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Abstract. The availability of functionality is a crucial aspect of mission-
and safety-critical systems. This is for instance demonstrated by the pur-
suit to automate road transportation. Here, the driver is not obligated to
be part of the control loop, thereby requiring the underlying system to
remain operational even after a critical component failure. Advances in
the field of mixed-criticality research have allowed to address this topic
of fail-operational system behaviour more efficiently. For instance, gen-
eral purpose computing platforms may relinquish the need for dedicated
backup units, as their purpose can be redefined at runtime. Based on
this, a deterministic and resource-efficient reconfiguration mechanism is
developed, in order to address safety concerns with respect to availability
in a generic manner. To find a configuration for this mechanism that can
ensure all availability-related safety properties, a design-time method to
automatically generate schedules for different modes of operations from
declaratively defined requirements is established. To cope with the in-
herent computational complexity, heuristics are developed to effectively
narrow the problem space. Subsequently, this method’s applicability and
scalability are respectively evaluated qualitatively within an automotive
case study and quantitatively by means of a tool performance analysis.

1 Introduction

Within the automotive domain, the demand for highly available systems is in-
creasing through the vision of automated driving. As a driver is not required to
constantly be part of the control loop in an automated vehicle, the underlying
control system must be capable of compensating for all safety-relevant failures.
With respect to availability, a system can either account for failure-induced re-
duction of computational capacity by means of over-provisioning, for instance
with dedicated hardware and triple redundant architectures, or alternatively re-
sort to a form of graceful degradation [8]. Within the transportation domain the
need for fail-operational behaviour has traditionally been solved through dedic-
ated redundancy in form of federated architectures [1], as most prominently seen
in the triple-triple redundant architecture of modern Fly-by-Wire systems [16].
In contrast, the latter option of graceful degradation is of special interest in the
cost-sensitive automotive industry in order to limit the required amount of spare
computing resources. Here, automated vehicles may only require a limited set of
functionality for a short period of time until the vehicle can be safely halted.
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With respect to availability, general purpose computing platforms pose as a
promising solution to limit the amount of required hardware, as there purpose
can be redefined at runtime. The foundation for such reconfiguration schemes
was laid in mixed-criticality research by allowing a platform to host multiple
independent functions, as for instance demonstrated by the Integrated Modu-
lar Avionics (IMA) in the aviation domain [15]. Despite this, reconfiguration
generally competes with the principles of safety-critical systems, which require
an operation free of unpredictable interference. This is for instance seen in the
functional safety standard ISO 26262 [7] of the automotive domain, which is
restrictive with respect to reconfiguration. Therefore, the question arises how
availability can be ensured through reconfiguration schemes in order to bene-
fit from the resource saving potential of integrated architectures and graceful
degradation while at least maintaining the current level of safety.

Consequently, this work develops a generic monitoring and reconfiguration
service (MRS) to ensure the availability of multiple independent functions during
runtime based on the notion of a Safety-Element-out-of-Context. As guarantee-
ing deterministic behaviour is imperative within the safety domain, this service
is designed in a static manner, thereby only utilising mitigation plans that were
previously verified. From a design perspective, the need to manage failure modes
further increases the effort of developing already complex automotive systems.
As such, this work further focuses on a method to define reconfiguration beha-
viour declaratively and automatically calculate configurations for all managed
modes of operation. For this, a system model is developed, which is then enriched
with scheduling information through the use of a novel set of heuristics and
mixed-integer linear programme (MILP) techniques. This additional schedul-
ing information poses as an extension of the system’s interface description to
guarantee the required real-time behaviour when implemented correctly on each
control unit, thus providing the basis for a compositional system integration.

In detail, Section 2 introduces this monitoring and reconfiguration service,
followed by a method for synthesising schedules of fail-operational systems in
Section 3. Section 4 analyses applicability in an automotive case study and eval-
uates the performance quantitatively before concluding in Section 5.

2 Fail-Operational Safety Mechanism

2.1 Monitoring & Reconfiguration Service (MRS)

In the following, a monitoring and reconfiguration service (MRS) is developed in
order to provide a safety mechanism that can generically ensure the availability
of multiple independent functions within a set of distributed control units dur-
ing runtime. For this, a synchronously operating MRS instance is deployed onto
each control unit participating in the management of failure modes. The period
of the software-based MRS is in turn based on the failover times of the managed
functionality, which describe the maximal amount of time a functionality can
remain unavailable. These figures are typically determined during a Hazard and
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Risk Analysis. Further, the MRS itself consists of a reporting and an evaluating
task that are respectively responsible for informing all other control units about
the current state of the hosted applications in form of a heart-beat, and evaluat-
ing all received heart-beats to trigger a reconfiguration. Based on this heart-beat
information, each control unit can determine the status of the complete system.
More precisely, the state of all applications in the system is concatenated to
one lookup key for use in a reconfiguration database, which is deployed on each
control unit. Based on this key, a lookup occurs that either results in the control
unit remaining in the current state or alternatively performing a reconfigura-
tion based on the predetermined mitigation plan. A mitigation plan includes a
new schedule for all application instances hosted on the respective control unit.
Through this decentralised architecture it is possible to conduct reconfiguration
involving multiple control units without the need for a central coordinating unit.

2.2 Hardware Architecture

As each control unit expects to receive a heart-beat from each other control unit
within each period, the missing of a heart-heat is interpreted as the failure of a
control unit. From a hardware-perspective, additional guarantees with respect
to reliable communication links between control units are however necessary in
order to deduct the failure of a control unit from a missing heart-beat. Moreover,
control units utilising this reconfiguration scheme must be equipped with strong
diagnostic capabilities to perform fail-silent behaviour in case of unrecoverable
local faults, thereby ensuring the fail-operational properties of the entire system
(see Fig. 1). To provide fail-operational behaviour between control units in a
cost-efficient manner, a 1-out-of-2 safety architecture with diagnostics (1oo2D)
was deployed on basis of previous research [11]. Here, each unit is equipped with
strong diagnostic capabilities in form of lock-stepping mechanisms and additional
monitoring elements, such as hardware watchdogs. In addition, the use of diverse
hardware platforms and bus systems further limits the potential occurrence of
faults originating from a common cause.
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3 Method for Reconfiguration Planning

3.1 System Model

In order to configure the previously described monitoring and reconfiguration
service, an automated design process is used to generate mitigation plans for all
managed failure modes. Hereby special focus is laid on the declarative nature of
the approach. This allows system designers to only specify availability require-
ments without the need to manually determine a schedule for each failure mode
and without needing to ensure that all failover times are met. For this, a minimal
system model is derived under consideration of distributed topologies, operating
modes, hierarchical resources access patterns, and preemption. This model is
later formalised and used as part of a reconfiguration planning approach based
on the advances in constraint-based system synthesis [3].

Jobs, Tasks & Compositions. In this work, a task is defined as the use of
exactly one resource during a specific time interval, which is in turn bounded
by a task- and resource-specific worst case execution time (WCET), as seen in
the software architecture of a simplified automated driving use case depicted in
Fig. 2. Tasks in turn are logically grouped to task composition, to allow for an
abstraction of the system (e.g. Steer-by-Wire). As such, multiple instantiation
of a specific type of composition or task are required to provide functionality
redundantly (e.g. Wheel Tick tasks), which are each responsible for one specific
wheel of a vehicle. Moreover, a task consists of a sequence of jobs, each repres-
enting a specific invocation of a task. To ensure the periodic execution of a task’s
jobs, each task can be annotated with a period (cf. Steering or Highway Pilot).
In additional, other real-time constraints, such as the maximal age of processed
data (cf. Trajectory Planning or Steering Engine 1) or synchronous executions
between jobs of two tasks (cf. Steering Engine 1 & 2) can be defined.
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Resources. A resource can represent a control unit or bus, but also any other
type of resource such as a hardware controller. For this, the concept of hierarch-
ical dependencies between resources is introduced. For instance, a control unit
can pose as a top-level resource without dependencies to other resources, whereas
a memory region of this control unit is seen as a subordinate resource belonging
to the superordinate top-level control unit resource. Based on this, hierarchical
dependency between tasks are used to, for instance, describe that a subordinate
task can only access the memory region of that specific control unit if its su-
perordinate task is also assigned to the same control unit. Moreover, interleaved
access patterns are possible, allowing multiple tasks to cooperatively share a
resource through preemption. Despite this, some activities, such as accessing a
critical memory structure, must remain atomic to prevent data corruption and
indeterministic behaviour. In such cases, a resource is deemed non-preemptable.

Graceful Degradation & Modes. As it is often not desirable to completely
eliminate functionality in overload conditions [4], a more fine-grained consid-
eration of required functionality in each system mode is needed. Despite this,
current mixed-criticality research often only applies a rigid model of HI and LO
criticality levels. Further, computational peaks and variable workloads are often
simply classified into hard and soft real-time requirements, thus squandering the
potential for resource-efficient designs. Consequently, a generalised taxonomy
was developed in [10] to classify resource access in the dimensions of quantity of
resources and frequency of occurrence. To incorporate these previous research
results, the developed system model captures such fine-grained information on
resource requirements by allowing compositions to be assigned to system modes
and sorted by their importance (e.g. the Comfort is less important than Steer-
by-Wire in Fig. 3). These system modes are defined for the entire (sub-)system,
including hardware component failures or environmental changes. In contrast,
functionality can be modelled as multiple distinct modes of a composition that
are only allowed to be admitted under mutual exclusion in order to address
functionality that can degrade internally (e.g. Normal & Degraded Mode for
Automated Driving in Fig. 3) or exhibit variable workloads. Moreover, tasks can
be annotated with different scheduling modes to account for application-specific
data consistency requirements of standby tasks. For instance, a cold-standby
task will only be assigned to a resource and thus only attain an internal state
after being scheduled, whereas a hot-standby task will exhibit similar scheduling
demands as an active task as only the task’s external effects will be suppressed.
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Fig. 3: Graceful Degradation Example
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3.2 Mixed-Integer Linear Programme

Motivated by the fact that mixed-integer linear programmes have been success-
fully utilised for real-time system synthesis [13], a MILP representation of the
previously introduced system model was developed. This MILP formulation can
either be used to maximise the amount of active compositions or alternatively
find valid schedules for a predetermined set of required compositions for each
system mode. Due to the extensive nature of the derived MILP (22 constraints
in total), this work focuses on the most distinctive and less straight-forward
equations. All variables and constants are summarised in Table 1.

Target Function. In favour of limiting the wasteful deployment of processing
resources, it is desirable to achieve a high level of resource utilisation. For this, a
global view of the system is inevitable to always find an optimal configuration.
As such, this problem is formulated with the intention of maximising the amount
of compositions that can be successfully scheduled on a given set of resources (1).
The admission of a composition c ∈ C to the system’s configuration is encoded
in a binary variable uc by setting uc = 1.

max

C∑

c

uc (1)

Graceful Degradation. To account for the possibility of insufficient resources,
compositions may be assigned priorities to define a hierarchical ordering of their
importance. Therefore, a composition may only be admitted if all compositions
of a higher priority C+

c are also included in the schedule. All compositions of
lower priority are defined as C−c . To enforce these restrictions, uc shall only
take a true value when all uc′ for c′ ∈ C+

c are also true. Therefore, uc is to
be multiplied with the cardinality of C+

c to prevent an unwanted admission of
composition c (cf. Fig. 3):

C

∀
c
uc|C+

c | ≤
C+

c∑

c′

uc′ (2)

Tasks to Resources Mapping. To represent the smallest schedulable entities,
each composition is broken down into tasks t ∈ T which must be mapped to
a single resource r out of a task-dependent set of resources Rt. The binary
variable atr = 1 indicates that a task is permanently assigned to a certain
resource. During implementation a substantial performance penalty was noticed
when formulating this constraint in form of an inequation (<= 1). Therefore, an
additional virtual resource, on which jobs can be executed with infinite speed,
is introduced, thus extending the set Rt with the virtual resources to R+

t . This
allows every task to always be assigned to exactly one resource (3).

C

∀
c

Tc∀
t

R+
t∑

r

atr = 1 (3)
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Mutual Exclusion. To account for the degradation within a functionality, it
must be ensured that the same functionality is not simultaneously provided by
multiple compositions. Therefore, the composition providing normal functional-
ity can disable tasks of its degraded compositions (e.g. Normal Mode is preferable
over Degraded Mode for Automated Driving in Fig. 3). All tasks in c that are
disabled by a composition c′ ∈ C−c are contained in the set TD

cc′ . The equation
4 allows a number of tasks in the composition c to be disabled, if c′ is enabled.
However, it does not specify which tasks. As only tasks replaced by tasks from
other compositions may be disabled, the atr variable of each disabled task must
be forced to zero (5). Moreover, to ensure that either all or none of the tasks
within a composition are admitted, the sum of all respective binary variables atr
must either be equal to the amount |g| of tasks within that composition or zero.

C

∀
c

Tc∑

t

Rt∑

r

atr = |Tc|uc −
C−c∑

c′

|TD
cc′ |uc′

(4)

C

∀
c

C−c∀
c′

TD
cc′∑

t

Rt∑

r

atr = |TD
cc′ |uc − |TD

cc′ |uc′

(5)

Unified Timeline. During the implementation of this work, an up to 10-fold
performance benefit was attained by conceptually partitioning all resources along
one sequential timeline Z (see Fig. 4). For this, the concept of a hyper-period is
utilised. It is defined as the least common multiple of all occurring periods, thus
describing the shortest time frame after which a schedule may be repeated in a
symmetric manner. Based on this, the minimal length of the unified timeline Z
could be determined by multiplying the system’s hyper-period H with the num-
ber of resources and adding the largest deadline. This addition of max(Deadline)
is required to account for jobs that start within the last period of a hyper-period
and potential only end after the start of the next hyper-period.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

t1

t2

H of r1 H of r2 . . .

Z > |R+|(H +max(Deadline))

Fig. 4: Hyper-Periods in a Unified Timeline

Order of Execution & Preemption. To determine if a job j is activated after
a job j′ has ended, the activation time of j is represented by a real variable sj ,
whereas the time of completion of j′ is defined through the real variable e′j . For
each period of a task t, the start-time of a respective job j ∈ Jt is bounded by a
constant start-offset PS

j and end-offset PE
j . With respect to the unified timeline,

the resource-specific offset must be subtracted in order to attain the actual time
value (6). The jitter of start- and end-times between a task’s periods can also
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be bounded through this definition. In addition, the order of execution between
tasks is encoded in the binary variables bjj′ (see Fig. 5). To force the variable
bjj′ to only be zero if e′j lies before sj , bjj′ is multiplied with a constant that
is larger than any other variable. As such, only a positive difference of sj − ej′
leads to bjj′ = 0 (7).

T

∀
t

J′t∀
j
PS
j ≤ sj −

Rt∑

r

Zratr ≤ PE
j (6)

T

∀
t

Jt∀
j

T\t

∀
t′

Jt′∀
j′

0 ≤ sj−ej′+bjj′Z ≤ Z (7)

An overlap free schedule is defined as the start of an execution occurring
after another job’s execution ends. In this case, exactly one variable in the set
(bjj′ , bj′j) must be true, as all other cases lead to logical contradictions or ex-
ecution overlaps (see Fig. 5). If an overlapping resource access is allowed for a
specific resource, one job can preempt another job. Through setting bjj′+bj′j = 1
such inter-job preemption can be selectively prohibited, for instance, to prevent
negatively influencing WCETs through cache invalidation effects.

j

j′

bjj′ = 1

bj′j = 1

bjj′ = 1

bj′j = 0

bjj′ = 0

bj′j = 1

bjj′ = 0

bj′j = 0

Fig. 5: Execution Overlaps

Execution Times. When assigning a task t exclusive control over a resource,
the largest possible time that can elapse between its activation sj and completion
ej is defined as a task’s resource-specific WCET Wtr. In addition, tasks operating
on shared resources must also account for the preemption-incurred prolongation
of their jobs’ execution times by considering the overhead of every context switch.
The total time delay of a job j by any potentially preempting job j′ ∈ JP

j and the
therewith connected temporal overhead is represented by a variable ijj′ . In all,
the maximal distance between sj and ej is defined through the task’s resource-
dependent WCET and the sum of all interferences (8). As a job’s execution
may only lie entirely before, within, or after another job’s execution window,
interruption ijj′ caused by each job j′ can be added together to obtain the total
time of preemption for job j, as depicted in Fig. 6.

T

∀
t

Jt∀
j
ej − sj =

Rt∑

r

atrWtr +

JP
j∑

j′

ijj′ (8)
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Fig. 6: Cascading Preemption

The non-negative preemption time ijj′ of a task’s job j by another job j′ ∈ Jt′
is defined by the resource-dependent WCET Wt′r of the preempting job and is
further influenced by effects related to the used resource, such as activation
jitters, or storing and loading of registers, which are all accounted for with a
worst-case constant overhead Or. As Or is only resource-dependant, it must be
chosen large enough to account for the worst performing task allocated on r. In
cases where this constant overhead is however too pessimistic, as for instance
seen in caching strategies, a set of finer constraints can be utilised instead of the
simplified model of cascading preemptions (see Fig. 6). Moreover, preemption
may be completely prohibited for a task or only permitted at predefined points.
When formulating this constraint, a one sided bound on ijj′ is sufficient, as
the target function indirectly minimises ijj′ . In consequence, every overlap ijj′

will diverge to its minimum in case of resource restrictions. Through this, the
introduction of another binary variable is circumvented. Equation 9 provides a
lower bound for the preemption time ijj′ :

T

∀
t

Jt∀
j

JP
j ⊂Jt′

∀
j′

Rt∀
r
at′rWt′r + atrOr + bj′jZ + bjj′Z − 2Z ≤ ijj′ (9)

Table 1: Table of Notations
Notation Type Description

atr var {0, 1} Assignment of task t to resource r (atr = 1)

bjj′ var {0, 1} Start of job j is before end of j′ (bjj′ = 1)

C const set All compositions

C+
c /C−c const set Composition with higher/lower importance than composition c

ej var R End of job j

H const R Hyper-period (smallest common multiple of all periods)

ijj′ var R Time that j is preempted by j′

Jt const set Jobs of task t

JP
j const set Jobs that potentially preempt job j

Or const R Task-independent preemption overhead of resource r

PS
j & PE

j const R Begin and end of job j’s period

Rt const set Potential regular resources of task t

R+
t const set As Rt with additional virtual resource

sj var R Start of job j

T const set All tasks

TD
cc′ const set Tasks in c that can be replaced through tasks from c′

uc var {0, 1} Composition c is admitted to system schedule (uc = 1)

Wtr const R Raw WCET of task t on resource r

Zr const R Offset of resource r on unified timeline Z



10 Philipp Schleiss, Christian Drabek, Gereon Weiss, and Bernhard Bauer

3.3 Heuristics

Through the NP-hard nature of this optimisation problem, scalability becomes
an important concern. As general MILP solving techniques cannot fully exploit
problem-specific characteristics, heuristics pose as a promising solution for ex-
tending the scope of systems that can be successfully synthesised [6]. The fol-
lowing paragraphs describe three strategies (S1-S3) which aim at limiting the
problem space while trying to only minimally impair the solution space.

S1: Resource Assignment. To decrease the problem’s complexity, tasks may
be pre-assigned to a certain resource in cases where multiple potential resource
allocations exist. For this, tasks are ordered by the ratio between their WCET
and potential window of resource access (WCET-window ratio). Thereby, tasks
with small WCETs and large access windows are first assigned to resources. The
assignment process aims at balancing tasks fairly by selecting the resource with
the least utilisation. This process repeats until either the WCET-window ratio
or the resource utilisation grow above their respective threshold.

S2: Grouping of Tasks. Moreover, multiple tasks may be combined into a
single task whenever their periods are identical. This strategy requires all tasks
grouped within the newly created task to be assigned to the same resource.

S3: Sequential Resource Access Windows. To eliminate further binary
MILP variables, potentially conflicting executions can be resolved through se-
quentialisation. Here, each job’s earliest start and latest end time is determined
by analysing the system’s data flow graph. Thereafter, the heuristic sequential-
ises conflicts of jobs with similar WCETs, as these jobs are unlikely to benefit
from mutual preemption. In contrast, the enforcement of a sequential execution
pattern on jobs with strongly varying WCETs would remove opportunities for
preemption. The pairs of tasks are then sorted based on how much each job’s
execution window must be narrowed to allow a sequential execution (cf. Fig. 7).
This sum is then weighted by the potential changes in ratios between WCETs
and execution windows, in order to find conflicts that barely overlap or alternat-
ively exhibit large WCET-window ratios. The respective earliest start and latest
end times of the best job pair are then narrowed by balancing the remaining ra-
tio between WCETs and potential execution windows. The process is repeated
until no pair can be sequentialised without falling below a threshold based on
the WCET-window ratio.

Tasks Timing (multiple options) 

1 

2 B 

B 

B A A 

A 

Tasks Timing (conflict-free) 

1 

2 C C 

A B B A C C C 

Fig. 7: S3 heuristic for sequential resource access (red: resource access windows)
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4 Evaluation

To determine the value of this method, its applicability in the automotive do-
main and scalability are of interest, as these factors are crucial for ensuring a
successful transfer of this prototypical concept into future systems throughout
the industry. As such, the applicability will be evaluated qualitatively by per-
forming an assessment based on criteria that was identified as relevant during
the implementation of a full-scale e-vehicle with a fail-operational Steer-by-Wire
system. With respect to scalability, the solving performance of the MILP- and
heuristic-based system synthesis approach is analysed quantitatively for differ-
ent synthetic workloads to determine its practical limits with respect to realistic
future system sizes.

4.1 Automotive Case Study

Within the SafeAdapt [12] research project an electric prototype vehicle was
developed that aims at integrating multiple critical functionalities, such as Steer-
and Brake-by-Wire compositions, onto a shared control infrastructure based on
a 1oo2D safety architecture (cf. Sec. 2.2). Here two diverse hardware platforms
were utilised on basis of an AURIX safety controller and two ARM MCUs with
software-based lock-stepping mechanism, which are interconnected by a time-
trigger redundant ethernet backbone.

To illustrate the granularity of a typical data flow, the Steer-by-Wire (SbW)
system is described. With this functionality, two independent timing chains ex-
ist to respectively adjust the angle of the front wheels with a redundant pair
of steering rack engines in accordance to the steering wheel angle and further
provide information to the driver with respect to the road surface conditions in
form of vibrations. Focusing on the steering engine control loop, both engines
must be readjusted periodically, actuate synchronously within a certain time
margin, and only apply control signals originating from recently sampled sensor
data. In addition, each of the steering wheel and steering angle position sensors
is individually modelled as three tasks: one for polling the sensor, one for placing
it in a designated buffer of a network chip, and one for the network controller’s
transmission of the queued data (cf. Fig. 8).
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Fig. 8: Steer-by-Wire Architecture
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4.2 Assessment of Applicability

To determine the applicability of the proposed method within the automotive
domain, a non-exhaustive set of criteria was identified as relevant through ex-
perience gained from the previously described e-vehicle project. Based on these
criteria, the method’s applicability is evaluated in the following:

Tool-interoperability The generic and minimal nature of the developed sys-
tem model promotes the binding of different domain specific modelling con-
cepts. As an example, the vehicle’s hardware architecture, data flow, modes
of operation, availability requirements, and timing characteristics were mod-
elled in the ARXML exchange format of the predominant AUTOSAR stand-
ard [2] and subsequently transformed into the domain-independent system
model (cf. Sec. 3). The results of the configuration planning process were
then again automatically added to the ARXML format, thus providing a
seamless integration into existing tool chains.

Stability Extensions, changes, and fixes for individual applications are common
within the life-cycle of a vehicle. To not adversely affect other functionalities,
it is common practice to maintain a stable schedule for all bus systems.
With respect to the developed synthesis method, such stability can be easily
achieved by statically pre-defining the schedule for all applications that must
remain stable. Hence, only a new schedule for the remaining applications
must be found, thus guaranteeing future interoperability and the ability to
only partially update an already existing system.

Standardisation As automotive system architectures are often based on com-
ponents from multiple independent vendors, it is crucial to standardise any
service that requires interoperability across control units. As such, the MRS
(cf. Sec. 2.1) was integrated as a basic AUTOSAR service with a uniform
communication protocol as part of an already standardised software archi-
tecture in order to showcase the feasibly of a future standardisation.

Reusability Through the design of the runtime reconfiguration mechanism
based on the concept of a Safety-Element-out-of-Context, the required re-
configuration logic had to only be implemented once instead of individually
for each functionality, thus substantially reducing the development, verific-
ation, and validation effort.

Runtime overhead With respect to runtime overhead, the generic runtime
mechanism showed WCETs of less than 100µs and was executed in 5ms peri-
ods in order to always meet the strictest failover times of 10ms. Moreover,
the excepted overhead remains close to constant with an increasing amount
of managed functionalities. This is attributed to the fact that the execution
and usage of bus systems only occurs once per period for all functionalities
as compared to each functionality utilising an individual monitoring mech-
anism and communication slot. In addition, mechanisms for ensuring the
data consistency of standby tasks more dominantly influences resource us-
age. Here different concepts reaching from cold-standby over warm-standby
(e.g. cyclic data updates) to hot-standby implementation exist, depending on
the task-specific requirements of the individual compositions (cf. Sec. 3.1).
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4.3 Scalability & Tool Performance

Setup. To experimentally evaluate how this approach scales, the total amount
of jobs, the number of interconnections, the degree of potentially overlapping
executions, and the system’s total utilisation were identified as factors that are
likely to influence the solving time. During non-exhaustive tests, the system’s
utilisation was identified as the most interesting factor, as an increased utilisation
already lead to monotonously growing and strongly diverging solving times at
around 500 jobs. In contrast, the degree of potentially overlapping executions and
the amount of interconnections showed less divergent performance differences.
As such, the further evaluation focuses on determining the performance effects of
different levels of utilisation with an without the use of heuristics while increasing
the amount of jobs. For this, the other influencing factors are kept at a constant
ratio in relation to the amount of jobs in order to enable an isolated evaluation
of the utilisation parameter. The measurements are performed with the Gurobi
optimisation software (version 6.0.3) [5] on an Intel Xeon E5-2660 CPU (2.2
Ghz) with 8 cores by synthetically scaling the previous automotive example.

Performance Evaluation. Based on these synthesised workloads, 10 test sets
were extracted with four predefined average resource utilisations (20%, 40%,
60%, 80%). As seen in the experimental results in Fig. 9a, performance generally
deteriorates with increased utilisation. Further, the strategies S1 to assign tasks
to a fixed resource, S3 to sequentialise potentially conflicting resource utilisa-
tions, and the combination of both strategies were applied to the 80% utilisation
test set, representing a typically used utilisation limit within the automotive in-
dustry. The strategy S2 for grouping tasks was not analysed in isolation, as its
performance is directly dependent on the amount of tasks with identical periods.
Moreover, non-exhaustive tests were conducted to experimentally determine an
acceptable parametrisation of the heuristics. As seen in Fig. 9b, the point at
which the performance deteriorates could be substantially postponed through
the use of heuristics, allowing a system with 80% utilisation and 1000 jobs to be
synthesised in around ten minutes. Most notably, the combination of resource
assignment and sequential resource access heuristics exhibits the largest benefit,
thus proving a promising opportunity to design more complex systems.
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4.4 Discussion

Based on the experience collected in the automotive case study, the proposed
combination of a safety mechanism for generically ensuring availability and a sys-
tem synthesis process poses as a viable option for designing automated vehicles
in a more cost- and resource-efficient manner. Regardless, special rigour must be
applied during the design of a generic availability management component, as
an incorrect implementation could adversely affect multiple independent func-
tionalities. This concern is however mitigated by the simplicity of the runtime
mechanism, which is implemented on basis of a formally provable state machine.
In addition, all calculated mitigation plans can be verified through an simple pro-
cess by comparing the time-driven schedules of each operating mode against the
formalised availability and timing requirements. This already ensures the correct-
ness of the mitigation plans and further fosters manual quality improvements,
such as jitter optimisations, by allowing an automated verification of any modi-
fication. Moreover, typically occurring timing issues during system integration
can be mitigated through the early enrichment of the system’s interface descrip-
tion with detailed timing requirements. This enables a compositional integration
in which the correct timing behaviour is ensured during system integration even
though each control unit was designed individually. Hereby, each control unit
must however adhere to its predetermined temporal interface description. In ad-
dition, this reduced development effort can be utilised to create larger variant
diversity and customised products that would otherwise be deemed infeasible.

In light of the solving performance, it seems reasonable to presume that
automated schedule synthesis is a feasible method for substantially reducing
development effort. In addition, the long development-cycles of safety-critical
systems can even make solving times of multiple days an acceptable option.
Regardless, the future use of project specific knowledge as well as the creation
of more sophisticated heuristics is likely to substantially increase the method’s
performance and allow the synthesis of systems with higher complexity. Similarly,
an alternative implementation based on saturated module theory concepts, which
have proven to be useful for similar problems [14] and even outperform MILP
approaches [9], could further increase performance.

5 Conclusion

In pursuit of designing fail-operational systems in a cost-efficient manner, this
work exploits a monitoring and reconfiguration service that is utilised as a gen-
eric safety mechanism for ensuring availability of independent functionalities.
Based on this, an accompanying synthesis process for automatically generating
mitigation plans in form of schedules for all anticipated operational modes of a
system was researched and implemented. The method’s applicability was then
demonstrated successfully on basis of experiences gained during the development
of a real e-vehicle. Moreover, the performance of the synthesis was significantly
increased by applying heuristic strategies, thus ensuring its applicability with
respect to the more complex systems of future vehicles.
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