel

Source: www.erdgasfahrzeuge.de

20 40 60 80 100

Nitrogen oxides

Reactive
hydrocarbon

Carbon dioxide

Carbon monoxide

Gasoline Natural gas
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Problem Definition & Setting

Bad Reichenhall, Bayern

Westerland, Sylt 

Ca. 800 natural gas stations

80 days

Optimal tour?

+

=
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The Basic Travelling Salesman Problem
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Problem Definition & Setting

•Optimal tour = Travelling 
Salesman Problem
•Visit n locations / vertices 
exactly once
•Number of solutions increases 
exponentially (n=20): 
60.823.000.000.000.000
•No solution within polynomial 
time

Optimal tour? Run-time
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Solution Approach

Characteristics
• Large problem space
• Strategic planning (solving time is not critical)
• Time constraints are less important
 Exact approach and partitioning of problem
1. Criteria:

 Density of the natural gas stations
 Geographic data
 Max. number of gas stations in each sector: 

170
2. Calculation of  shortest paths between six 

sectors
3. Calculation of the optimal solution for each 

sector

Sector A

Sector B
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Solution Approach

•Calculation of the optimal 
solution for each sector

• Using a developed MIP model
• Solving the problems using 

commercial software

•Max. deviation from the 
optimal solution for each 
sector: < 3 %
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Results

Total distance: 
18,000 km ≈ 11,184 miles

Total driving time: 
265 hours

Dortmund

Total computing time: 
≈ 29 hours
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Conclusion

Conclusion
• Evaluations show that dynamic routing with anticipation of travel times 

is promising
• Dynamic (real time) routing with anticipation might be beneficial for 

forwarding agencies
Future work
• Development of an approach using anticipation within an intelligent and 

dynamic planning tool for operating LTL terminals combining
• Route planning, yard management  or door assignment,
• And transshipment processes

• Objectives are the reduction of overall travel times and lateness, 
increasing vehicle utilization and transshipment productivity under 
consideration of ecological and economical aspects
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Thank you for your attention!

Prof. Dr.-Ing. Uwe Clausen
Fraunhofer Institute for Material Flow and Logistics, 
Joseph-von-Fraunhofer-Str. 2-4, 44227 Dortmund, Germany
Tel.: +49 231 9743 400
clausen@iml.fhg.de
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Backup
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Driving forces

Driving forces of transport volume 
are Globalization

 EU Enlargement
 Growing Economy
 Reduction of 

 stocks 
 in-house production depth

 Ship to order requirement
 …
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Less-than-Truckload (LTL) Services

LTL - Price and Market Development Dynamic Market Situation
• Cost Drivers

• Introduction of Maut
• Rising prices for new trucks and 

fuel
• New labour rules

• Acquisitions
• Large companies, e.g.

• Kühne & Nagel in IDS
• DSV in IDS

• Cooperations, e.g. 
• Parts of ABX in Cargoline
• Spedition 2000 in VTL

Price Development of an average shipment (230 kg, 500 km)

Deymann 2007
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Telemetry

Telemetry (synonymous with telematics) 
• Telemetry is a technology that allows the remote measurement and 

reporting of information of interest to the system designer or operator.
• The word is derived from Greek roots 

• tele = remote, and 
• metron = measure

• Systems that need instructions and data sent to them in order to operate 
require the counterpart of telemetry, telecommand.
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