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Abstract. The effectiveness of appearance based person modelslgtrehigs
on a sufficiently large number of high quality training saemplGenerating train-
ing data in terms of bounding boxes is already a time consyirt@sk. If more
complex person models are used, like part-based models delmsuitable for
human pose estimation, the labeling process becomesilnifzas the context
of pose estimation, motion capturing is often used to geaanaund truth data.
A major problem with this approach is that motion capturiagisually done in
artificial environments with only few persons. It is themefaifficult to generate
classifiers which are able to localize anatomical landmarka moving person.
In order to solve this problem we propose a solution to géaeaanotations of
anatomical landmarks using a semi-automatic work flow, dasetracking and
automatic scale selection.

The contribution of the paper is twofold. First, differenadking methods are
evaluated in terms of their properties to follow anatomgtalctures on a moving
person. Second, in order to determine the spatial exterisadbmical landmarks
some simple but effective scale selection methods are peapdrlhe resulting
person models are intended to generate a suitable basisafioring regression
models for monocular pose estimation, as well as for trgipart-based mod-
els directly. Results of a comprehensive quantitativeuatan on the UMPM
dataset are presented, while we also show examples ofafiseditesults on two
challenging YouTube sequences.

Keywords: Semi-automatic annotation, Tracking of anatomical lanthsiaAu-
tomatic scale selection

1 Introduction

For training part-based person detectors or 2D human pdiseatsrs, learning-based
approaches often need training examples of the form (pensage, 2D ground-truth
landmark regions) (e.g., [4], [10], [5]). Unfortunatelych training data is currently
only available for some few videos which were recorded withrker-based motion
capture systems (e.g., UMPM [1], HumanEva [9]). For thiss itlesirable to be able
to annotate selected training videos that are similar tarttege material during the
envisaged application manually. But labeling a large amofirideo frames only by
means of manual annotation is time-consuming and labosow® the ground truth
landmark regions have to be annotated in every video frage by drawing a rectangle
around each ofV landmarks. Here we want to generate such annotations atitatha
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Fig. 1. Semi-automatic landmark annotation. Left: manual annotation of 2D locations of
anatomical landmarks for an anchor frameRight: using the manual annotation information
we speed-up the ground-truth labeling process by first esitig the spatial extent of each land-
mark automatically and then track the landmarks to neigithérames using variants of optical
flow (visualized here: TV-L1 optical flow) and appearancedobenline tracking methods adapted
to the task of landmark tracking.

starting from so-calledieakly annotated anchor frames, which are frames annotated by
the user with the limitation that the user only labels theeelocation of each landmark,
e.g., by a single point click. Determining the 2D region ofleéandmark and tracking
the landmarks backwards and forwards in the video for socheovirames will be done
automatically and is the topic of this paper. There are twinmantributions by this
paper. First, we present a comparative evaluation of anaappee based visual tracker
and different optical flow based tracking approaches in otdéetter assess which
of both approaches is more appropriate for the task of lanklinacking. Second, we
propose three methods that allow to estimate the scale bflaadmark automatically,
thereby lifting up the weak landmark annotation of the useal2D point to a full 2D
rectangular region annotation. Together, this allows tootate ground-truth data in a
semi-automatic fashion, more than 18 times faster comparadnanual annotation, if
automatic generated landmarks that do not deviate more¥aaf the object height
from the true landmark locations are considered to be aabégpas training data.

Related Work. Tracking is a very active research area with many approgutees
sented in the last decades. [14] and [13] provide surveyscoking approaches. Among
the different appearance based tracking approachesedndicking approaches, which
update an appearance model of the object on-the-fly, hawerstoobe successful even
in cases of strong appearance changes of the object. [IM{psan exhaustive evalua-
tion of 25 current state-of-the-art online trackers, whighders the Compressive Track-
ing (CT) approach by Zhang et al. [16] as currently the bekherracking method. We
therefore choose CT here as a representative for the claggpefrance based trackers.
Among optical flow based object tracking methods, dense,[8]gand sparse optical
flow (e.g., [7]) has been used. While dense optical flow metdtaod computational more
demanding compared to sparse flow methods, they providéhathégcuracy. Since we
do not focus on real-time ground-truth generation of tragrdata, but allow for off-line
annotation, we select the TV-L1 method [15] as a represeatahd basis for optical
flow based tracking. Ground truth training data is needed Bgynrtomputer vision al-
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Fig. 2: Left: optical flow vector field. For the non-histogrdrased methods, the location of the
landmark is predicted for the next frame using all opticalkfli@ctors within a regio?. Right:
exemplary cutout of an angle-weight histogram.

gorithms. Offline (e.g., VIPER [3]) and online labeling tedk.g., LabelMe [6]) have
been published, allowing to annotate, e.g., bounding bor@®lygons. Nevertheless,
semi-automatic annotation is often restricted to lineterjpolation which assumes con-
stant velocity of the object. The VATIC annotation tool [14pne of few tools that use
object tracking in order to ease the annotation processtoitheses a feature descriptor
composed of a HOG descriptor and color features to modeltheaance of manually
annotated objects. For tracking a linear SVM is used. Nbedgts, a fixed appearance
model of the object with a fixed spatial extent is not appmaterio track objects in cases
of strong appearance changes, e.g., if the object size esamgn the case of in-depth-
rotations. [2] addresses the task of dealing with parti@heled data as well. There
the task is to learn a part-based model using images labalgdvith bounding boxes
around the objects. For this, part locations which are nulied are treated as latent
variables during the training procedure. In contrast td@}e we consider the situation
that parts are labeled, but only the 2D locations, while tBeléhdmark regions are
unknown.

In section 2 we present the details about the optical flow apeéarance based track-
ing methods used to propagate the user annotation from ttteoaframe backwards
and forwards within a video. Section 3 introduces three odsho determine the size
of a landmark automatically. The results of the comparagiveuation of optical flow
and appearance based landmark tracking and the diffenetiniark scale estimation
methods are presented in section 4, while section 5 preentonclusions.

2 Tracking of Landmarks

For tracking a landmark from a franie — where we already have an estimate of the
locationly of the landmark — to a fram& with unknown locatiorl;, we compute a
prediction vecto®, that describes the translation of the landmark, lse= 11 + D.
Optical Flow Based Tracking of Landmarks (OFT). For two consecutive video
framest; andts we compute the TV-L1 optical flow, i.e., an optical flow field iai
contains information about the movement of every pixel (Sge2 left). The following



methods predict the landmark location using TV-L1 opticafinformation and can
be divided into non-histogram and histogram based methods.

OFT with Non-Histogram Based Methods. The first two methods considered
compute® based on a weighted average of the optical flow vectors wahiagion
W:

-1
& = (Suyew o(45) %) - (Suyew ala))

Herew; = (u;,v;)" represents the optical flow vector at locatidp = (z;,;)"
relative tol;. A weighting functiong is used to weight each of the optical flow vectors
in dependence on its location W relative tol;. With g (d;) = 1 we give each of the
optical flow vectors iV the same weight, i.e® is the arithmetic mean of all optical
flow vectors inW (method name®). Since the spatial extent of a landmark is unknown
it is more promising to weight optical flow vectors which afese to the considered
landmark larger than those which are far away frignThis can be achieved by using a
Gaussian kernel weighting functigr(d;) = N (||d; ||, ,7/3) (method named(,).

OFT with Histogram Based Methods.The non-histogram based methods do not
take into account that (i) some of the optical flow vectorshhige erroneous due to
outliers or (ii) optical flow vectors can point into differedirections if the regioriV’
contains image structures of other landmarks that movedtiter directions. The fol-
lowing histogram based approaches offer the possibilitatkle the problem of outliers
(i) and contradictory optical flow information (ii). In thelfowing, optical flow vectors
are described by their lengtif and their angle., i.e., ¥; = (nj,wj)T instead of
their - andy-translation components. Both following two methods firstinpute an
angle-weight histogram that represents the informatiom bfien each angle’ oc-
curs when considering all optical flow vectorsiii, weighted by the lengths of the
corresponding optical flow vectors. The angle-weight lyjsdm is discretized into bins
wg, (k =1, ..., M) and for each angle bin a weight is maintained. Each optical flow
vector®; casts a vote into the next bin, that corresponds to its angle/, where the

vote strength is set t¢/. Henceg;, = Z;y:_o_lwk:wj g(dj)-n’. HereN € Nrepresents
the number of optical flow vectors V. In Fig. 2 (right) we present an example of the
computed weightg;, for some of the angle bins;, of such a angle-weight histogram
computed for a regiofV of a real frame. The angle-weight histogram shows a clear
peak which corresponds to a favored direction of the optical vectors withinlV. The
idea to comput&® = (wy, l¢,)T is to use only the optical flow vecto#; that belong to
this favored direction. The favored direction correspatadthe binwg where the peak
can be localized and the length of the landmark predictiatoreés computed by:

-1
Lo = (250, o)) - (2250, o))

Here the length of each optical flow vector is weighted by agiviéing functiong again.
We consider two variants in the following: (i) a weighted mex the lengths)’ of
all optical flow vectors that voted into biny, i.e., g (d;) = 1 (method name®*)
and (ii) weighting each optical flow vector length by its diste to the landmark, i.e.,
g(d;) =N (||d;|l, ,7/3) (method namedZ).

Appearance Based Tracking of Landmarks (CT).As described in section 1 we
use the Compressive Tracker (CT) [16] as a representativihéoappearance based
methods. CT is an online tracker, i.e., starting from a seteitnage region, it generates
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Fig. 3: Left+Mid: Angle-weight histograms for a landmarknga too small (left: one peak) and
a too large landmark region (mid: two peakg): discrete histograng: continuous histogram
using a Gaussian kernel density estimator. Right: Trackimgrs for different combinations of
optical flow and scale estimation methods

an appearance model (AM) and updates the AM on-the-fly whaleking. In contrast
to the optical flow based methods, we cannot recompute a malmlark region radius
r for each new frame. Instead we compute the region size ordg asing the scale
estimation methods described in the next section when waline a CT online tracker
for each landmark in the anchor frames. The reason is thaNthéhat is established
and updated for each landmark is not scale-invariant,the.AM can only describe a
fixed region size. For CT we use the reference implementatiovided by the authots
In the following we usé& to denote CT related tracking results.

3 Automatic Scale Estimation

Due to the weak labeling scenario, the actual landmark regimot specified by the
user, but only its 2D center location. In the following threethods are presented that
can be used to estimate the spatial extent of a landmark atitaity. The correspond-
ing landmark region can then be used by the optical flow methoddstimate a land-
mark prediction vector or by the CT to update its AM.

Histogram Based (H).The motivation behind the first approach is that a too small
or an appropriate landmark region radius will result in alesgeight histogram with a
single peak (Fig. 3 left), since only optical flow vectorsloé ttorresponding landmark
are included, i.e., image regions that consistently mote ansingle direction. If the
region radius is too large, image structures of other lanédmwaill be included, i.e.,
some optical flow vectors in that region will point into a sedalirection — as long
as these other image structures do not move into the sanidire- and a second
peak will emerge in the histogram (Fig. 3 middle). A roughireate for the landmark
can be computed therefore by starting with a small regioiusag) and increase it
incrementally byAr until a second large peak occurs in the angle-weight hiatogat
radiusr; and taker = r; — Ar as a region radius estimate. Since the detection of local
maxima in a discrete angle-weight histogram turns out todtegliable enough, we use
a Gaussian kernel density estimatey (wx) to compute a continuous density estimate
on basis of the discrete histogram.

1 http://www4.comp.polyu.edu.hk/ ~cslzhang/CT/CT.htm
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Fig. 4: Tracking errors for constant vs. estimated landmark scale.The plots show the land-
mark tracking errors for the different optical flow (left ige @) and CT (right image() based
landmark tracking methods using constant scale (of 5-48lgior dynamically estimated land-
mark scales based on the edge-based (E) or the filter-basapdfure size estimation. For easier
comparison with the constant scale results the trackirg®ursing the dynamic scale estimation
are shown as lines.

Edge Based (E)The central idea of this method is that based on an edge irhage t
region radius should be selected such that at least a minamuount of edge pixels are
contained in the region. Assuming the landmark region issnooless homogeneously,
edge pixels will occur at the borders of the region. More ey, we compute a Canny
edge image, start with a region raditg and increase it incrementally bxkr. For
each region radius the number of edge pixg(s) in the corresponding regiol is
compared with a threshol@. The landmark region radius estimate is the firssuch
thatE (r) > 6.

Filter Based (F).The basic idea behind this third method is that the scaleldHyzu
selected in such a way that the brightness of the region bdifflers significantly from
its region center, similar to SIFT and SURF blob keypoined#&on. Such a region ra-
dius can be computed by filtering image patches at the hypizgétlandmark location

Iy = (z,y)" with different blob filters, described each by a blob filtertrna

g { S\ f@ =+ =) <2

-1/n_ else

N, andN_ are normalization factors such that the positive and negatements of
the blob filter matrix sum up to 1 each. We convolve the imadelpat the hypothesized
landmark location with blob filter matrices of different iiad and take as estimate for
the landmark region the radiusfor which we get the strongest filter response.

4 Evaluation

Quantitative Analysis. For the quantitative evaluation we choose the UMPM bench-
mark [1] since it provides 3D motion capture data togethé¢in wamera calibration data.
This allows to project the 3D landmark coordinates into thage, thereby generating
ground truth 2D landmark center locations which can be coatgwith the automati-
cally generated landmark locations by the different traglapproaches proposed here.



The manual annotation afeakly annotated anchor frames is simulated by using the
provided ground truth information of landmarks every 9%fes of an UMPM video.
Starting from an anchor frame the landmarks are tracked ocahsecutive frames
forwards and backwards. The tracking error is the averagedabsolute differences
(SAD) between the UMPM ground truth landmark locations dmedetutomatically gen-
erated landmark locations, where we average over all 151anks considered and all
evaluation frames. The distance between a ground truth arattked landmark loca-
tion is measured in relative person (bounding box) heigliisuamd explicitly not in
pixels in order to make the error measure independent ofiidaged size of a person.
Overall we used the 19 single person videos of the UMPM dgtesech corresponds
to approx. 50 000 evaluation frames for each tracking method

I. Dynamically estimated vs. constant scaldrig. 4 shows the tracking error when
we use a constant scale (of 5 to 49 pixels) for each of the 48¢sdeft and right to the
anchor frame or a dynamically estimated scale, using the-bdged (E) or the filter-
based (F) method. The results allow to draw two main conehssiFirst, the optical
flow histogram-based methods yield better tracking resblis the simple averaging
methods (compare, e.@, & with &7, ). Second, the methods that estimate the
landmark scale dynamically (with preceding E and F) yielttdreaverage tracking
errors than the constant scale methods (without precediagdEF), which is most
clearly shown for the case of the CT (bottom plot).

II. Comparison of scale estimation methods (H vs. E vs. F}ig. 3 right com-
pares the average tracking errors for the different opfioat methods ¢, ¢, ¢,
@) combined with the three different scale estimation mesh@tiE,F), where each
combination is evaluated on approx. 50 000 frames and 15rardlocations esti-
mated for each frame. The plot allows to draw two further ¢asions. First, we can
see a clear ranking of the four different optical flow methedst. the tracking error,
namely:® > & > ¢ > ¢H. Second, there are no large significant differences in the
errors depending on the scale estimation method, i.e:,lH~ F.

lll. Tracking error as a function of the distance to the anchor frame.
In the figure at the right we show the
average tracking error as a function of i} Fag
the distance to the anchor frame for . it
the different optical flow based meth- 2. ™ S
ods () and the CT £¢) using an edge- " "™
based scale estimation (E). The plot al- "
lows to answer the question how far ,
we can track the landmarks to the left 2 . '
and right starting from an anchor frame * |
(frame 0) if we allow for an average ~§f;_
tracking error of maximally® percent. K
When accepting an average landmark
tracking error 0f© = 5% of the person 2 4 ! oA
height, we can use the annotated frames \ !
up to 17 frames left and right fromthe  “_ .- .. - ... 2. 22,
anchor frame without the need ofany ~ /
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further manual post-processing, i.e., for each weakly tatad anchor frame, we can
generate 34 automatically annotated frames with estinfatetinark centers and land-
mark regions.

IV. Optical flow vs. appearance based trackingThe best optical flow based land-
mark tracking methodX®%) that exploits the edge-based approach to estimate the
landmark scale yields a tracking error of 6.7% and the CT daseker with edge-
based scale estimation an error of 7.7% (of the person Heiditen tracking 49 frames
to the left and right, i.e., automatically annotating 9&1ies given one weakly anno-
tated anchor frame. This seems to indicate that there isrge tifference between the
optical flow and appearance based landmark tracking apipesaroposed here.

Qualitative Analysis. In Fig. 5 we show some qualitative examples of tracking re-
sults on a UMPM sequence and two challenging YouTube spguissees showing fast
movements with motion blur and some background clutterérctise of the basketball
sequence. For some anchor frames we manually labeled ffenedit landmarks (head,
shoulder, hand, foot) and used the optical fl@{:§ and the CT () tracking methods
to track the landmarks. The landmark region scales wemmatgd using the E method
and are depicted by the rectangles, while the black dot dsribe estimated landmark
center. Note the large differences in the estimated lankis@ales when considering
different landmarks. The estimated scales of the head antethshoulder are very
similar for different frames and correspond to the extehti® head and the shoulder,
which is interesting, since we do not have specified whichgenstructures belong to
the head or the shoulder anywhere. Remember that the uselabels the landmark
centers and does not provide segmentation informationh@dandmarks. The scale
corresponds to the landmark extents here since edge po@is at the borders to other
landmarks (for the head at the border to the torso, and foshioellder at the border
to the head and the end of the T-shirt sleeves). The estinsatdd for the foot often
ends at the edge of the sock to the lower leg. For the badmgsigunence which shows
a relative homogeneous background the hand region endstlypat the elbow, while
for the basketball sequence the hand region is significaniiiler, since there is much
background clutter present that belongs to other imagetsires than the hand.

5 Conclusions

The paper addressed the task of supporting the generatigroohd-truth landmark
annotations by tracking anatomical landmarks on highligaldted objects given a few
manually annotated anchor frames. We explored four diffiewptical flow based meth-
ods and a state-of-the-art appearance based method (Cdmisircation with three dif-
ferent simple scale selection methods, which are used troatregion from which to
use the optical flow vectors to compute a landmark predistémor or to update the ap-
pearance model of the CT tracker. Each method was evaluat@olwox. 50 000 frames
of the UMPM benchmark and the quantitative results showttieae is no large differ-
ence between the simple optical flow based methods and thea€Kirtg method. Since
a simple histogram-based detection of the main flow directith Gaussian weighting
(Fo k) results in even slightly smaller tracking errors compdeettie much more com-
plex CT method, we propose to use this method for landmackitng. Re-estimating



the scale of each landmark for each new frame yields significhetter tracking results

than using a fixed scale, while no large differences betweeithiree scale estimation
methods (H,E,F) concerning the tracking errors were olesetizven though the optical
flow based approaches in combination with one of the threle ssdimation methods

renders as a simplistic approach for landmark tracking, areazitomatically annotate
approx. 34 frames for each weakly annotated frame if aveleagdmark localizations

errors of up to 5% of the person height are acceptable aneliispeed-up the manual
annotation process by a corresponding factor of 34 as well.
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frame 12

Fig. 5: Qualitative OFT and CT landmark tracking results. Results for three different
YouTube badminton sequences (row 1-3), an UMPM sequence 4)o and two different

YouTube basketball sequences (row 6-7). Left column: mignaanotated. All other columns:
automatically annotated using landmark OFT and CT base#ifrgwith automatic scale selec-

tion.





