
Embedding Security and Privacy into the

Development and Operation of Cloud Applications

and Services

Tran Quang Thanh, Stefan Covaci, Thomas

Magedanz

Fraunhofer FOKUS and Technical University Berlin

Berlin, Germany

thanh.quang.tran@fokus.fraunhofer.de

Panagiotis Gouvas, Anastasios Zafeiropoulos

Ubitech Ltd.

Athens, Greece

pgouvas@ubitech.eu

Abstract— This paper introduces an approach allowing cloud

application developers, service providers to consider security and

privacy requirements across the application lifecycle.

Specifically, a DevOps framework has been described that took

into account several emerging technologies such as Network

Functions Virtualization (NFV) and Microservice Pattern

Design. As an illustration, a proof-of-concept application in the
healthcare domain is presented to support such direction.

Keywords— Cloud Computing; Microservice; NFV; Security;

I. INTRODUCTION

The recent advances in “Softwarization” technologies (e.g.
virtualization, programming API, decoupling software and
hardware) are considered as a game-changer for the whole
economy and society. Various industries including Telecom
are underway to move applications and services to the cloud as
the given benefits are unarguable. However, the transition also
poses several challenges. Cloud application nowadays is not
developed for a single hardware platform or operating system
anymore but runs on distributed, heterogeneous and systems.
The use of cloud infrastructure for software application
deployment and data storage makes security and privacy
concerns unquestionable challenges. Security concern is also
one of biggest challenges when adopting “Softwarization”. As
a result, newly design software solutions are required
evolvable, adaptable and should guarantee nonfunctional
properties including security and privacy [1]. In addition to
that, the integration of cloud application developments with
DevOps is getting a lot of interests. DevOps allows
development, quality assurance and operation teams working
together to get things done faster in an automated way [2].

In this paper, a DevOps software framework is proposed
that allows cloud application developers and service providers
to consider security and privacy across lifecycle: starting from
the context model to the embedding of metadata in the source
code, to the parsing and interpretation for automatic
deployment, to active response during the operation phase.
Specifically, several evolving technologies such as
Microservice pattern design [3], Network Functions
Virtualization (NFV) [4] and Policy-driven Orchestration are
taken into account. Moreover, several interpretable software

annotations are proposed to support developers to decorate
their applications with specific information (e.g. configuration,
performance metrics, lifecycle) to address different security
and privacy requirements.

The remainder of the paper is organized as follows: Section
2 introduces the adopted technologies and concepts: NFV
Management and Orchestration framework (NFV MANO) and
microservice pattern design. The proposed framework is
described in Section 3. The use of the framework to support
security requirements is discussed in Section 4 through an
evaluation use case in the health care domain. Section 5 and 6
present related works and conclude the paper.

II. BACKGROUND

A. NFV Management and Orchestration

NFV is set of de-facto standards and technologies that
enable network managers running their infrastructure in an
efficient manner by moving network functions out of dedicated
hardware devices into software. To leverage NFV technology,
the European Telecommunications Standards Institute (ETSI)
has defined a standard reference framework [5] with four main
functional blocks and several interfaces which connect the
management and orchestration domain (MANO) and non-
management domain (see Figure 1). These blocks include the
MANO block (on the right), the legacy Operation Support
System/ Business Support System (OSS/BSS), the
Virtualization Network Functions (VNF) and the underline
NFV infrastructure (virtual and physical compute, network and
storage resources). The MANO block consists of three
elements: the Virtualized Infrastructure Manager (VIM), the
VNF Manager (VNFM) and the NFV Orchestrator (NFVO).
The primary function of the VIM is to manage and allocate
virtual resources (e.g. adding, removing). OpenStack is the
popular VIM implementation. The VNFM controls the
lifecycle of deployed applications/network functions (e.g.
installation, configuration, update, scale and termination). The
VNFM can be part of the NFVO (generic VNFM) or provided
by NFV vendors (specific VNFM). The NFVO takes care of
the end-to-end service including VNF provisioning,
configuration, network setup and scaling.

Fig. 1. ETSI NFV MANO framework

B. Microservice Pattern Design

The idea to split an application into a set of smaller and
interconnected services (microservice) is currently getting
many interests from application developers and service
providers (e.g. Amazon, Netflix, eBay). Such modularity
concept is revolutionizing the way software design, build and
ship by its given advantages. For instance, individual services
are much faster to implement, easier to understand and
maintain, and each service can be developed, deployed and
scaled independently. In addition to that, the development cost
will be significantly reduced as several entities can be reused
from existing software enabled components. Several tools and
software frameworks are available to support developers
implementing and deploying microservice (e.g. Spring Boot
[6], Docker [7] and OSv [8]). Many software components have
been developed and available as open source solutions
including those recently implemented in the Future Public-
Private Partnership Programme FIWARE project by European
Commission [9]. In addition to that, several microservice
reference architectures are proposed (e.g. by NGINX,
FIWARE [10] [11]) to simplify the development and operation
of cloud applications/services. The FIWARE reference
architecture for the IoT application development is shown in
Figure 2 that utilizes several FIWARE generic
enablers/microservices (e.g. Context Broker GE, Identity
Management GE).

Fig. 2. FIWARE IoT Application Reference Architecture

III. ARCADIA FRAMEWORK

In this section, a novel software framework is described
that enables software developer and service provider to
develop and operate cloud applications in an efficient and
flexible manner. The proposed framework is designed and
ongoing developed in the context of European ARCADIA
project in the Horizon 2020 Framework Programme. The high-
level framework architecture is provided in Figure 3 with
several interoperable software components/toolkits which are
further discussed as follows:

Fig. 3. ARCADIA framework architecture

In the upper level is a set of available components for
designing, developing and deploying ARCADIA applications.
Each ARCADIA application is represented in the form of a
service graph that is based on a set of microservice along with
their interconnection. A fundamental component used towards
this direction is the Component/Service Graph
Development/Editing/Deployment Toolkit. The toolkit
supports various phases of the application development process
(application development, deployment preparation, policies
specification). The toolkit is also interconnected with the
ARCADIA metamodel, the ARCADIA Annotation framework,
the Component/Graphs Repository and the Policies Repository.
A component metamodel has been specified that should be
respected by any ARCADIA application. A microservice that
is developed according to the ARCADIA framework must:

 expose its configuration parameters along with their
metadata

 expose chainable interfaces which will be used by other
microservices in order to create a service graph;

 expose required interfaces which will also be utilized
during the creation of a service graph;

 expose quantitative metrics regarding the QoS of the
microservice;

 encapsulate a lifecycle management programmability
layer which will be used during the placement of one
service graph in the infrastructural resources;

 be stateless in order to be horizontally scalable by
design;

 be reactive to runtime modification of offered resources
in order to be vertically scalable by design;

 be agnostic to physical storage, network, and general
purpose resources.

As already mentioned, to providing access to the existing
set of components and service graphs, a Components/Graphs
Repository is made available to software developers and
service providers. The development philosophy within
ARCADIA supports the re-use of existing components and
graphs for the design of applications and services.
Furthermore, upon the validation of the proper development of
an ARCADIA component/graph, this component/graph is
made available for further use through the Components/Graphs
Repository.

The Policies Repository is used for the collection of a set of
policies on behalf of the services provider. Such policies can be
high-level policies or policies directly associated with the
potential usage of an ARCADIA Service Graph. A Policies
Editor is used to this end for facilitating service provider to
define a set of rules and actions taking into account the
monitoring hooks/metrics available per Service Graph.

Within the Component/Service Graph
Development/Editing/Deployment Toolkit, the software
developer can develop native ARCADIA components and
make them available –upon validation- to the
Components/Graphs Repository, as well as create deployable
service graphs based on native and/or reusable components or
service graphs. The software developer is also able to use the
Annotation framework for specifying annotations while the
implementation of component/service graph interfaces has to
be based on the existing context model. The software
developer is also able to adapt legacy applications transforming
them to ARCADIA components while the software developer
and the services provider can make deployable service graphs
out of reusable components or graphs as well as make multi-
tenant deployable service graphs.

To support nonfunctional properties such as security and
privacy, the proposed framework extends the current policy-
driven MANO approach by integrating source code annotation
technique. As embedding inside the source code, such
interpretable software annotations enables smart controller
having a deeper understanding about application semantic (e.g.
specified metrics, configuration parameters) to adapt to new
requirements or to support future operation decisions. As a
result, an Annotation framework is used during applications
development for the inclusion of a set of annotations at
software level on behalf of the software developers. Such
annotations are based on concepts represented in the
ARCADIA Context Model and can be interpreted during
deployment targeting at providing hints towards the optimal
deployment of the application. For existing applications, the

editing and annotation phases are skipped, and the
development process only includes the generation of the
metamodel.

The annotations are functionally grouped into five
categories according to the nature of the business logic that is
bound to the usage of the annotation. These categories include
component management, configuration management,
management of performance metrics, management of lifecycle
and management of dependencies. Figure 4 gives an overview
of current supported Java-based annotations (e.g.
@ArcadiaComponent, @ArcadiaConfigurationParameter,
@ArcadiaMetric and @LifecycleStart)

Fig. 4. ARCADIA annotations

In the lower level of the framework is the Smart Controller
with its interfaces towards managed cloud resources. The
Smart Controller is the application’s on-boarding utility that
extends and operates on top of several ETSI MANO functional
block (e.g. NFVO, VNF Manager) which undertakes the tasks
of i) translating deployment instances and annotations to
optimal infrastructural configuration, ii) initializing the optimal
configuration to the registered programmable resources, iii)
supporting monitoring and analysis processes and iv) reacting
pro-actively and re-actively to the configuration plan based on
the infrastructural state, the application’s state and the applied
policies. The application’s software components –as denoted in
the corresponding service graph- are instantiated on demand by
the Smart Controller. The defined monitoring hooks initiate a
set of monitoring functionalities for specific performance
metrics. The status of these metrics trigger re-configurations in
the deployed application based on optimization objectives (as
denoted in the selected policies) along with a set of constraints
that are considered during the application deployment and
runtime. Resources reservation and release is realized on
demand over the programmable infrastructure.

IV. PROOF-OF-CONCEPT APPLICATION

In this section, an eHealth application is selected to
illustrate the effectiveness of our proposed framework towards
secure developing and operating a cloud application.

Specifically, a Remote Patient Monitoring (RHM) scenario is
implemented in which patients’ vital health parameters (e.g.
heart rate) are securely collected, stored on the cloud and given
access on real-time through a set of APIs. Figure 4 presents a
high-level architecture of the use case containing several
software components and interconnecting interfaces.

Fig. 5. RPM application architecture

The Front-end is an Android application connects to the

Zephyr “BioHarness-3” device through Bluetooth. User heart
rates are collected in real-time and securely sent to the Back-

end service (users are required to authenticate themselves and

to use VPN service to secure data collection and

transmission). The development of the Back-end follows the

aforementioned FIWARE reference architecture for IoT

application. Such “microservice-based” approach enables us

to reuse available open source solutions when developing our

application. In the current version, three microservices

(enablers) are developed including the AAA Enabler (extends

the FI-STAR Integrated Access Control Enabler [12]), the

Pub/Sub Enabler (extends the FIWARE Orion Context Broker
[9]) and the UI Enabler (User Interface web application). The

ARCADIA framework allows decomposing current enablers

into smaller potential microservices (Figure 5) but it will be

our future works. The Back-end application is deployed on the

TU-Berlin OpenStack Cloud infrastructure. The current

implementation of the Smart Controller is also based on our

open source solution, OpenBaton [13]. OpenBaton is

developed using Spring Boot Java framework to provide core

functional blocks in the ETSI MANO reference architecture:

the NFV Orchestrator and the generic VNF Management.

The proposed framework allows us to consider security and

privacy requirements across the application lifecycle.
Specifically, two significant security benefits are taken into

account: Virtualized Security Function/Service and

Centralized Security Management and Orchestration. The

former enables us to select and integrate multivendor security

solutions when designing and operating our application. The

latter allows our application to be configured and protected

effectively according to consistent policies as well as to

support a set of automated mechanisms.

Virtualized Security Function/Service:

In our current application, two virtualized security functions

are taken into account to provide different layers of

protections. To secure access at the network layer, the

OpenStack Firewall as a Service (FWaaS) extension is used.

The FWaaS enables us to apply different filters (access control

policy) on network traffic entering and leaving the demo

tenant network. As part of the application, the “AAA Enabler”

provides protection towards application APIs. This

microservice has been implemented based on several open

source solutions (e.g. Spring Cloud Netflix [14] for the API

Gateway module, WSO2 Identity Server [15] for the Identity
and Access Management). To provide token-based

authorization for API accesses, two security standards are

taken into account: OAuth version 2 [16] and Attribute-based

Access Control (ABAC). The former is the evolving standard

solution to secure API access. OAuth2 allows users (resource

owner) to grant third-party applications (client) accessing user

data (resource server) without sharing credential (e.g.

password). The latter is developed by OASIS to standardise

the authorization decisions in enterprise applications. It

defines XACML [17] (a XML-based policy language), a

request / response scheme and access control architecture. The
microservice design architecture is flexible enough to

integrate more security and privacy microservices (e.g. VPN,

privacy enhancing, threat detection and mitigation) to support

different application requirements.

Centralized Security Management and Orchestration:

A Java-based Policy-driven Orchestration and Management

Software component (the Smart Controller) has been

developed by extending our OpenBaton toolkit. The controller

supports two types of policies: Decision-Making and Access

Control. The former will be enforced by the Smart Controller

during either application placement (e.g. IaaS selected policies

based on security and privacy requirements) or run-time (e.g.
scale policies based on monitoring data and predicted

workload). Several monitoring metrics are taken into

consideration such as “Status” (DOWN|UP|UNKNOWN),

“Request Arrival Rate” (/s), “Average Response Time” (ms),

CPU and Memory Usage (%), Error Request Rate (/s). The

latter will be automatically deployed in required

microservices. In our application, such access control policies

are deployed on the “AAA Enabler” and OpenStack FWaaS

[18]. The Drools [19], a business process rules language, is

selected to specify our decision-making policies and XACML,

an industry standard for authorization, is used for access
control policies. Both Drools and XACML are supported in

many programming environments (e.g. Java, .NET, Python,

PHP). Adopting centralised policy allows us to separate

business rules from application logic and to change policies

(rules) to adapt to new requirements without deploying a new

code or restarting the application. Figure 6 gives an example

of a placement policy using Drools to support the requirement

to deploy our demo eHealth application on a private cloud

(more secure than the public model) in Germany (to comply
with data protection laws).

Fig. 6. Example of an ARCADIA policy (using Drools)

To support policy decision and deployment in an automatic
way, some security-related annotations are specified belonging
either to the configuration (C) or metric (M) categories. Table
1 gives a brief overview of all security-related annotations in
our application. The microservice which uses metric-type
annotations must implement a method to return user-defined
measurements. The configuration annotations are specified to
support microservice discovery that is required in any cloud-
based microservice application.

TABLE I. SECURITY-SUPPORTED ANNOTATIONS

Name Type Description

health M Status of running microservice

(UP|DOWN|UNKNOWN)

cpuUsage M CPU Usage (%)

memoryUsage M Memory Usage (%)

diskSpace M Storage Usage (%)

requestArrivalRate M Number of API Requests (/s)

errorRequestRate M Number of Error Requests (/minute)

unauthoriredRequestRa

te

M Number of Unauthorized Requests

(/minute)

isPEP C Whether a microservice plays a role

as Policy Enforcement Point (0|1)

isPDP C Whether a microservice plays a role

as Policy Decision Point (0|1)

isPAP C Whether a microservice plays a role

as Policy Administration Point (0|1)

isOAuthEndPoint C Whether a microservice plays a role

as OAuth API End Point (0|1)

isSCIMEndPoint C Whether a microservice plays a role

as SCIM (a standard for identity

provisioning) API End Point (0|1)

requiredPEPProxy C Whether a microservice needs an

external PEP proxy for

authorization (0|1).

serviceAPI C Information about exported REST

APIs

To include such annotations into application microservices,
an IDE platform has to be used which relies on a state-of-the-
art web-based IDE called “Eclipse Che” [20], allowing
developers to develop microservices using the Bring-Your-

Own-Device (BYOD) principle without the need to setup
anything locally. Eclipse Che is a general-purpose
development environment that can be used to develop
anything. A specific plug-in has been developed that interacts
with the Smart Controller to assist developers during
component development. Through the plug-in, developers can
view all supported annotations, including some Javadoc-based
documentation and trigger component validation. Specifically,
when a developer starts writing an ARCADIA annotation, the
plug-in offers auto-complete suggestions where developers can
just choose which annotation they want to use. Also, they can
read the specifications of each annotation, like the required
fields, naming conventions and also examples.

Figure 7 presents several user interfaces (UI) of current
RPM application. They are an Android UI at the Frontend to
collect user heart rate, a Backend UI to visualize such
information together with profile data and a Smart Control UI
that display the current deployment of three microservices
(AAA, UI and PubSub) on top of TU-Berlin OpenStack cloud
infrastructure.

Fig. 7. RPM Application User Interfaces

V. RELATED WORKS

The development and deployment of a variety network
security functions on virtual infrastructure are getting interests
recently as the benefits of virtualization technology are
impossible to ignore. Many common security solutions are
going to be virtualized (e.g. OpenWRT, Squid Proxy, Bro IDS,
OpenVPN, CloudRouter). Several tools and software
frameworks are available to support developers implementing
and deploying microservice (e.g. Spring Cloud Netflix [14],

Docker [7] and OSv [8]). Popular cloud platform such as
OpenStack, AWS have integrated different security services to
increase the privacy and control of the accesses (e.g. FWaaS,
Secure Storage, Multi-factor authentication, DDoS mitigation)
[18][21]. Adopting NFV MANO and SDN to build security
solutions is constantly growing by the given advantages (e.g.
fast, scalable and capable of supporting both application
context and isolation) [22][23] [24][25][26]. Many European
research projects were and are ongoing to follow such
directions to provide different types of security services,
toolkits and evaluate them in various use case domains (e.g. FI-
PPP FIWARE, MCN, T-NOVA, 5G-PPP ENSURE and
SONATA) [9] [27] [28] [29] [30].

Our work shares common ideas with existing works.
Moreover, different technologies are taken into account to help
developers, service providers to deliver application/service in a
fast, scalable and secure manner. To be best of our knowledge,
this is the first time the use of source code annotations to
support centralized security policy management and
orchestration is applied to the NFV infrastructure.

VI. CONCLUSION

In this paper, a novel DevOps software framework is
proposed that allow cloud application developers, service
providers to consider security and privacy across application’s
lifecycle by leveraging Network Functions Virtualization
(NFV) and Microservice Pattern Design technologies. In
addition to that, the use of policies and source code annotations
are taken into account. As an illustration, the Remote Patient
Monitoring application has been developed to support such
direction. Our future work is to improve the current software
toolkits and proof-of-concept use case towards multi-tenant,
multi-domain and SDN-based service function chaining
support.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Horizon 2020 Framework
Programme under grant agreement no. 645372

REFERENCES

[1] “Toward a Strategic Agenda for Software Technologies in Europe,”

Information Society Technologies Advisory Group (ISTAG), July 2012,

Available Online: http://cordis.europa.eu/fp7/ict/docs/istag-soft-
techwgreport2012.pdf

[2] From Dev to Ops: An introduction,

https://www.appdynamics.de/media/uploaded-files/White_Paper_-
_An_Intro_to_DevOps.pdf

[3] Microservices Architecture,
http://microservices.io/patterns/microservices.html

[4] Network Functions Virtualization,

https://portal.etsi.org/nfv/nfv_white_paper.pdf

[5] Network Function Virtualization Management and Orchestration.

http://www.etsi.org/deliver/etsi_gs/NFVMAN/001_099/001/01.01.01_6
0/gs_nfv-man001v010101p.pdf

[6] Spring Boot framework, http://projects.spring.io/spring-boot/

[7] World’s leading software containerization platform,

https://www.docker.com

[8] Operating system designed for the cloud, http://osv.io

[9] FIWARE: Open APIs for Open Minds, http://catalogue.fiware.org

[10] Introducing the Microservices Reference Architecture from NGINX,
https://www.nginx.com/blog/introducing-the-nginx-microservices-

reference-architecture/

[11] FIWARE IoT Stack, http://fiware-iot-

stack.readthedocs.org/en/latest/index.html

[12] Tran Quang Thanh, Stefan Covaci, Benjamin Ertl, Paolo Zampognano,
“An Integrated Access Control Service Enabler for Cloud Applications”,

in Book Future Network Systems and Security, Springer International
Publishing, Switzerland, p. 101-112, June 2015

[13] OpenBaton. http://openbaton.github.io

[14] Spring Cloud Netflix, https://cloud.spring.io/spring-cloud-netflix/

[15] WSO2 Identity Server, http://wso2.com/products/identity-server/

[16] OAuth 2.0 Authorization Framework, http://tools.ietf.org/html/rfc6749

[17] OASIS eXtensible Access Control Markup Language,
https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=xacml

[18] OpenStack Firewall as a Service,
https://wiki.openstack.org/wiki/Neutron/FWaaS

[19] Business Rules Management System, http://www.drools.org

[20] Eclipse Next-Generation IDE, http://www.eclipse.org/che/

[21] AWS Cloud Security, https://aws.amazon.com/security

[22] K. Giotis, Y. Kryftis and V. Maglaris, Policy-based orchestration of

NFV services in Software-Defined Networks, Network Softwarization
(NetSoft), 2015 1st IEEE Conference on, London, 2015, pp. 1-5

[23] Fung, C.J.; McCormick, B., "VGuard: A distributed denial of service
attack mitigation method using network function virtualization," in

Network and Service Management (CNSM), 2015 11th International
Conference on, vol., no., pp.64-70, 9-13 Nov. 2015

[24] Bridge Virtualization and Security with OpenStack and Contrail,

https://www.openstack.org/summit/openstack-summit-atlanta-
2014/session-videos/presentation/bridge-virtualization-and-security-

with-openstack-and-contrail

[25] Seungwon Shin and Guofei Gu, CloudWatcher: Network security
monitoring using OpenFlow in dynamic cloud networks (or: How to

provide security monitoring as a service in clouds?), 20th IEEE
International Conference on Network Protocols (ICNP), Austin, TX,

2012, pp. 1-6.

[26] M. A. Lopez and O. C. M. B. Duarte, Providing elasticity to intrusion
detection systems in virtualized Software Defined Networks, IEEE

International Conference on Communications (ICC), London, 2015, pp.
7120-7125.

[27] Mobile Cloud Networking, http://www.mobile-cloud-

networking.eu/site/

[28] T-NOVA European FP7 Project, http://www.t-nova.eu/objectives/

[29] 5G Enablers for network and system security, http://www.5gensure.eu

[30] Agile Service Development and Orchestration in 5G Virtualized

Networks, http://www.sonata-nfv.eu

