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Abstract. The effectiveness of appearance based person models strongly relies
on a sufficiently large number of high quality training samples. Generating train-
ing data in terms of bounding boxes is already a time consuming task. If more
complex person models are used, like part-based models or models suitable for
human pose estimation, the labeling process becomes infeasible. In the context
of pose estimation, motion capturing is often used to generate ground truth data.
A major problem with this approach is that motion capturing is usually done in
artificial environments with only few persons. It is therefore difficult to generate
classifiers which are able to localize anatomical landmarkson a moving person.
In order to solve this problem we propose a solution to generate annotations of
anatomical landmarks using a semi-automatic work flow, based on tracking and
automatic scale selection.
The contribution of the paper is twofold. First, different tracking methods are
evaluated in terms of their properties to follow anatomicalstructures on a moving
person. Second, in order to determine the spatial extents ofanatomical landmarks
some simple but effective scale selection methods are proposed. The resulting
person models are intended to generate a suitable basis for learning regression
models for monocular pose estimation, as well as for training part-based mod-
els directly. Results of a comprehensive quantitative evaluation on the UMPM
dataset are presented, while we also show examples of qualitative results on two
challenging YouTube sequences.

Keywords: Semi-automatic annotation, Tracking of anatomical landmarks, Au-
tomatic scale selection

1 Introduction

For training part-based person detectors or 2D human pose estimators, learning-based
approaches often need training examples of the form (personimage, 2D ground-truth
landmark regions) (e.g., [4], [10], [5]). Unfortunately, such training data is currently
only available for some few videos which were recorded with marker-based motion
capture systems (e.g., UMPM [1], HumanEva [9]). For this, itis desirable to be able
to annotate selected training videos that are similar to theimage material during the
envisaged application manually. But labeling a large amount of video frames only by
means of manual annotation is time-consuming and laborioussince the ground truth
landmark regions have to be annotated in every video frame, e.g., by drawing a rectangle
around each ofN landmarks. Here we want to generate such annotations automatically
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Fig. 1: Semi-automatic landmark annotation. Left: manual annotation of 2D locations of
anatomical landmarks for an anchor framet. Right: using the manual annotation information
we speed-up the ground-truth labeling process by first estimating the spatial extent of each land-
mark automatically and then track the landmarks to neighbored frames using variants of optical
flow (visualized here: TV-L1 optical flow) and appearance based online tracking methods adapted
to the task of landmark tracking.

starting from so-calledweakly annotated anchor frames, which are frames annotated by
the user with the limitation that the user only labels the center location of each landmark,
e.g., by a single point click. Determining the 2D region of each landmark and tracking
the landmarks backwards and forwards in the video for some video frames will be done
automatically and is the topic of this paper. There are two main contributions by this
paper. First, we present a comparative evaluation of an appearance based visual tracker
and different optical flow based tracking approaches in order to better assess which
of both approaches is more appropriate for the task of landmark tracking. Second, we
propose three methods that allow to estimate the scale of each landmark automatically,
thereby lifting up the weak landmark annotation of the user by a 2D point to a full 2D
rectangular region annotation. Together, this allows to annotate ground-truth data in a
semi-automatic fashion, more than 18 times faster comparedto a manual annotation, if
automatic generated landmarks that do not deviate more than3% of the object height
from the true landmark locations are considered to be acceptable as training data.

Related Work. Tracking is a very active research area with many approachespre-
sented in the last decades. [14] and [13] provide surveys of tracking approaches. Among
the different appearance based tracking approaches, online tracking approaches, which
update an appearance model of the object on-the-fly, have shown to be successful even
in cases of strong appearance changes of the object. [12] provides an exhaustive evalua-
tion of 25 current state-of-the-art online trackers, whichrenders the Compressive Track-
ing (CT) approach by Zhang et al. [16] as currently the best online tracking method. We
therefore choose CT here as a representative for the class ofappearance based trackers.
Among optical flow based object tracking methods, dense (e.g.,[8]) and sparse optical
flow (e.g., [7]) has been used. While dense optical flow methods are computational more
demanding compared to sparse flow methods, they provide a higher accuracy. Since we
do not focus on real-time ground-truth generation of training data, but allow for off-line
annotation, we select the TV-L1 method [15] as a representative and basis for optical
flow based tracking. Ground truth training data is needed by many computer vision al-



Fig. 2: Left: optical flow vector field. For the non-histogrambased methods, the location of the
landmark is predicted for the next frame using all optical flow vectors within a regionW . Right:
exemplary cutout of an angle-weight histogram.

gorithms. Offline (e.g., ViPER [3]) and online labeling tools (e.g., LabelMe [6]) have
been published, allowing to annotate, e.g., bounding boxesor polygons. Nevertheless,
semi-automatic annotation is often restricted to linear interpolation which assumes con-
stant velocity of the object. The VATIC annotation tool [11]is one of few tools that use
object tracking in order to ease the annotation process. Thetool uses a feature descriptor
composed of a HOG descriptor and color features to model the appearance of manually
annotated objects. For tracking a linear SVM is used. Nevertheless, a fixed appearance
model of the object with a fixed spatial extent is not appropriate to track objects in cases
of strong appearance changes, e.g., if the object size changes or in the case of in-depth-
rotations. [2] addresses the task of dealing with partiallylabeled data as well. There
the task is to learn a part-based model using images labeled only with bounding boxes
around the objects. For this, part locations which are not labeled are treated as latent
variables during the training procedure. In contrast to [2]here we consider the situation
that parts are labeled, but only the 2D locations, while the 2D landmark regions are
unknown.

In section 2 we present the details about the optical flow and appearance based track-
ing methods used to propagate the user annotation from the anchor frame backwards
and forwards within a video. Section 3 introduces three methods to determine the size
of a landmark automatically. The results of the comparativeevaluation of optical flow
and appearance based landmark tracking and the different landmark scale estimation
methods are presented in section 4, while section 5 presentsthe conclusions.

2 Tracking of Landmarks

For tracking a landmark from a framet1 – where we already have an estimate of the
locationl1 of the landmark – to a framet2 with unknown locationl2, we compute a
prediction vectorΦ, that describes the translation of the landmark, i.e.,l2 = l1 +Φ.

Optical Flow Based Tracking of Landmarks (OFT). For two consecutive video
framest1 andt2 we compute the TV-L1 optical flow, i.e., an optical flow field which
contains information about the movement of every pixel (seeFig. 2 left). The following



methods predict the landmark location using TV-L1 optical flow information and can
be divided into non-histogram and histogram based methods.

OFT with Non-Histogram Based Methods.The first two methods considered
computeΦ based on a weighted average of the optical flow vectors withina region
W :

Φ =
(

∑
dj∈W g(dj)·Ψj

)

·
(

∑
dj∈W g(dj)

)

−1

HereΨj = (uj, vj)
T represents the optical flow vector at locationdj = (xj , yj)

T

relative tol1. A weighting functiong is used to weight each of the optical flow vectors
in dependence on its location inW relative tol1. With g (dj) = 1 we give each of the
optical flow vectors inW the same weight, i.e.,Φ is the arithmetic mean of all optical
flow vectors inW (method name:Φ). Since the spatial extent of a landmark is unknown
it is more promising to weight optical flow vectors which are close to the considered
landmark larger than those which are far away froml1. This can be achieved by using a
Gaussian kernel weighting functiong (dj) = N

(

‖dj‖2 ,
r/3

)

(method name:ΦG).
OFT with Histogram Based Methods.The non-histogram based methods do not

take into account that (i) some of the optical flow vectors might be erroneous due to
outliers or (ii) optical flow vectors can point into different directions if the regionW
contains image structures of other landmarks that move intoother directions. The fol-
lowing histogram based approaches offer the possibility totackle the problem of outliers
(i) and contradictory optical flow information (ii). In the following, optical flow vectors

are described by their lengthηj and their angleωj, i.e.,Ψj =
(

ηj , ωj
)T

instead of
their x- andy-translation components. Both following two methods first compute an
angle-weight histogram that represents the information how often each angleωj oc-
curs when considering all optical flow vectors inW , weighted by the lengths of the
corresponding optical flow vectors. The angle-weight histogram is discretized into bins
ωk, (k = 1, ...,M) and for each angle bin a weightgk is maintained. Each optical flow
vectorΨj casts a vote into the next binωk that corresponds to its angleωj, where the
vote strength is set toηj . Hencegk =

∑N−1

j=0,ωk=ωj g (dj) · ηj . HereN ∈ N represents
the number of optical flow vectors inW . In Fig. 2 (right) we present an example of the
computed weightsgk for some of the angle binsωk of such a angle-weight histogram
computed for a regionW of a real frame. The angle-weight histogram shows a clear
peak which corresponds to a favored direction of the opticalflow vectors withinW . The
idea to computeΦ = (ωφ, lφ)

T is to use only the optical flow vectorsΨj that belong to
this favored direction. The favored direction correspondsto the binωφ where the peak
can be localized and the length of the landmark prediction vector is computed by:

lφ =
(

∑N−1

j=0,ωφ=ωj
g(dj)·ηj

)

·
(

∑N−1

j=0,ωφ=ωj
g(dj)

)

−1

Here the length of each optical flow vector is weighted by a weighting functiong again.
We consider two variants in the following: (i) a weighted mean of the lengthsηj of
all optical flow vectors that voted into binωφ, i.e., g (dj) = 1 (method name:ΦH )
and (ii) weighting each optical flow vector length by its distance to the landmark, i.e.,
g (dj) = N

(

‖dj‖2 ,
r/3

)

(method name:ΦH
G ).

Appearance Based Tracking of Landmarks (CT).As described in section 1 we
use the Compressive Tracker (CT) [16] as a representative for the appearance based
methods. CT is an online tracker, i.e., starting from a selected image region, it generates



Fig. 3: Left+Mid: Angle-weight histograms for a landmark using a too small (left: one peak) and
a too large landmark region (mid: two peaks).gk: discrete histogram,ξG: continuous histogram
using a Gaussian kernel density estimator. Right: Trackingerrors for different combinations of
optical flow and scale estimation methods

an appearance model (AM) and updates the AM on-the-fly while tracking. In contrast
to the optical flow based methods, we cannot recompute a new landmark region radius
r for each new frame. Instead we compute the region size only once using the scale
estimation methods described in the next section when we initialize a CT online tracker
for each landmark in the anchor frames. The reason is that theAM that is established
and updated for each landmark is not scale-invariant, i.e.,the AM can only describe a
fixed region size. For CT we use the reference implementationprovided by the authors1.
In the following we useζ to denote CT related tracking results.

3 Automatic Scale Estimation

Due to the weak labeling scenario, the actual landmark region is not specified by the
user, but only its 2D center location. In the following threemethods are presented that
can be used to estimate the spatial extent of a landmark automatically. The correspond-
ing landmark region can then be used by the optical flow methods to estimate a land-
mark prediction vector or by the CT to update its AM.

Histogram Based (H).The motivation behind the first approach is that a too small
or an appropriate landmark region radius will result in a angle-weight histogram with a
single peak (Fig. 3 left), since only optical flow vectors of the corresponding landmark
are included, i.e., image regions that consistently move into a single direction. If the
region radius is too large, image structures of other landmarks will be included, i.e.,
some optical flow vectors in that region will point into a second direction – as long
as these other image structures do not move into the same direction – and a second
peak will emerge in the histogram (Fig. 3 middle). A rough estimate for the landmark
can be computed therefore by starting with a small region radius r0 and increase it
incrementally by∆r until a second large peak occurs in the angle-weight histogram at
radiusr1 and taker = r1 −∆r as a region radius estimate. Since the detection of local
maxima in a discrete angle-weight histogram turns out to be not reliable enough, we use
a Gaussian kernel density estimatorκG (ωk) to compute a continuous density estimate
on basis of the discrete histogram.

1
http://www4.comp.polyu.edu.hk/ ˜ cslzhang/CT/CT.htm



Fig. 4: Tracking errors for constant vs. estimated landmark scale.The plots show the land-
mark tracking errors for the different optical flow (left image,Φ) and CT (right image,ζ) based
landmark tracking methods using constant scale (of 5-49 pixels) or dynamically estimated land-
mark scales based on the edge-based (E) or the filter-based (F) aperture size estimation. For easier
comparison with the constant scale results the tracking errors using the dynamic scale estimation
are shown as lines.

Edge Based (E).The central idea of this method is that based on an edge image the
region radius should be selected such that at least a minimumamount of edge pixels are
contained in the region. Assuming the landmark region is more or less homogeneously,
edge pixels will occur at the borders of the region. More precisely, we compute a Canny
edge image, start with a region radiusr0 and increase it incrementally by∆r. For
each region radius the number of edge pixelsE(r) in the corresponding regionW is
compared with a thresholdΘ. The landmark region radius estimate is the firstr, such
thatE (r) > Θ.

Filter Based (F).The basic idea behind this third method is that the scale should be
selected in such a way that the brightness of the region border differs significantly from
its region center, similar to SIFT and SURF blob keypoint detection. Such a region ra-
dius can be computed by filtering image patches at the hypothesized landmark location
l1 = (x, y)

T with different blob filters, described each by a blob filter matrix:

Bl1
r =

{

+1/N+ ,
√

(x− r/2)2 + (y − r/2)2 < r/2

−1/N− , else

N+ andN
−

are normalization factors such that the positive and negative elements of
the blob filter matrix sum up to 1 each. We convolve the image patch at the hypothesized
landmark location with blob filter matrices of different radii r and take as estimate for
the landmark region the radiusr for which we get the strongest filter response.

4 Evaluation

Quantitative Analysis. For the quantitative evaluation we choose the UMPM bench-
mark [1] since it provides 3D motion capture data together with camera calibration data.
This allows to project the 3D landmark coordinates into the image, thereby generating
ground truth 2D landmark center locations which can be compared with the automati-
cally generated landmark locations by the different tracking approaches proposed here.



The manual annotation ofweakly annotated anchor frames is simulated by using the
provided ground truth information of landmarks every 99 frames of an UMPM video.
Starting from an anchor frame the landmarks are tracked for 49 consecutive frames
forwards and backwards. The tracking error is the average sum of absolute differences
(SAD) between the UMPM ground truth landmark locations and the automatically gen-
erated landmark locations, where we average over all 15 landmarks considered and all
evaluation frames. The distance between a ground truth and atracked landmark loca-
tion is measured in relative person (bounding box) height units and explicitly not in
pixels in order to make the error measure independent of the displayed size of a person.
Overall we used the 19 single person videos of the UMPM dataset, which corresponds
to approx. 50 000 evaluation frames for each tracking method.

I. Dynamically estimated vs. constant scale.Fig. 4 shows the tracking error when
we use a constant scale (of 5 to 49 pixels) for each of the 49 frames left and right to the
anchor frame or a dynamically estimated scale, using the edge-based (E) or the filter-
based (F) method. The results allow to draw two main conclusions. First, the optical
flow histogram-based methods yield better tracking resultsthan the simple averaging
methods (compare, e.g.,Φ, ΦG with ΦH , ΦH

G ). Second, the methods that estimate the
landmark scale dynamically (with preceding E and F) yield better average tracking
errors than the constant scale methods (without preceding Eand F), which is most
clearly shown for the case of the CT (bottom plot).

II. Comparison of scale estimation methods (H vs. E vs. F).Fig. 3 right com-
pares the average tracking errors for the different opticalflow methods (Φ, ΦG, ΦH ,
ΦH
G ) combined with the three different scale estimation methods (H,E,F), where each

combination is evaluated on approx. 50 000 frames and 15 landmark locations esti-
mated for each frame. The plot allows to draw two further conclusions. First, we can
see a clear ranking of the four different optical flow methodsw.r.t. the tracking error,
namely:Φ > ΦG > ΦH > ΦH

G . Second, there are no large significant differences in the
errors depending on the scale estimation method, i.e., H≈ E≈ F.

III. Tracking error as a function of the distance to the anchor frame.
In the figure at the right we show the
average tracking error as a function of
the distance to the anchor frame for
the different optical flow based meth-
ods (Φ) and the CT (Eζ) using an edge-
based scale estimation (E). The plot al-
lows to answer the question how far
we can track the landmarks to the left
and right starting from an anchor frame
(frame 0) if we allow for an average
tracking error of maximallyΘ percent.
When accepting an average landmark
tracking error ofΘ = 5% of the person
height, we can use the annotated frames
up to 17 frames left and right from the
anchor frame without the need of any



further manual post-processing, i.e., for each weakly annotated anchor frame, we can
generate 34 automatically annotated frames with estimatedlandmark centers and land-
mark regions.

IV. Optical flow vs. appearance based tracking.The best optical flow based land-
mark tracking method (EΦH

G ) that exploits the edge-based approach to estimate the
landmark scale yields a tracking error of 6.7% and the CT based tracker with edge-
based scale estimation an error of 7.7% (of the person height) when tracking 49 frames
to the left and right, i.e., automatically annotating 98 frames given one weakly anno-
tated anchor frame. This seems to indicate that there is no large difference between the
optical flow and appearance based landmark tracking approaches proposed here.

Qualitative Analysis. In Fig. 5 we show some qualitative examples of tracking re-
sults on a UMPM sequence and two challenging YouTube sport sequences showing fast
movements with motion blur and some background clutter in the case of the basketball
sequence. For some anchor frames we manually labeled four different landmarks (head,
shoulder, hand, foot) and used the optical flow (ΦH

G ) and the CT (ζ) tracking methods
to track the landmarks. The landmark region scales were estimated using the E method
and are depicted by the rectangles, while the black dot denotes the estimated landmark
center. Note the large differences in the estimated landmark scales when considering
different landmarks. The estimated scales of the head and the left shoulder are very
similar for different frames and correspond to the extents of the head and the shoulder,
which is interesting, since we do not have specified which image structures belong to
the head or the shoulder anywhere. Remember that the user only labels the landmark
centers and does not provide segmentation information for the landmarks. The scale
corresponds to the landmark extents here since edge pixels occur at the borders to other
landmarks (for the head at the border to the torso, and for theshoulder at the border
to the head and the end of the T-shirt sleeves). The estimatedscale for the foot often
ends at the edge of the sock to the lower leg. For the badmintonsequence which shows
a relative homogeneous background the hand region ends typically at the elbow, while
for the basketball sequence the hand region is significantlysmaller, since there is much
background clutter present that belongs to other image structures than the hand.

5 Conclusions

The paper addressed the task of supporting the generation ofground-truth landmark
annotations by tracking anatomical landmarks on highly articulated objects given a few
manually annotated anchor frames. We explored four different optical flow based meth-
ods and a state-of-the-art appearance based method (CT) in combination with three dif-
ferent simple scale selection methods, which are used to obtain a region from which to
use the optical flow vectors to compute a landmark predictionvector or to update the ap-
pearance model of the CT tracker. Each method was evaluated on approx. 50 000 frames
of the UMPM benchmark and the quantitative results show thatthere is no large differ-
ence between the simple optical flow based methods and the CT tracking method. Since
a simple histogram-based detection of the main flow direction with Gaussian weighting
(EΦH

G ) results in even slightly smaller tracking errors comparedto the much more com-
plex CT method, we propose to use this method for landmark tracking. Re-estimating



the scale of each landmark for each new frame yields significantly better tracking results
than using a fixed scale, while no large differences between the three scale estimation
methods (H,E,F) concerning the tracking errors were observed. Even though the optical
flow based approaches in combination with one of the three scale estimation methods
renders as a simplistic approach for landmark tracking, we can automatically annotate
approx. 34 frames for each weakly annotated frame if averagelandmark localizations
errors of up to 5% of the person height are acceptable and thereby speed-up the manual
annotation process by a corresponding factor of 34 as well.

References

1. Aa, N.v.d., Luo, X., Giezeman, G., Tan, R., Veltkamp, R.: Utrecht Multi-Person Motion
(UMPM) benchmark: a multi-person dataset with synchronized video and motion capture
data for evaluation of articulated human motion and interaction. In: Proc. of Human Interac-
tion in Computer Vision (HICV) workshop (2011)

2. Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object Detection with Dis-
criminatively Trained Part Based Models. IEEE Trans. on PAMI 32(9), 1627–1645 (2010)

3. Mihalcik, D., Doermann, D.: The Design and Implementation of ViPER. Tech. rep., Univer-
sity of Maryland (2003)

4. Mori, G., Malik, J.: Recovering 3D Human Body Configurations Using Shape Contexts.
IEEE Trans. on PAMI 28(7), 1052–1062 (2006)

5. Müller, J., Arens, M.: Human Pose Estimation with Implicit Shape Models. In: Proc. of ACM
ARTEMIS 2010. pp. 9–14. ARTEMIS ’10, ACM, New York, NY, USA (2010)

6. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: A Database and Web-
Based Tool for Image Annotation. Int. J. Comput. Vision 77(1-3), 157–173 (May 2008)

7. Salmane, H., Ruichek, Y., Khoudour, L.: Object Tracking Using Harris Corner Points Based
Optical Flow Propagation and Kalman Filter. In: Proc. of 14th IEEE Intelligent Transporta-
tion Systems Conference (ITSC’2011). pp. 67–73. Washington D.C., USA (2011)

8. Schikora, M., Koch, W., Cremers, D.: Multi-Object Tracking via High Accuracy Optical
Flow and Finite Set Statistics. In: Int. Conf. on Acoustics,Speech and Signal Processing
(ICASSP) (2011)

9. Sigal, L., Balan, A., Black, M.: HumanEva: Synchronized Video and Motion Capture Dataset
and Baseline Algorithm for Evaluation of Articulated HumanMotion. Int. Journal of Com-
puter Vision 87(1), 4–27 (Mar 2010)

10. Sigal, L., Black, M.J.: Predicting 3D People from 2D Pictures. In: Proc. of Int. Conf. on
Articulated Motion and Deformable Objects (AMDO). pp. 185–195 (2006)

11. Vondrick, C., Patterson, D., Ramanan, D.: Efficiently Scaling up Crowdsourced Video An-
notation. Int. Journal of Computer Vision pp. 1–21 (2012), 10.1007/s11263-012-0564-1

12. Wu, Y., Lim, J., Yang, M.H.: Online Object Tracking: A Benchmark. In: Proc. of CVPR
2013 (2013)

13. Yang, H., Shao, L., Zheng, F., Wang, L., Song, Z.: Recent advances and trends in visual
tracking: A review. Neurocomputing 74(18), 3823–3831 (Nov2011)

14. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Computing Surveys 38(4)
(2006)

15. Zach, C., Pock, T., Bischof, H.: A duality based approachfor realtime TV-L1 optical flow.
In: Pattern Recognition, pp. 214–223. Springer (2007)

16. Zhang, K., Zhang, L., Yang, M.H.: Real-time compressivetracking. In: Proc. of ECCV 2012.
pp. 864–877. ECCV’12, Springer-Verlag, Berlin, Heidelberg (2012)



anchor frame frame 3 frame 6 frame 9 frame 12

O
F

T
O

F
T

C
T

O
F

T
O

F
T

C
T

Fig. 5: Qualitative OFT and CT landmark tracking results. Results for three different
YouTube badminton sequences (row 1-3), an UMPM sequence (row 4), and two different
YouTube basketball sequences (row 6-7). Left column: manually annotated. All other columns:
automatically annotated using landmark OFT and CT based tracking with automatic scale selec-
tion.




