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Abstract. In random bin picking, grasps on a workpiece are often de-
fined manually, which requires extensive time and expert knowledge. In
this paper, we propose a method that generates and prioritizes grasps for
vacuum and magnetic grippers by analyzing the CAD model of a work-
piece and gripper geometry. Using projections of these models, heatmaps
such as the overlap of gripper and workpiece, the center of gravity, and
the surface smoothness are generated. To get a combined heatmap, which
estimates the probability for a successful grip, all individual heatmaps
are fused by means of a weighted sum. Grid-based sampling generates
prioritized grasps and suggests the most suitable gripper automatically.
This approach increases the autonomy of bin picking significantly.
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1 Introduction

In manufacturing industry, workpieces are often stored chaotically in bins. How-
ever, for many processing steps, the workpieces have to be separated, e.g., to be
fed to a production machine. This is still mostly done manually, especially for
large workpieces, but robots are nowadays used extensively for this task, which is
called bin picking [10]. Bin picking is a highly researched topic and there are two
different approaches: model-free and model-based. Model-free approaches search
for possible grasps in the sensor data of the filled bin without using a model of
the workpiece [6]. Since the pose of the workpiece is not known, these approaches
struggle with a precise placement of the workpieces. In contrast, model-based
approaches use a model of the workpiece to determine the pose of each workpiece
inside the bin [9]. After the pose has been determined, a collision free robot path
has to be calculated to extract each workpiece, e.g., by using a heuristic search
algorithm [1][2]. To calculate the appropriate robot movement, the system has
to know how the workpiece can be grasped. Since the orientation of the part is
arbitrary in bin picking scenarios, many different grasp candidates are required.
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For working with new variants of workpieces, the definition of such grasps (target
point on workpiece and approaching vector) can still be defined manually. How-
ever, it requires expert knowledge and manual labor for each workpiece, which
is unpractical for a large variety of different workpieces. This paper proposes an
approach to automatically generate these grasps for suction grippers, focusing
on form-flexible suction grippers like FormHand [8]. While the goal of this paper
is to generate grasps for bin picking, the technology can also be used for any
other handling tasks, e.g., conveyor picking.

After a review of the state of the art in Section 2, the calculation of a heatmap
that represents the probability of grasping success is developed in Section 3.
In Section 4, we describe a method to generate discrete grasps based on this
heatmap. Finally, the results are compared with physical experiments in Sec-
tion 5. The main contributions of this paper are as follows:

– Generation of a heatmap that represents the probability of grasping suc-
cess based on projections of the workpiece. This heatmap considers several
factors like overlapping between the workpiece and the gripper, the surface
smoothness, and the center of gravity.

– Generation of discrete grasps on the workpiece and the selection of the most
suitable gripper for a workpiece.

2 Related Work

While there is a considerable amount of work on generating suitable grasps for
clamping grippers [3–5], suction cup grippers are not studied that much. Kraft
et al., [7] generate grasps for clamping grippers and suction cup grippers by
randomly distributing the grasps on the workpiece and calculating a value for the
grasp quality. The generated grasps are validated and prioritized using simulation
to learn which grasps are more successful than others. Mahler et al., [6] generate
grasps for suction cup grippers by using a quasi-static spring model. However,
most of these approaches make the assumption that the grippers can not grip
if there is even a small hole in the gripping area, which is quite common, e.g.,
with sheet metal parts. However, there are more flexible suction grippers, like
FormHand, which can grip, even in the presence of holes [8]. This paper therefore
focuses on generating grasps for such a robust suction gripper on generally flat
parts like sheet metal parts.

3 Probability Matrix of a Successful Grasp

3.1 Projection of Workpiece and Gripper

Instead of calculating all the property matrices of gripper and workpiece directly
from a CAD model, we use 2D projection matrices for both gripper and work-
piece. For a gripper, we project it only from its top view so that the contact
surface of gripper can be projected to an image plane as shown in Figure 1(a,b).
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Fig. 1. Gripper and workpiece projections on 2D images. 1(a) Projection of a small
gripper. 1(b) Projection of a large gripper. 2(a) Projection of a hexagonal type work-
piece. 2(b) Projection of a rectangular workpiece.

This projection Pg works for all types of vacuum grippers consisting of any
number of suction cups and also for magnetic grippers. In the similar manner,
the CAD model of the workpiece is projected to a 2D image as shown in Fig-
ure 1(c,d). This projection values represent the depth value of workpiece in each
pixel. As our scope of work consists of flat workpieces, we project the workpiece
from all its 6 sides. However, to speed up the process of grasps generation, some
projections can be discarded at the start of the process by using the valid pixels
Vp in the top projection. By comparing the valid pixels in each projection with
Vp and using 60% as threshold, some projections can be discarded at the start
of the process. In our test set, threshold was found by physically examining the
geometry of workpieces.

3.2 Overlap between Workpiece and Gripper

To find the contact surface area between gripper and workpiece, an overlap
heatmap is calculated using projections of gripper and workpiece. The center
pixel of gripper projection Pg is taken as an anchor point pa. With respect
to the anchor point, the gripper projection Pg is traversed pixel by pixel over
the workpiece projection Pw. For each traversal, the number of pixels of work-
piece for which gripper pixels have non-zero value are calculated. This defines
the heatmap Ho of overlap between gripper and workpiece, as shown in Figure
2(b). To calculate the overlapping, the gripper and workpiece projections are
binarized:

bw(x, y) =

{
1 if Pw(x, y) 6= 0

0 otherwise
, bg(x, y) =

{
1 if Pg(x, y) 6= 0

0 otherwise
(1)
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Fig. 2. Calculation of grasp reliability matrix and generation of gripping points for
W5 and W6. (a) Projection of workpiece. (b) Overlapping heatmap of workpiece and
gripper pixels. (c) heatmap of centre of gravity. (d) Weighted combination of heatmaps.
(e) Grid based discrete grasp pixels. (f) Generated grasps.

For a specific point (x, y) in the workpiece projection Pw, the overlap Ho(x, y)
at this point is then calculated as the convolution of bw with bg:

Ho(x, y) =

wg∑
i=1

hg∑
j=1

bw(x− cx + i, y − cy + j) · bg(i, j)

for cx < x < ww − cx , cy < y < hw − cy

(2)

with the width wg, the height hg, and the center pixel (cx, cy) of the gripper
projection and the width ww, the height hw of workpiece projection. To calculate
the effectiveness of overlapping with respect to workpiece and gripper sizes,
overlap heatmaps are normalized with respect to gripper Hog and workpiece How

by dividing overlap heatmaps with number of non-zero pixels in the gripper and
workpiece projection, respectively.

3.3 Calculation of Center of Gravity Heatmap

It is desirable to pick the workpiece from its centre of gravity because it ensures
that the weight of part is evenly divided and with firm gripping, the workpiece is
less likely to drop. Therefore, we also introduced a centre of gravity heatmap into
the calculation of grasp reliability matrix. For calculating the centre of gravity,
we assumed that the part is uniformly thick and made of the same material. The
centre of gravity pixel pcog is calculated by adding all the x and y valid values
in workpiece projection Pw and dividing it by total number of non-zero pixels.
For a pixel at (i, j), heatmap for centre of gravity Hcog(i, j) is calculated as

Hcog(i, j) = max(Hcog)−
√

(xi − xcog)2 + (yj − ycog)2 , (3)

where max(Hcog) is the maximum value in centre of gravity heatmap. Figure
2(c) shows the heatmap for centre of gravity.
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Fig. 3. Measurement of vacuum pressure with gripper. (a) Setup for measuring vacuum
pressure. (b) Grid for measuring at different points on workpiece.

3.4 Calculation of Surface Smoothness

Some workpieces have grooves on their surface and when a vacuum gripper
grasp the workpiece at that point, leakage of vacuum occurs and the workpiece
is dropped during grasping. Therefore, it is important to find a matrix that
provides the information of grooves or humps. We calculate a surface smooth-
ness heatmap to consider these properties in our calculation of grasping points.
Similar to the calculation of overlap heatmap, the heatmap for surface smooth-
ness Hs is calculated by traversing pixel by pixel over workpiece projection Pw

and calculating the sum of differences between z-surface value and z-value in
workpiece projection.

3.5 Weighted Combination and Normalization of Matrices

To incorporate the influence of all property matrices of gripping, a weighted com-
bination of heatmaps is calculated. To get the uniform influence of heatmaps in
the combined heatmap, each heatmap is normalized with respect to its maximum
value. The combined heatmap Hc is calculated as

Hc = wog · H̃og + wow · H̃ow + wcog · H̃cog + ws · H̃s (4)

Here, wog tends to change the sensitivity of heatmap w.r.t the gripper. Heatmap
Hog is defined in a way that a smaller workpiece with smaller gripper has higher
heatmap Hog values as compared to a smaller workpiece with a larger gripper.
Moreover, wow tends to change the sensitivity of heatmap w.r.t the workpiece.
Heatmap How is defined in a way that a smaller workpiece with larger gripper
have higher heatmapHow values as compared to a smaller workpiece with smaller
gripper. By adjusting the weights wog and wow, a suitable gripper for a workpiece
can be selected.
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4 Grasps Generation and Gripper Selection

The heatmap is a continuous representation of grasp regions. However, for the
generation of grasps, the heatmap has to be discretized. The heatmaps are dis-
cretized in a manner that the grasps are evenly distributed over the image with a
certain distance in between. Moreover, we have extended our approach to suggest
the best gripper from selection.

4.1 Gripper Selection

For some workpieces, particularly having holes, it is not easy to decide which
gripper would be the most suitable one for that workpiece. We extend our ap-
proach of grasp probability matrices to suggest the suitable gripper from the
selection. The heatmap Hog defines how well the gripper surface is overlapped
with workpiece one. The greater the value of Hog, the greater is the contact
surface of gripper on workpiece. On the other hand, heatmap How defines how
much surface area of workpiece is overlapped by the gripper. The gripper that
receives the maximum score for the combination of these heatmaps is selected
for a workpiece.

4.2 Generation and Prioritization of Grasps

For the generation of grasps from heatmap Hc, we use grid based discretization.
Based on the bounding box of workpiece, a grid is generated with fixed width
gw and height gh. Within each grid cell, the grasp pixel with maximum score is
calculated. However, these grasp pixels can be very close to each other and not
uniformly distributed over workpiece surface. Therefore, we applied a two step
filtration of grasp pixels. In the first step, the grid pixels are sorted based on their
heatmap scores. In the second step, a grid pixel is checked sequentially with its
neighboring grid grasp pixels. If the distance between neighbouring grasp pixels
is less than half of the grid width, the grid pixel with lower score is discarded.
After the filtration of closely neighbored grasp pixels, grasps pg(x, y, z, α, β, γ)
are generated in which (x, y) are taken from pixel position of the heatmap, z is
taken from depth value of grasp pixel in workpiece projection Pw and approach
vector (α, β, γ) is taken from normal vector to the grasp pixel plane. Grasps are
then converted to a transformation matrix T g

p of grasp in pixel coordinate system,
which is then transformed to its object coordinate system as T g

o = T p
o ·T g

p . Here
T p
o is the transformation of object in pixel coordinate system as defined during

workpiece projection Wp.

5 Experiments and Results

5.1 Hardware Testing Setup

We have arranged an experimental setup in our lab, as shown in Fig. 3. In our
hardware setup, we fix the workpiece slightly elevated above from the base ta-
ble to allow for free airflow through cut-outs in the workpiece simulating the
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Table 1. Evaluation of grasp reliability heatmaps and gripper selection on test set

Workpiece Gripper Correlation Maximum
pressure

Maximum
overlapping

W1 Small 0.53 244 312.99
W2 Small 0.76 214 452.83
W3 Small 0.71 211 384.59
W4 Small 0.73 210 202.81
W5 Small 0.73 291 459.24
W6 Small 0.81 360 459.24
W6 Large 0.75 270 436.56
W7 Small 0.60 421 459.03
W7 Large 0.74 458 459.13
W8 Small 0.76 379 459.26
W9 Small 0.95 242 440.22
W10 Small 0.71 242 454.83

Average 0.73

situation after picking. The form-flexible suction gripper is positioned on the
workpiece in a grid by a linear axis system and the resulting vacuum pressure
[mbar] is measured. We chose a grid size of 10-20 mm resulting in up to 70 mea-
surement points depending on the workpiece. The measurement was repeated
five times at every position. The points where we get higher vacuum pressure
are likely to be better points for the gripper to grasp that object.

5.2 Evaluation of Grasp Reliability and Gripper Selection

To validate our generated grasp reliability heatmaps, we compare the overlap
heatmap Ho with the vacuum pressure recorded in physical experiments, de-
scribed in Section 5.1. We calculated overlap score at each point defined in the
grid for each workpiece, shown in Figure 3(b). Pearson correlation coefficient is
calculated for all the points of overlap with vacuum pressure and recorded in
Table 1. A higher correlation coefficient closer to 1 shows that our algorithm is
well correlated with grasp reliability in physical experiments. As the workpiece
was fixed in our experiments, centre of gravity did not play any role in the mea-
surements. Therefore, the correlation coefficient was calculated only with overlap
heatmap.

Moreover, for the generation of combined heatmap of grasp reliability, we
use wog = 1.8, wow = 0.01, wcog = 1.5, and ws = 0.5. These weights were found
empirically by comparing the heatmaps with the measured heatmaps of Section
5.1 of a subset of the test set. The weights wog, wow are more sensitive for the
selection of a suitable gripper and the weights wcog, ws are more sensitive with
respect to the geometry of the workpiece. Also, as most of the workpieces have
smooth surfaces, therefore, ws has very little effect on combined heatmap. By
fixing these weights, combined heatmaps for the complete test set are recorded
and listed in Table 1. A total of 10 workpieces are tested with a small gripper and
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W6 and W7 also with a larger gripper. In physical experiments, it was observed
that the small gripper is suited for W6 and a larger one for W7. We observe
the similar trend in our combined reliability matrix. This result shows that our
algorithm can choose the best suitable gripper from the available options. Also,
we have applied our generated grasps successfully in the experimental setup of
bin picking, details are provided in the supplementary material.

By using the speedup option of valid pixels Vp defined in Section 3.1, the
average time for grasp generation is around 5.5 seconds on CPU Core i5-5200
@ 2.20GHz, 8GB. As our algorithm is deterministic and does not depend upon
randomness, the same grasps can be generated repeatedly in the setup when
weights and grid size are fixed in settings.

6 Conclusion

We presented a novel approach to generate grasps for a form-flexible suction
gripper on generally flat workpieces like sheet metal parts. These grasps can be
used for bin picking applications, where a lot of different grasps are needed due to
the arbitrary placement of each workpiece. The results show that this approach
can generate suitable grasps and determine an overlapping score which correlates
well with physical experiments. Future work may include extending the approach
to 3d objects and applying it to model-free grasping system.
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