IT SOLUTIONS FOR RENEWABLE ENERGY SYSTEMS AND ENERGY EFFICIENCY

Prof. Dr. Hans-Martin Henning

Fraunhofer Institute for Solar Energy Systems ISE

Asia-Pacific Week Berlin 2019: Seminar on the »Efficient use of Energy with IT« Berlin, May 15th 2019

www.ise.fraunhofer.de

The need of IT solutions for energy system transformation

Digitization of the energy system transformation – Examples

Conclusion

The need of IT solutions for energy system transformation

Digitization of the energy system transformation – Examples

Conclusion

Average prices for photovoltaic electricity January 2010 - December 2017

Л

Source: Renewable Energy Auctions 2016, IRENA * Source: Fraunhofer ISE

Fraunhofer

Electricity Production in Germany in May 2010 and 2018 Fraunhofer ISE Energy Charts

Electricity Production in Germany in May 2010 and 2018 Fraunhofer ISE Energy Charts

Source: www.energy-charts.de

Electricity Production in Germany in May 2010 and 2018 Fraunhofer ISE Energy Charts

→ Increased volatile production, price variations, negative residual loads, bottlenecks in transmission grids, reliability concerns (SAIDI), ...

Renewable Energy Model »REMod«

Mimimize total cost

Strictly model-based technoeconomic optimization of transformation pathways based on comprehensive simulation of energy systems (hourly time scale)

Study by the German academies of science Investigated transformation pathways

Scenario	CO ₂ goal	Major characteristics
No restrictions	Minus 85 % in 2050 (compared to 1990)	 No limits for direct electricity use (e.g. heat pumps, transportation)
Hydrogen		 Transportation with majority of hydrogen / fuel cell drive trains High fraction of H₂ in gas network
Power-to-Gas Power-to-Liquid (P2G/P2L)		 Transportation with majority of fuel/methane based drive trains Building heating partly based on methane Good progress in efficiency in industry
High efficiency		 No limits for direct electricity use Good progess in implementing high efficiency technologies Good progress in reducing energy demand

"
Leopoldina
Nationale Akademie
der Wissenschaften

Electricity production Annual energy in TWh in 2050 and today

Electricity use Annual energy in TWh in 2050 and today

Numbers of units for key components in the electricity grid

Paradigm shift in the supply model

Fluctuating renewable energies as a game changer

- High shares of fluctuating, non-controllable renewable power require a paradigm shift in the supply model
- Today's demand-based provision of energy by large power plants is replaced by continuous rebalancing between provision and use by
 - flexible use of generation and storage facilities,
 - temporally adapted energy use (demand response, load shift),
 - strong coupling of the sectors electricity, heat and transport,
 - integration of modern forecasting methods for generation and consumption
- Extensive use of techniques and methods of digitization is mandatory for success of organization and management of an increasingly complex system

Digitization in the energy system Fields of application

The need of IT solutions for energy system transformation

Digitization of the energy system transformation – Examples

Conclusion

Example: medium & low voltage grid in northern Germany Adaptive distribution grid operation – avoiding voltage band violations

- Voltage band violations depend on expansion of fluctuating RE, electric vehicles (EV), heat pumps and on control concept
- Local node control is not sufficient for scenarios with more PV, EV, HP
- Digitization and shared (centralized) control avoids LV/MV grid reinforcements
- Strongly increased installation of renewable \rightarrow energies and electric vehicles possible without extensive grid extension

Example: Consumption Empowering grid and infrastructure

- Peak management on grid level, ensuring grid stability
- Home energy management and smart charging: Charging can be aligned with local photovoltaic power generation
- Forecast-based energy management algorithms for optimal charging strategy
- Maximizing self-consumption and grid stability

Example: Prosumers ENIT - Energy management for industrial companies

Monitoring and control systems for decentralized energy systems:

- transparency about electricity, heat and gas consumption
- intelligent system control and more efficient operation
- tailored to the needs of small to medium-sized companies
- ➔ peak load reduction
- ➔ fault detection
- ➔ integration of energy data into controlling / ERP systems

Copyright © 2015 by Enit Energy IT Systems GmbH.

Example: Prosumers mondas - Intelligent system monitoring

Application in solar parks, combined heat and power plants, compressed air systems, heat transfer stations and building services engineering:

- Merge plant data
- Systematic and automated error analysis
- Predictive maintenance
- Derivation of concrete instructions for action
- → Reduced maintenance effort
- **Optimization of operation**
- Increase customer satisfaction

Example: Prosumers Oxygen Technologies – IoT platform for decentralised energy plants

IT connectivity and data-handling for actors of the energy system:

- equipment manufacturers
- end customer/prosumer
- power distributor
- network operators
- balancing group manager
- Short term: Direct marketing of decentralized energy plants through Virtual Power Plants (VPP)
- prosumer-to-prosumer energy trading system based on a Fair Merchant Mechanism (FMM)

The concept of Smart Cities

Challenges and trends

Urbanization

- Growing density of people
- Growing mobility, congestions & air pollution

digitization

- New business models
- New services

Climate change

- Decarbonization of the energy system
- Resilience of city infrastructure

- The need of IT solutions for energy system transformation
- Digitization of the energy system transformation Examples
- Conclusion

Conclusion

Digitization as enabler

- Domination of the complex system and the complex interaction of a variety of technical components in the system and market involvement
- Efficient, intelligent use of infrastructure and hardware
- ... and as driving force
- New technological possibilities are emerging in the application, offering new services and opening new business models
- Challenge
 - Make sure that digitization helps in achieving the goals of the energy transition

Thank you for your Attention!

Fraunhofer Institute for Solar Energy Systems ISE

Prof. Dr. Hans-Martin Henning

www.ise.fraunhofer.de

hans-martin.henning@ise.fraunhofer.de

